Movatterモバイル変換


[0]ホーム

URL:


CN108034656A - SgRNA, CRISPR/Cas9 carrier related with rice bronzing glume character, vector construction, application - Google Patents

SgRNA, CRISPR/Cas9 carrier related with rice bronzing glume character, vector construction, application
Download PDF

Info

Publication number
CN108034656A
CN108034656ACN201711258265.1ACN201711258265ACN108034656ACN 108034656 ACN108034656 ACN 108034656ACN 201711258265 ACN201711258265 ACN 201711258265ACN 108034656 ACN108034656 ACN 108034656A
Authority
CN
China
Prior art keywords
sgrna
rice
cas9
crispr
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711258265.1A
Other languages
Chinese (zh)
Inventor
蒲志刚
向小利
王平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAAS BIOTECHNOLOGY AND NUCLEAR TECHNOLOGY RESEARCH INSTITUTE
Original Assignee
SAAS BIOTECHNOLOGY AND NUCLEAR TECHNOLOGY RESEARCH INSTITUTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAAS BIOTECHNOLOGY AND NUCLEAR TECHNOLOGY RESEARCH INSTITUTEfiledCriticalSAAS BIOTECHNOLOGY AND NUCLEAR TECHNOLOGY RESEARCH INSTITUTE
Publication of CN108034656ApublicationCriticalpatent/CN108034656A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

The present invention discloses sgRNA, CRISPRCas9 carrier related with rice bronzing glume character, vector construction, application, overcomes needs to be all mutated the defects of just obtaining brown shell rice in two allele of OsCHI.The present invention:SgRNA fragments are provided, include the gRNA of selectively targeted the 5th extron of rice cinnamyl-alcohol dehydrogenase CAD genes.The sgRNA is specifically T1, T2, T3.The CRISPR/Cas9 gene editings carrier and its construction method for including above-mentioned sgRNA fragments, the carrier editable rice cinnamyl-alcohol dehydrogenase CAD genes are provided.Application of these fragments with carrier in obtaining with bronzing glume and stem knot character rice material is provided.The primer sequence for being used for detecting CRISPR/Cas9 CAD genetic recombination is provided.The present invention can reduce traditional breeding method cost, improve breeding of hybrid rice Mechanization Level, shorten breeding cycle.

