技术领域technical field
本发明属于材料工艺领域,具体涉及一种微纳米级球形碳化硅材料的制备方法。The invention belongs to the field of material technology, and in particular relates to a method for preparing a micronano-scale spherical silicon carbide material.
背景技术Background technique
碳化硅具有高强度、高硬度、高热导率、低热膨胀系数、优良的高温抗氧化能力以及稳定的物理化学性质等优异的性能,是一种重要的先进结构陶瓷和先进功能陶瓷。因此碳化硅广泛应用于磨料、冶金、耐火材料、航空航天、汽车、舰船、化工、管道制造等领域。Silicon carbide has excellent properties such as high strength, high hardness, high thermal conductivity, low thermal expansion coefficient, excellent high temperature oxidation resistance and stable physical and chemical properties. It is an important advanced structural ceramics and advanced functional ceramics. Therefore, silicon carbide is widely used in abrasives, metallurgy, refractories, aerospace, automobiles, ships, chemicals, pipeline manufacturing and other fields.
碳化硅粉体是制备碳化硅陶瓷和薄膜的基本原料,其制备方法包括:机械粉碎法、溶胶-凝胶法、有机物热分解法、气相合成反应法自蔓延高温合成、碳热还原法等。目前工业上所制备的碳化硅粉体多为形状不规则颗粒,具有尖锐的棱角,流动性差。在碳化硅陶瓷制品中,由于碳化硅颗粒尖锐的棱角,导致碳化硅粉体的填充量受到限制,降低了碳化硅陶瓷制品的致密度,影响其使用性能,而作为磨料使用时,尖锐的棱角也极易产生划痕。而球形颗粒由于其形状规则,流动性好,易于分散,并且由于球形颗粒的各向同性,使其在各个方向上的力学、电学性能等保持一致,因此球形碳化硅材料的制备在工业上具有十分重要应用价值。Silicon carbide powder is the basic raw material for preparing silicon carbide ceramics and thin films. Its preparation methods include: mechanical pulverization, sol-gel method, thermal decomposition of organic matter, gas phase synthesis reaction method, self-propagating high-temperature synthesis, and carbothermal reduction method. At present, most of the silicon carbide powders produced in industry are irregular particles with sharp edges and corners and poor fluidity. In silicon carbide ceramic products, due to the sharp edges and corners of silicon carbide particles, the filling amount of silicon carbide powder is limited, which reduces the density of silicon carbide ceramic products and affects its performance. When used as an abrasive, sharp edges and corners Also prone to scratches. Spherical particles are easy to disperse due to their regular shape, good fluidity, and due to the isotropy of spherical particles, their mechanical and electrical properties in all directions are consistent. Therefore, the preparation of spherical silicon carbide materials has industrial advantages. Very important application value.
中国专利201310717301.1采用喷雾造粒法以碳化硅微粉为原料,加入一定量的粘结剂,在高温下进行造粒,但所得碳化硅颗粒球形度不高。中国专利201510473646.6采用苯酚、碱和甲醛制备预聚体,将预聚体、高分子模板剂、甲醛、TEOS混合烘干后得到薄膜材料,对薄膜材料热处理得到球形碳化硅,但所得球形碳化硅易于破裂。中国专利201510487102.5采用中间相碳微球生球和硅粉,经过混合、干燥、模压、烧结后得到由球形碳化硅颗粒组成的块体,进一步脱碳、破碎、过筛后得到多孔碳化硅微球粉末,但工艺较为复杂且需要消耗较多的能量。并且在上述公开报道中,所制备得到的球形碳化硅粉末粒径均在微米级。而在实际应用过程中,碳化硅颗粒的大小对其应用具有较大的影响,因此制备粒度可控的球形碳化硅颗粒无论对碳化硅制品还是抛光粉体都是必要的。Chinese patent 201310717301.1 adopts the spray granulation method to use silicon carbide micropowder as raw material, add a certain amount of binder, and carry out granulation at high temperature, but the sphericity of the obtained silicon carbide particles is not high. Chinese patent 201510473646.6 uses phenol, alkali and formaldehyde to prepare prepolymers, prepolymers, polymer templates, formaldehyde, and TEOS are mixed and dried to obtain thin film materials, and heat treatment of thin film materials obtains spherical silicon carbide, but the obtained spherical silicon carbide is easy to rupture. Chinese patent 201510487102.5 uses mesocarbon microspheres and silicon powder to obtain a block composed of spherical silicon carbide particles after mixing, drying, molding, and sintering, and then obtains porous silicon carbide microspheres after further decarburization, crushing, and sieving Powder, but the process is more complex and requires more energy consumption. And in the above public reports, the particle size of the prepared spherical silicon carbide powder is all in micron order. In the actual application process, the size of silicon carbide particles has a great influence on its application, so the preparation of spherical silicon carbide particles with controllable particle size is necessary for both silicon carbide products and polishing powders.
