Movatterモバイル変換


[0]ホーム

URL:


CN108022429A - A kind of method and device of vehicle detection - Google Patents

A kind of method and device of vehicle detection
Download PDF

Info

Publication number
CN108022429A
CN108022429ACN201610971878.9ACN201610971878ACN108022429ACN 108022429 ACN108022429 ACN 108022429ACN 201610971878 ACN201610971878 ACN 201610971878ACN 108022429 ACN108022429 ACN 108022429A
Authority
CN
China
Prior art keywords
pixel
image
target vehicle
benchmark image
statistic unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610971878.9A
Other languages
Chinese (zh)
Other versions
CN108022429B (en
Inventor
程淼
周祥明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Dahua Technology Co Ltd
Original Assignee
Zhejiang Dahua Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Dahua Technology Co LtdfiledCriticalZhejiang Dahua Technology Co Ltd
Priority to CN201610971878.9ApriorityCriticalpatent/CN108022429B/en
Priority to PCT/CN2016/105174prioritypatent/WO2017080451A1/en
Priority to US15/775,800prioritypatent/US10861177B2/en
Priority to EP16863627.2Aprioritypatent/EP3374967B1/en
Publication of CN108022429ApublicationCriticalpatent/CN108022429A/en
Application grantedgrantedCritical
Publication of CN108022429BpublicationCriticalpatent/CN108022429B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The invention discloses a kind of method and device of vehicle detection, for solving when being blocked between car and car, or when vehicle is close with ground color, generation flase drop, it is difficult to which the problem of ensureing accuracy of detection, method include:Using Binocular Stereo Vision System, obtain image pair, an image is chosen as benchmark image from image pair, according to benchmark image, Preliminary detection is carried out to target vehicle, the first bounding box of the Partial Feature comprising target vehicle is determined in benchmark image, according to image pair, determine the D coordinates value for each pixel that the image in the first bounding box includes, according to the D coordinates value determined, determine the pixel that target vehicle includes.Combine in benchmark image and Preliminary detection is carried out to target vehicle, and the D coordinates value of each pixel that the first image in bounding box includes, to determine pixel that the target vehicle includes, the pixel for the target vehicle determined is more accurate, improves vehicle detection precision.

