技术领域technical field
本发明与转换电路有关,特别是关于一种直流对直流转换器及其控制方法。The invention relates to a conversion circuit, in particular to a DC-to-DC converter and a control method thereof.
背景技术Background technique
已知的降压直流对直流转换装置(Buck DC-DC Converter)采用固定导通时间(Constant On Time,COT)的方式控制,如图1所示,其需要靠输出电压Vout上的涟波(ripple)回授并触发产生脉宽调变信号。当输出电容Cout采用的是具有低等效串联电阻的多层陶瓷电容(Multi-layer Ceramic Capacitor,MLCC)时,将会使得输出电压Vout回授的涟波过小,而过于平滑的回授信号受到电路中的电感及电容影响,会导致误差放大器A1输出的比较信号Comp产生相位延迟。一旦比较信号Comp的相位延迟达到180度时,将会出现共振现象而导致整个系统不稳定。The known step-down DC-DC converter (Buck DC-DC Converter) adopts constant on-time (Constant On Time, COT) control, as shown in Figure 1, which needs to rely on the ripple on the output voltage Vout ( ripple) feedback and trigger to generate pulse width modulation signal. When the output capacitor Cout is a multi-layer ceramic capacitor (Multi-layer Ceramic Capacitor, MLCC) with low equivalent series resistance, the feedback ripple of the output voltage Vout will be too small, and the feedback signal will be too smooth Affected by the inductance and capacitance in the circuit, the phase delay of the comparison signal Comp output by the error amplifier A1 will be caused. Once the phase delay of the comparison signal Comp reaches 180 degrees, a resonance phenomenon will occur and the whole system will be unstable.
已知的升压直流对直流转换装置(Boost DC-DC Converter)采用固定关闭时间(Constant Off Time)的方式控制,如图2所示,若采用多层陶瓷电容(MLCC)作为输出电容Cout一样会有输出电压上的涟波过小的问题。如果直接采用固定导通时间(COT)的方式控制,尤其是当输出电容Cout采用的是电解电容时,回授信号甚至会出现与斜波信号Ramp反相的涟波。若未采用适当的补偿电路进行相位的补偿,很可能会导致输出崩溃的现象发生。The known boost DC-DC converter (Boost DC-DC Converter) is controlled by a constant off time (Constant Off Time), as shown in Figure 2. If a multilayer ceramic capacitor (MLCC) is used as the output capacitor Cout, it is the same There will be a problem of too little ripple on the output voltage. If the constant on-time (COT) method is directly used for control, especially when the output capacitor Cout is an electrolytic capacitor, the feedback signal may even have a ripple opposite to the ramp signal Ramp. If an appropriate compensation circuit is not used for phase compensation, it is likely to cause output collapse.
发明内容Contents of the invention
有鉴于此,本发明提供一种直流对直流转换器及其控制方法,以解决现有技术所述及的问题。In view of this, the present invention provides a DC-DC converter and its control method to solve the problems mentioned in the prior art.
本发明的一较佳具体实施例为一种直流对直流转换器。于此实施例中,直流对直流转换器耦接补偿电路并通过外部电感耦接输入电压。直流对直流转换器包括第一电力开关、第二电力开关、输出接脚、回授接脚及电力开关控制接脚。第一电力开关耦接外部电感的一端。第二电力开关耦接外部电感的一端。输出接脚耦接第二电力开关。回授接脚耦接输出接脚。电力开关控制接脚耦接第一电力开关,且提供第一时间信号至第一电力开关。补偿电路耦接于回授接脚与电力开关控制接脚之间,补偿电路包括积分器,积分器自电力开关控制接脚接收第一时间信号,且提供补偿信号至回授接脚。A preferred embodiment of the present invention is a DC-DC converter. In this embodiment, the DC-DC converter is coupled to the compensation circuit and coupled to the input voltage through an external inductor. The DC-DC converter includes a first power switch, a second power switch, an output pin, a feedback pin and a power switch control pin. The first power switch is coupled to one end of the external inductor. The second power switch is coupled to one end of the external inductor. The output pin is coupled to the second power switch. The feedback pin is coupled to the output pin. The power switch control pin is coupled to the first power switch and provides a first time signal to the first power switch. The compensation circuit is coupled between the feedback pin and the power switch control pin. The compensation circuit includes an integrator. The integrator receives the first time signal from the power switch control pin and provides a compensation signal to the feedback pin.