发明内容Contents of the invention
本发明针对现有制备技术存在的不足,提供一种微纳米级球形碳化硅材料的制备方法。采用不同的有机碳源经过水热反应后得到粒径可控的碳球,所得碳球作为模板与硅粉按比例混合后,经过高温固相反应制备得到反应产物1,反应产物1经过脱碳、重选法后得到形貌均一度较高的球形碳化硅材料。本发明一方面通过有机碳源和表面活性剂的选择、水热反应条件的调控,实现球形碳化硅的粒径的调控;另一方面调控碳球与硅粉粒径的比值以及采用重选法得到形貌均一度较高的球形碳化硅材料。Aiming at the shortcomings of the existing preparation technology, the invention provides a preparation method of a micronano-scale spherical silicon carbide material. Different organic carbon sources are used to obtain carbon spheres with controllable particle size after hydrothermal reaction. After the obtained carbon spheres are used as templates and mixed with silicon powder in proportion, the reaction product 1 is prepared through high-temperature solid-state reaction, and the reaction product 1 is decarburized. 1. Spherical silicon carbide material with high uniformity of morphology was obtained after re-election method. On the one hand, the present invention realizes the regulation and control of the particle size of spherical silicon carbide through the selection of organic carbon sources and surfactants and the regulation of hydrothermal reaction conditions; A spherical silicon carbide material with high uniformity of morphology is obtained.
本发明所采用的技术方案如下:The technical scheme adopted in the present invention is as follows:
步骤一、将有机碳源按照0.1~1mol/L的浓度溶于水中,按照有机碳源质量的0.1%~5%添加表面活性剂,搅拌后得到均匀的混合溶液;Step 1, dissolving the organic carbon source in water at a concentration of 0.1-1 mol/L, adding a surfactant according to 0.1%-5% of the mass of the organic carbon source, and stirring to obtain a uniform mixed solution;
步骤二、将混合溶液按照一定的填充量置于水热反应釜中,进行水热反应,采用乙醇对所得产物进行多次洗涤并干燥,得到碳球;Step 2, placing the mixed solution in a hydrothermal reaction kettle according to a certain filling amount, performing a hydrothermal reaction, washing and drying the obtained product several times with ethanol, and obtaining carbon spheres;
步骤三、将碳球与硅粉按照一定的摩尔比进行混合,在高纯氮气或氩气环境中按照一定的升温制度进行高温固相反应,得到反应产物1;Step 3, mixing carbon spheres and silicon powder according to a certain molar ratio, performing a high-temperature solid-state reaction according to a certain heating system in a high-purity nitrogen or argon environment, and obtaining a reaction product 1;
步骤四、将反应产物1在700℃下氧化4小时进行脱碳处理,脱碳处理后的粉体采用重选法得到粒径分布较窄球形碳化硅材料。Step 4: Oxidize the reaction product 1 at 700° C. for 4 hours for decarburization treatment. The decarburized powder is re-selected to obtain a spherical silicon carbide material with a narrow particle size distribution.
进一步的,步骤一中,所述有机碳源可以为葡萄糖、蔗糖、麦芽糖、果糖、淀粉、环糊精、树脂中的一种或几种组合。Further, in step 1, the organic carbon source may be one or a combination of glucose, sucrose, maltose, fructose, starch, cyclodextrin, and resin.
进一步的,步骤一中,所述表面活性剂为油酸、六偏磷酸钠、聚丙烯酸钠、十二烷基苯磺酸钠、十六烷基三甲基溴化胺中的一种。Further, in step 1, the surfactant is one of oleic acid, sodium hexametaphosphate, sodium polyacrylate, sodium dodecylbenzenesulfonate, and cetyltrimethylammonium bromide.
进一步的,步骤二中,所述填充量为10%~60vol%。Further, in step 2, the filling amount is 10%-60vol%.
进一步的,步骤二中,所述水热反应的升温速率为1~10℃/min,反应温度为160~240℃,反应时间为2~72小时。Further, in step 2, the heating rate of the hydrothermal reaction is 1-10°C/min, the reaction temperature is 160-240°C, and the reaction time is 2-72 hours.
进一步的,步骤三中,所述碳球与硅粉粒径的比值为(0.01~1):1。Further, in step 3, the ratio of the particle size of the carbon spheres to the silicon powder is (0.01-1):1.
进一步的,步骤三中,所述碳球与硅粉的摩尔比为(0.1~2):1。Further, in step 3, the molar ratio of the carbon spheres to the silicon powder is (0.1-2):1.
