技术领域technical field
本发明涉及光谱检测分析技术,具体涉及一种基于云数据的智能手持光谱仪。The invention relates to spectrum detection and analysis technology, in particular to an intelligent handheld spectrometer based on cloud data.
背景技术Background technique
光谱检测方法是一种无损、非接触、高效率、高精度的检测方法,广泛应用于生物检测、药品检测、食品检测以及刑侦检测等领域。传统的光谱检测设备均为台式设备,尽管功能强,精度高,但不利于移动只能在特定地点进行测试。然而,通过外出采集样本再返回测试室进行测试有诸多缺点:第一,无法及时获得光谱信息,无法及时确认样品光谱是否测试正确;第二,无法对不可移动,不能切除采样的样品进行测量,且长距离运送样品增加了对样品的损坏可能性;第三,台式设备对于特殊领域无法进行检测,例如对于食品、药材领域,无法当场确定是否存在假冒伪劣产品,给执法和取证带来困难。因而,发展便携光谱检测设备十分有必要。The spectral detection method is a non-destructive, non-contact, high-efficiency, and high-precision detection method, which is widely used in the fields of biological detection, drug detection, food detection, and criminal detection. Traditional spectral detection equipment is desktop equipment. Although it has strong functions and high precision, it is not conducive to mobile and can only be tested in a specific location. However, there are many disadvantages in going out to collect samples and then returning to the test room for testing: first, it is impossible to obtain spectral information in time, and it is impossible to confirm whether the sample spectrum is tested correctly; second, it is impossible to measure samples that cannot be removed and cannot be removed. And long-distance transport of samples increases the possibility of damage to samples; third, desktop equipment cannot be tested for special fields, such as food and medicinal materials, and it is impossible to determine whether there are counterfeit and shoddy products on the spot, which brings difficulties to law enforcement and evidence collection. Therefore, it is necessary to develop portable spectral detection equipment.
今年来,随着技术的发展,手持式光谱仪产品陆续出现,如手持式拉曼光谱仪、手持式荧光光谱仪等。现有技术中公开报道的专利和文章以及销售的光谱仪缺少网络连接并实现数据传输的功能。这会导致由于样品数据过多而不能保存在手持光谱仪内的情况,也无法将样品光谱信息及时地与相关人员分享或异地存取,还存在着光谱仪一旦出现故障数据将无法恢复的风险。此外,由于光谱仪的主控模块数据处理能力有限,无法进行较为复杂的运算,限制了手持光谱仪自身能力。更关键的是,目前的手持式光谱仪没有光谱分析和鉴别功能,仅为用户提供样品的光谱信息。如果用户没有光谱分析学相关的基础知识以及相应算法的配合,无法对样品的种类或者性质进行鉴别。In recent years, with the development of technology, handheld spectrometer products have appeared one after another, such as handheld Raman spectrometer, handheld fluorescence spectrometer, etc. Publicly reported patents and articles and spectrometers sold in the prior art lack the functions of network connection and data transmission. This will lead to the situation that the sample data cannot be stored in the handheld spectrometer due to too much sample data, and the sample spectral information cannot be shared with relevant personnel in a timely manner or accessed in different places. There is also a risk that the data cannot be recovered once the spectrometer fails. In addition, due to the limited data processing capability of the main control module of the spectrometer, more complex calculations cannot be performed, which limits the capabilities of the handheld spectrometer itself. More importantly, the current handheld spectrometers do not have spectral analysis and identification functions, and only provide users with spectral information of samples. If the user does not have the basic knowledge related to spectral analysis and the cooperation of the corresponding algorithm, the type or nature of the sample cannot be identified.
发明内容Contents of the invention
为解决上述问题,本发明提供一种基于云数据的智能手持光谱仪,该装置可将数据上传,并对样品进行分析鉴别,实时性强、检测精确、便于携带,使用方便,能够广泛应用于各个领域。In order to solve the above problems, the present invention provides an intelligent handheld spectrometer based on cloud data. The device can upload data and analyze and identify samples. It has strong real-time performance, accurate detection, easy to carry, and is easy to use. field.
本发明中的手持式光谱仪具体方案为,包括硬件设备、移动终端系统及服务器;硬件设备包括光模块、控制模块、外壳架构及供电模块;光模块获得样品的光谱信息,控制模块将光谱信息转换成数字信号传输至移动终端系统,移动终端系统对光谱信息进行处理后,将数据发送至服务器,服务器调用数学模型对接收到的数据进行分析鉴别,将分析结果回传至移动终端系统。The specific scheme of the handheld spectrometer in the present invention includes hardware equipment, a mobile terminal system and a server; the hardware equipment includes an optical module, a control module, a shell structure and a power supply module; the optical module obtains the spectral information of the sample, and the control module converts the spectral information The digital signal is transmitted to the mobile terminal system. After the mobile terminal system processes the spectral information, it sends the data to the server. The server calls the mathematical model to analyze and identify the received data, and returns the analysis results to the mobile terminal system.
