技术领域technical field
本发明涉及一种力学性能优良的电磁屏蔽材料及其制备方法,属于电磁屏蔽材料技术领域。The invention relates to an electromagnetic shielding material with excellent mechanical properties and a preparation method thereof, belonging to the technical field of electromagnetic shielding materials.
背景技术Background technique
高分子材料本身拥有诸多优点,例如:重量轻、易加工、绝缘绝热、成本低等。因此,在过去的几十年中,高分子材料在国防建设和国民经济的各个领域中得到了越来越广泛的应用。电磁污染就引发了聚合物基电磁屏蔽复合材料的研究日益増多。Polymer materials themselves have many advantages, such as light weight, easy processing, insulation and heat insulation, and low cost. Therefore, in the past few decades, polymer materials have been more and more widely used in various fields of national defense construction and national economy. Electromagnetic pollution has triggered an increasing research on polymer-based electromagnetic shielding composites.
碳材料具有密度低、电导率高、耐腐蚀、易加工等优点,是截止到目前为止最为理想的电磁屏蔽材料之一。其中,有关碳纳米管(CNT)和石墨烯基电磁屏蔽聚合物复合材料的研究最为活跃。Carbon materials have the advantages of low density, high electrical conductivity, corrosion resistance, and easy processing, and are one of the most ideal electromagnetic shielding materials so far. Among them, research on carbon nanotubes (CNTs) and graphene-based polymer composites for electromagnetic shielding is the most active.
但是,上述材料存在着两方面的问题,一方面,一般是单纯的CNT或石墨烯为填料,利用它们的高导电性来衰减电磁波,但是,当考虑到复合材料的可加工性时,CNT和石墨烯的添加量却是有限的,因此,CNT和石墨烯基电磁屏蔽材料的电磁屏蔽性能存在着一定的局限性;另一方面,CNT和石墨烯大多是与聚合物相互混合,随机地分散在复合材料中,由于CNT和石墨烯易团聚难分散的特点,使得复合材料虽然可通过添加高含量的CNT或石墨烯来获得优异的电磁屏蔽性能,但是力学性能会丧失殆尽。However, there are two problems in the above-mentioned materials. On the one hand, pure CNT or graphene is generally used as a filler, and their high conductivity is used to attenuate electromagnetic waves. However, when considering the machinability of composite materials, CNT and graphene The amount of graphene added is limited. Therefore, the electromagnetic shielding performance of CNT and graphene-based electromagnetic shielding materials has certain limitations; on the other hand, CNT and graphene are mostly mixed with polymers and dispersed randomly. In composite materials, due to the characteristics that CNT and graphene are easy to agglomerate and difficult to disperse, although composite materials can obtain excellent electromagnetic shielding performance by adding high content of CNT or graphene, the mechanical properties will be completely lost.
发明内容Contents of the invention
本发明针对现有技术中聚合物/碳材料复合材料的碳材料添加量有限,同时,力学性能丧失殆尽的不足,利用3D打印技术提供基体,并采用溶液浸渍的方法,于基体上形成一导电层,使其得到的电磁屏蔽材料具有形状可控性高、屏蔽频率宽、综合性能好等优点。The present invention aims at the problem that the amount of carbon material added to the polymer/carbon material composite material in the prior art is limited, and at the same time, the mechanical properties are completely lost. The 3D printing technology is used to provide the matrix, and the method of solution impregnation is used to form a carbon material on the matrix. Conductive layer, so that the obtained electromagnetic shielding material has the advantages of high shape controllability, wide shielding frequency, and good comprehensive performance.
本发明提供了一种力学性能优良的电磁屏蔽材料,所述电磁屏蔽材料包括多孔结构基体、包裹在多孔结构基体表面上的碳材料层;The invention provides an electromagnetic shielding material with excellent mechanical properties. The electromagnetic shielding material includes a porous structure matrix and a carbon material layer wrapped on the surface of the porous structure matrix;
所述多孔结构基体为通过模型三周期极小曲面构造的全连通多孔结构;The porous structure matrix is a fully connected porous structure constructed by a three-period minimal curved surface of the model;
其表达式如下:Its expression is as follows:
φG(r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=CφG (r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C
其中:X=2Tπx,Y=2Tπy,Z=2Tπz;T为多孔周期控制参数;C为孔洞形状控制参数。Among them: X=2Tπx, Y=2Tπy, Z=2Tπz; T is the control parameter of porous period; C is the control parameter of pore shape.