进一步的,步骤三中,所述升温制度为首先以1~20℃/min升温至600~900℃,保温2~6小时,然后以1~10℃/min升温至1100~1700℃,保温0.5~4小时,最后1~5℃/min降至室温。Further, in Step 3, the heating system is to first raise the temperature to 600-900°C at 1-20°C/min, keep it warm for 2-6 hours, then raise the temperature to 1100-1700°C at 1-10°C/min, and keep it warm for 0.5 ~ 4 hours, finally 1 ~ 5 ℃ / min to room temperature.
进一步的,步骤四中,重选法的工艺为将脱碳后的粉体按照20~200g/L的浓度分散于水中进行沉降,沉降后取上层液体,干燥后得到球形碳化硅粉末,每10cm高的液面所需要的沉降时间为1~30min。Further, in step 4, the gravity separation process is to disperse the decarburized powder in water at a concentration of 20-200g/L for sedimentation, take the upper liquid after sedimentation, and obtain spherical silicon carbide powder after drying. The settling time required for a high liquid level is 1 to 30 minutes.
本发明的有益效果为:The beneficial effects of the present invention are:
1、通过调控有机碳源、表面活性剂、水热条件调控碳球的粒径,实现了球形碳化硅粒径的调控;1. By adjusting the particle size of carbon spheres by adjusting organic carbon sources, surfactants, and hydrothermal conditions, the particle size control of spherical silicon carbide is realized;
2、通过调控碳球与硅粉粒径的比值以及采用重选法得到形貌均一度较高的球形碳化硅材料;2. By adjusting the ratio of the particle size of carbon spheres to silicon powder and adopting the gravity separation method, a spherical silicon carbide material with high uniformity of morphology is obtained;
3、所制备的球形碳化硅材料球形度较高,粒径可控制在几百纳米到几十微米,显著提高了碳化硅粉体的流动性;3. The prepared spherical silicon carbide material has a high degree of sphericity, and the particle size can be controlled from hundreds of nanometers to tens of microns, which significantly improves the fluidity of silicon carbide powder;
4、所述的制备工艺简单快速,可批量化合成。4. The preparation process is simple and fast, and can be synthesized in batches.
附图说明Description of drawings
图1本发明实施流程图。Figure 1 is a flowchart of the implementation of the present invention.
图2是实施例1中所制备的球形碳化硅材料的XRD物相结果。Fig. 2 is the XRD phase result of the spherical silicon carbide material prepared in Example 1.
图3是实施例1中所制备的球形碳化硅材料的场发射扫描镜照片。FIG. 3 is a field emission scanning mirror photo of the spherical silicon carbide material prepared in Example 1. FIG.
图4是实施例4中所制备的球形碳化硅材料的低放大倍数场发射扫描镜照片。Fig. 4 is a low magnification field emission scanning mirror photo of the spherical silicon carbide material prepared in Example 4.
图5是实施例4中所制备的球形碳化硅材料的高放大倍数场发射扫描镜照片。Fig. 5 is a high magnification field emission scanning mirror photo of the spherical silicon carbide material prepared in Example 4.
具体实施方式Detailed ways
下面结合附图对本发明做清楚完整的描述,以使本领域的技术人员在不需要做出创造性劳动的条件下,能够充分实施本发明。The present invention will be clearly and completely described below in conjunction with the accompanying drawings, so that those skilled in the art can fully implement the present invention without creative work.
本发明的具体实施方式如下:The specific embodiment of the present invention is as follows:
实施例1Example 1
一种微纳米级球形碳化硅材料的制备方法,包括以下步骤:(1)将葡萄糖按照0.4mol/L的浓度溶于水中,按照有机碳源质量的1%添加油酸,搅拌后得到均匀的混合溶液;(2)将混合溶液按照填充量60%置于水热反应釜中,进行水热反应,升温速率为10℃/min,反应温度为220℃,反应时间为4小时,采用乙醇对所得产物进行多次洗涤并干燥;(3)将碳球与硅粉按照摩尔比2:1进行混合,其中碳球与硅粉粒径的比值为0.01:1,在高纯氩气环境中,首先采用10℃/min升温至900℃,保温2小时,然后以3℃/min升温至1500℃,保温2小时,最后4℃/min降至室温,得到反应产物1;(4)将反应产物1在700℃下氧化4小时进行脱碳处理,脱碳后的粉体按照20g/L的浓度分散于水中,沉降5min后取上层液体,干燥后得到粒径分布较窄的球形碳化硅材料。所制备样品的主要成分如图2所示,为β晶型的碳化硅,场发射电镜照片如图3所示,球形碳化硅的粒径大约为300nm。A method for preparing a micro-nano-scale spherical silicon carbide material, comprising the following steps: (1) dissolving glucose in water at a concentration of 0.4 mol/L, adding oleic acid according to 1% of the mass of an organic carbon source, and obtaining a uniform Mixed solution; (2) The mixed solution is placed in the hydrothermal reaction kettle according to the filling capacity of 60%, and the hydrothermal reaction is carried out. The heating rate is 10°C/min, the reaction temperature is 220°C, and the reaction time is 4 hours. The obtained product is washed and dried several times; (3) carbon spheres and silicon powder are mixed according to a molar ratio of 2:1, wherein the ratio of carbon spheres to silicon powder particle size is 0.01:1, in a high-purity argon environment, First, use 10°C/min to raise the temperature to 900°C, keep it warm for 2 hours, then raise the temperature to 1500°C at 3°C/min, keep it warm for 2 hours, and finally lower it to room temperature at 4°C/min to get the reaction product 1; (4) The reaction product 1 Oxidation at 700°C for 4 hours for decarburization treatment. The decarburized powder is dispersed in water at a concentration of 20g/L. After settling for 5 minutes, the upper layer liquid is taken, and after drying, a spherical silicon carbide material with a narrow particle size distribution is obtained. The main component of the prepared sample is shown in Figure 2, which is β-crystalline silicon carbide. The field emission electron microscope photo is shown in Figure 3, and the particle size of spherical silicon carbide is about 300nm.