Description

A kind of method and device of vehicle detection
Technical field
The present invention relates to intelligent transportation field, more particularly to a kind of method and device of vehicle detection.
Background technology
, it is necessary to obtain the information of driving vehicle on road in road traffic, wherein, the information of vehicle is believed including car plateBreath, car body information etc., it is therefore desirable to be detected to vehicle.
Current most of vehicle detections are all based on the vehicle checking method of video analysis, are obtained and schemed by single cameraPicture, then carries out vehicle detection in accessed image, finally obtains position of the vehicle in accessed image.It is existingHaving vehicle checking method, there are the following problems:Due to just with overall profile information, when being blocked between car and car,Or vehicle it is close with ground color when, it may occur that flase drop, it is difficult to ensure accuracy of detection.
The content of the invention
The object of the present invention is to provide a kind of method and device of vehicle detection, is blocked with solving to work as between car and carWhen, or when vehicle is close with ground color, it may occur that flase drop, it is difficult to the problem of ensureing accuracy of detection.
The purpose of the present invention is what is be achieved through the following technical solutions:
A kind of method of vehicle detection, including:
Using Binocular Stereo Vision System, image pair is obtained;
Choose an image as benchmark image from described image centering, according to the benchmark image, to target vehicle intoRow Preliminary detection, determines the first bounding box of the Partial Feature comprising the target vehicle in the benchmark image;
According to described image pair, the three-dimensional coordinate for each pixel that the image in first bounding box includes is determinedValue;
According to the D coordinates value determined, the pixel that target vehicle includes described in the benchmark image is determined.
Optionally, it is described that Part-base vehicle checking methods are used to target vehicle progress Preliminary detection.
Optionally, the D coordinates value that the basis is determined, determines that target vehicle includes described in the benchmark imagePixel, including:
The D coordinates value of the pixel included according to the image in the benchmark image in each first bounding box, removesThe absolute value of coordinate value on y-axis direction is less than the pixel of first threshold.
Optionally, the D coordinates value that the basis is determined, determines that target vehicle includes described in the benchmark imagePixel, further include:
For each the first bounding box, at least one change in coordinate axis direction in x-axis and z-axis, according to setpoint distanceM statistic unit is divided, and from the M statistic unit, determines the total quantity of included pixel more than setting theThe ratio of the total quantity for the pixel that two threshold values and the total quantity of the pixel included are included with the M statistic unit is bigIn the N number of statistic unit for setting the 3rd threshold value, M is the integer more than or equal to 1, and N is the integer less than or equal to M;
The D coordinates value of the pixel included according to the image in the benchmark image in each first bounding box, determinesGo out the minimum range of each statistic unit and character pixel point set in N number of statistic unit, and from N number of statistic unitIn, determine that minimum range is less than P statistic unit of the 4th threshold value of setting, wherein, the minimum range is in statistic unitEach pixel and the character pixel point set in each pixel at least one change in coordinate axis direction away fromMinimum value from;The character pixel point set is the pixel point set of any feature of the fixed target vehicle;
The pixel that will be included in the P statistic unit, is determined as target vehicle described in the benchmark image and includesPixel.
Optionally, after determining the pixel that target vehicle includes described in the benchmark image, including:
The pixel that target vehicle includes according to the benchmark image, determines to include institute in the benchmark imageState the second bounding box of whole pixels of target vehicle.
Based on the inventive concept same with method, an embodiment of the present invention provides a kind of device of vehicle detection, including:
Acquisition module, for obtaining image pair;
First determining module, for choosing an image as benchmark image from described image centering, according to the benchmarkImage, carries out Preliminary detection to target vehicle, determines to include the Partial Feature of the target vehicle in the benchmark imageThe first bounding box;
Second determining module, for according to described image pair, it is every to determine that the image in first bounding box includesThe D coordinates value of a pixel;
3rd determining module, for according to the D coordinates value determined, determining target carriage described in the benchmark imageThe pixel included.
Optionally, it is described that Part-base vehicle checking methods are used to target vehicle progress Preliminary detection.
Optionally, the 3rd determining module is specifically used for:
The D coordinates value of the pixel included according to the image in the benchmark image in each first bounding box, removesThe absolute value of coordinate value on y-axis direction is less than the pixel of first threshold.
Optionally, the 3rd determining module is specifically used for:
For each the first bounding box, at least one change in coordinate axis direction in x-axis and z-axis, respectively according to settingDistance M statistic unit of division, and from the M statistic unit, determine that the total quantity of included pixel is more than and setThe ratio of the total quantity for the pixel that the total quantity for the pixel determined second threshold and included is included with the M statistic unitValue is more than N number of statistic unit of the 3rd threshold value of setting, and M is the integer more than or equal to 1, and N is the integer less than or equal to M;
The D coordinates value of the pixel included according to the image in the benchmark image in each first bounding box, determinesGo out the minimum range of each statistic unit and character pixel point set in N number of statistic unit, and from N number of statistic unitIn, determine that minimum range is less than P statistic unit of the 4th threshold value of setting, wherein, the minimum range is in statistic unitEach pixel and the character pixel point set in each pixel at least one change in coordinate axis direction away fromMinimum value from;The character pixel point set is the pixel point set of any feature of the fixed target vehicle;