Description

SgRNA, CRISPR/Cas9 carrier related with rice bronzing glume character, carrierStructure, application
Technical field
The present invention relates to a kind of sgRNA fragment related with bronzing glume character rice, CRISPR/Cas9 to edit loadBody, carrier construction method, and application.Belong to genetic engineering field.
Background technology
The breeding material of a small amount of different glume colors can be obtained using natural mutation and artificial mutation, in Rice Germplasm ResourcesMaterial.By glume different colours can in the rice mechanization production of hybrid seeds by the hybrid tied on sterile line with together being received with harvesterThe restorer seed obtained separates exactly, thus different glume colors have very high technological value in breeding of hybrid rice.But if do not changed using the method for traditional conventional hybridization, backcrossing by shell color character transformation to restorer, maintainer and originalThe characteristic of material, it is necessary to the time of last decade could realize.
Authorization Notice No. discloses a kind of orientation editor glume color for the Chinese invention patent of 104017821 B of CN and determinesDetermine the method that gene OsCHI formulates brown shell rice material.This method main contents are included in glume color and determine outside gene OsCHIAobvious sub-district chooses target fragments and builds plant CRISPR/Cas9 target practice recombinant vectors, by the recombinant vector Introduced into Rice cellAnd regenerate seedling, rice cell is sheared under the action of expression cassette in the carrier, triggering rice cell DNA selfRepair function.Again by the sequencing to regenerating strain genome target fragment, obtain two equipotential OsCHI genes of carrying and send out at the same timeThe strain of raw afunction mutation, is the brown shell rice material formulated by glume color identification.This method shortcomingIt is:Need all to be mutated in two allele of OsCHI and could produce brown shell rice, while to effect that two genes are mutatedRate is relatively low, it is difficult to obtains the Mutants homozygous of two gene mutations.
The content of the invention
The purpose of the present invention is aiming at the deficiencies in the prior art, there is provided one kind can quickly obtain bronzing glume characterThe technical solution of rice material.
To achieve the above object, present invention firstly provides a kind of sgRNA fragments, the sgRNA fragments can be directed to same baseBecause as follows into edlin, its technical solution:
A kind of sgRNA fragments, it is characterised in that:Include the 5th of selectively targeted rice cinnamyl-alcohol dehydrogenase CAD genesThe gRNA of a extron.
The gRNA that above-mentioned sgRNA fragments include is selectively targeted in rice cinnamyl-alcohol dehydrogenase CAD genes (OryzaSativa (indica cultivar-group) cinnamyl-alcohol dehydrogenase (CAD) gene, GenBank:DQ234272.1 the 5th extron), base sequence such as SEQ ID NO.6.
Above-mentioned sgRNA fragments, including three sgRNA fragments, are respectively:It is named as the sgRNA fragments of T1, base sequenceSuch as SEQ ID NO.1;It is named as the sgRNA fragments of T2, base sequence such as SEQ ID NO.2;The sgRNA fragments of T3 are named as,Base sequence such as SEQ ID NO.3.
Above three sgRNA fragments are selection rice cinnamyl-alcohol dehydrogenase CAD genes (Oryza sativa (japonicaCultivar-group) cinnamyl alcohol dehydrogenase (CAD) gene) on three sgRNA targeting positionPoint, with reference to http://cbi.hzau.edu.cn/cgi-bin/CRISPR target position point prediction and design, use http://Www.rgenome.net/cas-offinder/ network address analyzes undershooting-effect, and final choice determines.
Above-mentioned sgRNA fragments can be used for preparing rice cinnamyl-alcohol dehydrogenase gene C RISPR/Cas9 gene editing carriers.The present invention further provides technical solution:Above-mentioned sgRNA is preparing rice cinnamyl-alcohol dehydrogenase gene C RISPR/Cas9 genes volumeCollect the application in carrier.
Present invention simultaneously provides the CRISPR/Cas9 gene editing carriers comprising above-mentioned sgRNA fragments.
Above-mentioned CRISPR/Cas9 gene editings carrier is nuclease-mediated rice cinnamyl-alcohol dehydrogenase (CAD) bases of Cas9Because editing carrier, including three expression expressed respectively by OsU6a, OsU6b, OsU6c promoter regulation T1, T2, T3sgRNAFrame, the expression cassette expressed by maize ubiquitin Ubiquitin (Ubi) promoter regulations Cas9.
Present invention simultaneously provides the construction method for including above-mentioned CRISPR/Cas9 gene editings carrier, its technical solution is such asUnder:
Above-mentioned CRISPR/Cas9 gene editings carrier construction method, it is characterised in that:By respectively connect promoter T1,T2, T3 are connected into pYLCRISPR/Cas 9P by Bsa I enzymesubi- H plasmids, structure obtain Pubi::Cas9-OsU6a::T1-OsU6b::T2-OsU6c::T3 expression cassettes, obtain pYLCRISPR/Pubi::Cas9-OsU6a::T1-OsU6b::T2-OsU6c::T3 edits the final carrier of gene.
Present invention simultaneously provides above-mentioned CRISPR/Cas9 gene editings carrier to be specifically directed to rice cinnamyl-alcohol dehydrogenase baseBecause carrying out the application of gene editing.
Further, the application process of above-mentioned CRISPR/Cas9 gene editings carrier, is that the carrier that will be built is transferred to agricultureBacillus EHA105 is used for agriculture bacillus mediated rice Nipponbare callus genetic transformation, and induction of callus is obtainedRegeneration plant.
Further, gained regeneration plant can obtain the bronzing glume character without transgenic fragment through selfing screeningRice strain/material;Also improvement restorer can be obtained through backcross transformation.
SgRNA fragments of the present invention, CRISPR/Cas9 gene editings carrier prepare bronzing glume character rice strain/Application in material;Rice strain/material of the bronzing glume character contains or does not contain SgRNA:Cas9:HPT turnsGenetic fragment.The application process is particular by structure SgRNA:Cas9:HPT fragments are applied to rice cinnamyl-alcohol dehydrogenase baseBecause being mutated rice strain.
To detect CRISPR/Cas9-CAD genetic recombination, the present invention also provides corresponding primer sequence, its technical solution is such asUnder:
Primer for detecting CRISPR/Cas9-CAD genetic recombination combines 1F, 1R, it is characterised in that 1F, 1R base sequenceRow are respectively as shown in SEQ ID NO.4, SEQ ID NO.5.
Compared with prior art, the beneficial effects of the invention are as follows:(1) the present invention provides a kind of sgRNA fragments, it is wrappedSelectively targeted the 5th extron (SEQ IDNO.6) in rice cinnamyl-alcohol dehydrogenase CAD genes of gRNA contained.The sgRNAFragment specifically includes T1 (the 156th~176 of SEQ IDNO.6), T2 (SEQ IDNO.6 the 226th~246), T3 (SEQIDNO.6 the 516th~536) three sgRNA fragments.(2) the CRISPR/Cas9 gene editings of sgRNA fragments of the present invention are includedCarrier can carry out gene editing to rice cinnamyl-alcohol dehydrogenase (CAD) gene (SEQ IDNO.7).(3) sgRNA fragments of the present inventionIt is applied to obtain the rice material with bronzing glume and stem knot character with CRISPR/Cas9 gene editings carrier.(4) originallyThe primer that invention provides for detecting CRISPR/Cas9-CAD genetic recombination combines.(5) the method for the present invention only needs induction oneThe mutation of a allele just can obtain bronzing glume and stem knot character rice material, without obtaining Mutants homozygous, methodIt is efficient.(6) mutant that the present invention obtains can be by hybridizing and being selfed separation SgRNA:Cas9:HPT transgenic fragments, a sideFace is to remove the transgenic fragment so as to obtain the gene editing mutant of no transgene component;On the other hand can be by SgRNA:Cas9:HPT transgenic fragments are imported in new rice sterile line or restorer, can continue to carry out CAD genes to new acceptorEditor, so as to obtain the new sterile line with bronzing glume, restorer.The present invention is applied to agricultural production, can save biographyThe manpower and time cost of system breeding, improve the Mechanization Level of breeding of hybrid rice, shorten breeding cycle.
Brief description of the drawings
Fig. 1 is gene editing vector construction figure.
Fig. 2 transgenic lines are identified.
Fig. 3 gene editings site citing (T2 and T3 are two sgRNA editing sites of design respectively, with Fig. 1 a).
Fig. 4 is phenotype after CAD gene editings (WT is Nipponbare, and cad is the mutant after CAD genes are undergone mutation).
Fig. 5 is rice paddy seed phenotype (WT is Nipponbare, and cad is the mutant after CAD gene mutations).
Fig. 6 is that the selfing of Crispr/Cas9 gene editings strain removes transgene component analysis chart.
Fig. 7 is backcross transformation improvement restorer analysis chart.
Fig. 8 is rice mechanization production of hybrid seeds brown glume screening technique line map.
Embodiment
Below in conjunction with the accompanying drawings, the preferred embodiment of the present invention is further described.
Embodiment one
As shown in Figure 1a, sgRNA fragments design of the present invention.
Genetic material:Rice cinnamyl-alcohol dehydrogenase (CAD) gene, the gene entitled Oryza sativa (japonica entirelyCultivar-group) cinnamyl alcohol dehydrogenase (CAD) gene, GenBank:BK003969.1, is shown inhttp://www.ncbi.nlm.nih.gov/nuccore/64519465.Gene coding region base sequence such as SEQ ID NO.7.
Three sgRNA target sites on rice cinnamyl-alcohol dehydrogenase (CAD) gene are selected, with reference to http://Cbi.hzau.edu.cn/cgi-bin/CRISPR target position point prediction and design, use http://www.rgenome.net/cas-Offinder/ network address analyzes undershooting-effect.It finally have selected three sgRNA and be respectively designated as T1, T2, T3 (Fig. 1 a).T1、T2、The base sequence of T3 is respectively as shown in SEQ ID NO.1,2,3.
The 5th of the selectively targeted rice cinnamyl-alcohol dehydrogenase CAD genes of the gRNA that three sgRNA fragments includeExtron (SEQ IDNO.6).T1 is the 156th~176 of SEQ IDNO.6, T2 be SEQ IDNO.6 the 226th~246,T3 is SEQ IDNO.6 the 516th~536.
Embodiment two
As shown in Figure 1, structure includes the CRISPR/Cas9 gene editing carriers of sgRNA fragments of the present invention.
Three sgRNA fragments of the gained of embodiment one are connected into rice Os U6a (1~485 in SEQ ID NO.8 respectivelyPosition), OsU6b (1~371 in SEQ ID NO.13), under three promoters of OsU6c (1~780 in SEQ ID NO.18)Trip, behind respectively immediately following Ploy-T terminators (505~628 in SEQ ID NO.8,391~515 in SEQ ID NO.13800~923 in position, SEQ ID NO.18).Concrete operations are by taking T1 as an example, first respectively with the primer SEQ ID containing T1 sequencesThe primer and SEQ ID NO.11 and SEQ IDNO.12 of NO.10 and SEQ IDNO.9 carries out first round PCR, obtains two PCRProduct, then again using the two PCR products as template, SEQ IDNO.9 and SEQ IDNO.12 carry out the second wheel PCR for primer,Obtain OsU6a::T1(SEQ ID NO.8).Similarly OsU6b can be obtained by two-wheeled PCR::T2(SEQ ID NO.13)、OsU6c::T3(SEQ ID NO.18).Expression cassette OsU6a is obtained after sequencing is correct::T1(SEQ ID NO.8)、OsU6b::T2(SEQ ID NO.13)、OsU6c::T3 (SEQ ID NO.18).There are the Bsa I that end is matched two-by-two at three expression cassette both endsRestriction enzyme site.
Gained expression cassette is connected into plasmid pYLCRISPR/Cas9Pubi-H's (referring to reference paper 1) by Bsa I enzymesOn Bsa I restriction enzyme sites (6471~6176 positions and 7148~7152 positions in SEQ ID NO.23), Pubi is formed::Cas9-OsU6a::T1-OsU6b::T2-OsU6c::T3 expression cassettes, obtain pYLCRISPR/Pubi::Cas9-OsU6a::T1-OsU6b::T2-OsU6c::T3 edits the final carrier (Fig. 1) of gene.Cas9 (SEQ in plasmid pYLCRISPR/Cas9Pubi-H1973~6175 positions in ID NO.23) gene is by maize ubiquitin promoter Ubiqutin (1~1972 in SEQ ID NO.23Put) driving.The different cohesive ends produced after same Bsa I digestions are shown in Fig. 1 b.
Reference paper 1:Ma,X.,Zhang,Q.,Zhu,Q.,Liu,W.,Chen,Y.,Qiu,R.,Wang,B.,Yang,Z.,Li,H.,Lin,Y.,Xie,Y.,Shen,R.,Chen,S.,Wang,Z.,Chen,Y.,Guo,J.,Chen,L.,Zhao,X.,Dong,Z.and Liu,Y.G.(2015)A Robust CRISPR/Cas9System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants.Mol Plant8,1274-1284.
Embodiment three
CRISPR/Cas9 gene editings carrier of the present invention is specifically carrying out gene volume for rice cinnamyl-alcohol dehydrogenase geneThe application collected.
Vegetable material:Rice Nipponbare (Oryza.Sativa L.spp.japonica)
It is using the final carrier conversion bacillus coli DH 5 alpha of the gained of embodiment two, the sequencing of picking monoclonal that sequencing is correctBacterial strain expansion is numerous, and extraction plasmid is transferred in agrobacterium strains EHA105, obtains the bacterium solution for disseminating.
Using Nipponbare mature seed as material, seed is sterilized with 1 ‰ mercuric chloride, it is sterile washing five times after culture in MS culture mediumsOn, evoked callus.30 DEG C of illumination cultivation fortnights obtain rice Nipponbare mature embryo callus.Callus is cut intoThe particle of 2mm~3mm sizes, is incubated on fresh MS culture mediums.
After 4 days, rice Nipponbare mature embryo callus particle is disseminated with EHA105 bacterium solutions, it is specific to disseminate operating method ginsengSee reference file 2.
Culture terminates to obtain 60 plants of transgenic lines.Transgenic line genomic DNA is extracted, with primer 1F (SEQ IDNO.4), 1R (SEQ ID NO.5) amplifications include the sequence (long 580bp) in sgRNA mutational sites, carry out transgenic line identification.
It was found from Fig. 2, Fig. 3, purpose fragment has deletion mutation and insertion icon.By Fig. 2 obtain containing mutational siteFragment rubber tapping sequencing, with DSDecodeM (http://skl.scau.edu.cn/home/) analysis 60 transgenic lines volumeThe situation of collecting, wherein there is a strain not edit, remaining has different degrees of editor (Fig. 3).Wherein No. 7 and No. 55 areThere occurs the Mutants homozygous of about 200bp missings.
Qualification result shows that, using CRISPR/Cas9 gene editings carrier of the present invention, it is right in rice Nipponbare to succeedPurpose rice cinnamyl-alcohol dehydrogenase (CAD) gene has been inserted into or has been lacked into edlin, editor's target site of the geneMutation.
Fig. 4 is that (WT is Nipponbare to phenotype after rice cinnamyl-alcohol dehydrogenase (CAD) gene editing, and cad is that CAD genes occurMutant after mutation), Fig. 5 be rice paddy seed phenotype (WT is Nipponbare, and cad is the mutant after CAD gene mutations).Fig. 4,Fig. 5 is shown, after producer editor, the stem knot and glume of rice Nipponbare are all bronzing.Phenotype after the gene mutation is simultaneouslyDo not influence the normal growth and yield of plant, thus can in the case where not influencing other characters, by the gene it is other notIt is to be mutated with restorer to educate, so as to be used in breeding.Glume face can be especially used in the paddy machinery production of hybrid seedsColor is to be applied in selection markers.
Reference paper 2:Agrobacterium-mediated transformation of Japonicacv.Nipponbare callus tissue and recovery of transgenic rice plants. http://ptf.agron.iastate.edu/protocol/Rice.PDF
Application examples one
Fig. 6 is that the selfing of Crispr/Cas9 gene editings strain removes transgene component analysis chart.Analysis shows, the present inventionThe restructuring rice strain that editor is completed to target gene obtained can be filtered out by selfing does not contain SgRNA:Cas9:HPT turnsThe plant of genetic fragment.
Application examples two
Fig. 7 is backcross transformation improvement restorer analysis chart.Analysis shows, can be by SgRNA:Cas9:HPT transgenic fragmentsThe editor completed to target gene rice cinnamyl-alcohol dehydrogenase (CAD) gene of new material is imported in new material.
Application examples three
SgRNA fragments of the present invention, CRISPR/Cas9 edit carrier and are applied to the paddy machinery production of hybrid seeds, itself and application examples one, twoSomething in common is not repeated.
As shown in figure 8, in the paddy machinery production of hybrid seeds, genetic transformation is carried out to maintainer with the inventive technique scheme, is importedCRISPR/Cas9 edits carrier, to target gene rice cinnamyl-alcohol dehydrogenase (CAD) gene in maintainer into edlin;EditorAfter the completion of by selfing isolate homozygosis cad mutant strains, and retain contain SgRNA:Cas9:HPT transgenic fragment strainsSystem;During hybridizing with sterile line, edit rice cinnamyl-alcohol dehydrogenase (CAD) gene in sterile line, and fromIn filter out the mutant of homozygosis, while abandon containing SgRNA:Cas9:The strain of HPT transgenic fragments, so that it is obtainedBronzing glume character, and do not contain transgene component.
The sterile line and restorer Mixed plant improved with this, mechanical harvesting can be removed extensive by the color of glume afterwardsThe seed of multiple system's selfing, what is left is all hybrid seeding F1 generation.
The maximum difficult point that the rice mechanization production of hybrid seeds at present faces is how the hybrid tied on sterile line is received with together usingThe restorer seed of cutting mill harvest separates exactly.The method of the present invention is used to be carried to solve this problem in the mechanical production of hybrid seedsFor effective means, mechanism seed production efficiency and seed purity are greatly improved.
Sequence table
SEQ ID NO.1:
gctgctgtgcgccgggctga
SEQ ID NO.2:
cgcggcggcgtcctggggct
SEQ ID NO.3:
gctgagcttcatctcgccca
SEQ ID NO.4:
5’-atccacctgcctaatctgaaag-3’
SEQ ID NO.5:
5’-agttgagcacctcctccgtct-3’
SEQ ID NO.6:
aatccacctgcctaatctgaaagttgtcacgtcttaaaaagattaaaatatttggttagtgagatggtaagaaactagtaaaaaaagtaatgaatttgtgtgcaggaagtttgtggtgaagatcccggcggggctagcgccggagcaggcggcgccgctgctgtgcgccgggctgacggtgtacagcccactgaagcacttcgggctgatgtcgccaggtctccgcggcggcgtcctggggctcggcggcgtggggcacatgggcgtgaaggtggccaagtcgatggggcaccacgtgacggtgatcagctcgtcggcgaggaagcgcggcgaggccatggacgacctgggcgccgacgcctacctcgtcagctccgacgcggcggcgatggcggccgccggcgactcgctggactacatcatcgacaccgtgccggtgcaccacccgctggagccgtacctggcgctgctgaagctggacgggaagctgatcctgatgggggtgatcaaccagccgctgagcttcatctcgcccatggtgatgctcggccggaaggccatcaccggcagcttcatcgggagcatggccgagacggaggaggtgctcaacttctgcgtcgacaaggggctcacctcccagatcgaggtcgtcaagatggactacgtcaaccaggccctcgagcgcctcgagcgcaacgacgtccgctaccgcttcgtcgtcgacgtcgccggcagcaacatcgacgacgccgacgcgccgcccgcctga
SEQ ID NO.7:
atgggcagcctcgccgccgagaagaccgtcaccgggtgggccgccagggacgcctccggccacctcaccccctacaactacaccctcaggaagactgggcctgaagatgtggtggtgaaggttttgtattgtggtatctgccatactgacatccaccaggccaagaaccaccttggtgcttccaagtaccccatggtccctggccatgaggtggtcggcgaggtggtggaggtcgggccggaggtgaccaagtacagcgccggcgacgtcgtcggcgtcggcgtcatcgtcggctgctgccgcgagtgccatccgtgcaaggccaatgtggagcagtactgcaacaagaggatttggtcctacaacgacgtctacaccgacggccggccaacccagggcggcttcgcctccgccatggtcgtcgaccagaagtttgtggtgaagatcccggcggggctagcgccggagcaggcggcgccgctgctgtgcgccgggctgacggtgtacagcccactgaagcacttcgggctgatgtcgccaggtctccgcggcggcgtcctggggctcggcggcgtggggcacatgggcgtgaaggtggccaagtcgatggggcaccacgtgacggtgatcagctcgtcggcgaggaagcgcggcgaggccatggacgacctgggcgccgacgcctacctcgtcagctccgacgcggcggcgatggcggccgccggcgactcgctggactacatcatcgacaccgtgccggtgcaccacccgctggagccgtacctggcgctgctgaagctggacgggaagctgatcctgatgggggtgatcaaccagccgctgagcttcatctcgcccatggtgatgctcggccggaaggccatcaccggcagcttcatcgggagcatggccgagacggaggaggtgctcaacttctgcgtcgacaaggggctcacctcccagatcgaggtcgtcaagatggactacgtcaaccaggccctcgagcgcctcgagcgcaacgacgtccgctaccgcttcgtcgtcgacgtcgccggcagcaacatcgacgacgccgacgcgccgcccgcctga
SEQ ID NO.8:
Ttcagaggtctctctcgaactggaatcggcagcaaaggattttttcctgtagttttcccacaaccattttttaccatccgaatgataggataggaaaaatatccaagtgaacagtattcctataaaattcccgtaaaaagcctgcaatccgaatgagccctgaagtctgaactagccggtcacctgtacaggctatcgagatgccatacaagagacggtagtaggaactaggaagacgatggttgattcgtcaggcgaaatcgtcgtcctgcagtcgcatctatgggcctggacggaataggggaaaaagttggccggataggagggaaaggcccaggtgcttacgtgcgaggtaggcctgggctctcagcacttcgattcgttggcaccggggtaggatgcaatagagagcaacgtttagtaccacctcgcttagctagagcaaactggactgccttatatgcgcgggtgctggcttggctgccgctgctgtgcgccgggctgagttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgctttttttcaagagcttggagtggatggtgtgttgcgagacccacgct
SEQ ID NO.9:
5’gcgcggtctctctcgaactggaatcggcagcaaagga 3’
SEQ ID NO.10:
5’tcagcccggcgcacagcagcgaccaatgttgctccctc3’
SEQ ID NO.11:
5’gctgctgtgcgccgggctgagttttagagctagaaatag 3’
SEQ ID NO.12:
5’gcgcggtctcgcaacacaccatccactccaagctc 3’
SEQ ID NO.13:
Ttcagaggtctctgttgaactggaatcggcagcaaaggatgcaagaacgaactaagccggacaaaaaaaaaaggagcacatatacaaaccggttttattcatgaatggtcacgatggatgatggggctcagacttgagctacgaggccgcaggcgagagaagcctagtgtgctctctgcttgtttgggccgtaacggaggatacggccgacgagcgtgtactaccgcgcgggatgccgctgggcgctgcgggggccgttggatggggatcggtgggtcgcgggagcgttgaggggagacaggtttagtaccacctcgcctaccgaacaatgaagaacccaccttataaccccgcgcgctgccgcttgtgttggcggcgtcctggggctcgggttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgctttttttcaagagcttggagtggatggtgttcagcgagacccacgct
SEQ ID NO.14:
5’gcgcggtctctgttgaactggaatcggcagcaaagga 3’
SEQ ID NO.15:
5’ccgagccccaggacgccgccaacacaagcggcagcgc 3’
SEQ ID NO.16:
5’ggcggcgtcctggggctcgggttttagagctagaaatag3’
SEQ ID NO.17:
5’gcgcggtctcgctgaacaccatccactccaagctc 3’
SEQ ID NO.18:
ttcagaggtctcttcagaactggaatcggcagcaaaggactcattagcggtatgcatgttggtagaagtcggagatgtaaataattttcattatataaaaaaggtacttcgagaaaaataaatgcatacgaattaattctttttatgttttttaa accaagtatatagaatttattgatggttaaaatttcaaaaatatgacgagagaaaggttaaacgtacggcatatac ttctgaacagagagggaatatggggtttttgttgctcccaacaattcttaagcacgtaaaggaaaaaagcacatt atccacattgtacttccagagatatgtacagcattacgtaggtacgttttctttttcttcccggagagatgatacaat aatcatgtaaacccagaatttaaaaaatattctttactataaaaattttaattagggaacgtattattttttacatgaca ccttttgagaaagagggacttgtaatatgggacaaatgaacaatttctaagaaatgggcatatgactctcagtac aatggaccaaattccctccagtcggcccagcaatacaaagggaaagaaatgagggggcccacaggccacg gcccacttttctccgtggtggggagatccagctagaggtccggcccacaagtggcccttgccccgtgggacggtgggattgcagagcgcgtgggcggaaacaacagtttagtaccacctcgctcacgcaacgacgcgaccacttgcttataagctgctgcgctgaggctcagctgagcttcatctcgcccagttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgctttttttcaagagcttggagtggatggtgtcggtcgagacccacgct
SEQ ID NO.19:
5’gcgcggtctcttcagaactggaatcggcagcaaagga 3’
SEQ ID NO.20:
5’tgggcgacctcagctgagcctcagcgcagcag 3’
SEQ ID NO.21:
5’gctgagcttcatctcgcccagttttagagctagaaatag 3’
SEQ ID NO.22:
5’gcgcggtctcgaccgacaccatccactccaagctc 3’
SEQ ID NO.23:
gcgtgacccggtcgtgcccctctctagagataatgagcattgcatgtctaagttataaaaaattaccacatattttttttgtcacacttgtttgaagtgcagtttatctatctttatacatatatttaaactttactctacgaataatataatctatagt actacaataatatcagtgttttagagaatcatataaatgaacagttagacatggtctaaaggacaattgagtatttt gacaacaggactctacagttttatctttttagtgtgcatgtgttctcctttttttttgcaaatagcttcacctatataata cttcatccattttattagtacatccatttagggtttagggttaatggtttttatagactaatttttttagtacatctattttat tctattttagcctctaaattaagaaaactaaaactctattttagtttttttatttaataatttagatataaaatagaataaa ataaagtgactaaaaattaaacaaataccctttaagaaattaaaaaaactaaggaaacatttttcttgtttcgagta gataatgccagcctgttaaacgccgtcgacgagtctaacggacaccaaccagcgaaccagcagcgtcgcgt cgggccaagcgaagcagacggcacggcatctctgtcgctgcctctggacccctctcgagagttccgctccac cgttggacttgctccgctgtcggcatccagaaattgcgtggcggagcggcagacgtgagccggcacggcag gcggcctcctcctcctctcacggcacggcagctacgggggattcctttcccaccgctccttcgctttcccttcct cgcccgccgtaataaatagacaccccctccacaccctctttccccaacctcgtgttgttcggagcgcacacaca cacaaccagatctcccccaaatccacccgtcggcacctccgcttcaaggtacgccgctcgtcctccccccccc cccctctctaccttctctagatcggcgttccggtccatggttagggcccggtagttctacttctgttcatgtttgtgtt agatccgtgtttgtgttagatccgtgctgctagcgttcgtacacggatgcgacctgtacgtcagacacgttctgat tgctaacttgccagtgtttctctttggggaatcctgggatggctctagccgttccgcagacgggatcgatttcatg attttttttgtttcgttgcatagggtttggtttgcccttttcctttatttcaatatatgccgtgcacttgtttgtcgggtcat cttttcatgcttttttttgtcttggttgtgatgatgtggtctggttgggcggtcgttctagatcggagtagaattctgttt caaactacctggtggatttattaattttggatctgtatgtgtgtgccatacatattcatagttacgaattgaagatgat ggatggaaatatcgatctaggataggtatacatgttgatgcgggttttactgatgcatatacagagatgctttttgtt cgcttggttgtgatgatgtggtgtggttgggcggtcgttcattcgttctagatcggagtagaatactgtttcaaact acctggtgtatttattaattttggaactgtatgtgtgtgtcatacatcttcatagttacgagtttaagatggatggaaa tatcgatctaggataggtatacatgttgatgtgggttttactgatgcatatacatgatggcatatgcagcatctattc atatgctctaaccttgagtacctatctattataataaacaagtatgttttataattattttgatcttgatatacttggatga tggcatatgcagcagctatatgtggatttttttagccctgccttcatacgctatttatttgcttggtactgtttcttttgtc gatgctcaccctgttgtttggtgttacttctgcagatggctcctaagaagaagcggaaggttggtattcacgggg tgcctgcggctgacaagaagtactccatcggcctcgacatcggcaccaacagcgtcggctgggcggtgatc accgacgagtacaaggtcccgtccaagaagttcaaggtcctgggcaacaccgaccgccactccatcaagaa gaacctcatcggcgccctcctcttcgactccggcgagacggcggaggcgacccgcctcaagcgcaccgcc cgccgccgctacacccgccgcaagaaccgcatctgctacctccaggagatcttctccaacgagatggcgaa ggtcgacgactccttcttccaccgcctcgaggagtccttcctcgtggaggaggacaagaagcacgagcgccaccccatcttcggcaacatcgtcgacgaggtcgcctaccacgagaagtaccccactatctaccaccttcgtaag aagcttgttgactctactgataaggctgatcttcgtctcatctaccttgctctcgctcacatgatcaagttccgtggt cacttccttatcgagggtgaccttaaccctgataactccgacgtggacaagctcttcatccagctcgtccagacc tacaaccagctcttcgaggagaaccctatcaacgcttccggtgtcgacgctaaggcgatcctttccgctaggct ctccaagtccaggcgtctcgagaacctcatcgcccagctccctggtgagaagaagaacggtcttttcggtaac ctcatcgctctctccctcggtctgacccctaacttcaagtccaacttcgacctcgctgaggacgctaagcttcag ctctccaaggatacctacgacgatgatctcgacaacctcctcgctcagattggagatcagtacgctgatctcttc cttgctgctaagaacctctccgatgctatcctcctttcggatatccttagggttaacactgagatcactaaggctcc tctttctgcttccatgatcaagcgctacgacgagcaccaccaggacctcaccctcctcaaggctcttgttcgtca gcagctccccgagaagtacaaggagatcttcttcgaccagtccaagaacggctacgccggttacattgacggt ggagctagccaggaggagttctacaagttcatcaagccaatccttgagaagatggatggtactgaggagcttc tcgttaagcttaaccgtgaggacctccttaggaagcagaggactttcgataacggctctatccctcaccagatc caccttggtgagcttcacgccatccttcgtaggcaggaggacttctaccctttcctcaaggacaaccgtgagaagatcgagaagatccttactttccgtattccttactacgttggtcctcttgctcgtggtaactcccgtttcgcttggat gactaggaagtccgaggagactatcaccccttggaacttcgaggaggttgttgacaagggtgcttccgcccagtccttcatcgagcgcatgaccaacttcgacaagaacctccccaacgagaaggtcctccccaagcactccctcctctacgagtacttcacggtctacaacgagctcaccaaggtcaagtacgtcaccgagggtatgcgcaagcctgccttcctctccggcgagcagaagaaggctatcgttgacctcctcttcaagaccaaccgcaaggtcaccgtcaagcagctcaaggaggactacttcaagaagatcgagtgcttcgactccgtcgagatcagcggcgttgaggaccgtttcaacgcttctctcggtacctaccacgatctcctcaagatcatcaaggacaaggacttcctcgacaacgaggagaacgaggacatcctcgaggacatcgtcctcactcttactctcttcgaggatagggagatgatcgaggagaggctcaagacttacgctcatctcttcgatgacaaggttatgaagcagctcaagcgtcgccgttacaccggttggggtaggctctcccgcaagctcatcaacggtatcagggataagcagagcggcaagactatcctcgacttcctcaagtctgatggtttcgctaacaggaacttcatgcagctcatccacgatgactctcttaccttcaaggaggatattcagaaggctcaggtgtccggtcagggcgactctctccacgagcacattgctaaccttgctggttcccctgctatcaagaagggcatccttcagactgttaaggttgtcgatgagcttgtcaaggttatgggtcgtcacaagcctgagaacatcgtcatcgagatggctcgtgagaaccagactacccagaagggtcagaagaactcgagggagcgcatgaagaggattgaggagggtatcaaggagcttggttctcagatccttaaggagcaccctgtcgagaacacccagctccagaacgagaagctctacctctactacctccagaacggtagggatatgtacgttgaccaggagctcgacatcaacaggctttctgactacgacgtcgaccacattgttcctcagtctttccttaaggatgactccatcgacaacaaggtcctcacgaggtccgacaagaacaggggtaagtcggacaacgtcccttccgaggaggttgtcaagaagatgaagaactactggaggcagcttctcaacgctaagctcattacccagaggaagttcgacaacctcacgaaggctgagaggggtggcctttccgagcttgacaaggctggtttcatcaagaggcagcttgttgagacgaggcagattaccaagcacgttgctcagatcctcgattctaggatgaacaccaagtacgacgagaacgacaagctcatccgcgaggtcaaggtgatcaccctcaagtccaagctcgtctccgacttccgcaaggacttccagttctacaaggtccgcgagatcaacaactaccaccacgctcacgatgcttaccttaacgctgtcgttggtaccgctcttatcaagaagtaccctaagcttgagtccgagttcgtctacggtgactacaaggtctacgacgttcgtaagatgatcgccaagtccgagcaggagatcggcaaggccaccgccaagtacttcttctactccaacatcatgaacttcttcaagaccgagatcaccctcgccaacggcgagatccgcaagcgccctcttatcgagacgaacggtgagactggtgagatcgtttgggacaagggtcgcgacttcgctactgttcgcaaggtcctttctatgcctcaggttaacatcgtcaagaagaccgaggtccagaccggtggcttctccaaggagtctatccttccaaagagaaactcggacaagctcatcgctaggaagaaggattgggaccctaagaagtacggtggtttcgactcccctactgtcgcctactccgtcctcgtggtcgccaaggtggagaagggtaagtcgaagaagctcaagtccgtcaaggagctcctcggcatcaccatcatggagcgctcctccttcgagaagaacccgatcgacttcctcgaggccaagggctacaaggaggtcaagaaggacctcatcatcaagctccccaagtactctcttttcgagctcgagaacggtcgtaagaggatgctggcttccgctggtgagctccagaagggtaacgagcttgctcttccttccaagtacgtgaacttcctctacctcgcctcccactacgagaagctcaagggttcccctgaggataacgagcagaagcagctcttcgtggagcagcacaagcactacctcgacgagatcatcgagcagatctccgagttctccaagcgcgtcatcctcgctgacgctaacctcgacaaggtcctctccgcctacaacaagcaccgcgacaagcccatccgcgagcaggccgagaacatcatccacctcttcacgctcacgaacctcggcgcccctgctgctttcaagtacttcgacaccaccatcgacaggaagcgttacacgtccaccaaggaggttctcgacgctactctcatccaccagtccatcaccggtctttacgagactcgtatcgacctttcccagcttggtggtgataagcgtcctgctgccaccaaaaaggccggacaggctaagaaaaagaagtaggatcctcccgatcgttcaaacatttggcaataaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaattacg ttaagcatgtaataattaacatgtaatgcatgacgttatttatgaggtgggtttttatgattagagtcccgcaattata catttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgcgcggtgtcatctatgtt actagatcgggagcaccggtaaggcgcgccgtagtgctcgagagacctctgaagtggccgattcattaatgc agctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaagaaacagctatgaccatgattacgccaagctatttaggtgacactatagaatactcaagctatgcatcaagctcaatgggtctagtctgtagatacccatcacactggcgaccgctcgaacatcagtttaaggtttacacctataaaagagagagccgttatcgtctgtttgtggatgtacagagtgatattattgacacgccggggcgacggatggtgatccccctggccagtgcacgtctgctgtcagataaagtctcccgtgaactttacccggtggtgcatatcggggatgaaagctggcgcatgatgaccaccgatatggccagtgtgcctgtctccgttatcggggaagaagtggctgatctcagccaccgcgaaaatgacatcaaaaacgccattaacctgatgttctggggaatataaatgtcaggcctgaatggcgaatggacgcgccctgtagcggcgcattaagcgcggcgggtgagcgtgggtctcgcggtatcattg g
Sequence table
<110>Institute of Nuclear and Biotechnology, Sichuan Academy of Agriculture Science
<120>SgRNA, CRISPR/Cas9 carrier related with rice bronzing glume character, vector construction, application
<130> 20170816
<160> 23
<170> SIPOSequenceListing 1.0
<210> 1
<211> 20
<212> DNA
<213>" artificial sequence " ()
<400> 1
gctgctgtgc gccgggctga 20
<210> 2
<211> 20
<212> DNA
<213>" artificial sequence " ()
<400> 2
cgcggcggcg tcctggggct 20
<210> 3
<211> 20
<212> DNA
<213>" artificial sequence " ()
<400> 3
gctgagcttc atctcgccca 20
<210> 4
<211> 22
<212> DNA
<213>" artificial sequence " ()
<400> 4
atccacctgc ctaatctgaa ag 22
<210> 5
<211> 21
<212> DNA
<213>" artificial sequence " ()
<400> 5
agttgagcac ctcctccgtc t 21
<210> 6
<211> 769
<212> DNA
<213> Oryza sativa (japonica cultivar-group)
<400> 6
aatccacctg cctaatctga aagttgtcac gtcttaaaaa gattaaaata tttggttagt 60
gagatggtaa gaaactagta aaaaaagtaa tgaatttgtg tgcaggaagt ttgtggtgaa 120
gatcccggcg gggctagcgc cggagcaggc ggcgccgctg ctgtgcgccg ggctgacggt 180
gtacagccca ctgaagcact tcgggctgat gtcgccaggt ctccgcggcg gcgtcctggg 240
gctcggcggc gtggggcaca tgggcgtgaa ggtggccaag tcgatggggc accacgtgac 300
ggtgatcagc tcgtcggcga ggaagcgcgg cgaggccatg gacgacctgg gcgccgacgc 360
ctacctcgtc agctccgacg cggcggcgat ggcggccgcc ggcgactcgc tggactacat 420
catcgacacc gtgccggtgc accacccgct ggagccgtac ctggcgctgc tgaagctgga 480
cgggaagctg atcctgatgg gggtgatcaa ccagccgctg agcttcatct cgcccatggt 540
gatgctcggc cggaaggcca tcaccggcag cttcatcggg agcatggccg agacggagga 600
ggtgctcaac ttctgcgtcg acaaggggct cacctcccag atcgaggtcg tcaagatgga 660
ctacgtcaac caggccctcg agcgcctcga gcgcaacgac gtccgctacc gcttcgtcgt 720
cgacgtcgcc ggcagcaaca tcgacgacgc cgacgcgccg cccgcctga 769
<210> 7
<211> 1092
<212> DNA
<213> Oryza sativa (japonica cultivar-group)
<400> 7
atgggcagcc tcgccgccga gaagaccgtc accgggtggg ccgccaggga cgcctccggc 60
cacctcaccc cctacaacta caccctcagg aagactgggc ctgaagatgt ggtggtgaag 120
gttttgtatt gtggtatctg ccatactgac atccaccagg ccaagaacca ccttggtgct 180
tccaagtacc ccatggtccc tggccatgag gtggtcggcg aggtggtgga ggtcgggccg 240
gaggtgacca agtacagcgc cggcgacgtc gtcggcgtcg gcgtcatcgt cggctgctgc 300
cgcgagtgcc atccgtgcaa ggccaatgtg gagcagtact gcaacaagag gatttggtcc 360
tacaacgacg tctacaccga cggccggcca acccagggcg gcttcgcctc cgccatggtc 420
gtcgaccaga agtttgtggt gaagatcccg gcggggctag cgccggagca ggcggcgccg 480
ctgctgtgcg ccgggctgac ggtgtacagc ccactgaagc acttcgggct gatgtcgcca 540
ggtctccgcg gcggcgtcct ggggctcggc ggcgtggggc acatgggcgt gaaggtggcc 600
aagtcgatgg ggcaccacgt gacggtgatc agctcgtcgg cgaggaagcg cggcgaggcc 660
atggacgacc tgggcgccga cgcctacctc gtcagctccg acgcggcggc gatggcggcc 720
gccggcgact cgctggacta catcatcgac accgtgccgg tgcaccaccc gctggagccg 780
tacctggcgc tgctgaagct ggacgggaag ctgatcctga tgggggtgat caaccagccg 840
ctgagcttca tctcgcccat ggtgatgctc ggccggaagg ccatcaccgg cagcttcatc 900
gggagcatgg ccgagacgga ggaggtgctc aacttctgcg tcgacaaggg gctcacctcc 960
cagatcgagg tcgtcaagat ggactacgtc aaccaggccc tcgagcgcct cgagcgcaac 1020
gacgtccgct accgcttcgt cgtcgacgtc gccggcagca acatcgacga cgccgacgcg 1080
ccgcccgcct ga 1092
<210> 8
<211> 628
<212> DNA
<213> Oryza sativa
<400> 8
ttcagaggtc tctctcgaac tggaatcggc agcaaaggat tttttcctgt agttttccca 60
caaccatttt ttaccatccg aatgatagga taggaaaaat atccaagtga acagtattcc 120
tataaaattc ccgtaaaaag cctgcaatcc gaatgagccc tgaagtctga actagccggt 180
cacctgtaca ggctatcgag atgccataca agagacggta gtaggaacta ggaagacgat 240
ggttgattcg tcaggcgaaa tcgtcgtcct gcagtcgcat ctatgggcct ggacggaata 300
ggggaaaaag ttggccggat aggagggaaa ggcccaggtg cttacgtgcg aggtaggcct 360
gggctctcag cacttcgatt cgttggcacc ggggtaggat gcaatagaga gcaacgttta 420
gtaccacctc gcttagctag agcaaactgg actgccttat atgcgcgggt gctggcttgg 480
ctgccgctgc tgtgcgccgg gctgagtttt agagctagaa atagcaagtt aaaataaggc 540
tagtccgtta tcaacttgaa aaagtggcac cgagtcggtg ctttttttca agagcttgga 600
gtggatggtg tgttgcgaga cccacgct 628
<210> 9
<211> 37
<212> DNA
<213>Artificial sequence ()
<400> 9
gcgcggtctc tctcgaactg gaatcggcag caaagga 37
<210> 10
<211> 38
<212> DNA
<213>Artificial sequence ()
<400> 10
tcagcccggc gcacagcagc gaccaatgtt gctccctc 38
<210> 11
<211> 39
<212> DNA
<213>Artificial sequence ()
<400> 11
gctgctgtgc gccgggctga gttttagagc tagaaatag 39
<210> 12
<211> 35
<212> DNA
<213>Artificial sequence ()
<400> 12
gcgcggtctc gcaacacacc atccactcca agctc 35
<210> 13
<211> 514
<212> DNA
<213>Artificial sequence ()
<400> 13
ttcagaggtc tctgttgaac tggaatcggc agcaaaggat gcaagaacga actaagccgg 60
acaaaaaaaa aaggagcaca tatacaaacc ggttttattc atgaatggtc acgatggatg 120
atggggctca gacttgagct acgaggccgc aggcgagaga agcctagtgt gctctctgct 180
tgtttgggcc gtaacggagg atacggccga cgagcgtgta ctaccgcgcg ggatgccgct 240
gggcgctgcg ggggccgttg gatggggatc ggtgggtcgc gggagcgttg aggggagaca 300
ggtttagtac cacctcgcct accgaacaat gaagaaccca ccttataacc ccgcgcgctg 360
ccgcttgtgt tggcggcgtc ctggggctcg ggttttagag ctagaaatag caagttaaaa 420
taaggctagt ccgttatcaa cttgaaaaag tggcaccgag tcggtgcttt ttttcaagag 480
cttggagtgg atggtgttca gcgagaccca cgct 514
<210> 14
<211> 37
<212> DNA
<213>Artificial sequence ()
<400> 14
gcgcggtctc tgttgaactg gaatcggcag caaagga 37
<210> 15
<211> 37
<212> DNA
<213>Artificial sequence ()
<400> 15
ccgagcccca ggacgccgcc aacacaagcg gcagcgc 37
<210> 16
<211> 39
<212> DNA
<213>Artificial sequence ()
<400> 16
ggcggcgtcc tggggctcgg gttttagagc tagaaatag 39
<210> 17
<211> 35
<212> DNA
<213>Artificial sequence ()
<400> 17
gcgcggtctc gctgaacacc atccactcca agctc 35
<210> 18
<211> 923
<212> DNA
<213>Artificial sequence ()
<400> 18
ttcagaggtc tcttcagaac tggaatcggc agcaaaggac tcattagcgg tatgcatgtt 60
ggtagaagtc ggagatgtaa ataattttca ttatataaaa aaggtacttc gagaaaaata 120
aatgcatacg aattaattct ttttatgttt tttaaaccaa gtatatagaa tttattgatg 180
gttaaaattt caaaaatatg acgagagaaa ggttaaacgt acggcatata cttctgaaca 240
gagagggaat atggggtttt tgttgctccc aacaattctt aagcacgtaa aggaaaaaag 300
cacattatcc acattgtact tccagagata tgtacagcat tacgtaggta cgttttcttt 360
ttcttcccgg agagatgata caataatcat gtaaacccag aatttaaaaa atattcttta 420
ctataaaaat tttaattagg gaacgtatta ttttttacat gacacctttt gagaaagagg 480
gacttgtaat atgggacaaa tgaacaattt ctaagaaatg ggcatatgac tctcagtaca 540
atggaccaaa ttccctccag tcggcccagc aatacaaagg gaaagaaatg agggggccca 600
caggccacgg cccacttttc tccgtggtgg ggagatccag ctagaggtcc ggcccacaag 660
tggcccttgc cccgtgggac ggtgggattg cagagcgcgt gggcggaaac aacagtttag 720
taccacctcg ctcacgcaac gacgcgacca cttgcttata agctgctgcg ctgaggctca 780
gctgagcttc atctcgccca gttttagagc tagaaatagc aagttaaaat aaggctagtc 840
cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt tttcaagagc ttggagtgga 900
tggtgtcggt cgagacccac gct 923
<210> 19
<211> 37
<212> DNA
<213>Artificial sequence ()
<400> 19
gcgcggtctc ttcagaactg gaatcggcag caaagga 37
<210> 20
<211> 32
<212> DNA
<213>Artificial sequence ()
<400> 20
tgggcgacct cagctgagcc tcagcgcagc ag 32
<210> 21
<211> 39
<212> DNA
<213>Artificial sequence ()
<400> 21
gctgagcttc atctcgccca gttttagagc tagaaatag 39
<210> 22
<211> 35
<212> DNA
<213>Artificial sequence ()
<400> 22
gcgcggtctc gaccgacacc atccactcca agctc 35
<210> 23
<211> 7176
<212> DNA
<213>Artificial sequence ()
<400> 23
gcgtgacccg gtcgtgcccc tctctagaga taatgagcat tgcatgtcta agttataaaa 60
aattaccaca tatttttttt gtcacacttg tttgaagtgc agtttatcta tctttataca 120
tatatttaaa ctttactcta cgaataatat aatctatagt actacaataa tatcagtgtt 180
ttagagaatc atataaatga acagttagac atggtctaaa ggacaattga gtattttgac 240
aacaggactc tacagtttta tctttttagt gtgcatgtgt tctccttttt ttttgcaaat 300
agcttcacct atataatact tcatccattt tattagtaca tccatttagg gtttagggtt 360
aatggttttt atagactaat ttttttagta catctatttt attctatttt agcctctaaa 420
ttaagaaaac taaaactcta ttttagtttt tttatttaat aatttagata taaaatagaa 480
taaaataaag tgactaaaaa ttaaacaaat accctttaag aaattaaaaa aactaaggaa 540
acatttttct tgtttcgagt agataatgcc agcctgttaa acgccgtcga cgagtctaac 600
ggacaccaac cagcgaacca gcagcgtcgc gtcgggccaa gcgaagcaga cggcacggca 660
tctctgtcgc tgcctctgga cccctctcga gagttccgct ccaccgttgg acttgctccg 720
ctgtcggcat ccagaaattg cgtggcggag cggcagacgt gagccggcac ggcaggcggc 780
ctcctcctcc tctcacggca cggcagctac gggggattcc tttcccaccg ctccttcgct 840
ttcccttcct cgcccgccgt aataaataga caccccctcc acaccctctt tccccaacct 900
cgtgttgttc ggagcgcaca cacacacaac cagatctccc ccaaatccac ccgtcggcac 960
ctccgcttca aggtacgccg ctcgtcctcc cccccccccc ctctctacct tctctagatc 1020
ggcgttccgg tccatggtta gggcccggta gttctacttc tgttcatgtt tgtgttagat 1080
ccgtgtttgt gttagatccg tgctgctagc gttcgtacac ggatgcgacc tgtacgtcag 1140
acacgttctg attgctaact tgccagtgtt tctctttggg gaatcctggg atggctctag 1200
ccgttccgca gacgggatcg atttcatgat tttttttgtt tcgttgcata gggtttggtt 1260
tgcccttttc ctttatttca atatatgccg tgcacttgtt tgtcgggtca tcttttcatg 1320
cttttttttg tcttggttgt gatgatgtgg tctggttggg cggtcgttct agatcggagt 1380
agaattctgt ttcaaactac ctggtggatt tattaatttt ggatctgtat gtgtgtgcca 1440
tacatattca tagttacgaa ttgaagatga tggatggaaa tatcgatcta ggataggtat 1500
acatgttgat gcgggtttta ctgatgcata tacagagatg ctttttgttc gcttggttgt 1560
gatgatgtgg tgtggttggg cggtcgttca ttcgttctag atcggagtag aatactgttt 1620
caaactacct ggtgtattta ttaattttgg aactgtatgt gtgtgtcata catcttcata 1680
gttacgagtt taagatggat ggaaatatcg atctaggata ggtatacatg ttgatgtggg 1740
ttttactgat gcatatacat gatggcatat gcagcatcta ttcatatgct ctaaccttga 1800
gtacctatct attataataa acaagtatgt tttataatta ttttgatctt gatatacttg 1860
gatgatggca tatgcagcag ctatatgtgg atttttttag ccctgccttc atacgctatt 1920
tatttgcttg gtactgtttc ttttgtcgat gctcaccctg ttgtttggtg ttacttctgc 1980
agatggctcc taagaagaag cggaaggttg gtattcacgg ggtgcctgcg gctgacaaga 2040
agtactccat cggcctcgac atcggcacca acagcgtcgg ctgggcggtg atcaccgacg 2100
agtacaaggt cccgtccaag aagttcaagg tcctgggcaa caccgaccgc cactccatca 2160
agaagaacct catcggcgcc ctcctcttcg actccggcga gacggcggag gcgacccgcc 2220
tcaagcgcac cgcccgccgc cgctacaccc gccgcaagaa ccgcatctgc tacctccagg 2280
agatcttctc caacgagatg gcgaaggtcg acgactcctt cttccaccgc ctcgaggagt 2340
ccttcctcgt ggaggaggac aagaagcacg agcgccaccc catcttcggc aacatcgtcg 2400
acgaggtcgc ctaccacgag aagtacccca ctatctacca ccttcgtaag aagcttgttg 2460
actctactga taaggctgat cttcgtctca tctaccttgc tctcgctcac atgatcaagt 2520
tccgtggtca cttccttatc gagggtgacc ttaaccctga taactccgac gtggacaagc 2580
tcttcatcca gctcgtccag acctacaacc agctcttcga ggagaaccct atcaacgctt 2640
ccggtgtcga cgctaaggcg atcctttccg ctaggctctc caagtccagg cgtctcgaga 2700
acctcatcgc ccagctccct ggtgagaaga agaacggtct tttcggtaac ctcatcgctc 2760
tctccctcgg tctgacccct aacttcaagt ccaacttcga cctcgctgag gacgctaagc 2820
ttcagctctc caaggatacc tacgacgatg atctcgacaa cctcctcgct cagattggag 2880
atcagtacgc tgatctcttc cttgctgcta agaacctctc cgatgctatc ctcctttcgg 2940
atatccttag ggttaacact gagatcacta aggctcctct ttctgcttcc atgatcaagc 3000
gctacgacga gcaccaccag gacctcaccc tcctcaaggc tcttgttcgt cagcagctcc 3060
ccgagaagta caaggagatc ttcttcgacc agtccaagaa cggctacgcc ggttacattg 3120
acggtggagc tagccaggag gagttctaca agttcatcaa gccaatcctt gagaagatgg 3180
atggtactga ggagcttctc gttaagctta accgtgagga cctccttagg aagcagagga 3240
ctttcgataa cggctctatc cctcaccaga tccaccttgg tgagcttcac gccatccttc 3300
gtaggcagga ggacttctac cctttcctca aggacaaccg tgagaagatc gagaagatcc 3360
ttactttccg tattccttac tacgttggtc ctcttgctcg tggtaactcc cgtttcgctt 3420
ggatgactag gaagtccgag gagactatca ccccttggaa cttcgaggag gttgttgaca 3480
agggtgcttc cgcccagtcc ttcatcgagc gcatgaccaa cttcgacaag aacctcccca 3540
acgagaaggt cctccccaag cactccctcc tctacgagta cttcacggtc tacaacgagc 3600
tcaccaaggt caagtacgtc accgagggta tgcgcaagcc tgccttcctc tccggcgagc 3660
agaagaaggc tatcgttgac ctcctcttca agaccaaccg caaggtcacc gtcaagcagc 3720
tcaaggagga ctacttcaag aagatcgagt gcttcgactc cgtcgagatc agcggcgttg 3780
aggaccgttt caacgcttct ctcggtacct accacgatct cctcaagatc atcaaggaca 3840
aggacttcct cgacaacgag gagaacgagg acatcctcga ggacatcgtc ctcactctta 3900
ctctcttcga ggatagggag atgatcgagg agaggctcaa gacttacgct catctcttcg 3960
atgacaaggt tatgaagcag ctcaagcgtc gccgttacac cggttggggt aggctctccc 4020
gcaagctcat caacggtatc agggataagc agagcggcaa gactatcctc gacttcctca 4080
agtctgatgg tttcgctaac aggaacttca tgcagctcat ccacgatgac tctcttacct 4140
tcaaggagga tattcagaag gctcaggtgt ccggtcaggg cgactctctc cacgagcaca 4200
ttgctaacct tgctggttcc cctgctatca agaagggcat ccttcagact gttaaggttg 4260
tcgatgagct tgtcaaggtt atgggtcgtc acaagcctga gaacatcgtc atcgagatgg 4320
ctcgtgagaa ccagactacc cagaagggtc agaagaactc gagggagcgc atgaagagga 4380
ttgaggaggg tatcaaggag cttggttctc agatccttaa ggagcaccct gtcgagaaca 4440
cccagctcca gaacgagaag ctctacctct actacctcca gaacggtagg gatatgtacg 4500
ttgaccagga gctcgacatc aacaggcttt ctgactacga cgtcgaccac attgttcctc 4560
agtctttcct taaggatgac tccatcgaca acaaggtcct cacgaggtcc gacaagaaca 4620
ggggtaagtc ggacaacgtc ccttccgagg aggttgtcaa gaagatgaag aactactgga 4680
ggcagcttct caacgctaag ctcattaccc agaggaagtt cgacaacctc acgaaggctg 4740
agaggggtgg cctttccgag cttgacaagg ctggtttcat caagaggcag cttgttgaga 4800
cgaggcagat taccaagcac gttgctcaga tcctcgattc taggatgaac accaagtacg 4860
acgagaacga caagctcatc cgcgaggtca aggtgatcac cctcaagtcc aagctcgtct 4920
ccgacttccg caaggacttc cagttctaca aggtccgcga gatcaacaac taccaccacg 4980
ctcacgatgc ttaccttaac gctgtcgttg gtaccgctct tatcaagaag taccctaagc 5040
ttgagtccga gttcgtctac ggtgactaca aggtctacga cgttcgtaag atgatcgcca 5100
agtccgagca ggagatcggc aaggccaccg ccaagtactt cttctactcc aacatcatga 5160
acttcttcaa gaccgagatc accctcgcca acggcgagat ccgcaagcgc cctcttatcg 5220
agacgaacgg tgagactggt gagatcgttt gggacaaggg tcgcgacttc gctactgttc 5280
gcaaggtcct ttctatgcct caggttaaca tcgtcaagaa gaccgaggtc cagaccggtg 5340
gcttctccaa ggagtctatc cttccaaaga gaaactcgga caagctcatc gctaggaaga 5400
aggattggga ccctaagaag tacggtggtt tcgactcccc tactgtcgcc tactccgtcc 5460
tcgtggtcgc caaggtggag aagggtaagt cgaagaagct caagtccgtc aaggagctcc 5520
tcggcatcac catcatggag cgctcctcct tcgagaagaa cccgatcgac ttcctcgagg 5580
ccaagggcta caaggaggtc aagaaggacc tcatcatcaa gctccccaag tactctcttt 5640
tcgagctcga gaacggtcgt aagaggatgc tggcttccgc tggtgagctc cagaagggta 5700
acgagcttgc tcttccttcc aagtacgtga acttcctcta cctcgcctcc cactacgaga 5760
agctcaaggg ttcccctgag gataacgagc agaagcagct cttcgtggag cagcacaagc 5820
actacctcga cgagatcatc gagcagatct ccgagttctc caagcgcgtc atcctcgctg 5880
acgctaacct cgacaaggtc ctctccgcct acaacaagca ccgcgacaag cccatccgcg 5940
agcaggccga gaacatcatc cacctcttca cgctcacgaa cctcggcgcc cctgctgctt 6000
tcaagtactt cgacaccacc atcgacagga agcgttacac gtccaccaag gaggttctcg 6060
acgctactct catccaccag tccatcaccg gtctttacga gactcgtatc gacctttccc 6120
agcttggtgg tgataagcgt cctgctgcca ccaaaaaggc cggacaggct aagaaaaaga 6180
agtaggatcc tcccgatcgt tcaaacattt ggcaataaag tttcttaaga ttgaatcctg 6240
ttgccggtct tgcgatgatt atcatataat ttctgttgaa ttacgttaag catgtaataa 6300
ttaacatgta atgcatgacg ttatttatga ggtgggtttt tatgattaga gtcccgcaat 6360
tatacattta atacgcgata gaaaacaaaa tatagcgcgc aaactaggat aaattatcgc 6420
gcgcggtgtc atctatgtta ctagatcggg agcaccggta aggcgcgccg tagtgctcga 6480
gagacctctg aagtggccga ttcattaatg cagctggcac gacaggtttc ccgactggaa 6540
agcgggcagt gagcgcaacg caattaatgt gagttagctc actcattagg caccccaggc 6600
tttacacttt atgcttccgg ctcgtatgtt gtgtggaatt gtgagcggat aacaatttca 6660
cacaagaaac agctatgacc atgattacgc caagctattt aggtgacact atagaatact 6720
caagctatgc atcaagctca atgggtctag tctgtagata cccatcacac tggcgaccgc 6780
tcgaacatca gtttaaggtt tacacctata aaagagagag ccgttatcgt ctgtttgtgg 6840
atgtacagag tgatattatt gacacgccgg ggcgacggat ggtgatcccc ctggccagtg 6900
cacgtctgct gtcagataaa gtctcccgtg aactttaccc ggtggtgcat atcggggatg 6960
aaagctggcg catgatgacc accgatatgg ccagtgtgcc tgtctccgtt atcggggaag 7020
aagtggctga tctcagccac cgcgaaaatg acatcaaaaa cgccattaac ctgatgttct 7080
ggggaatata aatgtcaggc ctgaatggcg aatggacgcg ccctgtagcg gcgcattaag 7140
cgcggcgggt gagcgtgggt ctcgcggtat cattgg 7176

Claims (10)

CN201711258265.1A2017-08-162017-12-04SgRNA, CRISPR/Cas9 carrier related with rice bronzing glume character, vector construction, applicationPendingCN108034656A (en)

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
CN20171070273902017-08-16
CN2017107027392017-08-16

Publications (1)

Publication NumberPublication Date
CN108034656Atrue CN108034656A (en)2018-05-15

Family

ID=62094780

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201711258265.1APendingCN108034656A (en)2017-08-162017-12-04SgRNA, CRISPR/Cas9 carrier related with rice bronzing glume character, vector construction, application

Country Status (1)

CountryLink
CN (1)CN108034656A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN109750063A (en)*2019-03-192019-05-14广西大学 Construction of a CRISPR_Cas9 vector of histone deacetylase gene HDA19 and its application
US10323236B2 (en)2011-07-222019-06-18President And Fellows Of Harvard CollegeEvaluation and improvement of nuclease cleavage specificity
CN110250000A (en)*2019-07-312019-09-20湖南杂交水稻研究中心 Method for Improving Color Sorting Accuracy of Rice Genetic Engineering Genic Male Sterile Line Seeds Using Recessive Glue Color Traits
US10465176B2 (en)2013-12-122019-11-05President And Fellows Of Harvard CollegeCas variants for gene editing
US10508298B2 (en)2013-08-092019-12-17President And Fellows Of Harvard CollegeMethods for identifying a target site of a CAS9 nuclease
US10597679B2 (en)2013-09-062020-03-24President And Fellows Of Harvard CollegeSwitchable Cas9 nucleases and uses thereof
US10682410B2 (en)2013-09-062020-06-16President And Fellows Of Harvard CollegeDelivery system for functional nucleases
US10704062B2 (en)2014-07-302020-07-07President And Fellows Of Harvard CollegeCAS9 proteins including ligand-dependent inteins
US10745677B2 (en)2016-12-232020-08-18President And Fellows Of Harvard CollegeEditing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en)2013-09-062020-12-08President And Fellows Of Harvard CollegeCAS9 variants and uses thereof
US10947530B2 (en)2016-08-032021-03-16President And Fellows Of Harvard CollegeAdenosine nucleobase editors and uses thereof
US11046948B2 (en)2013-08-222021-06-29President And Fellows Of Harvard CollegeEngineered transcription activator-like effector (TALE) domains and uses thereof
US11214780B2 (en)2015-10-232022-01-04President And Fellows Of Harvard CollegeNucleobase editors and uses thereof
US11268082B2 (en)2017-03-232022-03-08President And Fellows Of Harvard CollegeNucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en)2016-10-142022-04-19President And Fellows Of Harvard CollegeAAV delivery of nucleobase editors
US11319532B2 (en)2017-08-302022-05-03President And Fellows Of Harvard CollegeHigh efficiency base editors comprising Gam
US11447770B1 (en)2019-03-192022-09-20The Broad Institute, Inc.Methods and compositions for prime editing nucleotide sequences
US11542509B2 (en)2016-08-242023-01-03President And Fellows Of Harvard CollegeIncorporation of unnatural amino acids into proteins using base editing
US11542496B2 (en)2017-03-102023-01-03President And Fellows Of Harvard CollegeCytosine to guanine base editor
US11560566B2 (en)2017-05-122023-01-24President And Fellows Of Harvard CollegeAptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en)2016-08-092023-05-30President And Fellows Of Harvard CollegeProgrammable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en)2017-07-282023-08-22President And Fellows Of Harvard CollegeMethods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en)2017-10-162023-10-24The Broad Institute, Inc.Uses of adenosine base editors
US11898179B2 (en)2017-03-092024-02-13President And Fellows Of Harvard CollegeSuppression of pain by gene editing
US11912985B2 (en)2020-05-082024-02-27The Broad Institute, Inc.Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN117757800A (en)*2023-10-312024-03-26浙江大学 A method for preparing low-phosphorus tolerant rice based on tissue-specific gene editing technology
US12157760B2 (en)2018-05-232024-12-03The Broad Institute, Inc.Base editors and uses thereof
US12281338B2 (en)2018-10-292025-04-22The Broad Institute, Inc.Nucleobase editors comprising GeoCas9 and uses thereof
US12351837B2 (en)2019-01-232025-07-08The Broad Institute, Inc.Supernegatively charged proteins and uses thereof
US12390514B2 (en)2017-03-092025-08-19President And Fellows Of Harvard CollegeCancer vaccine
US12406749B2 (en)2017-12-152025-09-02The Broad Institute, Inc.Systems and methods for predicting repair outcomes in genetic engineering
US12435330B2 (en)2019-10-102025-10-07The Broad Institute, Inc.Methods and compositions for prime editing RNA

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103981212A (en)*2014-05-162014-08-13安徽省农业科学院水稻研究所Breeding method capable of changing glume color of rice varieties with yellow glume to brownness
CN104017821A (en)*2014-05-162014-09-03安徽省农业科学院水稻研究所Method for directionally editing chaff-color-determining gene OsCHI for creating brown-chaff rice material
CN105063026A (en)*2015-07-282015-11-18华南农业大学Rice thousand kernel weight gene TGW6 guided RNA target sequence and application thereof
CN105543228A (en)*2016-01-252016-05-04宁夏农林科学院Method for transforming rice into fragrant rice rapidly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103981212A (en)*2014-05-162014-08-13安徽省农业科学院水稻研究所Breeding method capable of changing glume color of rice varieties with yellow glume to brownness
CN104017821A (en)*2014-05-162014-09-03安徽省农业科学院水稻研究所Method for directionally editing chaff-color-determining gene OsCHI for creating brown-chaff rice material
CN105063026A (en)*2015-07-282015-11-18华南农业大学Rice thousand kernel weight gene TGW6 guided RNA target sequence and application thereof
CN105543228A (en)*2016-01-252016-05-04宁夏农林科学院Method for transforming rice into fragrant rice rapidly

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIRANO K 等: "OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm", 《PLANT CELL REP》*
WANG PING 等: "A single nucleotide mutation in the fourth exon of RBH1 is responsible for brown hull phenotype in rice", 《MOLECULAR BREEDING》*
ZHANG KEWEI 等: "Gold hull and internode2 encodes a primarily multifunctional innamyl-alcohol dehydrogenase In rice", 《PLANT PHYSIOL》*
李秋圆: "一个水稻金黄色颖壳与节间基因的定位与功能分析", 《中国优秀硕士学位论文全文数据库 基础科学辑》*
李远华: "《茶叶生物技术》", 30 June 2017*
王宏 等: "控制水稻金黄色颖壳与节间基因OsCAD2的图位克隆", 《中国水稻科学》*

Cited By (55)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10323236B2 (en)2011-07-222019-06-18President And Fellows Of Harvard CollegeEvaluation and improvement of nuclease cleavage specificity
US12006520B2 (en)2011-07-222024-06-11President And Fellows Of Harvard CollegeEvaluation and improvement of nuclease cleavage specificity
US10954548B2 (en)2013-08-092021-03-23President And Fellows Of Harvard CollegeNuclease profiling system
US11920181B2 (en)2013-08-092024-03-05President And Fellows Of Harvard CollegeNuclease profiling system
US10508298B2 (en)2013-08-092019-12-17President And Fellows Of Harvard CollegeMethods for identifying a target site of a CAS9 nuclease
US11046948B2 (en)2013-08-222021-06-29President And Fellows Of Harvard CollegeEngineered transcription activator-like effector (TALE) domains and uses thereof
US10912833B2 (en)2013-09-062021-02-09President And Fellows Of Harvard CollegeDelivery of negatively charged proteins using cationic lipids
US10858639B2 (en)2013-09-062020-12-08President And Fellows Of Harvard CollegeCAS9 variants and uses thereof
US11299755B2 (en)2013-09-062022-04-12President And Fellows Of Harvard CollegeSwitchable CAS9 nucleases and uses thereof
US10682410B2 (en)2013-09-062020-06-16President And Fellows Of Harvard CollegeDelivery system for functional nucleases
US10597679B2 (en)2013-09-062020-03-24President And Fellows Of Harvard CollegeSwitchable Cas9 nucleases and uses thereof
US11124782B2 (en)2013-12-122021-09-21President And Fellows Of Harvard CollegeCas variants for gene editing
US10465176B2 (en)2013-12-122019-11-05President And Fellows Of Harvard CollegeCas variants for gene editing
US12215365B2 (en)2013-12-122025-02-04President And Fellows Of Harvard CollegeCas variants for gene editing
US11053481B2 (en)2013-12-122021-07-06President And Fellows Of Harvard CollegeFusions of Cas9 domains and nucleic acid-editing domains
US11578343B2 (en)2014-07-302023-02-14President And Fellows Of Harvard CollegeCAS9 proteins including ligand-dependent inteins
US10704062B2 (en)2014-07-302020-07-07President And Fellows Of Harvard CollegeCAS9 proteins including ligand-dependent inteins
US12398406B2 (en)2014-07-302025-08-26President And Fellows Of Harvard CollegeCAS9 proteins including ligand-dependent inteins
US11214780B2 (en)2015-10-232022-01-04President And Fellows Of Harvard CollegeNucleobase editors and uses thereof
US12043852B2 (en)2015-10-232024-07-23President And Fellows Of Harvard CollegeEvolved Cas9 proteins for gene editing
US12344869B2 (en)2015-10-232025-07-01President And Fellows Of Harvard CollegeNucleobase editors and uses thereof
US11999947B2 (en)2016-08-032024-06-04President And Fellows Of Harvard CollegeAdenosine nucleobase editors and uses thereof
US11702651B2 (en)2016-08-032023-07-18President And Fellows Of Harvard CollegeAdenosine nucleobase editors and uses thereof
US10947530B2 (en)2016-08-032021-03-16President And Fellows Of Harvard CollegeAdenosine nucleobase editors and uses thereof
US11661590B2 (en)2016-08-092023-05-30President And Fellows Of Harvard CollegeProgrammable CAS9-recombinase fusion proteins and uses thereof
US12084663B2 (en)2016-08-242024-09-10President And Fellows Of Harvard CollegeIncorporation of unnatural amino acids into proteins using base editing
US11542509B2 (en)2016-08-242023-01-03President And Fellows Of Harvard CollegeIncorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en)2016-10-142022-04-19President And Fellows Of Harvard CollegeAAV delivery of nucleobase editors
US11820969B2 (en)2016-12-232023-11-21President And Fellows Of Harvard CollegeEditing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en)2016-12-232020-08-18President And Fellows Of Harvard CollegeEditing of CCR5 receptor gene to protect against HIV infection
US12390514B2 (en)2017-03-092025-08-19President And Fellows Of Harvard CollegeCancer vaccine
US11898179B2 (en)2017-03-092024-02-13President And Fellows Of Harvard CollegeSuppression of pain by gene editing
US11542496B2 (en)2017-03-102023-01-03President And Fellows Of Harvard CollegeCytosine to guanine base editor
US12435331B2 (en)2017-03-102025-10-07President And Fellows Of Harvard CollegeCytosine to guanine base editor
US11268082B2 (en)2017-03-232022-03-08President And Fellows Of Harvard CollegeNucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en)2017-05-122023-01-24President And Fellows Of Harvard CollegeAptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US12359218B2 (en)2017-07-282025-07-15President And Fellows Of Harvard CollegeMethods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11732274B2 (en)2017-07-282023-08-22President And Fellows Of Harvard CollegeMethods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en)2017-08-302022-05-03President And Fellows Of Harvard CollegeHigh efficiency base editors comprising Gam
US11932884B2 (en)2017-08-302024-03-19President And Fellows Of Harvard CollegeHigh efficiency base editors comprising Gam
US11795443B2 (en)2017-10-162023-10-24The Broad Institute, Inc.Uses of adenosine base editors
US12406749B2 (en)2017-12-152025-09-02The Broad Institute, Inc.Systems and methods for predicting repair outcomes in genetic engineering
US12157760B2 (en)2018-05-232024-12-03The Broad Institute, Inc.Base editors and uses thereof
US12281338B2 (en)2018-10-292025-04-22The Broad Institute, Inc.Nucleobase editors comprising GeoCas9 and uses thereof
US12351837B2 (en)2019-01-232025-07-08The Broad Institute, Inc.Supernegatively charged proteins and uses thereof
US12281303B2 (en)2019-03-192025-04-22The Broad Institute, Inc.Methods and compositions for prime editing nucleotide sequences
CN109750063A (en)*2019-03-192019-05-14广西大学 Construction of a CRISPR_Cas9 vector of histone deacetylase gene HDA19 and its application
US11795452B2 (en)2019-03-192023-10-24The Broad Institute, Inc.Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en)2019-03-192023-05-09The Broad Institute, Inc.Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en)2019-03-192022-09-20The Broad Institute, Inc.Methods and compositions for prime editing nucleotide sequences
CN110250000A (en)*2019-07-312019-09-20湖南杂交水稻研究中心 Method for Improving Color Sorting Accuracy of Rice Genetic Engineering Genic Male Sterile Line Seeds Using Recessive Glue Color Traits
US12435330B2 (en)2019-10-102025-10-07The Broad Institute, Inc.Methods and compositions for prime editing RNA
US12031126B2 (en)2020-05-082024-07-09The Broad Institute, Inc.Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11912985B2 (en)2020-05-082024-02-27The Broad Institute, Inc.Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN117757800A (en)*2023-10-312024-03-26浙江大学 A method for preparing low-phosphorus tolerant rice based on tissue-specific gene editing technology

Similar Documents

PublicationPublication DateTitle
CN108034656A (en)SgRNA, CRISPR/Cas9 carrier related with rice bronzing glume character, vector construction, application
Che et al.Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants
CN108913717A (en)A method of using CRISPR/Cas9 system to rice PHYB site-directed point mutation
US10856481B2 (en)Use of genic male sterility gene and mutation thereof in hybridization
CN111206031A (en)Nucleic acid sequence for detecting corn plant NAZ-4 and detection method thereof
CN110331161B (en) A method to improve the seed color selection accuracy of rice genetically engineered GCMS by using dominant black glume trait
CN111206047B (en) OsSWEET13 Gene Mutant and Its Application in Improving Rice Yield
CN110250000B (en)Method for improving color selection precision of rice genetic engineering genic male sterile line seeds by utilizing recessive glume color characters
CN113801891B (en) Construction method and application of sugar beet BvCENH3 gene haploid induction line
Gisler et al.The role of double‐strand break‐induced allelic homologous recombination in somatic plant cells
CN114787389A (en) Nucleic acid sequence for detection of soybean plant DBN8205 and detection method thereof
CN102432679A (en)Rice extensin OsPEX1 and application thereof
CN109112158B (en)Method for creating intelligent sterile line based on toxic detoxification genes
CN113493803B (en)Alfalfa CRISPR/Cas9 genome editing system and application thereof
KR20230163460A (en) Increased transformability and haploid induction in plants
CN112430684B (en)Nucleic acid sequence for detecting rice plant H23 and detection method thereof
CN110724693B (en) Method and application of GRG1 gene for improving plant type of Bamboo
CN112481295A (en)Transposable element vector and method for obtaining selectable marker-free transgenic offspring thereof
CN103305541B (en)A kind of activate label A c/Ds transposon system and plant mutant storehouse build in application
CN112680460B (en)Male sterile gene ZmTGA9 and application thereof in creating male sterile line of corn
CN114350673B (en)Rice KOB1 gene for regulating and controlling seed vigor and regulating and controlling method thereof
CN113430224B (en) Visual CRISPR/Cas9 gene editing system and method of use
CN116286906A (en) Male Sterility Gene MsPL and Its Application
CN109504703B (en)Method for creating maize dominant nuclear male sterile line by using p5126-ZmMs1D construct and breeding application method thereof
Schulz et al.T-DNA tagging in Arabidopsis thaliana: cloning by gene disruption

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
CB03Change of inventor or designer information

Inventor after:Pu Zhigang

Inventor after:Xiang Xiaoli

Inventor after:Hu Binhua

Inventor after:Wang Ping

Inventor before:Pu Zhigang

Inventor before:Xiang Xiaoli

Inventor before:Wang Ping

CB03Change of inventor or designer information
RJ01Rejection of invention patent application after publication

Application publication date:20180515

RJ01Rejection of invention patent application after publication

[8]ページ先頭

©2009-2025 Movatter.jp