在本发明的一实施例中,积分器包括彼此串接的电阻及第一电容,且电阻的第一端耦接电力开关控制接脚,第一电容耦接于电阻的第二端与接地端之间。In one embodiment of the present invention, the integrator includes a resistor and a first capacitor connected in series, and the first end of the resistor is coupled to the power switch control pin, and the first capacitor is coupled to the second end of the resistor and the ground end between.
在本发明的一实施例中,积分器包括彼此串接的电阻及第一电容,且电阻的第一端耦接电力开关控制接脚,第一电容耦接于电阻的第二端与直流对直流转换器的输出电压。In one embodiment of the present invention, the integrator includes a resistor and a first capacitor connected in series, and the first end of the resistor is coupled to the power switch control pin, and the first capacitor is coupled to the second end of the resistor and the DC pair. output voltage of the DC converter.
在本发明的一实施例中,补偿电路还包括滤波电容,滤波电容耦接于积分器与回授接脚之间。In an embodiment of the present invention, the compensation circuit further includes a filter capacitor coupled between the integrator and the feedback pin.
在本发明的一实施例中,补偿信号为斜波信号,且斜波信号与第一时间信号同步。In an embodiment of the present invention, the compensation signal is a ramp signal, and the ramp signal is synchronized with the first time signal.
在本发明的一实施例中,直流对直流转换器还包括恒定导通时间产生单元,分别耦接第一电力开关与第二电力开关。In an embodiment of the present invention, the DC-DC converter further includes a constant on-time generation unit coupled to the first power switch and the second power switch respectively.
在本发明的一实施例中,直流对直流转换器还包括误差放大器及比较器,误差放大器耦接补偿电路及回授接脚,比较器耦接于误差放大器与恒定导通时间产生单元之间。In an embodiment of the present invention, the DC-DC converter further includes an error amplifier and a comparator, the error amplifier is coupled to the compensation circuit and the feedback pin, and the comparator is coupled between the error amplifier and the constant on-time generating unit .
根据本发明的另一较佳具体实施例为直流对直流转换器的控制方法。于此实施例中,直流对直流转换器包括恒定导通时间产生单元、电力开关控制接脚及回授接脚,其中电力开关控制接脚与回授接脚之间耦接补偿电路。该控制方法包括:通过恒定导通时间产生单元提供第一时间信号至第一电力开关控制接脚;以及利用补偿电路处理第一时间信号,以提供补偿信号至回授接脚。Another preferred embodiment of the present invention is a control method for a DC-DC converter. In this embodiment, the DC-DC converter includes a constant on-time generating unit, a power switch control pin and a feedback pin, wherein a compensation circuit is coupled between the power switch control pin and the feedback pin. The control method includes: providing a first time signal to the first power switch control pin through the constant on-time generation unit; and processing the first time signal with a compensation circuit to provide a compensation signal to the feedback pin.
相较于现有技术,本发明的直流对直流转换器及其控制方法系利用补偿电路处里控制信号以产生涟波信号,并通过补偿电路中的滤波电容滤除涟波信号中的直流部分,由此产生稳定且良好的涟波信号对回授信号(feedbacksignal)进行相位补偿,进而产生稳定的控制信号,使得Boost直流对直流转换系统能够维持正常运作,能有效避免现有技术发生的输出崩溃现象。Compared with the prior art, the DC-to-DC converter and its control method of the present invention use the compensation circuit to process the control signal to generate a ripple signal, and filter out the DC part of the ripple signal through the filter capacitor in the compensation circuit , thereby generating a stable and good ripple signal to perform phase compensation on the feedback signal (feedback signal), thereby generating a stable control signal, so that the Boost DC-to-DC conversion system can maintain normal operation, and can effectively avoid the output that occurs in the prior art crash phenomenon.
关于本发明的优点与精神可以通过以下的发明详述及所附图式得到进一步的了解。The advantages and spirit of the present invention can be further understood through the following detailed description of the invention and the accompanying drawings.
附图说明Description of drawings
图1为已知的Buck直流对直流转换系统的示意图。FIG. 1 is a schematic diagram of a known Buck DC-DC conversion system.
图2为已知的Boost直流对直流转换系统的示意图。FIG. 2 is a schematic diagram of a known Boost DC-DC conversion system.