实施例2Example 2
一种微纳米级球形碳化硅材料的制备方法,包括以下步骤:(1)将麦芽糖按照1mol/L的浓度溶于水中,按照麦芽糖质量的5%添加聚丙烯酸钠,搅拌后得到均匀的混合溶液;(2)将混合溶液按照填充量0.1置于水热反应釜中,进行水热反应,升温速率为5℃/min,反应温度为100℃,反应时间为72小时,采用乙醇对所得产物进行多次洗涤并干燥;(3)将碳球与硅粉按照摩尔比1:1进行混合,其中碳球与硅粉粒径的比值为1:1,在高纯氩气环境中,首先采用20℃/min升温至600℃,保温6小时,然后以2℃/min升温至1700℃,保温0.5小时,最后2℃/min降至室温,得到反应产物1;(4)将反应产物1在700℃下氧化4小时进行脱碳处理,脱碳后的粉体按照100g/L的浓度分散于水中,沉降15min后取上层液体,干燥后得到粒径分布较窄的球形碳化硅材料。A method for preparing a micronano-scale spherical silicon carbide material, comprising the following steps: (1) dissolving maltose in water at a concentration of 1 mol/L, adding sodium polyacrylate according to 5% of the mass of the maltose, and stirring to obtain a uniform mixed solution (2) The mixed solution is placed in the hydrothermal reaction kettle according to the filling amount of 0.1, and the hydrothermal reaction is carried out. The heating rate is 5°C/min, the reaction temperature is 100°C, and the reaction time is 72 hours. The resulting product is processed with ethanol. Wash and dry multiple times; (3) Mix carbon spheres and silicon powder in a molar ratio of 1:1, wherein the ratio of carbon spheres to silicon powder particle size is 1:1. In a high-purity argon environment, first use 20 ℃/min to raise the temperature to 600°C, keep it warm for 6 hours, then raise the temperature to 1700°C at 2°C/min, keep it warm for 0.5 hours, and finally lower it to room temperature at 2°C/min to get the reaction product 1; (4) put the reaction product 1 at 700 Oxidation at ℃ for 4 hours for decarburization treatment. The decarburized powder is dispersed in water at a concentration of 100g/L. After settling for 15 minutes, the upper layer liquid is taken. After drying, a spherical silicon carbide material with a narrow particle size distribution is obtained.
实施例3Example 3
一种微纳米级球形碳化硅材料的制备方法,包括以下步骤:(1)将果糖按照0.1mol/L的浓度溶于水中,按照果糖质量的3%添加十二烷基苯磺酸钠,搅拌后得到均匀的混合溶液;(2)将混合溶液按照填充量0.4置于水热反应釜中,进行水热反应,升温速率为2℃/min,反应温度为240℃,反应时间为2小时,采用乙醇对所得产物进行多次洗涤并干燥;(3)将碳球与硅粉按照摩尔比0.1:1进行混合,其中碳球与硅粉粒径的比值为0.5:1,在高纯氮气环境中,首先采用15℃/min升温至700℃,保温4小时,然后以10℃/min升温至1300℃,保温3小时,最后5℃/min降至室温,得到反应产物1;(4)将上述反应产物在700℃下氧化4小时进行脱碳处理,脱碳后的粉体按照50g/L的浓度分散于水中,沉降10min后取上层液体,干燥后得到粒径分布较窄的球形碳化硅材料。A preparation method of a micronano-scale spherical silicon carbide material, comprising the following steps: (1) dissolving fructose in water at a concentration of 0.1mol/L, adding sodium dodecylbenzenesulfonate according to 3% of the fructose mass, and stirring Finally, a uniform mixed solution is obtained; (2) the mixed solution is placed in a hydrothermal reaction kettle according to a filling capacity of 0.4, and a hydrothermal reaction is carried out, the heating rate is 2° C./min, the reaction temperature is 240° C., and the reaction time is 2 hours. The resulting product was washed and dried several times with ethanol; (3) carbon spheres and silicon powder were mixed according to a molar ratio of 0.1:1, wherein the ratio of carbon spheres to silicon powder particle size was 0.5:1, and in a high-purity nitrogen environment In the process, first raise the temperature to 700°C at 15°C/min, keep it warm for 4 hours, then raise the temperature to 1300°C at 10°C/min, keep it warm for 3 hours, and finally lower it to room temperature at 5°C/min to obtain the reaction product 1; (4) The above reaction product was oxidized at 700°C for 4 hours for decarburization treatment. The decarburized powder was dispersed in water at a concentration of 50g/L. After settling for 10 minutes, the upper layer liquid was taken, and after drying, spherical silicon carbide with narrow particle size distribution was obtained. Material.