本发明所述孔洞形状控制参数C的取值优选为[-1,1],进一步优选为[-0.5,0.5]。The value of the hole shape control parameter C in the present invention is preferably [-1, 1], more preferably [-0.5, 0.5].
本发明所述多孔周期控制参数T的取值优选为(0,∞),进一步优选为[1,10]。The value of the porous period control parameter T in the present invention is preferably (0, ∞), more preferably [1, 10].
本发明优选为通过偏移控制参数O调控所述多孔结构的孔壁厚度。In the present invention, preferably, the thickness of the pore wall of the porous structure is regulated through the offset control parameter O.
本发明所述偏移控制参数O的取值优选为(0%,50%],进一步优选为[5%,20%]。The value of the offset control parameter O in the present invention is preferably (0%, 50%], more preferably [5%, 20%].
本发明所述基体的材质优选为光敏树脂、环氧树脂、聚乳酸、ABS塑料或热塑性聚氨酯弹性体橡胶。The material of the substrate in the present invention is preferably photosensitive resin, epoxy resin, polylactic acid, ABS plastic or thermoplastic polyurethane elastomer rubber.
本发明所述碳材料层优选为包括活性剂与碳材料,所述活性剂与碳材料的重量比为1:1-2.5:1。The carbon material layer in the present invention preferably includes an active agent and a carbon material, and the weight ratio of the active agent to the carbon material is 1:1-2.5:1.
本发明所述活性剂优选为阳离子表面活性剂,进一步优选为十六烷基三甲基溴化铵或聚甲基吡咯烷酮。The active agent in the present invention is preferably a cationic surfactant, more preferably cetyltrimethylammonium bromide or polymethylpyrrolidone.
本发明所述碳材料优选为碳纳米管或石墨烯。The carbon material in the present invention is preferably carbon nanotube or graphene.
本发明另一目的为提供一种上述电磁屏蔽材料的制备方法,所述制备方法包括如下步骤:Another object of the present invention is to provide a kind of preparation method of above-mentioned electromagnetic shielding material, and described preparation method comprises the following steps:
多孔结构基体的制备:Preparation of porous structure matrix:
利用3D打印机,通过上述模型获取多孔结构的基体;A 3D printer is used to obtain the matrix of the porous structure through the above model;
浸渍溶液的制备:Preparation of impregnation solution:
将活性剂与碳材料加入到水中,得到浸渍溶液,所述活性剂、碳材料两者之和与水的重量比为1:200-1:500;Adding the active agent and the carbon material into the water to obtain an impregnating solution, the weight ratio of the sum of the active agent and the carbon material to water is 1:200-1:500;
电磁屏蔽材料的制备:Preparation of electromagnetic shielding materials:
将多孔结构基体多次浸渍在浸渍溶液中,干燥,得到电磁屏蔽材料。The porous structure matrix is dipped in the dipping solution for several times and dried to obtain the electromagnetic shielding material.
本发明所述浸渍的次数为3-8次。The times of dipping in the present invention are 3-8 times.
本发明有益效果为:The beneficial effects of the present invention are:
①本发明所述电磁屏蔽材料以环氧树脂或聚乳酸的3D打印产品为例,弯曲强度最高可达120MPa,弯曲模量可达3.8GPa,同时,电磁屏蔽性能均在35dB以上,最高可达60dB;① The electromagnetic shielding material of the present invention takes the 3D printing products of epoxy resin or polylactic acid as an example, the bending strength can reach up to 120MPa, the bending modulus can reach 3.8GPa, and at the same time, the electromagnetic shielding performance is above 35dB, the highest can reach 60dB;
②本发明所述制备方法无有机溶剂的使用,有意义环境保护。2. The preparation method of the present invention does not use organic solvents, which is meaningful for environmental protection.
附图说明Description of drawings
本发明附图9幅,9 pieces of accompanying drawings of the present invention,
图1为实施例1所述多孔结构光敏树脂基体的结构示意图;Fig. 1 is the structural representation of porous structure photosensitive resin matrix described in embodiment 1;
图2为实施例2所述多孔结构光敏树脂基体的结构示意图;Fig. 2 is the structural representation of porous structure photosensitive resin matrix described in embodiment 2;
图3为实施例3所述多孔结构光敏树脂基体的结构示意图;Fig. 3 is the structural representation of porous structure photosensitive resin matrix described in embodiment 3;
图4为实施例4所述多孔结构聚乳酸基体的结构示意图;Fig. 4 is the structural representation of porous structure polylactic acid matrix described in embodiment 4;
图5为实施例5所述多孔结构聚乳酸基体的结构示意图;Fig. 5 is the structural representation of porous structure polylactic acid matrix described in embodiment 5;
图6为实施例6所述多孔结构聚乳酸基体的结构示意图;Fig. 6 is the schematic structural representation of porous structure polylactic acid matrix described in embodiment 6;
图7为实施例7所述多孔结构环氧树脂基体的结构示意图;Fig. 7 is the structural representation of porous structure epoxy resin matrix described in embodiment 7;
图8为实施例8所述多孔结构环氧树脂基体的结构示意图;Fig. 8 is the schematic structural representation of porous structure epoxy resin matrix described in embodiment 8;
图9为实施例9所述多孔结构环氧树脂基体的结构示意图。FIG. 9 is a schematic structural view of the porous structure epoxy resin matrix described in Example 9. FIG.
具体实施方式Detailed ways
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。The following non-limiting examples can enable those skilled in the art to understand the present invention more fully, but do not limit the present invention in any way.
实施例1Example 1
一种力学性能优良的电磁屏蔽材料的制备方法,所述制备方法包括如下步骤:A preparation method of an electromagnetic shielding material with excellent mechanical properties, the preparation method comprising the steps of:
多孔结构光敏树脂基体的制备:Preparation of porous structure photosensitive resin matrix:
利用光固化3D打印机,通过φG(r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C模型获取多孔结构的光敏树脂基体;Using a light-curing 3D printer, obtain a photosensitive resin matrix with a porous structure through the φG (r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C model;
其中:X=2Tπx,Y=2Tπy,Z=2Tπz,T为6,C为0;Among them: X=2Tπx, Y=2Tπy, Z=2Tπz, T is 6, C is 0;
O为5%;O is 5%;
浸渍溶液的制备:Preparation of impregnation solution:
将十六烷基三甲基溴化铵与碳纳米管加入到去离子水中,得到浸渍溶液;adding cetyltrimethylammonium bromide and carbon nanotubes to deionized water to obtain an impregnating solution;
所述十六烷基三甲基溴化铵与碳纳米管的重量比为2:1;The weight ratio of the cetyltrimethylammonium bromide to carbon nanotubes is 2:1;
所述十六烷基三甲基溴化铵、碳纳米管两者之和与水的重量比为1:250;The weight ratio of the sum of the cetyltrimethylammonium bromide and carbon nanotubes to water is 1:250;
电磁屏蔽材料的制备:Preparation of electromagnetic shielding materials:
将多孔结构光敏树脂基体在浸渍溶液中浸渍5次,干燥,得到电磁屏蔽材料。The porous structure photosensitive resin matrix is immersed in the impregnating solution for 5 times, and dried to obtain the electromagnetic shielding material.
实施例2Example 2
一种力学性能优良的电磁屏蔽材料的制备方法,所述制备方法包括如下步骤:A preparation method of an electromagnetic shielding material with excellent mechanical properties, the preparation method comprising the steps of:
多孔结构光敏树脂基体的制备:Preparation of porous structure photosensitive resin matrix:
利用光固化3D打印机,通过φG(r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C模型获取多孔结构的光敏树脂基体;Using a light-curing 3D printer, obtain a photosensitive resin matrix with a porous structure through the φG (r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C model;
其中:X=2Tπx,Y=2Tπy,Z=2Tπz,T为5,C为0;Among them: X=2Tπx, Y=2Tπy, Z=2Tπz, T is 5, C is 0;
O为6.2%;O is 6.2%;
浸渍溶液的制备:Preparation of impregnation solution:
将聚甲基吡咯烷酮与碳纳米管加入到去离子水中,得到浸渍溶液;adding polymethylpyrrolidone and carbon nanotubes to deionized water to obtain an impregnating solution;
所述聚甲基吡咯烷酮与碳纳米管的重量比为2.5:1;The weight ratio of polymethylpyrrolidone to carbon nanotubes is 2.5:1;
所述聚甲基吡咯烷酮、碳纳米管两者之和与水的重量比为1:300;The weight ratio of the sum of polymethylpyrrolidone and carbon nanotubes to water is 1:300;
电磁屏蔽材料的制备:Preparation of electromagnetic shielding materials:
将多孔结构光敏树脂基体在浸渍溶液中浸渍5次,干燥,得到电磁屏蔽材料。The porous structure photosensitive resin matrix is immersed in the impregnating solution for 5 times, and dried to obtain the electromagnetic shielding material.
实施例3Example 3
一种力学性能优良的电磁屏蔽材料的制备方法,所述制备方法包括如下步骤:A preparation method of an electromagnetic shielding material with excellent mechanical properties, the preparation method comprising the steps of:
多孔结构光敏树脂基体的制备:Preparation of porous structure photosensitive resin matrix:
利用光固化3D打印机,通过φG(r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C模型获取多孔结构的光敏树脂基体;Using a light-curing 3D printer, obtain a photosensitive resin matrix with a porous structure through the φG (r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C model;
其中:X=2Tπx,Y=2Tπy,Z=2Tπz,T为4,C为0;Among them: X=2Tπx, Y=2Tπy, Z=2Tπz, T is 4, C is 0;
O为7.4%;O is 7.4%;
浸渍溶液的制备:Preparation of impregnation solution:
将十六烷基三甲基溴化铵与石墨烯加入到去离子水中,得到浸渍溶液;adding cetyltrimethylammonium bromide and graphene to deionized water to obtain an impregnating solution;
所述十六烷基三甲基溴化铵与石墨烯的重量比为2.5:1;The weight ratio of the cetyltrimethylammonium bromide and graphene is 2.5:1;
所述十六烷基三甲基溴化铵、石墨烯两者之和与水的重量比为1:200;The weight ratio of the sum of the cetyltrimethylammonium bromide and graphene to water is 1:200;
电磁屏蔽材料的制备:Preparation of electromagnetic shielding materials:
将多孔结构光敏树脂基体在浸渍溶液中浸渍3次,干燥,得到电磁屏蔽材料。The porous structure photosensitive resin matrix is immersed in the impregnating solution for three times, and dried to obtain the electromagnetic shielding material.
实施例4Example 4
一种力学性能优良的电磁屏蔽材料的制备方法,所述制备方法包括如下步骤:A preparation method of an electromagnetic shielding material with excellent mechanical properties, the preparation method comprising the steps of:
多孔结构聚乳酸基体的制备:Preparation of polylactic acid matrix with porous structure:
利用熔融沉积成型3D打印机,通过φG(r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C模型获取多孔结构的聚乳酸基体;Using a fused deposition modeling 3D printer, the polylactic acid matrix with a porous structure is obtained through the φG (r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C model ;
其中:X=2Tπx,Y=2Tπy,Z=2Tπz,T为6,C为0;Among them: X=2Tπx, Y=2Tπy, Z=2Tπz, T is 6, C is 0;
O为8%;O is 8%;
浸渍溶液的制备:Preparation of impregnation solution:
将十六烷基三甲基溴化铵与碳纳米管加入到去离子水中,得到浸渍溶液;adding cetyltrimethylammonium bromide and carbon nanotubes to deionized water to obtain an impregnating solution;
所述十六烷基三甲基溴化铵与碳纳米管的重量比为2:1;The weight ratio of the cetyltrimethylammonium bromide to carbon nanotubes is 2:1;
所述十六烷基三甲基溴化铵、碳纳米管两者之和与水的重量比为1:200;The weight ratio of the sum of the cetyltrimethylammonium bromide and carbon nanotubes to water is 1:200;
电磁屏蔽材料的制备:Preparation of electromagnetic shielding materials:
将多孔结构聚乳酸基体在浸渍溶液中浸渍5次,干燥,得到电磁屏蔽材料。The polylactic acid substrate with porous structure is dipped in the dipping solution for 5 times, and dried to obtain the electromagnetic shielding material.
实施例5Example 5
一种力学性能优良的电磁屏蔽材料的制备方法,所述制备方法包括如下步骤:A preparation method of an electromagnetic shielding material with excellent mechanical properties, the preparation method comprising the steps of:
多孔结构聚乳酸基体的制备:Preparation of polylactic acid matrix with porous structure:
利用熔融沉积成型3D打印机,通过φG(r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C模型获取多孔结构的聚乳酸基体;Using a fused deposition modeling 3D printer, the polylactic acid matrix with a porous structure is obtained through the φG (r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C model ;
其中:X=2Tπx,Y=2Tπy,Z=2Tπz,T为5,C为0;Among them: X=2Tπx, Y=2Tπy, Z=2Tπz, T is 5, C is 0;
O为9.2%;O is 9.2%;
浸渍溶液的制备:Preparation of impregnation solution:
将聚甲基吡咯烷酮与碳纳米管加入到去离子水中,得到浸渍溶液;adding polymethylpyrrolidone and carbon nanotubes to deionized water to obtain an impregnating solution;
所述聚甲基吡咯烷酮与碳纳米管的重量比为2.5:1;The weight ratio of polymethylpyrrolidone to carbon nanotubes is 2.5:1;
所述聚甲基吡咯烷酮、碳纳米管两者之和与水的重量比为1:200;The weight ratio of the sum of polymethylpyrrolidone and carbon nanotubes to water is 1:200;
电磁屏蔽材料的制备:Preparation of electromagnetic shielding materials:
将多孔结构聚乳酸基体在浸渍溶液中浸渍5次,干燥,得到电磁屏蔽材料。The polylactic acid substrate with porous structure is dipped in the dipping solution for 5 times, and dried to obtain the electromagnetic shielding material.
实施例6Example 6
一种力学性能优良的电磁屏蔽材料的制备方法,所述制备方法包括如下步骤:A preparation method of an electromagnetic shielding material with excellent mechanical properties, the preparation method comprising the steps of:
多孔结构聚乳酸基体的制备:Preparation of polylactic acid matrix with porous structure:
利用熔融沉积成型3D打印机,通过φG(r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C模型获取多孔结构的聚乳酸基体;Using a fused deposition modeling 3D printer, the polylactic acid matrix with a porous structure is obtained through the φG (r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C model ;
其中:X=2Tπx,Y=2Tπy,Z=2Tπz,T为4,C为0;Among them: X=2Tπx, Y=2Tπy, Z=2Tπz, T is 4, C is 0;
O为10.4%;O is 10.4%;
浸渍溶液的制备:Preparation of impregnation solution:
将十六烷基三甲基溴化铵与石墨烯加入到去离子水中,得到浸渍溶液;adding cetyltrimethylammonium bromide and graphene to deionized water to obtain an impregnating solution;
所述十六烷基三甲基溴化铵与石墨烯的重量比为2.5:1;The weight ratio of the cetyltrimethylammonium bromide and graphene is 2.5:1;
所述十六烷基三甲基溴化铵、石墨烯两者之和与水的重量比为1:200;The weight ratio of the sum of the cetyltrimethylammonium bromide and graphene to water is 1:200;
电磁屏蔽材料的制备:Preparation of electromagnetic shielding materials:
将多孔结构聚乳酸基体在浸渍溶液中浸渍4次,干燥,得到电磁屏蔽材料。The polylactic acid substrate with porous structure is dipped in the dipping solution for 4 times and dried to obtain the electromagnetic shielding material.
实施例7Example 7
一种力学性能优良的电磁屏蔽材料的制备方法,所述制备方法包括如下步骤:A preparation method of an electromagnetic shielding material with excellent mechanical properties, the preparation method comprising the steps of:
多孔结构环氧树脂基体的制备:Preparation of porous structure epoxy resin matrix:
利用光固化3D打印机,通过φG(r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C模型获取多孔结构的环氧树脂基体;Using a light-curing 3D printer, the epoxy resin matrix with a porous structure is obtained through the φG (r) = sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C model ;
其中:X=2Tπx,Y=2Tπy,Z=2Tπz,T为6,C为0;Among them: X=2Tπx, Y=2Tπy, Z=2Tπz, T is 6, C is 0;
O为11%;O is 11%;
浸渍溶液的制备:Preparation of impregnation solution:
将十六烷基三甲基溴化铵与石墨烯加入到去离子水中,得到浸渍溶液;adding cetyltrimethylammonium bromide and graphene to deionized water to obtain an impregnating solution;
所述十六烷基三甲基溴化铵与石墨烯的重量比为2.5:1;The weight ratio of the cetyltrimethylammonium bromide and graphene is 2.5:1;
所述十六烷基三甲基溴化铵、石墨烯两者之和与水的重量比为1:200;The weight ratio of the sum of the cetyltrimethylammonium bromide and graphene to water is 1:200;
电磁屏蔽材料的制备:Preparation of electromagnetic shielding materials:
将多孔结构环氧树脂基体在浸渍溶液中浸渍4次,干燥,得到电磁屏蔽材料。The epoxy resin matrix with porous structure is immersed in the impregnating solution for 4 times, and dried to obtain the electromagnetic shielding material.
实施例8Example 8
一种力学性能优良的电磁屏蔽材料的制备方法,所述制备方法包括如下步骤:A preparation method of an electromagnetic shielding material with excellent mechanical properties, the preparation method comprising the steps of:
多孔结构环氧树脂基体的制备:Preparation of porous structure epoxy resin matrix:
利用光固化3D打印机,通过φG(r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C模型获取多孔结构的环氧树脂基体;Using a light-curing 3D printer, the epoxy resin matrix with a porous structure is obtained through the φG (r) = sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C model ;
其中:X=2Tπx,Y=2Tπy,Z=2Tπz,T为5,C为0;Among them: X=2Tπx, Y=2Tπy, Z=2Tπz, T is 5, C is 0;
O为12.2%;O is 12.2%;
浸渍溶液的制备:Preparation of impregnation solution:
将聚甲基吡咯烷酮与碳纳米管加入到去离子水中,得到浸渍溶液;adding polymethylpyrrolidone and carbon nanotubes to deionized water to obtain an impregnating solution;
所述聚甲基吡咯烷酮与碳纳米管的重量比为2.5:1;The weight ratio of polymethylpyrrolidone to carbon nanotubes is 2.5:1;
所述聚甲基吡咯烷酮、碳纳米管两者之和与水的重量比为1:220;The weight ratio of the sum of polymethylpyrrolidone and carbon nanotubes to water is 1:220;
电磁屏蔽材料的制备:Preparation of electromagnetic shielding materials:
将多孔结构环氧树脂基体在浸渍溶液中浸渍4次,干燥,得到电磁屏蔽材料。The epoxy resin matrix with porous structure is immersed in the impregnating solution for 4 times, and dried to obtain the electromagnetic shielding material.
实施例9Example 9
一种力学性能优良的电磁屏蔽材料的制备方法,所述制备方法包括如下步骤:A preparation method of an electromagnetic shielding material with excellent mechanical properties, the preparation method comprising the steps of:
多孔结构环氧树脂基体的制备:Preparation of porous structure epoxy resin matrix:
利用光固化3D打印机,通过φG(r)=sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C模型获取多孔结构的环氧树脂基体;Using a light-curing 3D printer, the epoxy resin matrix with a porous structure is obtained through the φG (r) = sin(X)cos(Y)+sin(Z)cos(X)+sin(Y)cos(Z)=C model ;
其中:X=2Tπx,Y=2Tπy,Z=2Tπz,T为6,C为0;Among them: X=2Tπx, Y=2Tπy, Z=2Tπz, T is 6, C is 0;
O为13.4%;O is 13.4%;
浸渍溶液的制备:Preparation of impregnation solution:
将十六烷基三甲基溴化铵与石墨烯加入到去离子水中,得到浸渍溶液;adding cetyltrimethylammonium bromide and graphene to deionized water to obtain an impregnating solution;
所述十六烷基三甲基溴化铵与石墨烯的重量比为2.5:1;The weight ratio of the cetyltrimethylammonium bromide and graphene is 2.5:1;
所述十六烷基三甲基溴化铵、石墨烯两者之和与水的重量比为1:220;The weight ratio of the sum of the cetyltrimethylammonium bromide and graphene to water is 1:220;
电磁屏蔽材料的制备:Preparation of electromagnetic shielding materials:
将多孔结构环氧树脂基体在浸渍溶液中浸渍4次,干燥,得到电磁屏蔽材料。上述实施例1-9得到的电磁屏蔽材料的测试结果见表1。The epoxy resin matrix with porous structure is immersed in the impregnating solution for 4 times, and dried to obtain the electromagnetic shielding material. See Table 1 for the test results of the electromagnetic shielding materials obtained in the above-mentioned Examples 1-9.
表1实施例1-9得到的电磁屏蔽材料的测试结果The test result of the electromagnetic shielding material that table 1 embodiment 1-9 obtains
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711318033.0ACN108003377A (en) | 2017-12-12 | 2017-12-12 | A kind of electromagnetic shielding material of good mechanical performance and preparation method thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711318033.0ACN108003377A (en) | 2017-12-12 | 2017-12-12 | A kind of electromagnetic shielding material of good mechanical performance and preparation method thereof |
| Publication Number | Publication Date |
|---|---|
| CN108003377Atrue CN108003377A (en) | 2018-05-08 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201711318033.0APendingCN108003377A (en) | 2017-12-12 | 2017-12-12 | A kind of electromagnetic shielding material of good mechanical performance and preparation method thereof |
| Country | Link |
|---|---|
| CN (1) | CN108003377A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109446549A (en)* | 2018-09-13 | 2019-03-08 | 大连理工大学 | A design and realization method of complex structure color lampshade suitable for 3D printing |
| CN109955490A (en)* | 2019-04-11 | 2019-07-02 | 大连工业大学 | A kind of electromagnetic shielding material based on three-dimensional printing and preparation method thereof |
| CN109971030A (en)* | 2019-04-11 | 2019-07-05 | 大连工业大学 | A composite material with high electromagnetic shielding performance and preparation method thereof |
| CN110091500A (en)* | 2019-03-27 | 2019-08-06 | 四川大学 | Electromagnetic shielding 3D printing wire rod with clad structure and preparation method thereof and matched 3D printing method |
| CN111859693A (en)* | 2020-07-28 | 2020-10-30 | 大连理工大学 | An Efficient Porous Structure Representation and Optimization Method |
| CN114621013A (en)* | 2020-12-11 | 2022-06-14 | 上海微电子装备(集团)股份有限公司 | Periodic structure, wafer bearing table and manufacturing method thereof |
| CN114623705A (en)* | 2022-03-15 | 2022-06-14 | 大连理工大学 | Heat exchanger based on GD type hybridization minimum curved surface disturbance structure |
| CN114672150A (en)* | 2022-04-11 | 2022-06-28 | 青岛科技大学 | A kind of high-performance polymer matrix composite material with double network structure and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103980681A (en)* | 2014-04-30 | 2014-08-13 | 中国科学院化学研究所 | 3D printing high-molecular-weight polylactic acid porous materials manufactured by low-temperature deposition and preparation method thereof |
| CN105694427A (en)* | 2014-11-26 | 2016-06-22 | 中国科学院金属研究所 | Application of graphene composite material electromagnetic shielding material |
| CN106243379A (en)* | 2016-07-23 | 2016-12-21 | 天津大学 | A kind of electromagnetic shielding foamed composite based on graphene oxide and polymer and preparation method |
| CN106702357A (en)* | 2016-12-22 | 2017-05-24 | 北京航空航天大学 | Particle-reinforced light microarray composite material and preparation method thereof |
| CN107145682A (en)* | 2017-06-01 | 2017-09-08 | 浙江大学 | Design method of three-period minimal surface porous scaffold based on T-spline entity |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103980681A (en)* | 2014-04-30 | 2014-08-13 | 中国科学院化学研究所 | 3D printing high-molecular-weight polylactic acid porous materials manufactured by low-temperature deposition and preparation method thereof |
| CN105694427A (en)* | 2014-11-26 | 2016-06-22 | 中国科学院金属研究所 | Application of graphene composite material electromagnetic shielding material |
| CN106243379A (en)* | 2016-07-23 | 2016-12-21 | 天津大学 | A kind of electromagnetic shielding foamed composite based on graphene oxide and polymer and preparation method |
| CN106702357A (en)* | 2016-12-22 | 2017-05-24 | 北京航空航天大学 | Particle-reinforced light microarray composite material and preparation method thereof |
| CN107145682A (en)* | 2017-06-01 | 2017-09-08 | 浙江大学 | Design method of three-period minimal surface porous scaffold based on T-spline entity |
| Title |
|---|
| 王艳等: "3D打印制备碳纳米管/环氧树脂电磁屏蔽复合材料", 《复合材料学报》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109446549A (en)* | 2018-09-13 | 2019-03-08 | 大连理工大学 | A design and realization method of complex structure color lampshade suitable for 3D printing |
| CN109446549B (en)* | 2018-09-13 | 2022-09-20 | 大连理工大学 | Design and implementation method of complex-structure colored lampshade suitable for 3D printing |
| CN110091500B (en)* | 2019-03-27 | 2021-07-20 | 四川大学 | Electromagnetic shielding 3D printing wire with cladding structure and preparation method thereof and supporting 3D printing method |
| CN110091500A (en)* | 2019-03-27 | 2019-08-06 | 四川大学 | Electromagnetic shielding 3D printing wire rod with clad structure and preparation method thereof and matched 3D printing method |
| CN109971030A (en)* | 2019-04-11 | 2019-07-05 | 大连工业大学 | A composite material with high electromagnetic shielding performance and preparation method thereof |
| CN109955490A (en)* | 2019-04-11 | 2019-07-02 | 大连工业大学 | A kind of electromagnetic shielding material based on three-dimensional printing and preparation method thereof |
| CN111859693A (en)* | 2020-07-28 | 2020-10-30 | 大连理工大学 | An Efficient Porous Structure Representation and Optimization Method |
| CN111859693B (en)* | 2020-07-28 | 2021-07-02 | 大连理工大学 | An Efficient Porous Structure Representation and Optimization Method |
| CN114621013A (en)* | 2020-12-11 | 2022-06-14 | 上海微电子装备(集团)股份有限公司 | Periodic structure, wafer bearing table and manufacturing method thereof |
| CN114621013B (en)* | 2020-12-11 | 2023-02-07 | 上海微电子装备(集团)股份有限公司 | Periodic structure, wafer bearing table and manufacturing method thereof |
| CN114623705A (en)* | 2022-03-15 | 2022-06-14 | 大连理工大学 | Heat exchanger based on GD type hybridization minimum curved surface disturbance structure |
| CN114623705B (en)* | 2022-03-15 | 2022-10-18 | 大连理工大学 | A heat exchanger based on GD type hybrid minimal surface disturbance structure |
| CN114672150A (en)* | 2022-04-11 | 2022-06-28 | 青岛科技大学 | A kind of high-performance polymer matrix composite material with double network structure and preparation method thereof |
| CN114672150B (en)* | 2022-04-11 | 2023-09-29 | 青岛科技大学 | A high-performance polymer matrix composite material with a dual network structure and its preparation method |
| Publication | Publication Date | Title |
|---|---|---|
| CN108003377A (en) | A kind of electromagnetic shielding material of good mechanical performance and preparation method thereof | |
| Jia et al. | Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding | |
| Fu et al. | Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding | |
| Chen et al. | Wood-inspired anisotropic cellulose nanofibril composite sponges for multifunctional applications | |
| Shen et al. | Preparation of thermally conductive polymer composites with good electromagnetic interference shielding efficiency based on natural wood-derived carbon scaffolds | |
| Byrne et al. | Recent advances in research on carbon nanotube–polymer composites | |
| Oliveira et al. | Structure design and processing strategies of MXene‐based materials for electromagnetic interference shielding | |
| Chen et al. | High‐performance epoxy nanocomposites reinforced with three‐dimensional carbon nanotube sponge for electromagnetic interference shielding | |
| Zeng et al. | Polymer-assisted fabrication of silver nanowire cellular monoliths: toward hydrophobic and ultraflexible high-performance electromagnetic interference shielding materials | |
| Kamkar et al. | Multilayer polymeric nanocomposites for electromagnetic interference shielding: fabrication, mechanisms, and prospects | |
| Ding et al. | Stress and magnetic field bimode detection sensors based on flexible CI/CNTs–PDMS sponges | |
| Chen et al. | Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly (dimethylsiloxane) | |
| Xu et al. | Superflexible interconnected graphene network nanocomposites for high-performance electromagnetic interference shielding | |
| Li et al. | Flexible polydimethylsiloxane composite with multi-scale conductive network for ultra-strong electromagnetic interference protection | |
| Cao et al. | Carbon nanotube wires sheathed by aramid nanofibers | |
| Khosrozadeh et al. | Polyaniline nanoflowers grown on vibration-isolator-mimetic polyurethane nanofibers for flexible supercapacitors with prolonged cycle life | |
| Xu et al. | Oxidation-resistant MXene-based melamine foam with ultralow-percolation thresholds for electromagnetic-infrared compatible shielding | |
| Liu et al. | Absorption and reflection contributions to the high performance of electromagnetic waves shielding materials fabricated by compositing leather matrix with metal nanoparticles | |
| Yang et al. | Superhydrophobic and corrosion-resistant electrospun hybrid membrane for high-efficiency electromagnetic interference shielding | |
| CN108530676A (en) | Three-dimensional netted carbon material/high molecular functional composite material and preparation method based on template | |
| Castellino et al. | Electrical conductivity phenomena in an epoxy resin–carbon-based materials composite | |
| Chen et al. | Facile fabrication of multifunctional polymer composites based on three-dimensional interconnected networks of graphene and carbon nanotubes | |
| Gu et al. | Versatile biomass carbon foams for fast oil–water separation, flexible pressure-strain sensors, and electromagnetic interference shielding | |
| Karthika et al. | Flexible polyester cellulose paper supercapacitor with a gel electrolyte | |
| Xi et al. | Multifunctional bicontinuous composite foams with ultralow percolation thresholds |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20180508 |