图3为根据本发明的一具体实施例的直流对直流转换器与补偿电路的功能方块图。FIG. 3 is a functional block diagram of a DC-DC converter and a compensation circuit according to an embodiment of the present invention.
图4及图5为当第一电容的第二端耦接至接地端时的直流对直流转换器与补偿电路的示意图。4 and 5 are schematic diagrams of the DC-DC converter and the compensation circuit when the second terminal of the first capacitor is coupled to the ground terminal.
图6为当第一电容的第二端耦接至接地端时的第一时间信号、第二时间信号、补偿信号及参考电压的时序图。6 is a timing diagram of the first time signal, the second time signal, the compensation signal and the reference voltage when the second end of the first capacitor is coupled to the ground end.
图7及图8为当第一电容的第二端耦接至输出接脚时的直流对直流转换器与补偿电路的示意图。7 and 8 are schematic diagrams of the DC-DC converter and the compensation circuit when the second terminal of the first capacitor is coupled to the output pin.
图9为当第一电容的第二端耦接至输出接脚时的第一时间信号、第二时间信号、补偿信号及参考电压的时序图。FIG. 9 is a timing diagram of the first time signal, the second time signal, the compensation signal and the reference voltage when the second terminal of the first capacitor is coupled to the output pin.
图10为根据本发明的另一具体实施例的直流对直流转换电路的功能方块图。FIG. 10 is a functional block diagram of a DC-DC conversion circuit according to another embodiment of the present invention.
图11为根据本发明的另一具体实施例的直流对直流转换器的控制方法的流程图。FIG. 11 is a flow chart of a method for controlling a DC-DC converter according to another specific embodiment of the present invention.
主要元件符号说明:Description of main component symbols:
3:直流对直流转换电路3: DC to DC conversion circuit
30:直流对直流转换器30: DC to DC converter
32:补偿电路32: Compensation circuit
Constant Off Time:固定关闭时间控制逻辑电路Constant Off Time: fixed off time control logic circuit
FB:回授接脚FB: feedback pin
LG:电力开关控制接脚LG: power switch control pin
IN:积分器IN: Integrator
S1:时间信号S1: time signal
S2:补偿信号S2: Compensation signal
LX:输入接脚LX: input pin
VCC:供电电压接脚VCC: supply voltage pin
EN:致能接脚EN: enable pin
GND:接地接脚GND: ground pin
OUT:输出接脚OUT: output pin
L、L1:外部电感L, L1: external inductance
Vin:输入电压Vin: input voltage
Cin:输入电容Cin: input capacitance
SEN:致能信号SEN: enable signal
Vout:输出电压Vout: output voltage
Cout:外部输出电容Cout: external output capacitor
R1~R2:外部电阻R1~R2: external resistance
Rj:电阻Rj: Resistance
Cj:第一电容Cj: first capacitance
Cf:第二电容Cf: second capacitance
S0:第二时间信号S0: Second time signal
M1:第一电力开关M1: first power switch
M2:第二电力开关M2: second power switch
COT:控制逻辑电路COT: control logic circuit
A1:第一误差放大器A1: First Error Amplifier
A2:第二误差放大器A2: Second Error Amplifier
VFB:回授电压VFB: feedback voltage
Vref:参考电压Vref: reference voltage
Comp:比较信号Comp: Comparing signals
Ramp:斜波信号Ramp: ramp signal
Ton:导通时间Ton: conduction time
S10~S12:步骤S10~S12: steps
具体实施方式Detailed ways
现在将详细参考本发明的示范性实施例,并在附图中说明所述示范性实施例的实例。在图式及实施方式中所使用相同或类似标号的元件/构件是用来代表相同或类似部分。Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Elements/members with the same or similar numbers used in the drawings and embodiments are used to represent the same or similar parts.
根据本发明的一较佳具体实施例为一种直流对直流转换器(DC-DC converter)。降压直流对直流转换器(Buck DC-DC Converter)可应用于升压直流对直流转换系统(Boost DC-DC Converting System)中,但不以此为限。请参照图3,图3为本实施例的直流对直流转换器30耦接补偿电路32的功能方块图。A preferred embodiment of the present invention is a DC-DC converter. The step-down DC-DC converter (Buck DC-DC Converter) can be applied in a boost DC-DC converting system (Boost DC-DC Converting System), but not limited thereto. Please refer to FIG. 3 . FIG. 3 is a functional block diagram of the DC-DC converter 30 coupled to the compensation circuit 32 of the present embodiment.