The pixel that will be included in the P statistic unit, is determined as target vehicle described in the benchmark image and includesPixel.
Optionally, the 3rd determining module is additionally operable to:
The pixel that target vehicle includes according to the benchmark image, determines to include institute in the benchmark imageState the second bounding box of whole pixels of target vehicle.
A kind of method and device of vehicle detection provided in an embodiment of the present invention, using Binocular Stereo Vision System, obtainsImage pair, chooses an image as benchmark image from described image centering, according to the benchmark image, target vehicle is carried outPreliminary detection, determines the first bounding box of the Partial Feature comprising the target vehicle, according to institute in the benchmark imageImage pair is stated, determines the D coordinates value for each pixel that the image in first bounding box includes, according to determiningD coordinates value, determine the pixel that target vehicle includes described in the benchmark image.Due to combining in benchmark imageIn the D coordinates value of each pixel that the image in Preliminary detection, and the first bounding box includes is carried out to target vehicle,To determine target vehicle includes described in the benchmark image pixel so that the pixel for the target vehicle determined is moreAccurately, so as to improve vehicle detection precision.
Brief description of the drawings
Fig. 1 is a kind of method flow diagram of vehicle detection provided in an embodiment of the present invention;
Fig. 2 is one group of image pair provided in an embodiment of the present invention;
Fig. 3 is a kind of vehicle Preliminary detection figure provided in an embodiment of the present invention;
Fig. 4 is a kind of vehicle depth information figure provided in an embodiment of the present invention;
Fig. 5 is a kind of vehicle detection result figure provided in an embodiment of the present invention;
Fig. 6 is the method flow diagram of another vehicle detection provided in an embodiment of the present invention;
Fig. 7 is a kind of schematic device of vehicle detection provided in an embodiment of the present invention.
Embodiment
Below in conjunction with attached drawing, technical solution provided in an embodiment of the present invention is described in detail.
An embodiment of the present invention provides a kind of method of vehicle detection, as shown in Figure 1, including following operation:
Step 100, using Binocular Stereo Vision System, obtain image pair.
Step 110, from described image centering choose an image as benchmark image, according to the benchmark image, to meshMark vehicle and carry out Preliminary detection, determine that first of the Partial Feature comprising the target vehicle surrounds in the benchmark imageBox.
Step 120, according to described image pair, determine each pixel that the image in first bounding box includesD coordinates value.
Wherein, the quantity of first bounding box is at least two, its quantity is not limited in the embodiment of the present invention.
The D coordinates value that step 130, basis are determined, determines the picture that target vehicle includes described in the benchmark imageVegetarian refreshments.
A kind of method of vehicle detection provided in an embodiment of the present invention, using Binocular Stereo Vision System, obtains image pair,An image is chosen as benchmark image from described image centering, and according to the benchmark image, target vehicle is tentatively examinedSurvey, the first bounding box of the Partial Feature comprising the target vehicle is determined in the benchmark image, according to described imageIt is right, the D coordinates value for each pixel that the image in first bounding box includes is determined, according to the three-dimensional determinedCoordinate value, determines the pixel that target vehicle includes described in the benchmark image.Due to combining in benchmark image to meshMark vehicle carries out the D coordinates value for each pixel that the image in Preliminary detection, and the first bounding box includes, to determineThe pixel that target vehicle includes described in the benchmark image so that the pixel for the target vehicle determined is more accurate,So as to improve vehicle detection precision.
It is described that Part-base vehicle detections are used to target vehicle progress Preliminary detection in a kind of optional implementationMethod.
In a kind of optional implementation, an image is chosen as benchmark image from described image centering in step 100,Including:
To described image to carrying out EP point correction, the image pair after EP point correction, chooses an imageAs the benchmark image.
To described image to carrying out EP point correction, same three dimensions point can be made to open the projection on image in left and right twoThe ordinate of point is equal, search cost during reducing Stereo matching, improves the accuracy rate of Stereo matching.
In the embodiment of the present invention, D coordinates value that the basis is determined determines target described in the benchmark imageThe pixel that vehicle includes, including following optional implementation:
Mode one, remove y-axis direction (i.e. the short transverse of target vehicle) on non-targeted vehicle pixel, specifically such asUnder:
The D coordinates value of the pixel included according to the image in the benchmark image in each first bounding box, removesThe absolute value of coordinate value on y-axis direction is less than the pixel of first threshold, so that in the short transverse of target vehicle, effectively goesExcept the interference of the pixel of non-targeted vehicle so that the pixel that the target vehicle determined includes is more accurate.
Further, it is possible to by first bounding box, except the absolute value of the coordinate value on y-axis direction is less than first thresholdPixel outside residual pixel point be determined as the pixel that target vehicle includes.
Mode two, remove x-axis direction (i.e. the width of target vehicle) on non-targeted vehicle pixel, specifically such asUnder:
For each the first bounding box, M statistic unit is divided according to setpoint distance in x-axis direction, and from the MIn statistic unit, the total of the pixel that the total quantity of included pixel is more than setting second threshold and is included is determinedThe ratio of the total quantity for the pixel that quantity is included with the M statistic unit is more than N number of statistic unit of the 3rd threshold value of setting,M is the integer more than or equal to 1, and N is the integer less than or equal to M;
The D coordinates value of the pixel included according to the image in the benchmark image in each first bounding box, determinesGo out the minimum range of each statistic unit and character pixel point set in N number of statistic unit, and from N number of statistic unitIn, determine that minimum range is less than P statistic unit of the 4th threshold value of setting, wherein, the minimum range is in statistic unitEach pixel and the character pixel point set in each pixel distance in the direction of the x axis in minimum value;
The pixel point set of a certain feature for the target vehicle that the character pixel point set is to determine out;By described inThe pixel included in P statistic unit, is determined as the pixel that target vehicle includes described in the benchmark image.
Under which, in the width of target vehicle, the interference of the pixel of non-targeted vehicle is effectively eliminated so thatThe pixel that the target vehicle determined includes is more accurate.
Mode three, remove z-axis direction (i.e. the length direction of target vehicle) on non-targeted vehicle pixel, specifically such asUnder:
For each the first bounding box, M statistic unit is divided according to setpoint distance in z-axis direction, and from the MIn statistic unit, the total of the pixel that the total quantity of included pixel is more than setting second threshold and is included is determinedThe ratio of the total quantity for the pixel that quantity is included with the M statistic unit is more than N number of statistic unit of the 3rd threshold value of setting,M is the integer more than or equal to 1, and N is the integer less than or equal to M;
The D coordinates value of the pixel included according to the image in the benchmark image in each first bounding box, determinesGo out the minimum range of each statistic unit and character pixel point set in N number of statistic unit, and from N number of statistic unitIn, determine that minimum range is less than P statistic unit of the 4th threshold value of setting, wherein, the minimum range is in statistic unitEach pixel and the character pixel point set in each pixel distance in the z-axis direction in minimum value;
The pixel point set of a certain feature for the target vehicle that the character pixel point set is to determine out;By described inThe pixel included in P statistic unit, is determined as the pixel that target vehicle includes described in the benchmark image.
Under which, in the length direction of target vehicle, the interference of the pixel of non-targeted vehicle is effectively eliminated so thatThe pixel that the target vehicle determined includes is more accurate.
Above-mentioned three kinds of modes can be used alone, and can also be used in combination, such as:
1st, the mode that employing mode one is combined with mode two, determines that target vehicle includes described in the benchmark imagePixel;So as to eliminate the interference of the pixel of non-targeted vehicle on y-axis direction and x-axis direction.Specifically:Can be firstEmploying mode one removes the pixel of non-targeted vehicle on y-axis direction, then employing mode two removes non-targeted vehicle on x-axis directionPixel, determine the pixel that target vehicle includes described in the benchmark image;Can also the first removal of employing mode two xThe pixel of non-targeted vehicle on direction of principal axis, then employing mode one remove the pixel of non-targeted vehicle on y-axis direction, so that reallyMake the pixel that target vehicle includes described in the benchmark image.
2nd, the mode that employing mode one is combined with mode three, determines that target vehicle includes described in the benchmark imagePixel;So as to eliminate the interference of the pixel of non-targeted vehicle on y-axis direction and z-axis direction.Specifically:Can be firstEmploying mode one removes the pixel of non-targeted vehicle on y-axis direction, then employing mode three removes non-targeted vehicle on z-axis directionPixel, determine the pixel that target vehicle includes described in the benchmark image;Can also the first removal of employing mode three zThe pixel of non-targeted vehicle on direction of principal axis, then employing mode one remove the pixel of non-targeted vehicle on y-axis direction, so that reallyMake the pixel that target vehicle includes described in the benchmark image.
3rd, the mode that employing mode two is combined with mode three, determines that target vehicle includes described in the benchmark imagePixel;So as to eliminate the interference of the pixel of non-targeted vehicle on x-axis direction and z-axis direction.Specifically:Can be firstEmploying mode two removes the pixel of non-targeted vehicle on x-axis direction, then employing mode three removes non-targeted vehicle on z-axis directionPixel, determine the pixel that target vehicle includes described in the benchmark image;Can also the first removal of employing mode three xThe pixel of non-targeted vehicle on direction of principal axis, then employing mode two remove the pixel of non-targeted vehicle on z-axis direction, so that reallyMake the pixel that target vehicle includes described in the benchmark image.
4th, the mode that employing mode one, mode two are combined with mode three, determines target described in the benchmark imageThe pixel that vehicle includes;So as to eliminate the dry of the pixel of non-targeted vehicle on y-axis direction, x-axis direction and z-axis directionDisturb.Specifically, using the order of three kinds of modes, the embodiment of the present invention is not construed as limiting it.
Based on any of the above-described embodiment, after determining the pixel that target vehicle includes described in the benchmark image,Including:
The pixel that target vehicle includes according to the benchmark image, determines to include institute in the benchmark imageState the second bounding box of whole pixels of target vehicle.
Below by two specific embodiments, a kind of method of vehicle detection of the present invention is described in detail.
Embodiment one, by Binocular Stereo Vision System obtain image pair, to the image to carry out EP point correction, obtainImage pair after correction, as shown in Figure 2.
To select left-side images to carry out auto model Preliminary detection as exemplified by benchmark image, after Preliminary detection,Multiple bounding boxs are determined in benchmark image, the bounding box is the rectangle frame for including target vehicle Partial Feature, and difference is surroundedThere can be overlapping part between box, auto model Preliminary detection can use Part-base scheduling algorithms to realize, the present invention is realApply example not limit, below using exemplified by Part-base, to illustrate the method flow of vehicle detection:
First, the Part-base models of training vehicle;Prepare the positive negative sample of vehicle, wherein, preferably instruct in order to obtainPractice effect, prepare the picture 2000 containing cart, trolley feature and open, as positive sample, while prepare not containing vehicle characteristicsPicture 1000 is opened, as negative sample;Using positive negative sample, using Part-base methods, it is trained, obtains vehicle detection mouldType.
Then, Preliminary detection is carried out to target vehicle using obtained vehicle detection model, obtains preliminary information of vehicles, i.e.,The first bounding box of the Partial Feature comprising the target vehicle is determined in the benchmark image, as shown in Figure 3.
Secondly, the image pair after being corrected according to EP point, obtains the depth information of the benchmark image, that is, obtains reference mapD coordinates value (the x of each pixel included as inwp,ywp,zwp), according to the three-dimensional coordinate of each pixel be worth to asDepth information figure shown in Fig. 4.
Finally, for each first bounding box, using the mapping function of EP point timing, by each first bounding box areaDomain mapping, according to the D coordinates value of the pixel in each first bounding box region, removes target on the benchmark imageThe pixel of chaff interferent outside vehicle.
Wherein, according to the D coordinates value of the pixel in each first bounding box region, remove outside target vehicleThe pixel of chaff interferent, detailed process are as follows:
Using y-axis direction as vehicle-height direction, z-axis direction is vehicle lengthwise direction, and x-axis direction is that vehicle-width direction isExample.
, can be according to y-axis side in D coordinates value when removing the pixel of the chaff interferent on y-axis direction outside target vehicleTo value remove ground region interference, that is, remove ywpLess than given threshold thgPixel.
When removing the pixel of the chaff interferent on z-axis direction outside target vehicle, in z-axis direction per Δ SzDistance divides one intoA statistic unit (bin), is divided into M altogetherZA bin, each statistic unit are denoted as Bk, each B counted in listkPixel quantityIt is denoted as nk, k ∈ [0, MZ] in positive integer.The total quantity for removing included pixel is less than or equal to second threshold thnzAndComprising pixel total quantity and the MZThe ratio of the total quantity for the pixel that a statistic unit includes is less than or equal to3rd threshold value thnrzStatistic unit, obtain target vehicle pixel point set in each statistic unitIt is shown below:
First, the statistic unit where target vehicle vehicle license plate characteristic is determined, as target vehicle pixel set'sInitial pixel point set, it is then determined that going out MZEach statistic unit and the most narrow spacing of initial pixel point set in a statistic unitFrom, and from the MZIn a statistic unit, determine that minimum range is less than given threshold thBzP statistic unit, by the PThe pixel of target vehicle is added in target vehicle pixel set in a statistic unit, obtains whole pictures of the target vehicleVegetarian refreshments, finally according to whole pixels of the target vehicle, determines the target vehicle included in the benchmark imageWhole pixels the second bounding box, as shown in Figure 5.
When removing the pixel of the chaff interferent on x-axis direction outside target vehicle, with remove on z-axis direction target vehicle itThe processing procedure during pixel of outer chaff interferent is identical, is repeated no more in the embodiment of the present invention.
Embodiment two, vehicle detection process provided in this embodiment as shown in fig. 6, including:
Step 601, using Binocular Stereo Vision System, obtain image pair.
Step 602, to described image to carry out EP point correction.
Step 603, from after correction image pair choose an image as benchmark image.
Step 604, carry out Preliminary detection in benchmark image to target vehicle, determines to include the portion of the target vehicleFirst bounding box of dtex sign.
Step 605, using the image pair after correction, obtain the three-dimensional coordinate of each pixel included in benchmark imageValue.
Step 606, for each first bounding box, using the mapping function of EP point timing, each first is surroundedOn benchmark image after box area maps to EP point correction.
Step 607, go according to the D coordinates value of the pixel on the benchmark image in each first bounding box regionPixel in addition to target vehicle.
Step 608, will remove remaining pixel after pixel on the benchmark image outside target vehicle, be determined asThe pixel of target vehicle described in the benchmark image.
Step 609, the pixel according to the target vehicle, determine the target carriage included in the benchmark imageWhole pixels the second bounding box.
Based on the inventive concept same with method, the embodiment of the present invention also provides a kind of device of vehicle detection, such as Fig. 7 institutesShow, including:
Acquisition module 701, for obtaining image pair;
First determining module 702, for choosing an image as benchmark image from described image centering, according to the baseQuasi- image, Preliminary detection is carried out to target vehicle, determines that the part comprising the target vehicle is special in the benchmark imageFirst bounding box of sign;
Second determining module 703, for according to described image pair, determining what the image in first bounding box includedThe D coordinates value of each pixel;
3rd determining module 704, for according to the D coordinates value determined, determining target described in the benchmark imageThe pixel that vehicle includes.
A kind of device of vehicle detection provided in an embodiment of the present invention, using Binocular Stereo Vision System, obtains image pair,An image is chosen as benchmark image from described image centering, and according to the benchmark image, target vehicle is tentatively examinedSurvey, the first bounding box of the Partial Feature comprising the target vehicle is determined in the benchmark image, according to described imageIt is right, the D coordinates value for each pixel that the image in first bounding box includes is determined, according to the three-dimensional determinedCoordinate value, determines the pixel that target vehicle includes described in the benchmark image.Due to combining in benchmark image to meshMark vehicle carries out the D coordinates value for each pixel that the image in Preliminary detection, and the first bounding box includes, to determineThe pixel that target vehicle includes described in the benchmark image so that the pixel for the target vehicle determined is more accurate,So as to improve vehicle detection precision.
Optionally, it is described that Part-base vehicle checking methods are used to target vehicle progress Preliminary detection.
Optionally, the 3rd determining module is specifically used for:
The D coordinates value of the pixel included according to the image in the benchmark image in each first bounding box, removesThe absolute value of coordinate value on y-axis direction is less than the pixel of first threshold.
Optionally, the 3rd determining module is specifically used for:
For each the first bounding box, at least one change in coordinate axis direction in x-axis and z-axis, according to setpoint distanceM statistic unit is divided, and from the M statistic unit, determines the total quantity of included pixel more than setting theThe ratio of the total quantity for the pixel that two threshold values and the total quantity of the pixel included are included with the M statistic unit is bigIn the N number of statistic unit for setting the 3rd threshold value, M is the integer more than or equal to 1, and N is the integer less than or equal to M;
The D coordinates value of the pixel included according to the image in the benchmark image in each first bounding box, determinesGo out the minimum range of each statistic unit and character pixel point set in N number of statistic unit, and from N number of statistic unitIn, determine that minimum range is less than P statistic unit of the 4th threshold value of setting, wherein, the minimum range is in statistic unitEach pixel and the character pixel point set in each pixel at least one change in coordinate axis direction away fromMinimum value from;The character pixel point set is the pixel point set of any feature of the fixed target vehicle;
The pixel that will be included in the P statistic unit, is determined as target vehicle described in the benchmark image and includesPixel.
Optionally, the 3rd determining module is additionally operable to:
The pixel that target vehicle includes according to the benchmark image, determines to include institute in the benchmark imageState the second bounding box of whole pixels of target vehicle.
A kind of method and device of vehicle detection provided in an embodiment of the present invention, using Binocular Stereo Vision System, obtainsImage pair, chooses an image as benchmark image from described image centering, according to the benchmark image, target vehicle is carried outPreliminary detection, determines the first bounding box of the Partial Feature comprising the target vehicle, according to institute in the benchmark imageImage pair is stated, determines the D coordinates value for each pixel that the image in first bounding box includes, according to determiningD coordinates value, determine the pixel that target vehicle includes described in the benchmark image.Due to being determined in benchmark imageThe pixel that target vehicle contains, therefore improve vehicle detection precision.
It should be understood by those skilled in the art that, the embodiment of the present invention can be provided as method, system or computer programProduct.Therefore, the present invention can use the reality in terms of complete hardware embodiment, complete software embodiment or combination software and hardwareApply the form of example.Moreover, the present invention can use the computer for wherein including computer usable program code in one or moreThe computer program production that usable storage medium is implemented on (including but not limited to magnetic disk storage, CD-ROM, optical memory etc.)The form of product.
The present invention be with reference to according to the method for the embodiment of the present invention, the flow of equipment (system) and computer program productFigure and/or block diagram describe.It should be understood that it can be realized by computer program instructions every first-class in flowchart and/or the block diagramThe combination of flow and/or square frame in journey and/or square frame and flowchart and/or the block diagram.These computer programs can be providedThe processors of all-purpose computer, special purpose computer, Embedded Processor or other programmable data processing devices is instructed to produceA raw machine so that the instruction performed by computer or the processor of other programmable data processing devices, which produces, to be used in factThe device for the function of being specified in present one flow of flow chart or one square frame of multiple flows and/or block diagram or multiple square frames.
These computer program instructions, which may also be stored in, can guide computer or other programmable data processing devices with spyDetermine in the computer-readable memory that mode works so that the instruction being stored in the computer-readable memory, which produces, to be included referring toMake the manufacture of device, the command device realize in one flow of flow chart or multiple flows and/or one square frame of block diagram orThe function of being specified in multiple square frames.
These computer program instructions can be also loaded into computer or other programmable data processing devices so that countedSeries of operation steps is performed on calculation machine or other programmable devices to produce computer implemented processing, thus in computer orThe instruction performed on other programmable devices is provided and is used for realization in one flow of flow chart or multiple flows and/or block diagram oneThe step of function of being specified in a square frame or multiple square frames.
Although preferred embodiments of the present invention have been described, but those skilled in the art once know basic creationProperty concept, then can make these embodiments other change and modification.So appended claims be intended to be construed to include it is excellentSelect embodiment and fall into all change and modification of the scope of the invention.
Obviously, various changes and modifications can be made to the invention without departing from essence of the invention by those skilled in the artGod and scope.In this way, if these modifications and changes of the present invention belongs to the scope of the claims in the present invention and its equivalent technologiesWithin, then the present invention is also intended to comprising including these modification and variations.

Claims (10)

CN201610971878.9A2015-11-112016-11-04Vehicle detection method and deviceActiveCN108022429B (en)

Priority Applications (4)

Application NumberPriority DateFiling DateTitle
CN201610971878.9ACN108022429B (en)2016-11-042016-11-04Vehicle detection method and device
PCT/CN2016/105174WO2017080451A1 (en)2015-11-112016-11-09Methods and systems for binocular stereo vision
US15/775,800US10861177B2 (en)2015-11-112016-11-09Methods and systems for binocular stereo vision
EP16863627.2AEP3374967B1 (en)2015-11-112016-11-09Methods and systems for binocular stereo vision

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201610971878.9ACN108022429B (en)2016-11-042016-11-04Vehicle detection method and device

Publications (2)

Publication NumberPublication Date
CN108022429Atrue CN108022429A (en)2018-05-11
CN108022429B CN108022429B (en)2021-08-27

Family

ID=62084679

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201610971878.9AActiveCN108022429B (en)2015-11-112016-11-04Vehicle detection method and device

Country Status (1)

CountryLink
CN (1)CN108022429B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11188776B2 (en)2019-10-262021-11-30Genetec Inc.Automated license plate recognition system and related method
US11367267B2 (en)2018-02-082022-06-21Genetec Inc.Systems and methods for locating a retroreflective object in a digital image