进一步地,外壳架构设置有半导体激光器出射口、微型光谱探头入射口、白光发光二极管出射口、按钮及充电电池盒。Further, the shell structure is provided with a semiconductor laser output port, a miniature spectrum probe input port, a white light emitting diode output port, a button and a rechargeable battery box.
进一步地,长按按钮可启动设备,短按按钮可触发测量,在设备开启情况下再次长按按钮可切断电源。Further, a long press of the button can start the device, a short press of the button can trigger a measurement, and a long press of the button again can cut off the power when the device is turned on.
进一步地,光模块包括半导体激光模块、微型光谱探头、白光LED模块以及聚光透镜,半导体激光模块和白光LED模块分别位于微型光谱探头两侧,聚光透镜设置于白光LED模块与样品之间。Further, the optical module includes a semiconductor laser module, a miniature spectrum probe, a white light LED module and a condenser lens, the semiconductor laser module and the white light LED module are respectively located on both sides of the miniature spectrum probe, and the condenser lens is arranged between the white light LED module and the sample.
进一步地,微型光谱探头包括光阑、光栅、图像传感器;光阑设置在光栅前侧,光阑上设置有光入射口,图像传感器设置于光栅侧方。Further, the miniature spectral probe includes an aperture, a grating, and an image sensor; the aperture is arranged on the front side of the grating, a light entrance is arranged on the aperture, and the image sensor is arranged on the side of the grating.
进一步地,控制模块包括微控制器,及与微控制器相连接电源管理电路、光源驱动电路、时序控制电路、电平转换电路、充电电路及无线传输模块。Further, the control module includes a microcontroller, and a power management circuit connected to the microcontroller, a light source driving circuit, a timing control circuit, a level conversion circuit, a charging circuit and a wireless transmission module.
进一步地,移动终端系统可接收并显示数据信息,具有手持光谱仪增益、更改光源类型及调整微型光谱探头曝光时间的功能。Furthermore, the mobile terminal system can receive and display data information, and has the functions of gaining the handheld spectrometer, changing the type of light source and adjusting the exposure time of the miniature spectroscopic probe.
进一步地,移动终端系统具有数据预处理功能,预处理包括去噪声处理、过曝光检测、低曝光检测或特征波段提取;移动终端系统具有标准品光谱处理功能,标准品光谱处理包括将样品根据数学模型将进行训练及自身优化。Furthermore, the mobile terminal system has a data preprocessing function, and the preprocessing includes denoising processing, overexposure detection, low exposure detection or feature band extraction; the mobile terminal system has a standard product spectrum processing function, and the standard product spectral processing includes the sample according to the mathematical The model will train and optimize itself.
进一步地,数学模型为BP神经网络算法、遗传算法或Fisher线性分类算法。Further, the mathematical model is a BP neural network algorithm, a genetic algorithm or a Fisher linear classification algorithm.
利用如上所述的手持式光谱仪获取样品光谱信息的方法,该方法包括以下步骤:The method for obtaining sample spectral information by using the above-mentioned handheld spectrometer, the method includes the following steps:
步骤一:启动光谱仪,并使移动终端系统上与光谱仪进行配对;Step 1: Start the spectrometer, and make the mobile terminal system pair with the spectrometer;
步骤二:在移动终端系统上选择光源,设置手持光谱仪增益值及调整微型光谱探头的曝光时间;Step 2: Select the light source on the mobile terminal system, set the gain value of the handheld spectrometer and adjust the exposure time of the miniature spectral probe;
步骤三:利用手持光谱仪对样品进行检测,样品的光谱满足要求后,进行上传;Step 3: Use a handheld spectrometer to detect the sample, and upload the spectrum after the sample meets the requirements;
步骤四:选择标准品光谱或符合测试要求则点击上传按钮,并选择上传种类;如果选择标准品光谱类型,移动终端系统对光谱信息进行标准品光谱处理,处理结束后将数据上传至服务器;如果选择待测样品光谱类型,移动终端将光谱信息上传到服务器后,服务器调用数学模型对接收到的数据进行分析鉴别,将分析结果回传至移动终端系统。Step 4: Select the standard product spectrum or click the upload button if it meets the test requirements, and select the upload type; if you select the standard product spectrum type, the mobile terminal system will process the standard product spectrum on the spectral information, and upload the data to the server after processing; if Select the spectrum type of the sample to be tested, and after the mobile terminal uploads the spectral information to the server, the server calls the mathematical model to analyze and identify the received data, and returns the analysis results to the mobile terminal system.
本发明的智能手持光谱仪具备网络连接功能,移动终端系统可通过软件控制手持光谱仪,也可将手持光谱仪所测的数据通过无线网络发送至服务器端。服务器端采用自适应算法对输入的光谱数据进行分析,并根据数据库内标准品的光谱信息进行比较最终实现样品种类和性质的判别,其结果将返回终端设备并显示给用户。The intelligent handheld spectrometer of the present invention has a network connection function, and the mobile terminal system can control the handheld spectrometer through software, and can also send the data measured by the handheld spectrometer to the server through the wireless network. The server side adopts an adaptive algorithm to analyze the input spectral data, and compares the spectral information of the standard in the database to finally realize the discrimination of the type and nature of the sample, and the result will be returned to the terminal device and displayed to the user.