实施例4Example 4
一种微纳米级球形碳化硅材料的制备方法,包括以下步骤:(1)将淀粉按照0.3mol/L的浓度溶于水中,按照淀粉质量的1%添加六偏磷酸钠,搅拌后得到均匀的混合溶液;(2)将混合溶液按照填充量0.2置于水热反应釜中,进行水热反应,升温速率为1℃/min,反应温度为200℃,反应时间为10小时,采用乙醇对所得产物进行多次洗涤并干燥;(3)将碳球与硅粉按照摩尔比0.5:1进行混合,其中碳球与硅粉粒径的比值为0.3:1,在高纯氮气环境中,首先采用10℃/min升温至800℃,保温3小时,然后以3℃/min升温至1600℃,保温1小时,最后1℃/min降至室温,得到反应产物1;(4)将上述反应产物在700℃下氧化4小时进行脱碳处理,脱碳后的粉体按照200g/L的浓度分散于水中,沉降30min后取上层液体,干燥后得到粒径分布较窄的球形碳化硅材料。所制备样品的场发射电镜照片如图4和图5所示,所得到的球形碳化硅材料绝大部分为球形碳化硅颗粒,形貌的均一度较高,球形碳化硅粒径大约为7μm。A method for preparing a micro-nano-scale spherical silicon carbide material, comprising the following steps: (1) dissolving starch in water at a concentration of 0.3 mol/L, adding sodium hexametaphosphate according to 1% of the mass of the starch, and stirring to obtain a uniform Mixed solution; (2) The mixed solution is placed in a hydrothermal reaction kettle according to the filling amount of 0.2, and the hydrothermal reaction is carried out. The heating rate is 1° C./min, the reaction temperature is 200° C., and the reaction time is 10 hours. Ethanol is used to treat the obtained The product is washed and dried several times; (3) Carbon spheres and silicon powder are mixed according to a molar ratio of 0.5:1, wherein the ratio of carbon spheres to silicon powder particle size is 0.3:1. In a high-purity nitrogen environment, first use 10°C/min to 800°C, heat preservation for 3 hours, then 3°C/min to 1600°C, heat preservation for 1 hour, and finally 1°C/min to room temperature to obtain the reaction product 1; (4) the above reaction product in Oxidation at 700°C for 4 hours for decarburization treatment. The decarburized powder is dispersed in water at a concentration of 200g/L. After settling for 30 minutes, the upper layer liquid is taken. After drying, a spherical silicon carbide material with a narrow particle size distribution is obtained. The field emission electron microscope photographs of the prepared samples are shown in Figure 4 and Figure 5. Most of the obtained spherical silicon carbide materials are spherical silicon carbide particles with a high degree of uniformity in morphology, and the particle size of the spherical silicon carbide particles is about 7 μm.
实施例5Example 5
一种微纳米级球形碳化硅材料的制备方法,包括以下步骤:(1)将葡萄糖和淀粉(摩尔比2:1)按照0.3mol/L的浓度溶于水中,按照葡萄糖和淀粉质量的3%添加六偏磷酸钠,搅拌后得到均匀的混合溶液;(2)将混合溶液按照填充量0.5置于水热反应釜中,进行水热反应,升温速率为6℃/min,反应温度为180℃,反应时间为24小时,采用乙醇对所得产物进行多次洗涤并干燥;(3)将碳球与硅粉按照摩尔比0.4:1进行混合,其中碳球与硅粉粒径的比值为0.7:1,在高纯氮气环境中,首先采用10℃/min升温至800℃,保温2.5小时,然后以7℃/min升温至1400℃,保温2.5小时,最后3℃/min降至室温,得到反应产物1;(4)将上述反应产物在700℃下氧化4小时进行脱碳处理,脱碳后的粉体按照80g/L的浓度分散于水中,沉降5min后取上层液体,干燥后得到粒径分布较窄的球形碳化硅材料。A method for preparing a micro-nano-scale spherical silicon carbide material, comprising the following steps: (1) dissolving glucose and starch (2:1 in molar ratio) in water at a concentration of 0.3 mol/L, according to 3% of the mass of glucose and starch Add sodium hexametaphosphate, and get a uniform mixed solution after stirring; (2) Put the mixed solution in a hydrothermal reaction kettle according to the filling capacity of 0.5, and carry out hydrothermal reaction, the heating rate is 6°C/min, and the reaction temperature is 180°C , the reaction time was 24 hours, and the resulting product was washed and dried several times with ethanol; (3) carbon spheres and silicon powder were mixed according to a molar ratio of 0.4:1, wherein the ratio of carbon spheres to silicon powder particle size was 0.7: 1. In a high-purity nitrogen environment, first raise the temperature to 800°C at 10°C/min, keep it warm for 2.5 hours, then raise the temperature to 1400°C at 7°C/min, keep it warm for 2.5 hours, and finally lower it to room temperature at 3°C/min to get the reaction Product 1; (4) The above reaction product was oxidized at 700°C for 4 hours for decarburization treatment. The decarburized powder was dispersed in water at a concentration of 80g/L. After settling for 5 minutes, the upper layer liquid was taken, and the particle size was obtained after drying. Spherical silicon carbide material with narrow distribution.
以上对本发明的较佳实施例进行了描述,需要指出的是,本发明并不局限于上述特定实施方式,其中未尽详细描述的设备和结构应该理解为用本领域中的普通方式予以实施;任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。The preferred embodiments of the present invention have been described above, and it should be pointed out that the present invention is not limited to the above-mentioned specific embodiments, and the equipment and structures that are not described in detail should be understood as being implemented in a common way in the art; Any person familiar with the art, without departing from the scope of the technical solution of the present invention, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention still belong to the protection of the technical solution of the present invention. within range.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810401517.XACN108483447B (en) | 2018-04-28 | 2018-04-28 | A kind of preparation method of micro-nano-scale spherical silicon carbide material |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810401517.XACN108483447B (en) | 2018-04-28 | 2018-04-28 | A kind of preparation method of micro-nano-scale spherical silicon carbide material |
| Publication Number | Publication Date |
|---|---|
| CN108483447Atrue CN108483447A (en) | 2018-09-04 |
| CN108483447B CN108483447B (en) | 2019-10-22 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810401517.XAActiveCN108483447B (en) | 2018-04-28 | 2018-04-28 | A kind of preparation method of micro-nano-scale spherical silicon carbide material |
| Country | Link |
|---|---|
| CN (1) | CN108483447B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109502590A (en)* | 2018-11-23 | 2019-03-22 | 山东天岳先进材料科技有限公司 | A method of improving sic powder yield |
| CN110003536A (en)* | 2019-02-20 | 2019-07-12 | 谭美英 | A kind of preparation method of heat-dissipation type wear-resistant rubber material |
| CN111392728A (en)* | 2020-02-28 | 2020-07-10 | 山东天岳先进材料科技有限公司 | Raw material for producing silicon carbide crystal and preparation method and application thereof |
| CN111704139A (en)* | 2020-06-29 | 2020-09-25 | 哈尔滨科友半导体产业装备与技术研究院有限公司 | Preparation method of high-purity silicon carbide powder |
| CN111995406A (en)* | 2020-08-10 | 2020-11-27 | 裴小罗 | SiC wear-resistant refractory material based on nano carbon material modification |
| CN112794302A (en)* | 2019-11-14 | 2021-05-14 | 中国科学院大连化学物理研究所 | A kind of spherical carbon material and preparation method thereof |
| CN112876281A (en)* | 2021-01-28 | 2021-06-01 | 哈尔滨工业大学(威海) | Preparation method and application of biological ceramic support with hollow microsphere surface micro-nano structure |