如图3所示,直流对直流转换器30包括回授接脚FB及电力开关控制接脚LG。补偿电路32包括积分器IN。直流对直流转换器30的回授接脚FB及电力开关控制接脚LG分别耦接补偿电路32的积分器IN。直流对直流转换器30的电力开关控制接脚LG提供第一时间信号S1至补偿电路32的积分器IN。当积分器IN自电力开关控制接脚LG接收到第一时间信号S1时,积分器IN将第一时间信号S1积分以提供补偿信号S2至回授接脚FB。于此实施例中,补偿电路32所产生的补偿信号S2为一斜波信号,并且与第一时间信号S1同步,但不以此为限。As shown in FIG. 3 , the DC-DC converter 30 includes a feedback pin FB and a power switch control pin LG. Compensation circuit 32 includes an integrator IN. The feedback pin FB and the power switch control pin LG of the DC-DC converter 30 are respectively coupled to the integrator IN of the compensation circuit 32 . The power switch control pin LG of the DC-DC converter 30 provides the first time signal S1 to the integrator IN of the compensation circuit 32 . When the integrator IN receives the first time signal S1 from the power switch control pin LG, the integrator IN integrates the first time signal S1 to provide the compensation signal S2 to the feedback pin FB. In this embodiment, the compensation signal S2 generated by the compensation circuit 32 is a ramp signal and synchronized with the first time signal S1, but not limited thereto.
接着请参照图4,于一实施例中,直流对直流转换器30包括输入接脚LX、输出接脚OUT、电力开关控制接脚LG、回授接脚FB、供电电压接脚VCC、致能接脚EN及接地接脚GND。补偿电路32包括电阻Rj、第一电容Cj及第二电容Cf,其中积分器IN包括彼此串接之电阻Rj与第一电容Cj。Next please refer to FIG. 4 , in one embodiment, the DC-DC converter 30 includes an input pin LX, an output pin OUT, a power switch control pin LG, a feedback pin FB, a power supply voltage pin VCC, and an enabling pin. The pin EN and the ground pin GND. The compensation circuit 32 includes a resistor Rj, a first capacitor Cj and a second capacitor Cf, wherein the integrator IN includes the resistor Rj and the first capacitor Cj connected in series.
于固定导通时间(COT)控制的Boost直流对直流转换系统中,输入接脚LX耦接外部电感L的第一端,并通过外部电感L接收输入电压Vin。供电电压接脚VCC耦接输入电压Vin。需说明的是,若于Buck直流对直流转换系统中,接脚LX仍会耦接外部电感L,但其是作为相位接脚(PHASE)与输出接脚(OUT)而提供输出电压Vout。In the constant on-time (COT) controlled Boost DC-DC conversion system, the input pin LX is coupled to the first end of the external inductor L, and receives the input voltage Vin through the external inductor L. The supply voltage pin VCC is coupled to the input voltage Vin. It should be noted that in the Buck DC-DC conversion system, the pin LX is still coupled to the external inductor L, but it serves as a phase pin (PHASE) and an output pin (OUT) to provide the output voltage Vout.
外部输入电容Cin的第一端亦耦接至外部电感L的第二端与输入电压Vin之间,外部输入电容Cin的第二端耦接至接地端GND。致能接脚EN用以接收一致能信号SEN。The first terminal of the external input capacitor Cin is also coupled between the second terminal of the external inductor L and the input voltage Vin, and the second terminal of the external input capacitor Cin is coupled to the ground terminal GND. The enable pin EN is used for receiving an enable signal SEN.
输出接脚OUT用以输出一输出电压Vout,并且外部输出电容Cout耦接于输出接脚OUT与接地端之间。外部电阻R1及R2串接于输出电压Vout与接地端之间。回授接脚FB耦接至外部电阻R1及R2之间。The output pin OUT is used to output an output voltage Vout, and the external output capacitor Cout is coupled between the output pin OUT and the ground terminal. The external resistors R1 and R2 are connected in series between the output voltage Vout and the ground. The feedback pin FB is coupled between the external resistors R1 and R2.
补偿电路32分别耦接直流对直流转换器30的电力开关控制接脚LG与回授接脚FB,并且补偿电路32亦耦接至外部电阻R1与R2之间。电阻Rj耦接于电力开关控制接脚LG与第二电容Cf之间;第一电容Cj的第一端耦接至电阻Rj与第二电容Cf之间,且第一电容Cj的第二端耦接至接地端;第二电容Cf的第一端耦接电阻Rj及第一电容Cj;第二电容Cf的第二端耦接至回授接脚FB以及外部电阻R1与R2之间。The compensation circuit 32 is respectively coupled to the power switch control pin LG and the feedback pin FB of the DC-DC converter 30 , and the compensation circuit 32 is also coupled between the external resistors R1 and R2 . The resistor Rj is coupled between the power switch control pin LG and the second capacitor Cf; the first end of the first capacitor Cj is coupled between the resistor Rj and the second capacitor Cf, and the second end of the first capacitor Cj is coupled connected to the ground terminal; the first end of the second capacitor Cf is coupled to the resistor Rj and the first capacitor Cj; the second end of the second capacitor Cf is coupled to the feedback pin FB and between the external resistors R1 and R2.
补偿电路32作为涟波信号产生电路,并且补偿电路32中的第二电容Cf用以作为滤波电容,其功用在于将补偿电路32所提供的涟波信号中的直流部分加以滤除,由此产生稳定且良好的涟波信号来对回授信号进行相位补偿,使得系统能维持正常运作。The compensation circuit 32 is used as a ripple signal generating circuit, and the second capacitor Cf in the compensation circuit 32 is used as a filter capacitor, and its function is to filter out the DC part in the ripple signal provided by the compensation circuit 32, thereby generating A stable and good ripple signal is used to perform phase compensation on the feedback signal so that the system can maintain normal operation.
由于升压直流对直流转换系统采用固定关闭时间(Constant Off Time)方式控制,若直接套用固定导通时间(Constant On Time)控制器很可能会导致输出崩溃,因此本发明的补偿电路32的信号来源是电力开关控制接脚LG(亦即下桥开关控制接脚),相位才会正确,也才能避免输出崩溃的现象发生。Since the step-up DC-to-DC conversion system is controlled by a constant off time (Constant Off Time), if the constant on time (Constant On Time) controller is directly applied, the output may collapse, so the signal of the compensation circuit 32 of the present invention The source is the power switch control pin LG (that is, the lower bridge switch control pin), the phase will be correct, and the phenomenon of output collapse can be avoided.
请参照图5,于一实施例中,直流对直流转换器30还包括第一电力开关M1、第二电力开关M2、控制逻辑电路COT、第一误差放大器A1及第二误差放大器A2。Please refer to FIG. 5 , in one embodiment, the DC-DC converter 30 further includes a first power switch M1 , a second power switch M2 , a control logic circuit COT, a first error amplifier A1 and a second error amplifier A2 .
第一电力开关M1耦接于输入接脚LX与接地接脚GND之间,并且第一电力开关M1的闸极耦接控制逻辑电路COT及电力开关控制接脚LG。第一电力开关M1接收电力开关控制接脚LG所输出的第一时间信号S1并根据第一时间信号S1进行操作,以将输入电压Vin转换为输出电压Vout。The first power switch M1 is coupled between the input pin LX and the ground pin GND, and the gate of the first power switch M1 is coupled to the control logic circuit COT and the power switch control pin LG. The first power switch M1 receives the first time signal S1 output from the power switch control pin LG and operates according to the first time signal S1 to convert the input voltage Vin into the output voltage Vout.
第二电力开关M2耦接于输入接脚LX与输出接脚OUT之间,并且第二电力开关M2的闸极耦接控制逻辑电路COT,以根据第二时间信号S0进行操作。第二时间信号S0与第一时间信号S1同步且反相。即第一时间信号S1与第二时间信号S0的周期一致但相位彼此相反。The second power switch M2 is coupled between the input pin LX and the output pin OUT, and the gate of the second power switch M2 is coupled to the control logic circuit COT to operate according to the second time signal S0. The second timing signal S0 is synchronized with and inverted from the first timing signal S1. That is, the periods of the first time signal S1 and the second time signal S0 are consistent but their phases are opposite to each other.
控制逻辑电路COT分别耦接第一电力开关M1的闸极、第二电力开关M2的闸极、电力开关控制接脚LG、致能接脚EN及第二误差放大器A2的输出端;第一误差放大器A1的正输入端+接收参考电压Vref且第一误差放大器A1的负输入端-耦接回授接脚FB以接收回授电压VFB,并且第一误差放大器A1的输出端耦接第二误差放大器A2的正输入端+;第二误差放大器A2的正输入端+及负输入端-分别耦接第一误差放大器A1的输出端及斜波信号Ramp,并且第二误差放大器A2的输出端耦接控制逻辑电路COT。The control logic circuit COT is respectively coupled to the gate of the first power switch M1, the gate of the second power switch M2, the power switch control pin LG, the enable pin EN and the output end of the second error amplifier A2; the first error The positive input terminal of the amplifier A1 + receives the reference voltage Vref and the negative input terminal of the first error amplifier A1 - is coupled to the feedback pin FB to receive the feedback voltage VFB, and the output terminal of the first error amplifier A1 is coupled to the second error The positive input terminal + of the amplifier A2; the positive input terminal + and the negative input terminal - of the second error amplifier A2 are respectively coupled to the output terminal of the first error amplifier A1 and the ramp signal Ramp, and the output terminal of the second error amplifier A2 is coupled to Connect to the control logic circuit COT.
请参照图6,图6为当第一电容Cj的第二端耦接至接地端时的第一时间信号S1、第二时间信号S0、补偿信号S2及参考电压Vref的时序图。如图6所示,补偿电路32所产生的补偿信号S2为一斜波信号,并且补偿信号(斜波信号)S2是与第一时间信号S1同步。至于第二时间信号S0则与第一时间信号S1同步且反相。Please refer to FIG. 6 . FIG. 6 is a timing diagram of the first time signal S1 , the second time signal S0 , the compensation signal S2 and the reference voltage Vref when the second terminal of the first capacitor Cj is coupled to the ground. As shown in FIG. 6 , the compensation signal S2 generated by the compensation circuit 32 is a ramp signal, and the compensation signal (ramp signal) S2 is synchronized with the first time signal S1 . As for the second timing signal S0, it is synchronous and inverted with the first timing signal S1.
当第一时间信号S1处于高相位时,第二时间信号S0处于低相位,补偿信号S2为往上的斜波信号;当第一时间信号S1处于低相位时,第二时间信号S0处于高相位,补偿信号S2为往下的斜波信号。第一时间信号S1维持于高相位的时间长度即为导通时间Ton。When the first time signal S1 is in a high phase, the second time signal S0 is in a low phase, and the compensation signal S2 is an upward ramp signal; when the first time signal S1 is in a low phase, the second time signal S0 is in a high phase , the compensation signal S2 is a downward ramp signal. The time length during which the first time signal S1 maintains the high phase is the conduction time Ton.
除了前述图4至图5绘示的第一电容Cj的第二端耦接至接地端的实施例之外,第一电容Cj的第二端亦可耦接至输出接脚OUT,以根据输出电压Vout及控制信号S1产生补偿信号S2,如图7至图8所示,此种接法的补偿信号S2根据第一时间信号S1及输出电压Vout产生,可使直流对直流转换器30在输出电压Vout瞬变(transient)时有较佳的响应。由于图7至图8与图4至图5的差异处仅在于第一电容Cj的第二端耦接至输出接脚OUT而不是耦接至接地端,故其电路的详细作动情形请参照前述实施例,于此不另行赘述。In addition to the aforementioned embodiments in which the second terminal of the first capacitor Cj is coupled to the ground terminal shown in FIGS. Vout and the control signal S1 generate the compensation signal S2, as shown in Figure 7 to Figure 8, the compensation signal S2 of this connection is generated according to the first time signal S1 and the output voltage Vout, so that the DC-to-DC converter 30 can operate at the output voltage Better response when Vout is transient. Since the difference between FIG. 7 to FIG. 8 and FIG. 4 to FIG. 5 is only that the second terminal of the first capacitor Cj is coupled to the output pin OUT instead of being coupled to the ground terminal, the detailed operation of the circuit please refer to The aforementioned embodiments are not described in detail here.
图9为图7及图8的第一时间信号S1、第二时间信号S0、补偿信号S2及参考电压Vref的时序图。由于升压(Boost)系统的输出电压Vout有与补偿信号S2反相的涟波,使得第一电容Cj的第二端耦接至输出接脚OUT时的补偿电路32所产生的补偿信号(斜波信号)S2的斜率会小于第一电容Cj的第二端耦接至接地端时的补偿电路32所产生的补偿信号(斜波信号)S2的斜率。FIG. 9 is a timing diagram of the first time signal S1 , the second time signal S0 , the compensation signal S2 and the reference voltage Vref in FIGS. 7 and 8 . Since the output voltage Vout of the boost system has ripples in opposite phase to the compensation signal S2, the compensation signal generated by the compensation circuit 32 when the second end of the first capacitor Cj is coupled to the output pin OUT (slope The slope of the wave signal) S2 is smaller than the slope of the compensation signal (ramp wave signal) S2 generated by the compensation circuit 32 when the second terminal of the first capacitor Cj is coupled to the ground terminal.
图10为本发明的另一较佳具体实施例为升压直流对直流转换电路。如图10所示,直流对直流转换电路3包括直流对直流转换器30及补偿电路32。补偿电路32耦接直流对直流转换器30。直流对直流转换器30包括输入接脚LX、输出接脚OUT、回授接脚FB、误差放大器A1、电力开关控制接脚LG、接地接脚GND及第一电力开关M1。补偿电路32包括一积分器IN。输入接脚LX耦接一外部电感L。输出接脚OUT耦接一外部输出电容Cout。误差放大器A1耦接回授接脚FB。电力开关控制接脚LG提供时间信号S1至补偿电路32的积分器IN及第一电力开关M1。第一电力开关M1分别耦接输入接脚LX、电力开关控制接脚LG及接地接脚GND,并根据时间信号S1进行操作。积分器IN分别耦接电力开关控制接脚LG及回授接脚FB。补偿电路32的积分器IN自电力开关控制接脚LG接收时间信号S1并据以产生补偿信号S2至回授接脚FB。至于直流对直流转换电路3的详细电路结构及作动请参照前述实施例的内容,于此不另行赘述。FIG. 10 is another preferred embodiment of the present invention, which is a step-up DC-to-DC conversion circuit. As shown in FIG. 10 , the DC-to-DC conversion circuit 3 includes a DC-to-DC converter 30 and a compensation circuit 32 . The compensation circuit 32 is coupled to the DC-DC converter 30 . The DC-DC converter 30 includes an input pin LX, an output pin OUT, a feedback pin FB, an error amplifier A1, a power switch control pin LG, a ground pin GND, and a first power switch M1. The compensation circuit 32 includes an integrator IN. The input pin LX is coupled to an external inductor L. The output pin OUT is coupled to an external output capacitor Cout. The error amplifier A1 is coupled to the feedback pin FB. The power switch control pin LG provides the time signal S1 to the integrator IN of the compensation circuit 32 and the first power switch M1. The first power switch M1 is respectively coupled to the input pin LX, the power switch control pin LG and the ground pin GND, and operates according to the time signal S1. The integrator IN is respectively coupled to the power switch control pin LG and the feedback pin FB. The integrator IN of the compensation circuit 32 receives the time signal S1 from the power switch control pin LG and generates a compensation signal S2 to the feedback pin FB accordingly. As for the detailed circuit structure and operation of the DC-to-DC conversion circuit 3 , please refer to the contents of the aforementioned embodiments, and will not be repeated here.
根据本发明的另一较佳具体实施例为直流对直流转换器的控制方法。于此实施例中,直流对直流转换器包括恒定导通时间产生单元、电力开关控制接脚及回授接脚,其中电力开关控制接脚与回授接脚之间耦接补偿电路。Another preferred embodiment of the present invention is a control method for a DC-DC converter. In this embodiment, the DC-DC converter includes a constant on-time generating unit, a power switch control pin and a feedback pin, wherein a compensation circuit is coupled between the power switch control pin and the feedback pin.
请参照图11,图11为根据本发明的另一具体实施例的直流对直流转换器的控制方法的流程图。如图11所示,直流对直流转换器的控制方法包括下列步骤。Please refer to FIG. 11 , which is a flowchart of a method for controlling a DC-DC converter according to another embodiment of the present invention. As shown in FIG. 11 , the control method of the DC-DC converter includes the following steps.
步骤S10:通过恒定导通时间产生单元提供第一时间信号至第一电力开关控制接脚;以及Step S10: providing a first time signal to the first power switch control pin through the constant on-time generating unit; and
步骤S12:利用补偿电路处理第一时间信号,以提供补偿信号至回授接脚。补偿信号可以是斜波信号,但不以此为限。Step S12: Utilize the compensation circuit to process the first time signal to provide a compensation signal to the feedback pin. The compensation signal may be a ramp signal, but not limited thereto.
通过以上较佳具体实施例的详述,是希望能更加清楚描述本发明的特征与精神,而并非以上述所公开的较佳具体实施例来对本发明的范畴加以限制。相反地,其目的是希望能涵盖各种改变及具相等性的安排于本发明所欲申请的专利范围的范畴内。Through the above detailed description of the preferred embodiments, it is hoped that the features and spirit of the present invention can be described more clearly, and the scope of the present invention is not limited by the preferred embodiments disclosed above. On the contrary, the intention is to cover various changes and equivalent arrangements within the scope of the claimed patent scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW105129163ATW201813267A (en) | 2016-09-08 | 2016-09-08 | DC-DC converter and controlling method thereof |
| TW105129163 | 2016-09-08 |
| Publication Number | Publication Date |
|---|---|
| CN107809176Atrue CN107809176A (en) | 2018-03-16 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610891686.7APendingCN107809176A (en) | 2016-09-08 | 2016-10-13 | DC-DC converter and control method thereof |
| Country | Link |
|---|---|
| CN (1) | CN107809176A (en) |
| TW (1) | TW201813267A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111224645A (en)* | 2018-11-26 | 2020-06-02 | 力智电子股份有限公司 | DC-DC conversion circuit and time signal generator thereof |
| CN115189688A (en)* | 2021-04-06 | 2022-10-14 | 瑞昱半导体股份有限公司 | signal processing circuit |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111224645A (en)* | 2018-11-26 | 2020-06-02 | 力智电子股份有限公司 | DC-DC conversion circuit and time signal generator thereof |
| CN111224645B (en)* | 2018-11-26 | 2023-10-20 | 力智电子股份有限公司 | DC-DC conversion circuit and time signal generator thereof |
| CN115189688A (en)* | 2021-04-06 | 2022-10-14 | 瑞昱半导体股份有限公司 | signal processing circuit |
| Publication number | Publication date |
|---|---|
| TW201813267A (en) | 2018-04-01 |
| Publication | Publication Date | Title |
|---|---|---|
| CN110545039B (en) | Switching converter, control circuit and control method thereof | |
| TWI622260B (en) | Buck-boost converter with slope compensation, controller and control method thereof | |
| TWI479790B (en) | Switching-mode power supply with ripple mode control and associated methods | |
| TWI483528B (en) | Dc to dc converter circuit and detection circuit and method for detecting zero current crossing within dc to dc converter circuit, and power supply controller, power supply and system thereof | |
| CN107112895B (en) | Switching regulator and control method thereof | |
| CN102377337B (en) | Switching power source apparatus | |
| CN210724566U (en) | Switch converter and control circuit thereof | |
| TWI499183B (en) | Power factor correction circuit of power converter | |
| JP2005110369A (en) | Ripple converter | |
| CN109004812A (en) | Switch converters and its control circuit and control method | |
| TWI591949B (en) | Switching Regulator with Ripple-Based Constant ON-Time (RBCOT) and Control Circuit and Control Method Thereof | |
| CN105790580A (en) | Power source system and inductive current peak control method | |
| CN114301283B (en) | Controller, switching converter and control method for switching converter | |
| CN104158387B (en) | DC-DC controller and operation method of multi-ramp signal thereof | |
| CN104980023B (en) | A kind of output voltage controlling circuit and the power supply with the circuit | |
| CN115706506A (en) | Fast-response switching power supply control circuit and control method thereof | |
| CN105449994B (en) | The control circuit of the power converter | |
| CN107809176A (en) | DC-DC converter and control method thereof | |
| TWI547083B (en) | Control circuit of power converter and related method | |
| CN107707116B (en) | DC-DC power converter circuit and method for controlling output voltage by using same | |
| CN106487222B (en) | Power supply operating in ripple control mode and control method thereof | |
| JP5578245B2 (en) | Constant current output control type switching regulator | |
| TW201318329A (en) | Buck DC-DC converting circuit | |
| TWI565202B (en) | Power converter with both of positive gain and negative gain and dynamic voltage restorer using the same | |
| CN101431292A (en) | Power converter with ripple compensation |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication | Application publication date:20180316 |