与传统的光谱仪相比,本发明专利具有体积小、轻便、操作简单。本发明有利于非光谱专业人员在户外进行检测分析工作,实时性强、检测精确、便于携带,使用方便,能够广泛应用于各个领域。通过物联技术,数据库可收集用户测量的各类标准品的光谱信息,扩充数据库,优化数学模型进而获得更强大的鉴别分析能力。Compared with traditional spectrometers, the patented invention has the advantages of small size, light weight and simple operation. The invention is beneficial for non-spectrum professionals to perform detection and analysis work outdoors, has strong real-time performance, accurate detection, is easy to carry and easy to use, and can be widely used in various fields. Through the Internet of Things technology, the database can collect the spectral information of various standard products measured by users, expand the database, optimize the mathematical model and obtain more powerful identification and analysis capabilities.
附图说明Description of drawings
图1为手持光谱仪与移动终端系统以及云服务器的数据传输示意图。Figure 1 is a schematic diagram of data transmission between a handheld spectrometer, a mobile terminal system, and a cloud server.
图2为手持光谱仪组成结构图。Figure 2 is a structural diagram of the handheld spectrometer.
图3为手持光谱仪控制模块功能图。Figure 3 is a functional diagram of the handheld spectrometer control module.
图4为移动终端系统的显示及操作界面。Fig. 4 is the display and operation interface of the mobile terminal system.
图5为移动终端系统上传数据给服务器的流程图。Fig. 5 is a flow chart of the mobile terminal system uploading data to the server.
图6为花粉样品光谱检测结果。Figure 6 shows the results of spectral detection of pollen samples.
图7为采用Fisher算法对样品进行分类的结果。Figure 7 shows the results of classifying samples using the Fisher algorithm.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本专利的实施方式不限于此。The present invention will be described in further detail below in conjunction with the embodiments and accompanying drawings, but the embodiments of this patent are not limited thereto.
在本实施例中,通过半导体激光器或白光LED可以激发样品的荧光或者获得样品反射光。反射光通过聚光透镜收集进入光谱探头,光谱探头获取数据后将数据无线传输至移动终端系统。移动终端系统将数据发送至服务器。服务器在接收到数据后调用数学模型进行分析鉴别,并将结果回传至移动终端系统。In this embodiment, the fluorescence of the sample can be excited or the reflected light of the sample can be obtained by using a semiconductor laser or a white light LED. The reflected light is collected by the condenser lens and enters the spectrum probe, and the spectrum probe acquires data and transmits the data wirelessly to the mobile terminal system. The mobile terminal system sends the data to the server. After receiving the data, the server invokes the mathematical model for analysis and identification, and returns the result to the mobile terminal system.
如图1所示,一种手持式光谱仪,包括硬件设备、移动终端系统(5)、服务器(6)。As shown in Fig. 1, a handheld spectrometer includes hardware equipment, a mobile terminal system (5), and a server (6).
硬件设备包括光模块(1)、控制模块(2)、外壳架构(3)和供电模块(4)。光模块(1)、控制模块(2)和供电模块(4)固定在外壳结构中。The hardware device includes an optical module (1), a control module (2), a shell structure (3) and a power supply module (4). The optical module (1), the control module (2) and the power supply module (4) are fixed in the shell structure.
外壳架构(3)包括光源部及手柄部。光源部设置有半导体激光器出射口(301)、微型光谱探头入射口(302)、及白光发光二极管出射口(303);手柄部设置有按钮(304)、及充电电池盒(305)。The shell structure (3) includes a light source part and a handle part. The light source part is provided with a semiconductor laser output port (301), a miniature spectrum probe entry port (302), and a white light emitting diode exit port (303); the handle part is provided with a button (304) and a rechargeable battery box (305).
按钮(304)设置为非自锁轻触式按钮(304),可启动、触发和关闭硬件设备。长按按钮(304)可启动设备,短按按钮(304)则触发测量,在设备开启情况下再次长按按钮(304)则关闭设备,切断电源,关闭控制模块(2)及其控制的所有模块。The button (304) is set as a non-self-locking light touch button (304), which can start, trigger and close the hardware device. Press the button (304) for a long time to start the device, press the button (304) for a short time to trigger the measurement, and press the button (304) for a long time again when the device is turned on to turn off the device, cut off the power supply, and turn off the control module (2) and all the devices controlled by it. module.
光模块(1)包括半导体激光模块(101)、微型光谱探头(102)、白光LED模块(103)以及聚光透镜(104)。光模块(1)中的半导体激光模块(101)可提供激发光,激发样品荧光,通过白光LED模块(103)为测量样品反射光谱提供宽带光源,通过微型光谱探头(102)探测样品的荧光或者反射光谱。半导体激光模块(101)和白光LED模块(103)分别位于微型光谱探头(102)两侧,聚光透镜(104)设置于白光LED模块(103)与样品之间。以一定角度出射至样品(105),而样品所产生的荧光或反射光将被聚光透镜(104)收集,进入微型光谱探头(102)。本实施例中,半导体激光模块(101)及白光LED模块(103)的所发出的光线呈锐角照射到样品上。光模块中的控制模块将光谱信息转换成数字信号进行记录及发送。The optical module (1) includes a semiconductor laser module (101), a miniature spectrum probe (102), a white light LED module (103) and a condenser lens (104). The semiconductor laser module (101) in the optical module (1) can provide excitation light to excite the fluorescence of the sample, provide a broadband light source for measuring the reflection spectrum of the sample through the white light LED module (103), and detect the fluorescence or reflectance spectrum. The semiconductor laser module (101) and the white light LED module (103) are respectively located on both sides of the miniature spectrum probe (102), and the condenser lens (104) is arranged between the white light LED module (103) and the sample. It exits to the sample (105) at a certain angle, and the fluorescence or reflected light generated by the sample will be collected by the condenser lens (104) and enter the miniature spectrum probe (102). In this embodiment, the light emitted by the semiconductor laser module (101) and the white light LED module (103) irradiates the sample at an acute angle. The control module in the optical module converts the spectral information into digital signals for recording and sending.
所述的半导体激光模块(101)为输出波长较短的半导体激光模块,以便有效激发样品的荧光;其功率应为毫瓦级,以免对样品造成损坏,并防止对人眼造成伤害。The semiconductor laser module (101) is a semiconductor laser module with a shorter output wavelength, so as to effectively excite the fluorescence of the sample; its power should be in the milliwatt level, so as not to cause damage to the sample and prevent damage to human eyes.
聚光透镜(104)对半导体激光器发射波长的光具有高反射镀膜,防止强光进入微型光谱探头(102)干扰测试结果。The condensing lens (104) has a high reflective coating on the light emitted by the semiconductor laser to prevent strong light from entering the miniature spectrum probe (102) and disturbing the test results.
在本实施例中,半导体激光模块(101)选择输出波长为410nm,输出功率为10mW的半导体激光作为荧光激发光源;微型光谱探头(102)中选择滨松C12666MA微型光谱探头作为光谱探测器件;白光LED模块(103)选择200mW带聚光杯的白光LED灯珠作为反射光测试光源;聚光透镜(104)采用焦距为44mm的树脂凸透镜。In the present embodiment, semiconductor laser module (101) selection output wavelength is 410nm, and output power is the semiconductor laser of 10mW as fluorescence excitation light source; Select Hamamatsu C12666MA miniature spectrum probe as spectrum detection device in miniature spectrum probe (102); White light The LED module (103) selects a 200mW white light LED lamp bead with a focus cup as the light source for the reflected light test; the focus lens (104) adopts a resin convex lens with a focal length of 44mm.
微型光谱探头(102)为光谱探测的核心部件,可获得某一宽波段内完整的光谱信息。微型光谱探头(102)包括光阑(10202)、光栅(10203)、电荷藕合器件图像传感器CCD(10204)。光阑(10202)设置在光栅(10203)前侧,光阑(10202)上设置有光入射口,电荷藕合器件图像传感器CCD设置于光栅(10203)侧方。当入射光(10201)通过光阑(10202)的光入射口进入探头,照射到光栅(10203)上,且由光栅(10203)分光。随后,不同波长的光由光栅反射到CCD(10204)的不同位置处,通过CCD(10204)各个像素对不同波长光的探测,记录各个波长光的强度,从而获得整个波段内的光谱信息。The miniature spectrum probe (102) is the core component of spectrum detection, and can obtain complete spectrum information in a certain wide band. The miniature spectrum probe (102) includes an aperture (10202), a grating (10203), and a charge-coupled device image sensor CCD (10204). The aperture (10202) is arranged on the front side of the grating (10203), the aperture (10202) is provided with a light entrance, and the charge-coupled device image sensor CCD is arranged on the side of the grating (10203). When the incident light (10201) enters the probe through the light entrance of the aperture (10202), it irradiates on the grating (10203), and is split by the grating (10203). Subsequently, the light of different wavelengths is reflected by the grating to different positions of the CCD (10204), and each pixel of the CCD (10204) detects the light of different wavelengths, and records the intensity of light of each wavelength, thereby obtaining spectral information in the entire band.
在本实施例中,控制模块(2)微控制器的主控芯片采用STM32单片机,控制电路包括电源管理电路、光源驱动电路,时序控制电路,电平转换电路,充电电路及外围电路,并且内置无线传输功能,用于将光谱信息转移到移动终端系统或者直接传输至服务器上。本实施例中,无线传输功能采用蓝牙模块。控制模块(2)可以通过移动终端系统与云端服务器连接,也可以通过自带的不限于2G、3G、4G等模块直接与云服务器连结。In this embodiment, the main control chip of the micro-controller of the control module (2) adopts STM32 single-chip microcomputer, and the control circuit includes a power management circuit, a light source driving circuit, a timing control circuit, a level conversion circuit, a charging circuit and peripheral circuits, and built-in The wireless transmission function is used to transfer the spectral information to the mobile terminal system or directly to the server. In this embodiment, the wireless transmission function uses a Bluetooth module. The control module (2) can be connected to the cloud server through the mobile terminal system, and can also be directly connected to the cloud server through the built-in modules such as 2G, 3G, 4G, etc.
控制模块的微控制器通过光源驱动电路控制光源。微控制器控制时序驱动电器控制电平转换电路,电平电路给探测器提供电源,探测器对信号进行调理后,将采集到的数据通过数据采集模块传输到微控制器中,在数据传输过程中,电压基准电路对数据采集模块的电压进行调整。微控制器通过硬件开关机控制电池的充电电路,微控制器通过控制无线传输模块实现数据向移动终端系统的传输。The microcontroller of the control module controls the light source through the light source driving circuit. The micro-controller controls the timing drive and controls the level conversion circuit. The level circuit provides power to the detector. After the detector conditions the signal, it transmits the collected data to the microcontroller through the data acquisition module. During the data transmission process Among them, the voltage reference circuit adjusts the voltage of the data acquisition module. The microcontroller controls the charging circuit of the battery through the hardware switch, and the microcontroller realizes the data transmission to the mobile terminal system by controlling the wireless transmission module.
控制模块(2)从微型光谱探头(102)读取每个像素中电荷的强度,以像素对应的波长为x轴,其电荷强度为y轴将信息进行描述、预处理和传输。The control module (2) reads the intensity of charge in each pixel from the miniature spectrum probe (102), uses the wavelength corresponding to the pixel as the x-axis, and its charge intensity as the y-axis to describe, preprocess and transmit the information.
本实施案例中,选择安卓系统的手机作为移动终端系统,选择一台笔记本电脑作为服务器端,手持光谱仪以蓝牙模式与手机进行通信,手机以Wi-Fi或4G网络模式与服务器通信。In this implementation case, an Android mobile phone is selected as the mobile terminal system, a laptop is selected as the server, the handheld spectrometer communicates with the mobile phone in Bluetooth mode, and the mobile phone communicates with the server in Wi-Fi or 4G network mode.
如图4所示,移动终端系统可用于接收来自于手持光谱仪的数据信息,并在屏幕上显示该数据信息。移动终端系统的还有参数设置功能,可选择高增益来控制手持光谱仪增益、选择荧光光谱更改光源类型以及调整微型光谱探头(102)的曝光时间等关于设备参数的设置。As shown in Figure 4, the mobile terminal system can be used to receive data information from the handheld spectrometer and display the data information on the screen. The mobile terminal system also has a parameter setting function, which can select high gain to control the gain of the handheld spectrometer, select the fluorescent spectrum to change the light source type, and adjust the exposure time of the miniature spectral probe (102) and other equipment parameter settings.
移动终端系统在上传光谱数据前会进行光谱预处理,其预处理包括去噪声处理、过曝光检测、低曝光检测、特征波段提取等过程。通过对光谱的预处理提高设备的反应能力,同时保证上传服务器的数据准确可靠且冗余度低。The mobile terminal system will perform spectral preprocessing before uploading spectral data, and its preprocessing includes denoising processing, overexposure detection, low exposure detection, and feature band extraction. The response capability of the device is improved through the preprocessing of the spectrum, and at the same time, the data uploaded to the server is guaranteed to be accurate and reliable with low redundancy.
如图5所示,光谱预处理后,移动终端系统根据用户的选择方式进行上传。用户可选择上传标准品光谱或待测样品光谱。若用户选择标准品光谱进行上传,数据将以训练样品形式进入输入数学模型训练集,数学模型将根据其参数对其进行训练及自身优化。若用户选择测样品光谱进行上传,服务器将数据先输入至测试集中,并运行数学模型对输入的光谱数据进行分析判别,然后返回判别结果给移动终端系统。As shown in Figure 5, after the spectrum is preprocessed, the mobile terminal system uploads it according to the user's selection method. Users can choose to upload the standard spectrum or the sample spectrum to be tested. If the user selects the standard spectrum to upload, the data will enter the input mathematical model training set in the form of training samples, and the mathematical model will train and optimize itself according to its parameters. If the user chooses to upload the spectrum of the sample to be tested, the server will first input the data into the test set, and run the mathematical model to analyze and judge the input spectral data, and then return the judgment result to the mobile terminal system.
本实施例中的数学模型为自适应的智能模型,可以通过输入训练样品的数据进行自主优化和修正,可以但不限于是BP神经网络算法、遗传算法、Fisher线性分类算法。该数学模型和传统光谱仪相比,通过不同用户在不同时间和地点获取大量的标准品光谱,进行大数据整合,可以不断增强和优化数学模型的鉴别分析能力,进而为用户提供更好的光谱鉴别分析功能,形成良性循环。The mathematical model in this embodiment is an adaptive intelligent model, which can be independently optimized and corrected by inputting training sample data, and can be but not limited to BP neural network algorithm, genetic algorithm, Fisher linear classification algorithm. Compared with traditional spectrometers, this mathematical model can continuously enhance and optimize the identification and analysis capabilities of the mathematical model by obtaining a large number of standard product spectra at different times and locations by different users and integrating big data, thereby providing users with better spectral identification. The analysis function forms a virtuous circle.
移动终端系统可下载的存储于服务器(6)的测试数据,该测试数据包含样品的光谱信息、测试时间信息、测试地点信息、测试样品编号及名称信息。The test data stored in the server (6) can be downloaded by the mobile terminal system, and the test data includes sample spectral information, test time information, test location information, test sample number and name information.
本实施例中的测试样品采用荷花花粉、野玫瑰花花粉以及油菜花花粉。如图6所示,为按照上述操作步骤获取样品光谱信息。将三种花粉进行光谱测量,并复测量步骤50次,并分别以标准品光谱上传服务器;服务器端采用Fisher算法依靠光谱信息进行分析;服务器调用训练好的Fisher对样品进行分类并鉴别,其结果如图7所示。采用该种算法使三种花粉能够有效区分,并能够进行准确判别,准确率到达99%。The test samples in this embodiment adopt lotus pollen, wild rose pollen and rape pollen. As shown in Figure 6, in order to obtain the spectral information of the sample according to the above operation steps. Spectral measurement of the three kinds of pollen was carried out, and the measurement steps were repeated 50 times, and the spectra of the standard samples were uploaded to the server; the server used the Fisher algorithm to analyze the spectral information; the server called the trained Fisher to classify and identify the samples, and the results As shown in Figure 7. Using this algorithm can effectively distinguish the three kinds of pollen, and can make accurate discrimination, the accuracy rate reaches 99%.
本实施例的中的手持光谱仪用来获取样品光谱信息并进行种类或性质鉴别的具体操作步骤如下:The specific operation steps for the hand-held spectrometer in this embodiment to obtain the spectral information of the sample and identify the type or property are as follows:
(1)长按手持光谱仪上的按钮(304)启动光谱仪;(1) Long press the button (304) on the handheld spectrometer to start the spectrometer;
(2)打开移动终端系统上的软件并与光谱仪进行配对;(2) Open the software on the mobile terminal system and pair it with the spectrometer;
(3)在移动终端系统上选择光源,手持光谱仪增益值及调整微型光谱探头(102)的曝光时间;(3) Select the light source on the mobile terminal system, hold the spectrometer gain value and adjust the exposure time of the miniature spectral probe (102);
(4)将手持光谱仪对准样品,短按手持光谱仪上的开关进行样品的光谱测量;(4) Aim the handheld spectrometer at the sample, and short press the switch on the handheld spectrometer to measure the spectrum of the sample;
(5)观察移动终端系统屏幕上显示的样品光谱曲线,如果光谱符合测试要求则点击上传按钮,并选择上传种类;(5) Observe the sample spectrum curve displayed on the screen of the mobile terminal system, if the spectrum meets the test requirements, click the upload button and select the upload type;
(6)如果选择标准品光谱类型进行上传,上传结束后即结束;如果选择以待测样品光谱类型进行上传,则上传后服务器启动数学模型对光谱进行分析鉴别,并发鉴别结果返回移动终端系统;(6) If you choose the standard spectrum type to upload, it will end after the upload is over; if you choose to upload with the sample spectrum type to be tested, then after uploading, the server will start the mathematical model to analyze and identify the spectrum, and the identification results will be returned to the mobile terminal system;
(7)用户即可在移动终端系统上获取样品的种类或性质的相关信息,测试结束。(7) The user can obtain relevant information on the type or nature of the sample on the mobile terminal system, and the test is over.
本发明的实施方式不限于此,按照本发明的上述内容,利用本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,本发明还可以做出其它多种形式的修改、替换或变更,均落在本发明权利保护范围之内。The embodiments of the present invention are not limited thereto. According to the above content of the present invention, using ordinary technical knowledge and conventional means in this field, without departing from the above-mentioned basic technical ideas of the present invention, the present invention can also make other various forms. Amendment, replacement or alteration all fall within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711007073.3ACN107860473A (en) | 2017-10-25 | 2017-10-25 | A kind of intelligent handhold spectrometer based on cloud data |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711007073.3ACN107860473A (en) | 2017-10-25 | 2017-10-25 | A kind of intelligent handhold spectrometer based on cloud data |
| Publication Number | Publication Date |
|---|---|
| CN107860473Atrue CN107860473A (en) | 2018-03-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201711007073.3APendingCN107860473A (en) | 2017-10-25 | 2017-10-25 | A kind of intelligent handhold spectrometer based on cloud data |
| Country | Link |
|---|---|
| CN (1) | CN107860473A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108844912A (en)* | 2018-04-19 | 2018-11-20 | 中科谱光科技(北京)有限公司 | A kind of crop growing state spectrum intelligent analysis system and method |
| CN108872092A (en)* | 2018-04-19 | 2018-11-23 | 中科谱光科技(北京)有限公司 | A kind of water quality parameter spectrum intelligent detection and analysis system and method |
| CN109001145A (en)* | 2018-10-15 | 2018-12-14 | 四川长虹电器股份有限公司 | Intelligent terminal peripheral hardware for near-infrared spectrum analysis |
| CN109060684A (en)* | 2018-07-27 | 2018-12-21 | 江南大学 | A kind of intelligent measurement method based on computer program fermentation process |
| CN109115340A (en)* | 2018-09-06 | 2019-01-01 | 马浩臣 | A kind of spectrometer |
| CN110174360A (en)* | 2019-05-05 | 2019-08-27 | 青岛海尔智能技术研发有限公司 | Wine product identification device, method, system and device for sobering drunken people |
| CN110514620A (en)* | 2019-08-30 | 2019-11-29 | 四川长虹电器股份有限公司 | Spectral method of detection and system based on portable near infrared spectrometer |
| CN110554069A (en)* | 2019-08-20 | 2019-12-10 | 北京戴纳实验科技有限公司 | laboratory chemical substance detecting system |
| CN110793923A (en)* | 2019-10-31 | 2020-02-14 | 北京绿土科技有限公司 | Hyperspectral soil data acquisition and analysis method based on mobile phone |
| CN110793922A (en)* | 2019-10-31 | 2020-02-14 | 北京绿土科技有限公司 | Soil spectrum data acquisition method based on mobile phone |
| CN111487204A (en)* | 2019-01-29 | 2020-08-04 | 精工爱普生株式会社 | Information system and determination method |
| CN111829961A (en)* | 2019-04-18 | 2020-10-27 | 苏州优函信息科技有限公司 | Food quality detection method and system based on portable imaging spectrometer |
| CN112533182A (en)* | 2019-09-17 | 2021-03-19 | 北京华易明新科技有限公司 | Portable coal detection equipment of one-man operation's short-term test |
| CN113056664A (en)* | 2018-11-29 | 2021-06-29 | 罗伯特·博世有限公司 | Spectrometer device and corresponding method for operating a spectrometer device |
| CN113295641A (en)* | 2021-05-26 | 2021-08-24 | 河北金沙河面业集团有限责任公司 | Method for rapidly measuring germination rate of wheat |
| CN114295573A (en)* | 2021-12-22 | 2022-04-08 | 海南聚能科技创新研究院有限公司 | a spectrometer |
| CN114965384A (en)* | 2022-05-24 | 2022-08-30 | 西南交通大学 | Handheld asphalt wax content rapid quantitative instrument based on optical characteristics |
| CN116026803A (en)* | 2023-01-03 | 2023-04-28 | 江南大学 | Food contamination detecting system based on handheld food residue detecting equipment |
| CN116465492A (en)* | 2022-01-12 | 2023-07-21 | 北京与光科技有限公司 | Spectrum processing method, spectrum processing device and spectrum processing system |
| CN117054396A (en)* | 2023-10-11 | 2023-11-14 | 天津大学 | Raman spectrum detection method and device based on double-path multiplicative neural network |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105136742A (en)* | 2015-08-21 | 2015-12-09 | 董海萍 | Cloud spectrum database-based miniature spectrometer and spectrum detection method |
| CN106323909A (en)* | 2016-09-14 | 2017-01-11 | 江苏大学 | Handheld near infrared spectrum detection system and detection method for quality of fruits and vegetables |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105136742A (en)* | 2015-08-21 | 2015-12-09 | 董海萍 | Cloud spectrum database-based miniature spectrometer and spectrum detection method |
| CN106323909A (en)* | 2016-09-14 | 2017-01-11 | 江苏大学 | Handheld near infrared spectrum detection system and detection method for quality of fruits and vegetables |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108872092A (en)* | 2018-04-19 | 2018-11-23 | 中科谱光科技(北京)有限公司 | A kind of water quality parameter spectrum intelligent detection and analysis system and method |
| CN108844912A (en)* | 2018-04-19 | 2018-11-20 | 中科谱光科技(北京)有限公司 | A kind of crop growing state spectrum intelligent analysis system and method |
| CN109060684B (en)* | 2018-07-27 | 2020-11-06 | 江南大学 | An intelligent measurement method for microbial fermentation process based on computer program |
| CN109060684A (en)* | 2018-07-27 | 2018-12-21 | 江南大学 | A kind of intelligent measurement method based on computer program fermentation process |
| CN109115340A (en)* | 2018-09-06 | 2019-01-01 | 马浩臣 | A kind of spectrometer |
| CN109001145A (en)* | 2018-10-15 | 2018-12-14 | 四川长虹电器股份有限公司 | Intelligent terminal peripheral hardware for near-infrared spectrum analysis |
| CN113056664A (en)* | 2018-11-29 | 2021-06-29 | 罗伯特·博世有限公司 | Spectrometer device and corresponding method for operating a spectrometer device |
| CN111487204B (en)* | 2019-01-29 | 2023-08-29 | 精工爱普生株式会社 | Information system and determination method |
| CN111487204A (en)* | 2019-01-29 | 2020-08-04 | 精工爱普生株式会社 | Information system and determination method |
| CN111829961A (en)* | 2019-04-18 | 2020-10-27 | 苏州优函信息科技有限公司 | Food quality detection method and system based on portable imaging spectrometer |
| CN110174360A (en)* | 2019-05-05 | 2019-08-27 | 青岛海尔智能技术研发有限公司 | Wine product identification device, method, system and device for sobering drunken people |
| CN110554069A (en)* | 2019-08-20 | 2019-12-10 | 北京戴纳实验科技有限公司 | laboratory chemical substance detecting system |
| CN110514620A (en)* | 2019-08-30 | 2019-11-29 | 四川长虹电器股份有限公司 | Spectral method of detection and system based on portable near infrared spectrometer |
| CN112533182A (en)* | 2019-09-17 | 2021-03-19 | 北京华易明新科技有限公司 | Portable coal detection equipment of one-man operation's short-term test |
| CN110793922A (en)* | 2019-10-31 | 2020-02-14 | 北京绿土科技有限公司 | Soil spectrum data acquisition method based on mobile phone |
| CN110793923A (en)* | 2019-10-31 | 2020-02-14 | 北京绿土科技有限公司 | Hyperspectral soil data acquisition and analysis method based on mobile phone |
| CN113295641A (en)* | 2021-05-26 | 2021-08-24 | 河北金沙河面业集团有限责任公司 | Method for rapidly measuring germination rate of wheat |
| CN114295573A (en)* | 2021-12-22 | 2022-04-08 | 海南聚能科技创新研究院有限公司 | a spectrometer |
| CN116465492A (en)* | 2022-01-12 | 2023-07-21 | 北京与光科技有限公司 | Spectrum processing method, spectrum processing device and spectrum processing system |
| CN114965384A (en)* | 2022-05-24 | 2022-08-30 | 西南交通大学 | Handheld asphalt wax content rapid quantitative instrument based on optical characteristics |
| CN116026803A (en)* | 2023-01-03 | 2023-04-28 | 江南大学 | Food contamination detecting system based on handheld food residue detecting equipment |
| CN116026803B (en)* | 2023-01-03 | 2024-02-02 | 江南大学 | A food contamination detection system based on handheld food residue detection equipment |
| CN117054396A (en)* | 2023-10-11 | 2023-11-14 | 天津大学 | Raman spectrum detection method and device based on double-path multiplicative neural network |
| CN117054396B (en)* | 2023-10-11 | 2024-01-05 | 天津大学 | Raman spectrum detection method and device based on double-path multiplicative neural network |
| Publication | Publication Date | Title |
|---|---|---|
| CN107860473A (en) | A kind of intelligent handhold spectrometer based on cloud data | |
| JP6375557B2 (en) | System and method for measuring and categorizing surface colors and spectra | |
| US20180059015A1 (en) | Personal liquid analysis system | |
| CN105372203B (en) | Fresh apple damage sensitivity lossless detection method based on Multi-sensor Fusion | |
| CN105651728B (en) | A kind of portable near infrared spectrum detection system | |
| CN101275905A (en) | A multi-source spectrum fusion portable water quality analyzer | |
| CN103281459A (en) | Mobile phone capable of measuring sweetness and PH value of fruit | |
| CN205941340U (en) | Material identifier and thing networking | |
| CN113080848A (en) | Near-infrared skin detection device and method | |
| CN105866050A (en) | Low-cost lossless and fast detecting equipment for apple moldy core | |
| CN107421912A (en) | A kind of apparatus and method of the liquid diary product quality testing based on near-infrared transmission technology | |
| US20220136956A1 (en) | Method and systems for characterizing and encoding a light detection system | |
| CN113504185A (en) | Multispectral agricultural product heavy metal content detection modeling system based on LIBS calibration | |
| CN116209888A (en) | Method and system for modulating the intensity distribution of a laser beam | |
| CN112771365B (en) | Integrated pre-amplification photo-detection system and method of use thereof | |
| CN106814042A (en) | Spectra collection and analysis system and its control method | |
| CN108956395A (en) | A kind of method and terminal of air atom Concentration Testing | |
| CN105092484A (en) | Liquid identifying device | |
| CN206450322U (en) | A kind of spectral detection system based on micro spectrometer | |
| CN201066339Y (en) | A portable near infrared spectrum instrument for identifying tobacco identity | |
| CN103954621A (en) | Off-line portable nondestructive test apparatus for rapidly detecting quality of fresh livestock meat | |
| CN209802978U (en) | remote real-time online fruit quality monitoring system | |
| CN202693475U (en) | Ultraviolet spot fluorescent scanner | |
| CN209656561U (en) | A kind of formaldehyde examination device based on middle Laser Regulated in Ultrared Band | |
| WO2021141764A1 (en) | Deep learning method in aiding patient diagnosis and aberrant cell population identification in flow cytometry |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | Application publication date:20180330 | |
| WD01 | Invention patent application deemed withdrawn after publication |