| CN113415798A (en)* | 2021-05-12 | 2021-09-21 | 江西农业大学 | Preparation method of phosphorus-doped microporous, mesoporous and macroporous coexisting grade pore structure nano carbon spheres |
| CN114105120A (en)* | 2020-08-28 | 2022-03-01 | 中国科学院大连化学物理研究所 | A kind of preparation method of small size carbon ball material and its application |
| RU2767270C1 (en)* | 2021-08-25 | 2022-03-17 | Кирилл Борисович ИГНАТЬЕВ | Method for obtaining silicon carbide |
| CN114368970A (en)* | 2022-01-12 | 2022-04-19 | 西北工业大学 | Submicron ZrC-SiC composite ceramic microsphere and preparation method thereof |
| CN118812952A (en)* | 2024-08-07 | 2024-10-22 | 苏州市安美材料科技有限公司 | A preparation method of micro-nano inorganic particle PP composite material |
| CN119118132A (en)* | 2024-10-07 | 2024-12-13 | 连云港市沃鑫高新材料有限公司 | A method for preparing high-purity silicon carbide powder |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060051281A1 (en)* | 2004-09-09 | 2006-03-09 | Bhabendra Pradhan | Metal carbides and process for producing same |
| KR20090066031A (en)* | 2007-12-18 | 2009-06-23 | 주식회사 엘지화학 | Anode Active Material for Secondary Battery and Manufacturing Method Thereof |
| CN102897763A (en)* | 2012-10-08 | 2013-01-30 | 北京科技大学 | Low-temperature rapid synthesis method of alpha-SiC micropowder |
| US20130243682A1 (en)* | 2012-03-14 | 2013-09-19 | Korea Institute Of Science And Technology | METHOD FOR MANUFACTURING SiC POWDERS WITH HIGH PURITY |
| CN105347328A (en)* | 2015-12-06 | 2016-02-24 | 杭州飞山浩科技有限公司 | Method for preparing monodisperse carbon microspheres by using cane sugar as carbon source |
| CN105417541A (en)* | 2015-12-22 | 2016-03-23 | 中国电子科技集团公司第二研究所 | Method for preparing high-purity silicon carbide powder |
| EP2470473B1 (en)* | 2009-08-26 | 2017-12-20 | LG Innotek Co., Ltd. | Method for manufacturing silicon carbide pulverulent body |
| CN107721429A (en)* | 2017-11-15 | 2018-02-23 | 中国科学院福建物质结构研究所 | Zirconium carbide silicon carbide composite powder body material and preparation method thereof |
| CN107963631A (en)* | 2017-12-12 | 2018-04-27 | 宁波爱克创威新材料科技有限公司 | Nanometer silicon carbide and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060051281A1 (en)* | 2004-09-09 | 2006-03-09 | Bhabendra Pradhan | Metal carbides and process for producing same |
| KR20090066031A (en)* | 2007-12-18 | 2009-06-23 | 주식회사 엘지화학 | Anode Active Material for Secondary Battery and Manufacturing Method Thereof |
| EP2470473B1 (en)* | 2009-08-26 | 2017-12-20 | LG Innotek Co., Ltd. | Method for manufacturing silicon carbide pulverulent body |
| US20130243682A1 (en)* | 2012-03-14 | 2013-09-19 | Korea Institute Of Science And Technology | METHOD FOR MANUFACTURING SiC POWDERS WITH HIGH PURITY |
| CN102897763A (en)* | 2012-10-08 | 2013-01-30 | 北京科技大学 | Low-temperature rapid synthesis method of alpha-SiC micropowder |
| CN105347328A (en)* | 2015-12-06 | 2016-02-24 | 杭州飞山浩科技有限公司 | Method for preparing monodisperse carbon microspheres by using cane sugar as carbon source |
| CN105417541A (en)* | 2015-12-22 | 2016-03-23 | 中国电子科技集团公司第二研究所 | Method for preparing high-purity silicon carbide powder |
| CN107721429A (en)* | 2017-11-15 | 2018-02-23 | 中国科学院福建物质结构研究所 | Zirconium carbide silicon carbide composite powder body material and preparation method thereof |
| CN107963631A (en)* | 2017-12-12 | 2018-04-27 | 宁波爱克创威新材料科技有限公司 | Nanometer silicon carbide and preparation method thereof |
| Title |
|---|
| 朱秋荣等: "碳微球的研究进展", 《化工进展》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020103279A1 (en)* | 2018-11-23 | 2020-05-28 | 山东天岳先进材料科技有限公司 | Method for improving yield of silicon carbide powder |
| CN109502590A (en)* | 2018-11-23 | 2019-03-22 | 山东天岳先进材料科技有限公司 | A method of improving sic powder yield |
| CN110003536A (en)* | 2019-02-20 | 2019-07-12 | 谭美英 | A kind of preparation method of heat-dissipation type wear-resistant rubber material |
| CN112794302A (en)* | 2019-11-14 | 2021-05-14 | 中国科学院大连化学物理研究所 | A kind of spherical carbon material and preparation method thereof |
| CN111392728A (en)* | 2020-02-28 | 2020-07-10 | 山东天岳先进材料科技有限公司 | Raw material for producing silicon carbide crystal and preparation method and application thereof |
| WO2021169528A1 (en)* | 2020-02-28 | 2021-09-02 | 山东天岳先进科技股份有限公司 | Raw material for producing silicon carbide crystal, preparation method therefor and application thereof |
| CN111704139A (en)* | 2020-06-29 | 2020-09-25 | 哈尔滨科友半导体产业装备与技术研究院有限公司 | Preparation method of high-purity silicon carbide powder |
| CN111995406A (en)* | 2020-08-10 | 2020-11-27 | 裴小罗 | SiC wear-resistant refractory material based on nano carbon material modification |
| CN114105120A (en)* | 2020-08-28 | 2022-03-01 | 中国科学院大连化学物理研究所 | A kind of preparation method of small size carbon ball material and its application |
| CN112876281A (en)* | 2021-01-28 | 2021-06-01 | 哈尔滨工业大学(威海) | Preparation method and application of biological ceramic support with hollow microsphere surface micro-nano structure |
| CN113415798A (en)* | 2021-05-12 | 2021-09-21 | 江西农业大学 | Preparation method of phosphorus-doped microporous, mesoporous and macroporous coexisting grade pore structure nano carbon spheres |
| CN113415798B (en)* | 2021-05-12 | 2023-02-24 | 江西农业大学 | Preparation method of phosphorus-doped microporous, mesoporous and macroporous coexisting grade pore structure carbon nanospheres |
| RU2767270C1 (en)* | 2021-08-25 | 2022-03-17 | Кирилл Борисович ИГНАТЬЕВ | Method for obtaining silicon carbide |
| CN114368970A (en)* | 2022-01-12 | 2022-04-19 | 西北工业大学 | Submicron ZrC-SiC composite ceramic microsphere and preparation method thereof |
| CN118812952A (en)* | 2024-08-07 | 2024-10-22 | 苏州市安美材料科技有限公司 | A preparation method of micro-nano inorganic particle PP composite material |
| CN119118132A (en)* | 2024-10-07 | 2024-12-13 | 连云港市沃鑫高新材料有限公司 | A method for preparing high-purity silicon carbide powder |
| Publication number | Publication date |
|---|---|
| CN108483447B (en) | 2019-10-22 |
| Publication | Publication Date | Title |
|---|---|---|
| CN108483447B (en) | A kind of preparation method of micro-nano-scale spherical silicon carbide material | |
| CN106009428B (en) | A kind of silica-filled PTFE composite and preparation method thereof | |
| CN108529692B (en) | Preparation method of hollow spherical nickel oxide | |
| CN106631008B (en) | A kind of massive non-cracking high-density nanocrystalline gadolinium zirconate ceramics and its preparation method | |
| CN108840683B (en) | Process for preparing zirconium nitride ceramic microspheres and zirconium nitride ceramic microspheres | |
| CN104370300A (en) | High-dispersity spherical cerium oxide powder and preparation method thereof | |
| CN104803391B (en) | A kind of method for preparing flaky silicon dioxide powder | |
| CN101691302A (en) | Method for preparing sheet-shaped alpha-alumina particles | |
| CN110451498B (en) | Graphene-boron nitride nanosheet composite structure and preparation method thereof | |
| CN104529412A (en) | Preparation method of nano-scale hexagonal boron nitride/silicon dioxide multi-phase ceramic material | |
| CN105819422A (en) | A kind of preparation method of nitrogen-doped hollow mesoporous carbon sphere | |
| CN100526216C (en) | Method for preparing Nano nickelous diselenide in hexagon | |
| CN106565242A (en) | Method for improving electrical performance of lanthanum-calcium-manganese-oxygen (LCMO) ceramic material | |
| CN113215444B (en) | A kind of nanoparticle reinforced TC4 metal powder material and preparation method thereof | |
| CN113479918A (en) | Preparation method of nano spherical alpha-alumina powder | |
| CN108658107B (en) | A kind of nano-scale monodisperse spherical α-alumina low-cost preparation method and product thereof | |
| CN104628391A (en) | Method for preparing zirconium diboride nanopowder by virtue of organic-inorganic complex sol-gel technology | |
| CN111470867B (en) | A kind of zirconium carbide ceramic hollow microsphere and preparation method thereof | |
| CN104449400A (en) | Corn-shaped nano lanthanum cerium oxide/graphene composite rare earth polishing powder and preparation method thereof | |
| CN107116228A (en) | A kind of method that solid phase reduction prepares extra-fine nickel powder | |
| Wang et al. | Effects of ball-milling on fabrication of YAG ceramics by a phase transformation assisted spark plasma sintering | |
| CN107337454B (en) | A kind of preparation method of silicon nitride composite powder | |
| CN105399418A (en) | Preparation method of high-performance sodium niobate dielectric ceramic powder | |
| CN105436510A (en) | Method for preparing chemical and magnetic ordered-phase nanoparticles | |
| CN111559761A (en) | Synthesis method of ZIF-67 derived CoO |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |