Movatterモバイル変換


[0]ホーム

URL:


CN107983272A - Sulfide encapsulated particles and preparation method and application - Google Patents

Sulfide encapsulated particles and preparation method and application
Download PDF

Info

Publication number
CN107983272A
CN107983272ACN201610943827.5ACN201610943827ACN107983272ACN 107983272 ACN107983272 ACN 107983272ACN 201610943827 ACN201610943827 ACN 201610943827ACN 107983272 ACN107983272 ACN 107983272A
Authority
CN
China
Prior art keywords
oxide
sulfide
metal
core
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610943827.5A
Other languages
Chinese (zh)
Inventor
曹安民
吴子潇
万立骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
University of Chinese Academy of Sciences
Original Assignee
Institute of Chemistry CAS
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS, University of Chinese Academy of SciencesfiledCriticalInstitute of Chemistry CAS
Priority to CN201610943827.5ApriorityCriticalpatent/CN107983272A/en
Publication of CN107983272ApublicationCriticalpatent/CN107983272A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开了一种硫化物包覆型颗粒及其制备方法与应用。该包覆型颗粒由核和包覆所述核的壳组成;构成所述核的材料选自金属、氧化物、金属氢氧化物、金属无机盐、碳单质或其氧化体、碳化物、氮化物、半导体和有机物中的至少一种;构成壳的材料为金属硫化物。本发明采用液相法,将所要包覆的核与金属盐、还原剂、硫源混合,通过原位还原沉淀金属硫化物到颗粒表面,使之在核表面实现均一、连续、可控的包覆。本发明提供的包覆方法简单,反应条件温和,普适性强,包覆层厚度可控、完整、均一,在电催化、锂离子电池、生物医学等领域有着很高的实用性应用前景。

The invention discloses a sulfide-coated particle, a preparation method and application thereof. The coated particle is composed of a core and a shell covering the core; the material constituting the core is selected from metals, oxides, metal hydroxides, metal inorganic salts, simple carbon or its oxides, carbides, nitrogen At least one of compound, semiconductor and organic matter; the material constituting the shell is metal sulfide. The present invention uses a liquid phase method to mix the core to be coated with a metal salt, a reducing agent, and a sulfur source, and precipitate metal sulfide to the surface of the particle through in-situ reduction, so that it can achieve uniform, continuous, and controllable coating on the surface of the core. cover. The coating method provided by the invention is simple, the reaction conditions are mild, the universality is strong, the thickness of the coating layer is controllable, complete and uniform, and it has high practical application prospects in the fields of electrocatalysis, lithium ion batteries, biomedicine and the like.

Description

Translated fromChinese
硫化物包覆型颗粒及其制备方法与应用Sulfide-coated particles, preparation method and application thereof

技术领域technical field

本发明属于化学领域,具体涉及一种硫化物包覆型颗粒及其制备方法与应用。The invention belongs to the field of chemistry, and in particular relates to a sulfide-coated particle and a preparation method and application thereof.

背景技术Background technique

许多硫化物都具有优异的电化学性质,诸如硫化镉、硫化钼的光电催化分解水性质,硫化铅、硫化镉、硫化锌的量子点敏化太阳能电池方面的应用,硫化钼、硫化钴、硫化亚铜在催化加氢、电池负极、超级电容器等多个方面的性质。Many sulfides have excellent electrochemical properties, such as photocatalytic water splitting properties of cadmium sulfide and molybdenum sulfide, applications in quantum dot-sensitized solar cells of lead sulfide, cadmium sulfide, and zinc sulfide, molybdenum sulfide, cobalt sulfide, The properties of cuprous in catalytic hydrogenation, battery negative electrode, supercapacitor and so on.

目前对硫化物的应用主要集中在量子点、纳米球和纳米管等方面,例如CN200710171388.1公开了一种硒化镉/硫化镉/硫化锌核壳量子点的制备方法。CN201310614267.5公开了一种二硫化钼修饰的一维硫化镉纳米棒结构具有太阳光解水制氢性能。CN201410676448.5公开了一种二硫化钼纳米管的制备方法。CN201510148981.9公开了一种掺杂二硫化钼石墨烯纤维的制备方法。CN201410758505.4公开了一种碳包覆硫化钴材料作为电催化裂解水产氢催化剂方面的应用。但上述各方法均存在原料价格昂贵、工艺复杂而不易控制、难于工业化推广等缺陷,亟待开发全新的硫化物的应用方式。At present, the application of sulfide mainly focuses on quantum dots, nanospheres and nanotubes. For example, CN200710171388.1 discloses a preparation method of cadmium selenide/cadmium sulfide/zinc sulfide core-shell quantum dots. CN201310614267.5 discloses a one-dimensional cadmium sulfide nanorod structure modified by molybdenum disulfide, which has the performance of solar photolysis of water to produce hydrogen. CN201410676448.5 discloses a method for preparing molybdenum disulfide nanotubes. CN201510148981.9 discloses a method for preparing graphene fibers doped with molybdenum disulfide. CN201410758505.4 discloses the application of a carbon-coated cobalt sulfide material as a hydrogen production catalyst for electrocatalytic cracking of water. However, the above-mentioned methods all have defects such as expensive raw materials, complicated processes that are not easy to control, and are difficult to promote in an industrialized manner. It is urgent to develop a new application method of sulfide.

发明内容Contents of the invention

本发明的目的在于克服现有技术中的不足,提供一种硫化物包覆型颗粒及其制备方法与应用。The purpose of the present invention is to overcome the deficiencies in the prior art, and provide a sulfide-coated granule and its preparation method and application.

本发明所谓“硫化物包覆”是指在物质(通常称为基底)表面覆盖上一层硫化物。通过“硫化物包覆”,可以调节基底的一些性质,同时也能起到保护基底的作用;而且,把硫化物均匀可控的包覆在基底材料上能够对硫化物的性质进行更加有效的利用。现有技术中没有关于利用硫化物在其它材料上进行包覆的报道,本发明中通过选择价格便宜的原料、合适简单可控的方法实现了硫化物在基底表面的可控、连续、完整地包覆,为硫化物的应用开拓了全新的方向。The so-called "sulfide coating" in the present invention means that a layer of sulfide is covered on the surface of a material (usually referred to as a substrate). Through "sulfide coating", some properties of the substrate can be adjusted, and at the same time, it can also protect the substrate; moreover, the uniform and controllable coating of sulfide on the substrate material can more effectively control the properties of the sulfide. use. There is no report about using sulfide to coat other materials in the prior art. In the present invention, the controllable, continuous and complete coating of sulfide on the substrate surface is realized by selecting cheap raw materials and a suitable, simple and controllable method. Coating opens up a new direction for the application of sulfide.

本发明提供的具有核壳结构的硫化物包覆型颗粒,由核和包覆所述核的壳组成;The sulfide-coated particles with a core-shell structure provided by the present invention are composed of a core and a shell covering the core;

其中,构成所述核的材料选自金属单质、金属氧化物、金属氢氧化物、金属无机盐、碳单质或其氧化体、碳化物、氮化物、半导体和有机物中的至少一种;Wherein, the material constituting the core is selected from at least one of metal element, metal oxide, metal hydroxide, metal inorganic salt, carbon element or its oxide, carbide, nitride, semiconductor and organic matter;

构成所述壳的材料为金属硫化物。The material constituting the shell is a metal sulfide.

上述颗粒中,构成所述壳的金属硫化物选自硫化锌、硫化镉、硫化钴、硫化铅、硫化亚铜、硫化钼、硫化钨、硫化镍中的至少一种。优选地,所述金属硫化物为晶相的金属硫化物。In the above particles, the metal sulfide constituting the shell is at least one selected from zinc sulfide, cadmium sulfide, cobalt sulfide, lead sulfide, cuprous sulfide, molybdenum sulfide, tungsten sulfide, and nickel sulfide. Preferably, the metal sulfide is a crystalline metal sulfide.

上述颗粒中,构成所述核的材料中,所述金属单质选自金、银、铂、铑、钯、钌、铁、锰、钴、镍、钛、镁、铝和锡中的至少一种;In the above particles, among the materials constituting the core, the metal element is selected from at least one of gold, silver, platinum, rhodium, palladium, ruthenium, iron, manganese, cobalt, nickel, titanium, magnesium, aluminum and tin ;

所述金属氧化物选自二氧化钛、二氧化锡、一氧化锡、二氧化铈、三氧化二铁、四氧化三铁、氧化锌、氧化镁、氧化钙、氧化锆、氧化钪、二氧化钒、五氧化二钒、三氧化二铬、氧化镓、氧化锗、氧化钇、氧化铌、氧化钌、氧化银、氧化金、氧化铂、氧化钯、氧化汞、氧化铅、氧化铟、氧化镉、氧化铱、三氧化钨、二氧化钨、氧化镧、氧化铋、氧化钍、氧化锂、氧化钴、二氧化锰、三氧化二锰、四氧化三锰、氧化镍、氧化铝、氧化钼、氧化铜、氧化镁、氧化钠、二氧化硅和五氧化二磷中的至少一种;The metal oxide is selected from titanium dioxide, tin dioxide, tin oxide, cerium oxide, ferric oxide, ferric oxide, zinc oxide, magnesium oxide, calcium oxide, zirconium oxide, scandium oxide, vanadium dioxide, Vanadium pentoxide, chromium oxide, gallium oxide, germanium oxide, yttrium oxide, niobium oxide, ruthenium oxide, silver oxide, gold oxide, platinum oxide, palladium oxide, mercury oxide, lead oxide, indium oxide, cadmium oxide, oxide Iridium, tungsten trioxide, tungsten dioxide, lanthanum oxide, bismuth oxide, thorium oxide, lithium oxide, cobalt oxide, manganese dioxide, manganese trioxide, trimanganese tetraoxide, nickel oxide, aluminum oxide, molybdenum oxide, copper oxide , at least one of magnesium oxide, sodium oxide, silicon dioxide and phosphorus pentoxide;

所述金属氢氧化物选自氢氧化铝、氢氧化铁、氢氧化锰、氢氧化钴、氢氧化镍、氢氧化铱、氢氧化锌、氢氧化铜、氢氧化钛、氢氧化铈和氢氧化锡中的至少一种;The metal hydroxide is selected from aluminum hydroxide, iron hydroxide, manganese hydroxide, cobalt hydroxide, nickel hydroxide, iridium hydroxide, zinc hydroxide, copper hydroxide, titanium hydroxide, cerium hydroxide and hydroxide at least one of tin;

所述金属无机盐选自磷酸铝、磷酸铁、磷酸锰、磷酸铁锂、磷酸锰锂、磷酸锰铁锂、磷酸钒锂、氟化铝、碳酸锰、碳酸钴、碳酸镍、碳酸钙、碳酸镁、碳酸铈和碳酸锌中的至少一种;The metal inorganic salt is selected from aluminum phosphate, iron phosphate, manganese phosphate, lithium iron phosphate, lithium manganese phosphate, lithium iron manganese phosphate, lithium vanadium phosphate, aluminum fluoride, manganese carbonate, cobalt carbonate, nickel carbonate, calcium carbonate, carbonic acid At least one of magnesium, cerium carbonate and zinc carbonate;

所述碳单质或其氧化体选自碳、碳纳米管、富勒烯、石墨烯、氧化石墨烯中的至少一种;The carbon element or its oxidant is selected from at least one of carbon, carbon nanotubes, fullerenes, graphene, and graphene oxide;

所述碳化物选自碳化钙、碳化铬、碳化钽、碳化钒、碳化锆、碳化钨、碳化硼和碳化硅中的至少一种;The carbide is selected from at least one of calcium carbide, chromium carbide, tantalum carbide, vanadium carbide, zirconium carbide, tungsten carbide, boron carbide and silicon carbide;

所述氮化物选自氮化锂、氮化钛、氮化钽、氮化硼、氮化镓、五氮化三磷和四氮化三硅中的至少一种;The nitride is selected from at least one of lithium nitride, titanium nitride, tantalum nitride, boron nitride, gallium nitride, phosphorus pentanitride and silicon nitride;

所述半导体选自硼、硅、硒、锗、碲、GaAs、ZnS、CdTe、HgTe、CuBr、CuI、Bi2Te3、Bi2Se3、Bi2S3、As2Te3、ZnSiP2、ZnGeP2、ZnGeAs2、CdGeAs2、CdSnSe2、CuGaSe2、AgInTe2、AgTlTe2、CuInSe2、CuAlS2、Cu3AsSe4、Ag3AsTe4、Cu3SbS4和Ag3SbSe4中的至少一种;The semiconductor is selected from boron, silicon, selenium, germanium, tellurium, GaAs, ZnS, CdTe, HgTe, CuBr, CuI, Bi2 Te3 , Bi2 Se3 , Bi2 S3 , As2 Te3 , ZnSiP2 , At least one of ZnGeP2 , ZnGeAs2 , CdGeAs2 , CdSnSe2 , CuGaSe2 , AgInTe 2 , AgTlTe2 , CuInSe2 , CuAlS2, Cu3 AsSe4 , Ag3 AsTe4 , Cu3 SbS4 and Ag3 SbSe4 kind;

所述有机物选自聚苯乙烯、酚醛树脂、脲醛树脂、聚乙烯吡咯烷酮、十六烷基三甲基溴化铵(CTAB)、十六烷基三甲基氯化铵(CTAC)、十二烷基硫酸钠(SDS)、多巴胺、葡萄糖和果糖中的至少一种。The organic matter is selected from polystyrene, phenolic resin, urea-formaldehyde resin, polyvinylpyrrolidone, cetyltrimethylammonium bromide (CTAB), cetyltrimethylammonium chloride (CTAC), dodecane at least one of sodium disulfate (SDS), dopamine, glucose and fructose.

所述核的平均粒径为1nm-25μm,优选2nm-15μm,具体为35nm、500nm、10μm、55nm-100nm、55nm-10μm或100nm-10μm;The average particle diameter of the core is 1nm-25μm, preferably 2nm-15μm, specifically 35nm, 500nm, 10μm, 55nm-100nm, 55nm-10μm or 100nm-10μm;

所述壳的平均厚度为1nm-200nm,优选1nm-50nm,更优选1nm-20nm。The average thickness of the shell is 1 nm-200 nm, preferably 1 nm-50 nm, more preferably 1 nm-20 nm.

本发明提供的制备所述硫化物包覆型颗粒的方法,所述方法包括如下步骤:将前述构成所述核的材料、金属盐、还原剂和硫源于溶剂中混匀,进行溶剂热反应,反应完毕,得硫化物包覆型颗粒。The method for preparing the sulfide-coated particles provided by the present invention includes the following steps: mixing the aforementioned materials constituting the core, the metal salt, the reducing agent and the sulfur source in a solvent, and performing a solvothermal reaction , after the reaction is completed, sulfide-coated particles are obtained.

上述方法中,反应完毕后进一步包括:在惰性气氛下煅烧,得到硫化物包覆型颗粒。其中,溶剂热反应后制备的硫化物包覆型颗粒中的硫化物可以是无定型的硫化物、多硫化物或晶相的硫化物;若得到的是无定型的硫化物或多硫化物,则通过所述煅烧步骤,可将无定型的硫化物或多硫化物转化为晶相的硫化物。In the above method, after the reaction is completed, it further includes: calcining under an inert atmosphere to obtain sulfide-coated particles. Wherein, the sulfides in the sulfide-coated particles prepared after the solvothermal reaction can be amorphous sulfides, polysulfides or crystal phase sulfides; if amorphous sulfides or polysulfides are obtained, Then, through the calcination step, the amorphous sulfide or polysulfide can be converted into crystalline sulfide.

上述方法中,所述溶剂热反应为水解反应。In the above method, the solvothermal reaction is a hydrolysis reaction.

上述方法中,所述金属盐选自金属醋酸盐、金属硝酸盐、钨酸钠、钨酸铵、钼酸铵、钼酸钠、磷钼酸中的至少一种。所述金属醋酸盐或金属硝酸盐中的金属选自锌、镉、钴、铅、铜或镍中的至少一种。In the above method, the metal salt is selected from at least one of metal acetate, metal nitrate, sodium tungstate, ammonium tungstate, ammonium molybdate, sodium molybdate, and phosphomolybdic acid. The metal in the metal acetate or metal nitrate is selected from at least one of zinc, cadmium, cobalt, lead, copper or nickel.

上述方法中,所述还原剂选自草酸、盐酸羟胺、甘氨酸、L-抗坏血酸、水合肼、硼氢化钠、甲醛、苯酚中的至少一种。In the above method, the reducing agent is selected from at least one of oxalic acid, hydroxylamine hydrochloride, glycine, L-ascorbic acid, hydrazine hydrate, sodium borohydride, formaldehyde, and phenol.

上述方法中,所述硫源选自硫化钠、硫脲、硫代甲酰胺、硫代乙酰胺、硫代硫酸钠、蛋氨酸、半胱氨酸中的至少一种。In the above method, the sulfur source is at least one selected from sodium sulfide, thiourea, thioformamide, thioacetamide, sodium thiosulfate, methionine, and cysteine.

上述方法中,所述溶剂选自水、乙醇、甲醇、丙醇、异丙醇、丁醇、乙二醇、二乙二醇和聚乙二醇中的至少一种。In the above method, the solvent is selected from at least one of water, ethanol, methanol, propanol, isopropanol, butanol, ethylene glycol, diethylene glycol and polyethylene glycol.

上述方法中,构成所述核的材料在反应体系中的浓度为0.01g/L-1000g/L,优选为0.1g/L-100g/L,还优选为4g/L-5g/L;In the above method, the concentration of the material constituting the core in the reaction system is 0.01g/L-1000g/L, preferably 0.1g/L-100g/L, and preferably 4g/L-5g/L;

金属盐在反应体系中的浓度为1*10-6mol/L-0.1mol/L,优选为1*10-5mol/L-0.01mol/L,还优选为0.25*10-3mol/L-0.5*10-3mol/L;The concentration of the metal salt in the reaction system is 1*10-6 mol/L-0.1 mol/L, preferably 1*10-5 mol/L-0.01 mol/L, and preferably 0.25*10-3 mol/L -0.5*10-3 mol/L;

还原剂在反应体系中的浓度为1*10-3mol/L-10mol/L,优选为0.01mol/L-1mol/L,还优选为0.25mol/L-0.5mol/L;The concentration of the reducing agent in the reaction system is 1*10-3 mol/L-10mol/L, preferably 0.01mol/L-1mol/L, and preferably 0.25mol/L-0.5mol/L;

硫源在在反应体系中的浓度为1*10-3mol/L-10mol/L,优选0.01mol/L-1mol/L,还优选为0.25mol/L、0.5mol/L或0.25-0.5mol/L。The concentration of the sulfur source in the reaction system is 1*10-3 mol/L-10mol/L, preferably 0.01mol/L-1mol/L, and preferably 0.25mol/L, 0.5mol/L or 0.25-0.5mol /L.

上述方法的溶剂热反应步骤中,pH值为0.5-10.0,优选3.0-8.0;温度为10℃-250℃,优选30℃-80℃;时间为45min-24h,优选3h-12h。In the solvothermal reaction step of the above method, the pH value is 0.5-10.0, preferably 3.0-8.0; the temperature is 10°C-250°C, preferably 30°C-80°C; the time is 45min-24h, preferably 3h-12h.

上述方法的煅烧步骤中,温度为300-1500℃,具体为600℃;时间为0.5-20小时,具体为8小时。In the calcining step of the above method, the temperature is 300-1500° C., specifically 600° C.; the time is 0.5-20 hours, specifically 8 hours.

上述方法中,在所述溶剂热反应过程中通入氮气、氩气、氢氩气等保护;煅烧时保护气氛取氮气、氩气、氢氩气等中一种。In the above method, nitrogen, argon, hydrogen and argon are introduced into the protective atmosphere during the solvothermal reaction; one of nitrogen, argon, hydrogen and argon is used as the protective atmosphere during calcination.

本发明提供的具有核壳结构的硫化物包覆型颗粒在催化、能源存储、表面增强拉曼、生物医学等领域具有广泛的应用。The sulfide-coated particles with a core-shell structure provided by the invention have a wide range of applications in the fields of catalysis, energy storage, surface-enhanced Raman, biomedicine and the like.

本发明的有益效果:Beneficial effects of the present invention:

本发明提供的硫化物包覆型颗粒,其制备方法是一种通用的包覆方法,可以在不同的核上得到了一层均匀的硫化物包覆层,并且包覆层的厚度可以精确调节和控制。本发明采用液相法,将所要包覆的核与金属盐混合,通过原位在核表面沉积硫化物,使之在核表面实现均一、连续、可控的包覆。本发明提供的包覆方法简单,反应条件温和,普适性强,包覆层厚度可控、完整、均一。本发明提供的硫化物包覆型颗粒在催化、能源存储、表面增强拉曼、生物医学等领域有着很高的实用性应用前景。The preparation method of the sulfide-coated particles provided by the invention is a general coating method, which can obtain a uniform sulfide coating layer on different cores, and the thickness of the coating layer can be precisely adjusted and control. The invention adopts a liquid phase method, mixes the core to be coated with a metal salt, and deposits sulfide on the surface of the core in situ to realize uniform, continuous and controllable coating on the surface of the core. The coating method provided by the invention is simple, the reaction conditions are mild, the universality is strong, and the thickness of the coating layer is controllable, complete and uniform. The sulfide-coated particles provided by the invention have high practical application prospects in the fields of catalysis, energy storage, surface-enhanced Raman, biomedicine and the like.

附图说明Description of drawings

图1为实施例1的硫化钴包覆的聚苯乙烯小球透射电子显微镜(TEM)图。FIG. 1 is a transmission electron microscope (TEM) image of cobalt sulfide-coated polystyrene beads in Example 1.

图2为实施例2的硫化锌包覆的二氧化硅小球的TEM图。FIG. 2 is a TEM image of the zinc sulfide-coated silica pellets of Example 2. FIG.

图3为实施例3的煅烧前得到的硫化钼包覆的碳纳米管的透射电子显微镜图。FIG. 3 is a transmission electron microscope image of the molybdenum sulfide-coated carbon nanotubes obtained before calcination in Example 3. FIG.

图4为实施例3的煅烧后得到的硫化钼包覆的碳纳米管的透射电子显微镜图。FIG. 4 is a transmission electron microscope image of the molybdenum sulfide-coated carbon nanotube obtained after calcination in Example 3. FIG.

具体实施方式Detailed ways

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外,应理解,在阅读了本发明所记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本发明所限定的范围。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. In addition, it should be understood that after reading the contents of the present invention, those skilled in the art may make various changes or modifications to the present invention, and these equivalent forms also fall within the scope of the present invention.

实施例1Example 1

制备硫化钴包覆的聚苯乙烯Preparation of cobalt sulfide-coated polystyrene

将聚苯乙烯颗粒0.2g(平均粒径为500nm)、乙酸钴0.124g(1*10-3mol/L)还原剂水合肼400微升、硫源硫代乙酰胺0.075g(2*10-3mol/L)在溶剂水50ml中混合,在搅拌下40℃回流进行水解反应12h,经离心、洗涤、干燥得到硫化钴包覆的聚苯乙烯颗粒。Add 0.2g of polystyrene particles (average particle size of 500nm), 0.124g of cobalt acetate (1*10-3 mol/L), 400 microliters of reducing agent hydrazine hydrate, and 0.075g of sulfur source thioacetamide (2*10-3 mol/L). 3 mol/L) in 50ml of solvent water, and reflux at 40°C under stirring for 12h for hydrolysis reaction, centrifugation, washing, and drying to obtain cobalt sulfide-coated polystyrene particles.

该硫化钴包覆的聚苯乙烯颗粒为核壳结构,其电镜照片如图1所示。构成核的材料为粒径约为500nm的聚苯乙烯,构成壳的材料为晶相的硫化钴,厚度约为30nm,且硫化钴均匀覆盖在聚苯乙烯表面。The cobalt sulfide-coated polystyrene particles have a core-shell structure, and its electron micrograph is shown in FIG. 1 . The material constituting the core is polystyrene with a particle size of about 500nm, and the material constituting the shell is cobalt sulfide in crystal phase with a thickness of about 30nm, and the cobalt sulfide uniformly covers the surface of polystyrene.

实施例2Example 2

硫化锌包覆的二氧化硅颗粒Zinc sulfide coated silica particles

将二氧化硅颗粒0.1g(平均粒径为400nm)、六水合硝酸锌0.149g(1*10-3mol/L)还原剂水合肼400微升、硫源硫脲0.076g(2*10-3mol/L)在溶剂水50ml中混合,在搅拌下55℃回流进行水解反应8h,经离心、洗涤、干燥得到硫化锌包覆的二氧化硅颗粒。Mix 0.1g of silica particles (average particle diameter of 400nm), 0.149g of zinc nitrate hexahydrate (1*10-3 mol/L), 400 microliters of reducing agent hydrazine hydrate, and 0.076g of sulfur source thiourea (2*10- 3 mol/L) in 50ml of solvent water, and reflux at 55°C under stirring for 8h for hydrolysis reaction, centrifugation, washing, and drying to obtain zinc sulfide-coated silica particles.

该硫化锌包覆的二氧化硅颗粒为核壳结构,其电镜照片如图2所示。构成核的材料为粒径约为400nm的二氧化硅球,构成壳的材料为晶相的硫化锌,厚度约为20nm;且硫化锌均匀覆盖在硅颗粒表面。The silicon dioxide particles coated with zinc sulfide have a core-shell structure, and its electron microscope photo is shown in FIG. 2 . The material constituting the core is silicon dioxide spheres with a particle size of about 400nm, and the material constituting the shell is zinc sulfide in the crystalline phase with a thickness of about 20nm; and the zinc sulfide uniformly covers the surface of the silicon particles.

实施例3Example 3

制备硫化钼包覆的碳纳米管Preparation of carbon nanotubes coated with molybdenum sulfide

将碳纳米管0.2g、钼酸铵0.242g(1*10-3mol/L)还原剂水合肼800微升、硫源硫代乙酰胺0.15g(2*10-3mol/L)在溶剂水100ml中混合,在搅拌下35℃回流进行水解反应24h,经离心、洗涤、干燥得到无定型的硫化钼包覆的碳纳米管,再在惰性气氛600℃下煅烧7h,得到晶相的硫化钼包覆的碳纳米管。Mix 0.2 g of carbon nanotubes, 0.242 g of ammonium molybdate (1*10-3 mol/L) of 800 microliters of reducing agent hydrazine hydrate, and 0.15 g of sulfur source thioacetamide (2*10-3 mol/L) in a solvent Mix in 100ml of water, reflux at 35°C under stirring for 24h for hydrolysis reaction, centrifuge, wash, and dry to obtain amorphous molybdenum sulfide-coated carbon nanotubes, and then calcined at 600°C for 7h in an inert atmosphere to obtain sulfide in the crystal phase Molybdenum-coated carbon nanotubes.

该无定型的硫化钼包覆的碳纳米管和晶相的硫化钼包覆的碳纳米管的电镜照片如图3和图4所示。硫化钼层厚度为10nm;且硫化钼均匀覆盖在碳纳米管表面。The electron micrographs of the amorphous molybdenum sulfide-coated carbon nanotubes and the crystalline molybdenum sulfide-coated carbon nanotubes are shown in FIGS. 3 and 4 . The thickness of the molybdenum sulfide layer is 10nm; and the molybdenum sulfide evenly covers the surface of the carbon nanotubes.

以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The embodiments of the present invention have been described above. However, the present invention is not limited to the above-mentioned embodiments. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (10)

Translated fromChinese
1.一种具有核壳结构的硫化物包覆型颗粒,其特征在于,所述颗粒由核和包覆所述核的壳组成;1. A sulfide-coated particle with a core-shell structure, characterized in that the particle is composed of a core and a shell covering the core;其中,构成所述核的材料选自金属单质、金属氧化物、金属氢氧化物、金属无机盐、碳单质或其氧化体、碳化物、氮化物、半导体和有机物中的至少一种;Wherein, the material constituting the core is selected from at least one of metal element, metal oxide, metal hydroxide, metal inorganic salt, carbon element or its oxide, carbide, nitride, semiconductor and organic matter;构成所述壳的材料为金属硫化物。The material constituting the shell is a metal sulfide.2.根据权利要求1所述的硫化物包覆型颗粒,其特征在于,上述颗粒中,构成所述壳的金属硫化物选自硫化锌、硫化镉、硫化钴、硫化铅、硫化亚铜、硫化钼、硫化钨、硫化镍中的至少一种。2. The sulfide-coated particle according to claim 1, wherein, in the above-mentioned particles, the metal sulfide constituting the shell is selected from zinc sulfide, cadmium sulfide, cobalt sulfide, lead sulfide, cuprous sulfide, At least one of molybdenum sulfide, tungsten sulfide, and nickel sulfide.优选地,所述金属硫化物为晶相的金属硫化物。Preferably, the metal sulfide is a crystalline metal sulfide.3.根据权利要求1或2所述的硫化物包覆型颗粒,其特征在于,上述颗粒中,构成所述核的材料中,所述金属单质选自金、银、铂、铑、钯、钌、铁、锰、钴、镍、钛、镁、铝和锡中的至少一种;3. The sulfide-coated particle according to claim 1 or 2, wherein, in the above-mentioned particle, in the material constituting the core, the metal element is selected from the group consisting of gold, silver, platinum, rhodium, palladium, at least one of ruthenium, iron, manganese, cobalt, nickel, titanium, magnesium, aluminum and tin;所述金属氧化物选自二氧化钛、二氧化锡、一氧化锡、二氧化铈、三氧化二铁、四氧化三铁、氧化锌、氧化镁、氧化钙、氧化锆、氧化钪、二氧化钒、五氧化二钒、三氧化二铬、氧化镓、氧化锗、氧化钇、氧化铌、氧化钌、氧化银、氧化金、氧化铂、氧化钯、氧化汞、氧化铅、氧化铟、氧化镉、氧化铱、三氧化钨、二氧化钨、氧化镧、氧化铋、氧化钍、氧化锂、氧化钴、二氧化锰、三氧化二锰、四氧化三锰、氧化镍、氧化铝、氧化钼、氧化铜、氧化镁、氧化钠、二氧化硅和五氧化二磷中的至少一种;The metal oxide is selected from titanium dioxide, tin dioxide, tin oxide, cerium oxide, ferric oxide, ferric oxide, zinc oxide, magnesium oxide, calcium oxide, zirconium oxide, scandium oxide, vanadium dioxide, Vanadium pentoxide, chromium oxide, gallium oxide, germanium oxide, yttrium oxide, niobium oxide, ruthenium oxide, silver oxide, gold oxide, platinum oxide, palladium oxide, mercury oxide, lead oxide, indium oxide, cadmium oxide, oxide Iridium, tungsten trioxide, tungsten dioxide, lanthanum oxide, bismuth oxide, thorium oxide, lithium oxide, cobalt oxide, manganese dioxide, manganese trioxide, trimanganese tetraoxide, nickel oxide, aluminum oxide, molybdenum oxide, copper oxide , at least one of magnesium oxide, sodium oxide, silicon dioxide and phosphorus pentoxide;所述金属氢氧化物选自氢氧化铝、氢氧化铁、氢氧化锰、氢氧化钴、氢氧化镍、氢氧化铱、氢氧化锌、氢氧化铜、氢氧化钛、氢氧化铈和氢氧化锡中的至少一种;The metal hydroxide is selected from aluminum hydroxide, iron hydroxide, manganese hydroxide, cobalt hydroxide, nickel hydroxide, iridium hydroxide, zinc hydroxide, copper hydroxide, titanium hydroxide, cerium hydroxide and hydroxide at least one of tin;所述金属无机盐选自磷酸铝、磷酸铁、磷酸锰、磷酸铁锂、磷酸锰锂、磷酸锰铁锂、磷酸钒锂、氟化铝、碳酸锰、碳酸钴、碳酸镍、碳酸钙、碳酸镁、碳酸铈和碳酸锌中的至少一种;The metal inorganic salt is selected from aluminum phosphate, iron phosphate, manganese phosphate, lithium iron phosphate, lithium manganese phosphate, lithium iron manganese phosphate, lithium vanadium phosphate, aluminum fluoride, manganese carbonate, cobalt carbonate, nickel carbonate, calcium carbonate, carbonic acid At least one of magnesium, cerium carbonate and zinc carbonate;所述碳单质或其氧化体选自碳、碳纳米管、富勒烯、石墨烯、氧化石墨烯中的至少一种;The carbon element or its oxidant is selected from at least one of carbon, carbon nanotubes, fullerenes, graphene, and graphene oxide;所述碳化物选自碳化钙、碳化铬、碳化钽、碳化钒、碳化锆、碳化钨、碳化硼和碳化硅中的至少一种;The carbide is selected from at least one of calcium carbide, chromium carbide, tantalum carbide, vanadium carbide, zirconium carbide, tungsten carbide, boron carbide and silicon carbide;所述氮化物选自氮化锂、氮化钛、氮化钽、氮化硼、氮化镓、五氮化三磷和四氮化三硅中的至少一种;The nitride is selected from at least one of lithium nitride, titanium nitride, tantalum nitride, boron nitride, gallium nitride, phosphorus pentanitride and silicon nitride;所述半导体选自硼、硅、硒、锗、碲、GaAs、ZnS、CdTe、HgTe、CuBr、CuI、Bi2Te3、Bi2Se3、Bi2S3、As2Te3、ZnSiP2、ZnGeP2、ZnGeAs2、CdGeAs2、CdSnSe2、CuGaSe2、AgInTe2、AgTlTe2、CuInSe2、CuAlS2、Cu3AsSe4、Ag3AsTe4、Cu3SbS4和Ag3SbSe4中的至少一种;The semiconductor is selected from boron, silicon, selenium, germanium, tellurium, GaAs, ZnS, CdTe, HgTe, CuBr, CuI, Bi2 Te3 , Bi2 Se3 , Bi2 S3 , As2 Te3 , ZnSiP2 , At least one of ZnGeP2 , ZnGeAs2 , CdGeAs2 , CdSnSe2 , CuGaSe2 , AgInTe 2 , AgTlTe2 , CuInSe2 , CuAlS2, Cu3 AsSe4 , Ag3 AsTe4 , Cu3 SbS4 and Ag3 SbSe4 kind;所述有机物选自聚苯乙烯、酚醛树脂、脲醛树脂、聚乙烯吡咯烷酮、十六烷基三甲基溴化铵(CTAB)、十六烷基三甲基氯化铵(CTAC)、十二烷基硫酸钠(SDS)、多巴胺、葡萄糖和果糖中的至少一种。The organic matter is selected from polystyrene, phenolic resin, urea-formaldehyde resin, polyvinylpyrrolidone, cetyltrimethylammonium bromide (CTAB), cetyltrimethylammonium chloride (CTAC), dodecane at least one of sodium disulfate (SDS), dopamine, glucose and fructose.4.根据权利要求1-3任一项所述的硫化物包覆型颗粒,其特征在于,所述核的平均粒径为1nm-25μm,优选2nm-15μm,具体为35nm、500nm、10μm、55nm-100nm、55nm-10μm或100nm-10μm;4. The sulfide-coated particle according to any one of claims 1-3, characterized in that, the average particle diameter of the core is 1nm-25μm, preferably 2nm-15μm, specifically 35nm, 500nm, 10μm, 55nm-100nm, 55nm-10μm or 100nm-10μm;所述壳的平均厚度为1nm-200nm,优选1nm-50nm,更优选1nm-20nm。The average thickness of the shell is 1 nm-200 nm, preferably 1 nm-50 nm, more preferably 1 nm-20 nm.5.制备权利要求1-4任一项所述硫化物包覆型颗粒的方法,其特征在于,所述方法包括如下步骤:将前述构成所述核的材料、金属盐、还原剂和硫源于溶剂中混匀,进行溶剂热反应,反应完毕,得硫化物包覆型颗粒。5. The method for preparing the sulfide-coated particles described in any one of claims 1-4, characterized in that, the method comprises the steps of: combining the aforementioned materials, metal salts, reducing agents and sulfur sources that constitute the core Mix well in the solvent, carry out solvothermal reaction, after the reaction is completed, sulfide-coated particles are obtained.6.根据权利要求5所述的方法,其特征在于,上述方法中,反应完毕后进一步包括:在惰性气氛下煅烧,得到硫化物包覆型颗粒。6. The method according to claim 5, characterized in that, in the above method, after the reaction is completed, further comprising: calcining under an inert atmosphere to obtain sulfide-coated particles.优选地,所述溶剂热反应为水解反应。Preferably, the solvothermal reaction is a hydrolysis reaction.7.根据权利要求5或6所述的方法,其特征在于,所述金属盐选自金属醋酸盐、金属硝酸盐、钨酸钠、钨酸铵、钼酸铵、钼酸钠、磷钼酸中的至少一种。优选地,所述金属醋酸盐或金属硝酸盐中的金属选自锌、镉、钴、铅、铜或镍中的至少一种。7. according to the described method of claim 5 or 6, it is characterized in that, described metal salt is selected from metal acetate, metal nitrate, sodium tungstate, ammonium tungstate, ammonium molybdate, sodium molybdate, phosphorus molybdenum at least one of the acids. Preferably, the metal in the metal acetate or metal nitrate is selected from at least one of zinc, cadmium, cobalt, lead, copper or nickel.优选地,上述方法中,所述还原剂选自草酸、盐酸羟胺、甘氨酸、L-抗坏血酸、水合肼、硼氢化钠、甲醛、苯酚中的至少一种。Preferably, in the above method, the reducing agent is at least one selected from oxalic acid, hydroxylamine hydrochloride, glycine, L-ascorbic acid, hydrazine hydrate, sodium borohydride, formaldehyde, and phenol.优选地,上述方法中,所述硫源选自硫化钠、硫脲、硫代甲酰胺、硫代乙酰胺、硫代硫酸钠、蛋氨酸、半胱氨酸中的至少一种。Preferably, in the above method, the sulfur source is at least one selected from sodium sulfide, thiourea, thioformamide, thioacetamide, sodium thiosulfate, methionine, and cysteine.优选地,上述方法中,所述溶剂选自水、乙醇、甲醇、丙醇、异丙醇、丁醇、乙二醇、二乙二醇和聚乙二醇中的至少一种。Preferably, in the above method, the solvent is at least one selected from water, ethanol, methanol, propanol, isopropanol, butanol, ethylene glycol, diethylene glycol and polyethylene glycol.8.根据权利要求5-7任一项所述的方法,其特征在于,构成所述核的材料在反应体系中的浓度为0.01g/L-1000g/L,优选为0.1g/L-100g/L,还优选为4g/L-5g/L;8. The method according to any one of claims 5-7, characterized in that the concentration of the material constituting the core in the reaction system is 0.01g/L-1000g/L, preferably 0.1g/L-100g /L, also preferably 4g/L-5g/L;金属盐在反应体系中的浓度为1*10-6mol/L-0.1mol/L,优选为1*10-5mol/L-0.01mol/L,还优选为0.25*10-3mol/L-0.5*10-3mol/L;The concentration of the metal salt in the reaction system is 1*10-6 mol/L-0.1 mol/L, preferably 1*10-5 mol/L-0.01 mol/L, and preferably 0.25*10-3 mol/L -0.5*10-3 mol/L;还原剂在反应体系中的浓度为1*10-3mol/L-10mol/L,优选为0.01mol/L-1mol/L,还优选为0.25mol/L-0.5mol/L;The concentration of the reducing agent in the reaction system is 1*10-3 mol/L-10mol/L, preferably 0.01mol/L-1mol/L, and preferably 0.25mol/L-0.5mol/L;硫源在在反应体系中的浓度为1*10-3mol/L-10mol/L,优选0.01mol/L-1mol/L,还优选为0.25mol/L、0.5mol/L或0.25-0.5mol/L。The concentration of the sulfur source in the reaction system is 1*10-3 mol/L-10mol/L, preferably 0.01mol/L-1mol/L, and preferably 0.25mol/L, 0.5mol/L or 0.25-0.5mol /L.9.根据权利要求5-8任一项所述的方法,其特征在于,所述溶剂热反应步骤中,pH值为0.5-10.0,优选3.0-8.0;温度为10℃-250℃,优选30℃-80℃;时间为45min-24h,优选3h-12h。9. The method according to any one of claims 5-8, characterized in that, in the solvothermal reaction step, the pH value is 0.5-10.0, preferably 3.0-8.0; the temperature is 10°C-250°C, preferably 30 ℃-80℃; the time is 45min-24h, preferably 3h-12h.优选地,上述方法的煅烧步骤中,温度为300-1500℃,具体为600℃;时间为0.5-20小时,具体为8小时。Preferably, in the calcination step of the above method, the temperature is 300-1500° C., specifically 600° C.; the time is 0.5-20 hours, specifically 8 hours.优选地,上述方法中,在所述溶剂热反应过程中通入氮气、氩气、氢氩气等保护;煅烧时保护气氛取氮气、氩气、氢氩气等中一种。Preferably, in the above-mentioned method, nitrogen, argon, hydrogen-argon, etc. are introduced into the protective atmosphere during the solvothermal reaction; one of nitrogen, argon, hydrogen-argon, etc. is used as the protective atmosphere during calcination.10.权利要求1-4任一项所述的具有核壳结构的硫化物包覆型颗粒在催化、能源存储、表面增强拉曼、生物医学等领域的应用。10. The application of the sulfide-coated particles with a core-shell structure according to any one of claims 1-4 in fields such as catalysis, energy storage, surface-enhanced Raman, and biomedicine.
CN201610943827.5A2016-10-262016-10-26Sulfide encapsulated particles and preparation method and applicationPendingCN107983272A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201610943827.5ACN107983272A (en)2016-10-262016-10-26Sulfide encapsulated particles and preparation method and application

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201610943827.5ACN107983272A (en)2016-10-262016-10-26Sulfide encapsulated particles and preparation method and application

Publications (1)

Publication NumberPublication Date
CN107983272Atrue CN107983272A (en)2018-05-04

Family

ID=62028941

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201610943827.5APendingCN107983272A (en)2016-10-262016-10-26Sulfide encapsulated particles and preparation method and application

Country Status (1)

CountryLink
CN (1)CN107983272A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN108598440A (en)*2018-05-152018-09-28浙江南都电源动力股份有限公司A kind of preparation method of composite material
CN108767224A (en)*2018-05-292018-11-06中南大学A kind of compound sulfide material of nucleocapsid
CN108855231A (en)*2018-06-292018-11-23枣庄学院A kind of catalyst for electrochemical applications
CN108906080A (en)*2018-07-112018-11-30中国科学技术大学A kind of CdS/Cu2S/Co base photoelectrocatalysimaterial material and preparation method thereof
CN108933249A (en)*2018-08-022018-12-04湖北工程学院Nickel sulfide is containing carbon composite electrode material and preparation method thereof, sodium ion negative battery material
CN108963214A (en)*2018-06-282018-12-07肇庆市华师大光电产业研究院A kind of preparation method of lithium ion battery negative material
CN109046383A (en)*2018-07-312018-12-21山东大学A kind of MoS2/Ni3S2Electrode material and its preparation method and application
CN109046386A (en)*2018-08-242018-12-21秦天Manganese doped zinc sulphide/redox graphene composite material and preparation method and application
CN109167076A (en)*2018-09-012019-01-08张玉英A kind of electrolysis water catalysis membrane material and preparation method being used to prepare fuel cell hydrogen
CN109161924A (en)*2018-11-092019-01-08天津工业大学A kind of Fe of bivalve layer2O3The preparation of/NiS nanocomposite
CN109261167A (en)*2018-09-152019-01-25东莞理工学院Ag @ Ag2Preparation method of S @ CdS core-shell nano core-shell material
CN109331843A (en)*2018-10-242019-02-15温州大学 Preparation method of granular multi-component sulfide-platinum heterojunction photocatalytic composite and its hydrogen production application
CN109759083A (en)*2019-02-262019-05-17新疆大学 An efficient and stable photocatalyst with broad-spectrum UV-visible light response
CN109794263A (en)*2019-03-252019-05-24东华大学 Preparation method and application of ZnS/GO porous microsphere nanomaterials
CN110026565A (en)*2019-04-162019-07-19北京科技大学A kind of Au/NiSxThe nano particle and preparation method thereof of egg shell structure
CN110026566A (en)*2019-04-162019-07-19北京科技大学A kind of Au@Ni of monocrystalline shell3S2Nano particle of core-shell structure and preparation method thereof
CN110044870A (en)*2019-04-262019-07-23安徽建筑大学Method for preparing SERS substrate based on laser irradiation reduction
CN110061206A (en)*2019-03-282019-07-26华南师范大学 A kind of SiO-based nanocomposite material, negative electrode and preparation method thereof
CN110102317A (en)*2019-04-122019-08-09上海工程技术大学MoS2-CeO2Compound and preparation method thereof
CN110142049A (en)*2019-05-152019-08-20广州大学 A kind of preparation method of cadmium sulfide and zinc sulfide core-shell structure photocatalytic material for hydrogen production
CN110186903A (en)*2019-07-022019-08-30吉林师范大学A kind of nano combined SERS substrate of Ag/ZnS and preparation method thereof
CN110211758A (en)*2019-06-142019-09-06南宁师范大学Ferroso-ferric oxide/gold nano composite particles preparation method
CN110514603A (en)*2019-09-242019-11-29广西民族师范学院 Photoelectrochemical sensor for detecting kanamycin and its preparation method and application
CN110642333A (en)*2018-06-262020-01-03天津大学 Preparation method and application of three-dimensional cathode material
CN110649208A (en)*2018-09-292020-01-03合肥工业大学Lithium-sulfur battery composite diaphragm and preparation method thereof
CN110799266A (en)*2018-05-302020-02-14南方科技大学 Gold-nickel sulfide core-shell nano-electrocatalyst and preparation method thereof
CN110856748A (en)*2018-08-072020-03-03首都师范大学Flower-shaped structure nano material capable of loading medicine and preparation method and application thereof
CN111167480A (en)*2020-02-142020-05-19电子科技大学Novel oxygen evolution electrocatalyst and preparation method and application thereof
CN111199834A (en)*2020-01-082020-05-26杭州电子科技大学 A kind of cobalt sulfide/multilayer graphene composite material and preparation method thereof
CN111233942A (en)*2018-11-282020-06-05中国科学院大连化学物理研究所 A method for photocatalytic transformation of lignin model compounds
CN111261419A (en)*2020-02-242020-06-09西南大学Cobalt hydroxide/nickel-molybdenum sulfide composite supercapacitor electrode material and preparation method and application thereof
CN111331130A (en)*2020-03-112020-06-26淮阴师范学院 Preparation method of flower-like nano-manganese hydroxide-coated aluminum composites
CN111504976A (en)*2020-04-292020-08-07青岛粲耀新材料科技有限责任公司graphene/Cu-Cu2S composite material and preparation method thereof
CN111501043A (en)*2020-04-292020-08-07青岛峰峦新材料科技有限责任公司NiS2Enhanced graphene-based SERS device and preparation method thereof
CN111517360A (en)*2020-02-212020-08-11郑州轻工业大学 A kind of nanocomposite material based on phosphorus-containing molybdenum polyoxometalate and preparation method thereof, aptamer sensor and electrode thereof
CN111517906A (en)*2019-02-042020-08-11国家能源投资集团有限责任公司Hydrocarbon conversion process using metal carbide nanomaterial catalyst
CN111604015A (en)*2020-06-072020-09-01宁夏大学 A kind of preparation method of shell-core structure composite material coated with metal compound by nano carbon material
CN111822005A (en)*2020-09-152020-10-27湖南天为环保科技有限公司 A Fenton reaction catalyst, a preparation method, a Fenton reactor based on the catalyst, and a method for fully quantifying landfill leachate
CN111905705A (en)*2020-07-272020-11-10安徽旭晶粉体新材料科技有限公司Titanium dioxide and gold material composite catalyst and preparation method thereof
CN111943277A (en)*2020-08-192020-11-17北京理工大学 A kind of preparation method of core-shell structure amorphous cobalt sulfide particles
CN112090432A (en)*2020-09-292020-12-18湖北大学Iron-doped tellurium-nickel sulfide electrocatalyst and preparation method thereof
US20210040385A1 (en)*2018-02-152021-02-11Osaka UniversityCore-shell semiconductor nanoparticles, production method thereof, and light-emitting device
CN112608732A (en)*2020-12-292021-04-06上海纳米技术及应用国家工程研究中心有限公司Preparation method of quantum dot/zeolite imidazole metal organic framework composite material
CN112608733A (en)*2020-12-292021-04-06上海纳米技术及应用国家工程研究中心有限公司Preparation method of silicon dioxide quantum dot composite material
CN112691673A (en)*2021-01-122021-04-23上海烨映微电子科技股份有限公司Preparation method of core-shell structure copper-nickel bimetallic nano material
CN113145133A (en)*2020-02-172021-07-23山东大学Photocatalytic material based on metal-semiconductor composite structure, preparation method and magnetic field auxiliary application thereof
CN113161558A (en)*2021-04-142021-07-23天津大学Cobalt-molybdenum binary amorphous sulfide compound ultrathin nano film with self-spin state regulation
CN113463128A (en)*2021-05-212021-10-01兰州大学Water decomposition catalyst and preparation method and application thereof
CN114250466A (en)*2022-03-012022-03-29潍坊学院 A kind of preparation method of titanium alloy surface laser cladding coating
CN114314664A (en)*2021-11-302022-04-12松山湖材料实验室Vanadium oxide coated carbide composite material and preparation method and application thereof
CN114883541A (en)*2022-04-242022-08-09北京科技大学Fe 7 S 8 @V 2 Preparation method of C @ C high-rate sodium storage electrode material
CN114976007A (en)*2022-06-082022-08-30中国科学院化学研究所 A method for controllable construction of sulfide coating
CN115318210A (en)*2022-08-112022-11-11宿辉Preparation method and application of cobalt disulfide/porous carbon/silicon carbide aerogel composite material for electromagnetic shielding
CN115744952A (en)*2022-09-062023-03-07青岛科技大学Continuous production system and method of aluminum trichloride
CN115838480A (en)*2022-10-182023-03-24南京大学 A kind of polyfullerene polymer material and its preparation method and application
CN116251566A (en)*2023-03-012023-06-13西华师范大学 Preparation method and application of bismuth-doped polyvinylpyrrolidone porous carbon material
CN118109024A (en)*2023-12-292024-05-31广州辰东新材料有限公司Wear-resistant titanium alloy nano injection molding polyester composite material and preparation method thereof
CN118899561A (en)*2024-09-302024-11-05江苏中兴派能电池有限公司 Positive electrode lithium supplement additive and its application, positive electrode sheet, lithium-ion battery
CN119113112A (en)*2024-11-122024-12-13成都医学院 Preparation method and application of composite material for combating periodontitis microbial infection

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101049924A (en)*2007-03-292007-10-10浙江大学Method for producing Nano carbon tube clad by metallic sulfide
CN101781557A (en)*2010-04-072010-07-21中国科学院长春应用化学研究所Preparation method of CdSe/CdS core-shell structure quantum dots
CN102992405A (en)*2012-12-102013-03-27江苏大学Preparation method for molybdenum disulfide nanometer nuclear shell nano-structure
CN103606660A (en)*2013-11-062014-02-26中国科学院化学研究所Alumina-coated granules, as well as preparation method and application thereof
CN103626231A (en)*2013-11-212014-03-12镇江市高等专科学校Preparation method of molybdenum disulfide-coated carbon microspheres
CN103965866A (en)*2014-03-312014-08-06天津理工大学Preparation method of carboxyl modified CdSe-ZnS quantum dot adopting core-shell structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101049924A (en)*2007-03-292007-10-10浙江大学Method for producing Nano carbon tube clad by metallic sulfide
CN101781557A (en)*2010-04-072010-07-21中国科学院长春应用化学研究所Preparation method of CdSe/CdS core-shell structure quantum dots
CN102992405A (en)*2012-12-102013-03-27江苏大学Preparation method for molybdenum disulfide nanometer nuclear shell nano-structure
CN103606660A (en)*2013-11-062014-02-26中国科学院化学研究所Alumina-coated granules, as well as preparation method and application thereof
CN103626231A (en)*2013-11-212014-03-12镇江市高等专科学校Preparation method of molybdenum disulfide-coated carbon microspheres
CN103965866A (en)*2014-03-312014-08-06天津理工大学Preparation method of carboxyl modified CdSe-ZnS quantum dot adopting core-shell structure

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KEVIN J ET.AL: "Chemical bath deposition synthesis of sub-micron ZnS-coated polystyrene", 《 JOURNAL OF COLLOID AND INTERFACE SCIENCE》*
YONG-JUN YUAN ET.AL: "Significant enhancement in photocatalytic hydrogen evolution from water using a MoS2 nanosheet-coated ZnO heterostructure photocatalyst", 《THE ROYAL SOCIETY OF CHEMISTRY》*
励杭泉等: "《材料导论 第2版》", 30 June 2013, 中国轻工业出版社*
张明等: "《纳米与新材料专辑 5》", 30 November 2005, 材料报道社*
朱晓云等: "《有色金属特种功能粉体材料制备技术及应用》", 31 October 2011, 冶金工业出版社*

Cited By (90)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20210040385A1 (en)*2018-02-152021-02-11Osaka UniversityCore-shell semiconductor nanoparticles, production method thereof, and light-emitting device
US12221574B2 (en)*2018-02-152025-02-11Osaka UniversityCore-shell semiconductor nanoparticles, production method thereof, and light-emitting device
CN108598440A (en)*2018-05-152018-09-28浙江南都电源动力股份有限公司A kind of preparation method of composite material
CN108767224A (en)*2018-05-292018-11-06中南大学A kind of compound sulfide material of nucleocapsid
CN108767224B (en)*2018-05-292020-11-27中南大学 A core-shell composite sulfide material
CN110799266B (en)*2018-05-302020-12-18南方科技大学 Gold-nickel sulfide core-shell nano-electrocatalyst and preparation method thereof
CN110799266A (en)*2018-05-302020-02-14南方科技大学 Gold-nickel sulfide core-shell nano-electrocatalyst and preparation method thereof
CN110642333A (en)*2018-06-262020-01-03天津大学 Preparation method and application of three-dimensional cathode material
CN108963214A (en)*2018-06-282018-12-07肇庆市华师大光电产业研究院A kind of preparation method of lithium ion battery negative material
CN108855231A (en)*2018-06-292018-11-23枣庄学院A kind of catalyst for electrochemical applications
CN108906080A (en)*2018-07-112018-11-30中国科学技术大学A kind of CdS/Cu2S/Co base photoelectrocatalysimaterial material and preparation method thereof
CN109046383A (en)*2018-07-312018-12-21山东大学A kind of MoS2/Ni3S2Electrode material and its preparation method and application
CN108933249A (en)*2018-08-022018-12-04湖北工程学院Nickel sulfide is containing carbon composite electrode material and preparation method thereof, sodium ion negative battery material
CN110856748A (en)*2018-08-072020-03-03首都师范大学Flower-shaped structure nano material capable of loading medicine and preparation method and application thereof
CN109046386A (en)*2018-08-242018-12-21秦天Manganese doped zinc sulphide/redox graphene composite material and preparation method and application
CN109167076A (en)*2018-09-012019-01-08张玉英A kind of electrolysis water catalysis membrane material and preparation method being used to prepare fuel cell hydrogen
CN109167076B (en)*2018-09-012021-05-18河北世昌汽车部件有限公司Electrolytic water catalytic membrane material for preparing hydrogen for fuel cell and preparation method thereof
CN109261167A (en)*2018-09-152019-01-25东莞理工学院Ag @ Ag2Preparation method of S @ CdS core-shell nano core-shell material
CN110649208A (en)*2018-09-292020-01-03合肥工业大学Lithium-sulfur battery composite diaphragm and preparation method thereof
CN109331843A (en)*2018-10-242019-02-15温州大学 Preparation method of granular multi-component sulfide-platinum heterojunction photocatalytic composite and its hydrogen production application
CN109161924A (en)*2018-11-092019-01-08天津工业大学A kind of Fe of bivalve layer2O3The preparation of/NiS nanocomposite
CN111233942B (en)*2018-11-282023-01-03中国科学院大连化学物理研究所Method for converting photocatalytic lignin model compound
CN111233942A (en)*2018-11-282020-06-05中国科学院大连化学物理研究所 A method for photocatalytic transformation of lignin model compounds
CN111517906B (en)*2019-02-042023-04-21国家能源投资集团有限责任公司Hydrocarbon conversion process using metal carbide nanomaterial catalyst
US11517884B2 (en)2019-02-042022-12-06China Energy Investment Corporation LimitedMetal carbide nanomaterial catalysts and production method thereof
WO2020160706A1 (en)*2019-02-042020-08-13China Energy Investment Corporation LimitedHydrocarbon conversion processes using metal carbide nanomaterial catalysts
US12076711B2 (en)2019-02-042024-09-03China Energy Investment Corporation LimitedHydrocarbon conversion processes using metal carbide nanomaterial catalysts
CN111517906A (en)*2019-02-042020-08-11国家能源投资集团有限责任公司Hydrocarbon conversion process using metal carbide nanomaterial catalyst
CN109759083A (en)*2019-02-262019-05-17新疆大学 An efficient and stable photocatalyst with broad-spectrum UV-visible light response
CN109794263A (en)*2019-03-252019-05-24东华大学 Preparation method and application of ZnS/GO porous microsphere nanomaterials
CN110061206A (en)*2019-03-282019-07-26华南师范大学 A kind of SiO-based nanocomposite material, negative electrode and preparation method thereof
CN110061206B (en)*2019-03-282021-01-15华南师范大学SiO-based nano composite material, negative electrode and preparation method thereof
CN110102317B (en)*2019-04-122022-05-20上海工程技术大学 MoS2-CeO2 composite and preparation method thereof
CN110102317A (en)*2019-04-122019-08-09上海工程技术大学MoS2-CeO2Compound and preparation method thereof
CN110026565A (en)*2019-04-162019-07-19北京科技大学A kind of Au/NiSxThe nano particle and preparation method thereof of egg shell structure
CN110026566A (en)*2019-04-162019-07-19北京科技大学A kind of Au@Ni of monocrystalline shell3S2Nano particle of core-shell structure and preparation method thereof
CN110044870B (en)*2019-04-262021-09-14安徽建筑大学Method for preparing SERS substrate based on laser irradiation reduction
CN110044870A (en)*2019-04-262019-07-23安徽建筑大学Method for preparing SERS substrate based on laser irradiation reduction
CN110142049A (en)*2019-05-152019-08-20广州大学 A kind of preparation method of cadmium sulfide and zinc sulfide core-shell structure photocatalytic material for hydrogen production
CN110211758A (en)*2019-06-142019-09-06南宁师范大学Ferroso-ferric oxide/gold nano composite particles preparation method
CN110186903A (en)*2019-07-022019-08-30吉林师范大学A kind of nano combined SERS substrate of Ag/ZnS and preparation method thereof
CN110514603B (en)*2019-09-242021-10-26广西民族师范学院Photoelectrochemical sensor for detecting kanamycin and preparation method and application thereof
CN110514603A (en)*2019-09-242019-11-29广西民族师范学院 Photoelectrochemical sensor for detecting kanamycin and its preparation method and application
CN111199834A (en)*2020-01-082020-05-26杭州电子科技大学 A kind of cobalt sulfide/multilayer graphene composite material and preparation method thereof
CN111167480A (en)*2020-02-142020-05-19电子科技大学Novel oxygen evolution electrocatalyst and preparation method and application thereof
CN111167480B (en)*2020-02-142022-06-17电子科技大学Novel oxygen evolution electrocatalyst and preparation method and application thereof
CN113145133A (en)*2020-02-172021-07-23山东大学Photocatalytic material based on metal-semiconductor composite structure, preparation method and magnetic field auxiliary application thereof
CN111517360A (en)*2020-02-212020-08-11郑州轻工业大学 A kind of nanocomposite material based on phosphorus-containing molybdenum polyoxometalate and preparation method thereof, aptamer sensor and electrode thereof
CN111261419A (en)*2020-02-242020-06-09西南大学Cobalt hydroxide/nickel-molybdenum sulfide composite supercapacitor electrode material and preparation method and application thereof
CN111261419B (en)*2020-02-242022-03-15西南大学Cobalt hydroxide/nickel-molybdenum sulfide composite supercapacitor electrode material and preparation method and application thereof
CN111331130A (en)*2020-03-112020-06-26淮阴师范学院 Preparation method of flower-like nano-manganese hydroxide-coated aluminum composites
CN111331130B (en)*2020-03-112022-03-18淮阴师范学院 Preparation method of flower-like nano-manganese hydroxide-coated aluminum composites
CN111504976A (en)*2020-04-292020-08-07青岛粲耀新材料科技有限责任公司graphene/Cu-Cu2S composite material and preparation method thereof
CN111501043A (en)*2020-04-292020-08-07青岛峰峦新材料科技有限责任公司NiS2Enhanced graphene-based SERS device and preparation method thereof
CN111501043B (en)*2020-04-292021-12-24王玲娟NiS2Enhanced graphene-based SERS device and preparation method thereof
CN111504976B (en)*2020-04-292021-12-28深圳米瑞科信息技术有限公司graphene/Cu-Cu2S composite material and preparation method thereof
CN111604015B (en)*2020-06-072022-02-22宁夏大学Preparation method of shell-core structure composite material with metal compound coated by nano carbon material
CN111604015A (en)*2020-06-072020-09-01宁夏大学 A kind of preparation method of shell-core structure composite material coated with metal compound by nano carbon material
CN111905705A (en)*2020-07-272020-11-10安徽旭晶粉体新材料科技有限公司Titanium dioxide and gold material composite catalyst and preparation method thereof
CN111943277A (en)*2020-08-192020-11-17北京理工大学 A kind of preparation method of core-shell structure amorphous cobalt sulfide particles
CN111822005B (en)*2020-09-152020-12-11湖南天为环保科技有限公司 A Fenton reaction catalyst, a preparation method, a Fenton reactor based on the catalyst, and a method for fully quantifying landfill leachate
CN111822005A (en)*2020-09-152020-10-27湖南天为环保科技有限公司 A Fenton reaction catalyst, a preparation method, a Fenton reactor based on the catalyst, and a method for fully quantifying landfill leachate
CN112090432A (en)*2020-09-292020-12-18湖北大学Iron-doped tellurium-nickel sulfide electrocatalyst and preparation method thereof
CN112090432B (en)*2020-09-292022-11-22湖北大学 A kind of iron-doped tellurium nickel sulfide electrocatalyst and preparation method thereof
CN112608733A (en)*2020-12-292021-04-06上海纳米技术及应用国家工程研究中心有限公司Preparation method of silicon dioxide quantum dot composite material
CN112608732A (en)*2020-12-292021-04-06上海纳米技术及应用国家工程研究中心有限公司Preparation method of quantum dot/zeolite imidazole metal organic framework composite material
CN112691673A (en)*2021-01-122021-04-23上海烨映微电子科技股份有限公司Preparation method of core-shell structure copper-nickel bimetallic nano material
CN113161558A (en)*2021-04-142021-07-23天津大学Cobalt-molybdenum binary amorphous sulfide compound ultrathin nano film with self-spin state regulation
CN113463128A (en)*2021-05-212021-10-01兰州大学Water decomposition catalyst and preparation method and application thereof
CN113463128B (en)*2021-05-212023-05-09兰州大学 Water splitting catalyst and its preparation method and application
CN114314664A (en)*2021-11-302022-04-12松山湖材料实验室Vanadium oxide coated carbide composite material and preparation method and application thereof
CN114314664B (en)*2021-11-302023-09-29松山湖材料实验室Vanadium oxide coated carbide composite material and preparation method and application thereof
CN114250466A (en)*2022-03-012022-03-29潍坊学院 A kind of preparation method of titanium alloy surface laser cladding coating
CN114250466B (en)*2022-03-012022-05-03潍坊学院Preparation method of laser cladding coating on titanium alloy surface
CN114883541A (en)*2022-04-242022-08-09北京科技大学Fe 7 S 8 @V 2 Preparation method of C @ C high-rate sodium storage electrode material
CN114976007B (en)*2022-06-082024-02-20中国科学院化学研究所Method for controllably constructing sulfide coating layer
CN114976007A (en)*2022-06-082022-08-30中国科学院化学研究所 A method for controllable construction of sulfide coating
CN115318210A (en)*2022-08-112022-11-11宿辉Preparation method and application of cobalt disulfide/porous carbon/silicon carbide aerogel composite material for electromagnetic shielding
CN115318210B (en)*2022-08-112024-04-02宿辉 Preparation method and application of cobalt disulfide/porous carbon/silicon carbide airgel composite material for electromagnetic shielding
CN115744952B (en)*2022-09-062023-12-12青岛科技大学 Continuous production system and method of aluminum trichloride
CN115744952A (en)*2022-09-062023-03-07青岛科技大学Continuous production system and method of aluminum trichloride
CN115838480A (en)*2022-10-182023-03-24南京大学 A kind of polyfullerene polymer material and its preparation method and application
CN115838480B (en)*2022-10-182024-03-22南京大学 Polyfullerene polymer material and its preparation method and application
CN116251566B (en)*2023-03-012024-04-30西华师范大学Preparation method and application of bismuth-doped polyvinylpyrrolidone porous carbon material
CN116251566A (en)*2023-03-012023-06-13西华师范大学 Preparation method and application of bismuth-doped polyvinylpyrrolidone porous carbon material
CN118109024A (en)*2023-12-292024-05-31广州辰东新材料有限公司Wear-resistant titanium alloy nano injection molding polyester composite material and preparation method thereof
CN118109024B (en)*2023-12-292024-11-29广州辰东新材料有限公司Wear-resistant titanium alloy nano injection molding polyester composite material and preparation method thereof
CN118899561A (en)*2024-09-302024-11-05江苏中兴派能电池有限公司 Positive electrode lithium supplement additive and its application, positive electrode sheet, lithium-ion battery
CN118899561B (en)*2024-09-302025-01-24江苏中兴派能电池有限公司 Positive electrode lithium supplement additive and its application, positive electrode sheet, lithium-ion battery
CN119113112A (en)*2024-11-122024-12-13成都医学院 Preparation method and application of composite material for combating periodontitis microbial infection

Similar Documents

PublicationPublication DateTitle
CN107983272A (en)Sulfide encapsulated particles and preparation method and application
Huo et al.Ag SPR-promoted 2D porous g-C3N4/Ag2MoO4 composites for enhanced photocatalytic performance towards methylene blue degradation
Deng et al.Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation
Zheng et al.Nearly monodisperse CuInS2 hierarchical microarchitectures for photocatalytic H2 evolution under visible light
Zhang et al.Doped Solid Solution:(Zn0. 95Cu0. 05) 1− x Cd x S Nanocrystals with High Activity for H2 Evolution from Aqueous Solutions under Visible Light
Yang et al.Simultaneous realization of enhanced photoactivity and promoted photostability by multilayered MoS2 coating on CdS nanowire structure via compact coating methodology
Xiong et al.Cadmium sulfide–ferrite nanocomposite as a magnetically recyclable photocatalyst with enhanced visible-light-driven photocatalytic activity and photostability
Tang et al.High-performance Ga2O3 anode for lithium-ion batteries
Li et al.Graphitic carbon nitride nanosheets decorated flower-like NiO composites for high-performance triethylamine detection
Huang et al.Ag3PO4 semiconductor photocatalyst: possibilities and challenges
Li et al.Synthesis of TiO2@ ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution
CN108671924B (en)Nano metal/carbon composite material and preparation method and application thereof
Chen et al.Double-shell and flower-like ZnS–C3N4 derived from in situ supramolecular self-assembly for selective aerobic oxidation of amines to imines
Fayette et al.Chemical transformations of nanomaterials for energy applications
CN103606660A (en)Alumina-coated granules, as well as preparation method and application thereof
Kaur et al.Recent progress on pyrite FeS2 nanomaterials for energy and environment applications: synthesis, properties and future prospects
Adhikari et al.Core‐shell engineered WO3 architectures: recent advances from design to applications
Liu et al.A review of modulation strategies for improving the catalytic performance of transition metal sulfide self-supported electrodes for the hydrogen evolution reaction
Yu et al.Advances in electrocatalyst design and mechanism for sulfide oxidation reaction in hydrogen sulfide splitting
CN104475116B (en)The preparation method of the iron sesquioxide nanometer stick array that stannic oxide nano wire is modified
Si et al.AgBr@ TiO2/GO ternary composites with enhanced photocatalytic activity for oxidation of benzyl alcohol to benzaldehyde
Wang et al.Preparation of Ni/NiO-C catalyst with NiO crystal: catalytic performance and mechanism for ethanol oxidation in alkaline solution
Šutka et al.Photocatalytic nanoheterostructures and chemically bonded junctions made by solution-based approaches
Phogat et al.Chalcogenide nanocomposites for energy materials
Ganguli et al.Core‐Shell Type Semiconducting Heterostructures for Visible Light Photocatalysis

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
RJ01Rejection of invention patent application after publication
RJ01Rejection of invention patent application after publication

Application publication date:20180504


[8]ページ先頭

©2009-2025 Movatter.jp