Citations (14)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
GB1217223A (en)*1967-05-231970-12-31Cesare MoraisRear-view optical system
CN102521587A (en)*2011-11-242012-06-27华中科技大学License plate location method
CN102999759A (en)*2012-11-072013-03-27东南大学Light stream based vehicle motion state estimating method
CN103231708A (en)*2013-04-122013-08-07安徽工业大学Intelligent vehicle obstacle avoiding method based on binocular vision
CN103985114A (en)*2014-03-212014-08-13南京大学Surveillance video person foreground segmentation and classification method
CN104167109A (en)*2014-07-172014-11-26浙江宇视科技有限公司Detection method and detection apparatus for vehicle position
CN105096591A (en)*2014-05-142015-11-25杭州海康威视数字技术股份有限公司Intelligent road monitoring system and method
CN105469124A (en)*2015-11-202016-04-06厦门雅迅网络股份有限公司Traffic sign classification method
CN105989572A (en)*2015-02-102016-10-05腾讯科技(深圳)有限公司Picture processing method and apparatus thereof
CN106022329A (en)*2016-05-122016-10-12福建南威软件有限公司Character noise reduction method in character recognition process
CN106056086A (en)*2016-06-022016-10-26江苏华通晟云科技有限公司Vehicle brand and model identification method based on fast learning framework
CN106650708A (en)*2017-01-192017-05-10南京航空航天大学Visual detection method and system for automatic driving obstacles
CN107315095A (en)*2017-06-192017-11-03哈尔滨工业大学Many vehicle automatic speed-measuring methods with illumination adaptability based on Video processing
JP6425990B2 (en)*2014-12-182018-11-21東日本旅客鉄道株式会社 Track shape measurement method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
GB1217223A (en)*1967-05-231970-12-31Cesare MoraisRear-view optical system
CN102521587A (en)*2011-11-242012-06-27华中科技大学License plate location method
CN102999759A (en)*2012-11-072013-03-27东南大学Light stream based vehicle motion state estimating method
CN103231708A (en)*2013-04-122013-08-07安徽工业大学Intelligent vehicle obstacle avoiding method based on binocular vision
CN103985114A (en)*2014-03-212014-08-13南京大学Surveillance video person foreground segmentation and classification method
CN105096591A (en)*2014-05-142015-11-25杭州海康威视数字技术股份有限公司Intelligent road monitoring system and method
CN104167109A (en)*2014-07-172014-11-26浙江宇视科技有限公司Detection method and detection apparatus for vehicle position
JP6425990B2 (en)*2014-12-182018-11-21東日本旅客鉄道株式会社 Track shape measurement method
CN105989572A (en)*2015-02-102016-10-05腾讯科技(深圳)有限公司Picture processing method and apparatus thereof
CN105469124A (en)*2015-11-202016-04-06厦门雅迅网络股份有限公司Traffic sign classification method
CN106022329A (en)*2016-05-122016-10-12福建南威软件有限公司Character noise reduction method in character recognition process
CN106056086A (en)*2016-06-022016-10-26江苏华通晟云科技有限公司Vehicle brand and model identification method based on fast learning framework
CN106650708A (en)*2017-01-192017-05-10南京航空航天大学Visual detection method and system for automatic driving obstacles
CN107315095A (en)*2017-06-192017-11-03哈尔滨工业大学Many vehicle automatic speed-measuring methods with illumination adaptability based on Video processing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孔婷: "基于双目立体视觉的集装箱卡车定位方法研究", 《计算机应用与软件》*
王荣本: "基于分形盒子维数的车辆定位和识别方法", 《吉林大学学报》*

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11367267B2 (en)2018-02-082022-06-21Genetec Inc.Systems and methods for locating a retroreflective object in a digital image
US11830256B2 (en)2018-02-082023-11-28Genetec Inc.Systems and methods for locating a retroreflective object in a digital image
US11188776B2 (en)2019-10-262021-11-30Genetec Inc.Automated license plate recognition system and related method
US12067743B2 (en)2019-10-262024-08-20Genetec Inc.Automated license plate recognition system and related method
US12125234B2 (en)2019-10-262024-10-22Genetec Inc.Automated license plate recognition system and related method

Also Published As

Publication numberPublication date
CN108022429B (en)2021-08-27

Similar Documents

PublicationPublication DateTitle
US10424081B2 (en)Method and apparatus for calibrating a camera system of a motor vehicle
CN106056570B (en) Road Slope Detection Device
CN110203210A (en)A kind of lane departure warning method, terminal device and storage medium
US8406472B2 (en)Method and system for processing image data
CN111967360B (en)Target vehicle posture detection method based on wheels
CN112614192B (en)On-line calibration method of vehicle-mounted camera and vehicle-mounted information entertainment system
DE102013211930A1 (en) Binocular broad base line object comparison method using a minimal cost flownet
CN109074653A (en)The method of the object beside road for detecting motor vehicles calculates equipment, driver assistance system and motor vehicles
CN109472786B (en)Cerebral hemorrhage image processing method, device, computer equipment and storage medium
JP6712775B2 (en) Road surface estimation device, vehicle control device, road surface estimation method, and program
CN105300403A (en)Vehicle mileage calculation method based on double-eye vision
CN104964708B (en) A road surface pothole detection method based on vehicle-mounted binocular vision
CN108072385A (en)Space coordinates localization method, device and the electronic equipment of mobile target
CN110619674A (en)Three-dimensional augmented reality equipment and method for accident and alarm scene restoration
CN107451976A (en)A kind of image processing method and device
CN113762079B (en) Environmental data processing methods, devices, equipment and storage media
CN108022429A (en)A kind of method and device of vehicle detection
CN109115232B (en)Navigation method and device
CN108256470A (en)A kind of lane shift judgment method and automobile
CN109300154A (en) A binocular stereo-based ranging method and device
CN117173257B (en)3D target detection and calibration parameter enhancement method, electronic equipment and medium
CN111899277A (en)Moving object detection method and device, storage medium and electronic device
CN116486360A (en)Road boundary determination method, device, electronic equipment and storage medium
CN115063772B (en)Method for detecting vehicles after formation of vehicles, terminal equipment and storage medium
CN109711363A (en)Vehicle positioning method, device, equipment and storage medium

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp