技术领域technical field
本发明涉及一种光波导镜片及显示装置。The invention relates to an optical waveguide lens and a display device.
背景技术Background technique
AR(Augmented Reality,增强现实)技术,借助计算机图形技术和可视化技术产生物理世界中不存在的虚拟对象,并将其准确“放置”在物理世界中,呈现给用户一个感知效果更丰富的新环境。在诸多领域,例如工业制造和维修领域、医疗领域、军事领域、娱乐游戏领域、教育领域等,有着巨大的潜在应用价值。在AR产业链中,同时具有透明效果和成像/导光效果的镜片是AR硬件得以实施的最关键部件,其中扩瞳能力是AR镜片的一个重要参数,直接影响人眼观察舒适度及人群的适应度。在当前的工业界或者学术界,已经有多种用于AR显示的镜片方案:利用单个反射棱镜将侧面图像直接投送到单个人眼中,实现方式简单,但是有着疲劳感强、视场角小、无扩瞳效果的缺点。AR (Augmented Reality, Augmented Reality) technology, with the help of computer graphics technology and visualization technology, generates virtual objects that do not exist in the physical world, and accurately "places" them in the physical world, presenting users with a new environment with richer perception effects . In many fields, such as industrial manufacturing and maintenance, medical field, military field, entertainment game field, education field, etc., it has huge potential application value. In the AR industry chain, lenses with both transparency and imaging/light-guiding effects are the most critical components for the implementation of AR hardware. Among them, the ability to expand pupils is an important parameter of AR lenses, which directly affects the comfort of human eyes and the comfort of the crowd. adaptability. In the current industry or academia, there are already a variety of lens solutions for AR display: using a single reflective prism to directly project the side image to a single human eye, the implementation is simple, but it has a strong sense of fatigue and a small field of view , No disadvantage of pupil dilation effect.
发明内容Contents of the invention
本发明的目的在于提供一种光波导镜片、显示装置,能以简单的制造工艺以及较低的成本使图像实现2D的扩展,具有优秀的2D扩瞳能力。The object of the present invention is to provide an optical waveguide lens and a display device, which can realize 2D expansion of images with a simple manufacturing process and relatively low cost, and have excellent 2D pupil expansion capabilities.
为达到上述目的,本发明提供如下技术方案:一种光波导镜片,包括波导衬底、中转元件、至少一个输入元件和至少一个输出元件,所述中转元件、输入元件和输出元件设置于所述波导衬底;光束通过所述输入元件从第一方向上输入,并通过所述中转元件在第二方向上扩展,再通过所述输出元件在第一方向上扩展并输出。In order to achieve the above object, the present invention provides the following technical solution: an optical waveguide lens, comprising a waveguide substrate, a transfer element, at least one input element and at least one output element, the transfer element, input element and output element are arranged on the A waveguide substrate; the light beam is input from a first direction through the input element, expanded in a second direction through the transition element, and then expanded in the first direction through the output element and output.
进一步地,所述光束通过所述输入元件耦合到所述波导衬底中的输入区域中并在第一方向上传播,所述光束传播到所述中转元件后,至少部分所述光束在第二方向上传播并扩展,随后所述光束传播到所述输出元件,且所述光束在第一方向上扩展并从所述波导衬底内输出。Further, the light beam is coupled into the input region in the waveguide substrate through the input element and propagates in the first direction, after the light beam propagates to the transition element, at least part of the light beam travels in the second direction The light beam propagates and expands in a first direction, then the light beam propagates to the output element, and the light beam expands in a first direction and is output from within the waveguide substrate.
进一步地,所述中转元件设置在所述波导衬底的表面上。Further, the transition element is arranged on the surface of the waveguide substrate.
进一步地,所述中转元件设置在所述输入元件和输出元件之间,所述输入元件与输出元件的相对设置。Further, the transfer element is arranged between the input element and the output element, and the input element and the output element are arranged opposite to each other.
进一步地,所述输入元件与输出元件的光路对准以使所述光束在所述输入区域和输出元件中的传输方向和角度一致。Further, the optical paths of the input element and the output element are aligned so that the transmission direction and angle of the light beam in the input area and the output element are consistent.
进一步地,所述中转元件为浮雕光栅。Further, the transfer element is an embossed grating.
进一步地,所述中转元件为衍射式浮雕光栅。Further, the transfer element is a diffraction relief grating.
进一步地,所述衍射式浮雕光栅具有光栅槽和上边缘,所述光栅槽与所述第一方向成40°~60°的夹角θ,所述上边缘与所述第一方向成夹角α,且满足α-θ≤2°。Further, the diffraction relief grating has a grating groove and an upper edge, the grating groove forms an included angle θ of 40°-60° with the first direction, and the upper edge forms an included angle with the first direction α, and satisfy α-θ≤2°.
进一步地,所述波导衬底的折射率大于1.7。Further, the refractive index of the waveguide substrate is greater than 1.7.
进一步地,所述输入元件和输出元件为反射元件。Further, the input element and the output element are reflective elements.
进一步地,所述反射元件包括镀膜反射元件和反射全息光栅。Further, the reflective element includes a coated reflective element and a reflective holographic grating.
进一步地,所述镀膜反射元件包括镀膜反射镜。Further, the coated reflective element includes a coated reflective mirror.
进一步地,所述输入元件和输出元件相对设置在所述波导衬底的内部,所述输入元件为单个的镀膜反射镜,所述输出元件为阵列式镀膜反射镜。Further, the input element and the output element are relatively arranged inside the waveguide substrate, the input element is a single coated mirror, and the output element is an array coated mirror.
进一步地,所述输入元件和输出元件相对设置在所述波导衬底的表面,所述输入元件为第一反射全息光栅,所述输出元件为经过反射率调制的第二反射全息光栅。Further, the input element and the output element are oppositely arranged on the surface of the waveguide substrate, the input element is a first reflective holographic grating, and the output element is a second reflective holographic grating with reflectivity modulation.
为达到上述目的,本发明还提供了一种显示装置,包括所述光波导镜片。To achieve the above object, the present invention also provides a display device, including the optical waveguide lens.
进一步地,所述显示装置还包括光引擎,所述光引擎包括成像元件,所述成像元件具有出瞳,所述输入元件与所述出瞳对接。Further, the display device further includes a light engine, the light engine includes an imaging element, the imaging element has an exit pupil, and the input element is in contact with the exit pupil.
进一步地,所述出瞳的尺寸与所述输入元件的尺寸相匹配。Further, the size of the exit pupil matches the size of the input element.
本发明的有益效果在于:本发明的光波导镜片和显示装置通过在输入元件和输出元件中设置一个中转元件,该中转元件为衍射式浮雕光栅,光束通过输入元件射入至中转元件后,进行两次相消的反射衍射,使其在第二方向上扩展,最后通过输出元件在第一方向上进行扩展,完成输出图像的2D扩展。The beneficial effect of the present invention is that: the optical waveguide lens and the display device of the present invention set a transition element in the input element and the output element, the transition element is a diffraction relief grating, after the light beam enters the transition element through the input element, the Two times of destructive reflection and diffraction make it expand in the second direction, and finally expand in the first direction through the output element to complete the 2D expansion of the output image.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。The above description is only an overview of the technical solutions of the present invention. In order to understand the technical means of the present invention more clearly and implement them according to the contents of the description, the preferred embodiments of the present invention and accompanying drawings are described in detail below.
附图说明Description of drawings
图1为本发明一实施例所示的光波导镜片的结构示意图;Fig. 1 is a schematic structural view of an optical waveguide lens shown in an embodiment of the present invention;
图2为图1所示的光波导镜片的俯视图;Fig. 2 is a top view of the optical waveguide lens shown in Fig. 1;
图3为本发明另一实施例所示的光波导镜片的结构示意图;3 is a schematic structural view of an optical waveguide lens shown in another embodiment of the present invention;
图4为图3所示的光波导镜片的侧视图;Fig. 4 is a side view of the optical waveguide lens shown in Fig. 3;
图5为图3所示的光波导镜片的衍射效率计算图;Fig. 5 is the calculation diagram of the diffraction efficiency of the optical waveguide lens shown in Fig. 3;
图6为本发明再一实施例所示的三种光波导镜片的结构示意图;Fig. 6 is a structural schematic diagram of three optical waveguide lenses shown in yet another embodiment of the present invention;
图7为图6所示的光波导镜片的衍射效率计算图。FIG. 7 is a calculation diagram of the diffraction efficiency of the optical waveguide lens shown in FIG. 6 .
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
请参见图1和图2,本发明一实施例所示的光波导镜片包括波导衬底1、中转元件2、至少一个输入元件3和至少一个输出元件4,在本实施例中,以一个输入元件和一个输出元件来进行说明,诚然,在其他实施例中,输入元件和输出元件的数量可根据实际情况而定。所述中转元件2、输入元件3和输出元件4设置在所述波导衬底1上,中转元件2设置在波导衬底1的表面上,输入元件3和输出元件4相对设置在中转元件2的两侧,在本实施例中,输入元件3和输出元件4都设置在波导衬底1的内部,并且,输入元件3为单个的镀膜反射镜,输出元件4为阵列式镀膜反射镜,诚然,在其他实施例中,输入元件3和输出元件4还可设置在波导衬底1的表面上,并且,输入元件3为第一反射全息光栅,输出元件4为经过反射率调制的第二反射全息光栅;或者,输入元件3和输出元件4还可为其他反射元件。另外,在AR光波导镜片对光束进行传输,并对其出瞳进行扩大时,需要满足的基本原则是:输出的光束和输入的光束需要满足平行条件,这样在整个扩大出瞳的范围内,看到的图像不会产生畸变。因此,光波导镜片在设计时,光线需要满足相位守恒条件,即,输入元件3和输出元件4的光路需要对准。例如,基于反射元件的光波导镜片,输入元件3和输出元件4需要高精度对称放置;或者,基于衍射元件的光波导镜片,输入元件3和输出元件4的周期和取向需要完全一致。1 and 2, an optical waveguide lens shown in an embodiment of the present invention includes a waveguide substrate 1, a transit element 2, at least one input element 3, and at least one output element 4. In this embodiment, an input elements and one output element for illustration, it is true that in other embodiments, the number of input elements and output elements can be determined according to the actual situation. The transfer element 2, the input element 3 and the output element 4 are arranged on the waveguide substrate 1, the transfer element 2 is arranged on the surface of the waveguide substrate 1, and the input element 3 and the output element 4 are relatively arranged on the surface of the transfer element 2. On both sides, in this embodiment, both the input element 3 and the output element 4 are arranged inside the waveguide substrate 1, and the input element 3 is a single coated mirror, and the output element 4 is an array coated mirror. Indeed, In other embodiments, the input element 3 and the output element 4 can also be arranged on the surface of the waveguide substrate 1, and the input element 3 is a first reflective holographic grating, and the output element 4 is a second reflective holographic grating after reflectivity modulation. grating; alternatively, the input element 3 and the output element 4 can also be other reflective elements. In addition, when the AR optical waveguide lens transmits the beam and expands its exit pupil, the basic principle that needs to be met is: the output beam and the input beam must meet the parallel condition, so that within the entire range of the enlarged exit pupil, The image seen will not be distorted. Therefore, when designing the optical waveguide lens, the light needs to satisfy the condition of phase conservation, that is, the optical paths of the input element 3 and the output element 4 need to be aligned. For example, for optical waveguide lenses based on reflective elements, input element 3 and output element 4 need to be placed symmetrically with high precision; or, for optical waveguide lenses based on diffractive elements, the period and orientation of input element 3 and output element 4 need to be exactly the same.
在本实施例中,中转元件2为衍射式浮雕光栅,该衍射式浮雕光栅可以为正光栅,也可以为倾斜光栅,其光栅周期优选为在250nm~350nm之间,以波导衬底1为基准面建立直角坐标系,设定X轴的方向为光束的第一方向,Y轴方向为光束的第二方向,所述X轴、Y轴和Z轴两两垂直。光束以一定的入射角β射入波导衬底1中,光束通过输入元件3入射到所述波导衬底1的输入区域(未图示)中,并沿X轴方向传输到中转元件2,该中转元件2将至少部分光束在波导衬底1的YZ面传播,最后由输出元件4反射并从波导衬底2内射出。由于所述输入元件3与输出元件4的相对设置,且所述输入元件3与输出元件4的光路对准,因而使所述光束在所述输入区域和输出元件4中的传输方向和角度一致。在本实施例中,输入元件3和输出元件4为矩形,中转元件2为不规则的多边形,诚然,在其他实施例中,根据实际需要,输入元件3、输出元件4以及中转元件2还可为其他形状。中转元件2具有光栅槽21和上边22,光栅槽21与Y轴所成的夹角θ为40°~60°,优选为45°,上边与Y轴所成的夹角为α,需满足α-θ≤2°。In this embodiment, the transfer element 2 is a diffractive relief grating. The diffractive relief grating can be a positive grating or an oblique grating. The grating period is preferably between 250nm and 350nm, based on the waveguide substrate 1 A Cartesian coordinate system is established on the surface, and the direction of the X-axis is set as the first direction of the beam, and the direction of the Y-axis is the second direction of the beam, and the X-axis, Y-axis and Z-axis are perpendicular to each other. The light beam enters the waveguide substrate 1 at a certain incident angle β, the light beam enters the input area (not shown) of the waveguide substrate 1 through the input element 3, and is transmitted to the transfer element 2 along the X-axis direction, the The relay element 2 propagates at least part of the light beam on the YZ plane of the waveguide substrate 1 , and finally is reflected by the output element 4 and emitted from the waveguide substrate 2 . Due to the relative arrangement of the input element 3 and the output element 4, and the alignment of the optical paths of the input element 3 and the output element 4, the transmission direction and angle of the light beam in the input area and the output element 4 are consistent . In this embodiment, the input element 3 and the output element 4 are rectangular, and the relay element 2 is an irregular polygon. Of course, in other embodiments, according to actual needs, the input element 3, the output element 4 and the relay element 2 can also be for other shapes. The relay element 2 has a grating groove 21 and an upper side 22, the angle θ between the grating groove 21 and the Y axis is 40°-60°, preferably 45°, and the angle between the upper side and the Y axis is α, which needs to satisfy α -θ≤2°.
在本实施例中,波导衬底2所采用的材料为环硫树脂,诚然,在其他实施例中,该波导衬底2所采用的材料还可为其他有机材料,或者无机材料,如重火石玻璃。该波导衬底2具有相对的上下表面(未标号),其上下表面的平行度优于0.5分,波导衬底2的厚度为0.5mm~1.5mm,优选为1mm;其折射率需大于1.7,优选为1.84;并且,该波导衬底2在可见光波段400nm~700nm之间有着大于90%的透过率。在本实施例中,输入元件的宽度W、波导衬底的厚度H以及光束的最大入射角β需满足W≤2tanβH。同时,由于波导衬底的折射率需大于1.7,根据全反射公式可知所述最大入射角β需大于36°,并且,若所述光束的入射角过大,易使其能量受到损失,经过实验研究,所述最大入射角β优选为40°~70°。In this embodiment, the material used for the waveguide substrate 2 is episulfide resin, indeed, in other embodiments, the material used for the waveguide substrate 2 can also be other organic materials, or inorganic materials, such as heavy flint Glass. The waveguide substrate 2 has opposite upper and lower surfaces (not labeled), the parallelism of the upper and lower surfaces is better than 0.5 minutes, and the thickness of the waveguide substrate 2 is 0.5 mm to 1.5 mm, preferably 1 mm; its refractive index must be greater than 1.7, It is preferably 1.84; moreover, the waveguide substrate 2 has a transmittance greater than 90% in the visible light band between 400nm and 700nm. In this embodiment, the width W of the input element, the thickness H of the waveguide substrate, and the maximum incident angle β of the light beam need to satisfy W≤2tanβH. At the same time, since the refractive index of the waveguide substrate needs to be greater than 1.7, according to the total reflection formula, it can be seen that the maximum incident angle β must be greater than 36°, and if the incident angle of the light beam is too large, its energy will be easily lost. After experiments According to research, the maximum incident angle β is preferably 40°-70°.
在本实施例中,光波导镜片为矩形,诚然,在其他实施例中,该光波导镜片还可以为其他适合人眼观察的形状。In this embodiment, the optical waveguide lens is rectangular, and of course, in other embodiments, the optical waveguide lens can also be in other shapes suitable for observation by human eyes.
本发明还提供了一种显示装置(未图示),该显示装置包括上述的光波导镜片以及光引擎(未图示),光引擎中包括光源(未图示),图像输出元件(未图示)和成像元件(未图示),在成像元件中设置有出瞳(未图示),为保证光束通过输入元件3完全耦合至波导衬底1中,出瞳的位置必须与输入元件3对接,优选为,出瞳的形状和尺寸与输入元件3的形状和尺寸一致。The present invention also provides a display device (not shown), which includes the above-mentioned optical waveguide lens and a light engine (not shown), the light engine includes a light source (not shown), an image output element (not shown) Shown) and imaging element (not shown), the imaging element is provided with an exit pupil (not shown), in order to ensure that the light beam is completely coupled to the waveguide substrate 1 through the input element 3, the position of the exit pupil must be consistent with the input element 3 For docking, preferably, the shape and size of the exit pupil are consistent with the shape and size of the input element 3 .
请参见图3,本发明另一实施例所示的光波导镜片采用长度为4mm的正方形输入元件3’和长度为2cm、宽度为1.5cm的长方形输出元件4’,诚然,在其他实施例中,该输入元件3’以及输出元件4’还可以为其他形状。输入元件3’和输出元件4’都设在波导衬底1’的内部,且输入元件3’为镀银的反射镜,其反射效率>90%,相应的输出元件4’为阵列式的镀银反射镜组成,同时,通过控制镀银厚度,可以控制输入元件3’和输出元件4’的反射效率。输入元件3’倾斜设置在波导衬底1’的内部,其倾斜角度γ为25°,由于输出元件4’须与输入元件3’对称设置,故,输出元件4’同样倾斜设置在波导衬底1’的内部,且其锐角倾斜角度γ同样为25°。如图所示,中转元件2’为不规则形状的衍射式浮雕光栅,其与输入元件3’之间的距离为0.5mm,与输出元件4’之间的距离为0.5mm。该中转元件2’具有左边21’、下边22’、右边23’以及上边24’,其中左边21’的长度为0.8cm,下边22’的长度为1cm,右边23’包括倾斜边(未标号),该倾斜边与Y轴所成夹角δ’为60°,右边23’的总长度为1.5cm,上边24’与Y轴所成夹角α’为45°,且其在Y轴上投影的长度为1.5cm,通过该设计方式,可以光波导镜片的纵向导光效率,降低横向漏光率。在中转元件2’中设置的若干光栅槽25’与上边平行,且与Y轴所成夹角θ’为45°,诚然,在其他实施例中,α’和θ’还可取其他角度,只需满足θ’∈[40°,60°],且α’-θ’≤2°即可。Please refer to Fig. 3, the optical waveguide lens shown in another embodiment of the present invention adopts a square input element 3' with a length of 4 mm and a rectangular output element 4' with a length of 2 cm and a width of 1.5 cm. Indeed, in other embodiments , the input element 3' and the output element 4' can also be in other shapes. Both the input element 3' and the output element 4' are located inside the waveguide substrate 1', and the input element 3' is a silver-plated mirror with a reflection efficiency > 90%, and the corresponding output element 4' is an array-type plated The silver reflector is composed, and at the same time, by controlling the silver plating thickness, the reflection efficiency of the input element 3' and the output element 4' can be controlled. The input element 3' is obliquely arranged inside the waveguide substrate 1', and its inclination angle γ is 25°. Since the output element 4' must be arranged symmetrically with the input element 3', the output element 4' is also obliquely arranged on the waveguide substrate. 1', and its acute inclination angle γ is also 25°. As shown in the figure, the relay element 2' is an irregular diffraction relief grating, the distance between it and the input element 3' is 0.5mm, and the distance between it and the output element 4' is 0.5mm. The transition element 2' has a left side 21', a lower side 22', a right side 23' and an upper side 24', wherein the length of the left side 21' is 0.8 cm, the length of the lower side 22' is 1 cm, and the right side 23' includes an inclined side (not labeled) , the angle δ' formed between the inclined side and the Y axis is 60°, the total length of the right 23' is 1.5cm, and the angle α' formed between the upper side 24' and the Y axis is 45°, and it is projected on the Y axis The length of the lens is 1.5cm. Through this design method, the longitudinal light guide efficiency of the optical waveguide lens can be improved, and the lateral light leakage rate can be reduced. Several grating grooves 25' set in the transfer element 2' are parallel to the upper side, and the angle θ' formed with the Y axis is 45°. It is true that in other embodiments, α' and θ' can also take other angles, only It needs to satisfy θ'∈[40°,60°], and α'-θ'≤2°.
请结合图4,因为只有满足全反射角的特定光束才能在波导衬底1’中传播,且临界全反射角直接决定了整个显示系统的视场角,因此波导衬底1’需要选择高折射率材料。考虑材料成熟性,波导衬底1’折射率优选为1.84。波导衬底1’材料在可见光波段400nm到700nm有良好的透过率,波导衬底1’厚度H选为1mm。当光束进入波导衬底1’后,在输入元件3’处被高效率反射,反射后光束满足全反射角,在XZ面内全反射传输,在光栅的全反射点,光束和光栅进行作用,光束的能量主要集中在负一级衍射和0级光上。由于光栅槽25’和Y轴夹角θ’为45°,反射负一级被易面在YZ面内传输,在全反射传输过程中,再次和光栅进行作用,总的波矢变化接近为0,从而回到原来XZ面传输。传输到输出元件4’的光束,其传播方向和角度和入射图像光达到输入区域后的光束传播方向和角度一致。且由于输入元件3’和输出元件4’对称放置,光束由输出元件4’反射,并从波导衬底1’内输出,因此最终出射光束和入射光束方向一致,只不过通过中转元件2’和输出元件3’的光束在XY面得到了二维的扩展,实现扩瞳的目的。由于光束在中转元件2’上经过两次反射衍射,最终增加的波矢为0,因此光栅周期和取向角可容纳一定误差,容差为10%。Please combine with Figure 4, because only a specific light beam that satisfies the total reflection angle can propagate in the waveguide substrate 1', and the critical total reflection angle directly determines the viewing angle of the entire display system, so the waveguide substrate 1' needs to choose high refraction rate material. Considering the maturity of the material, the refractive index of the waveguide substrate 1' is preferably 1.84. The material of the waveguide substrate 1' has good transmittance in the visible light band from 400nm to 700nm, and the thickness H of the waveguide substrate 1' is selected as 1mm. When the light beam enters the waveguide substrate 1', it is reflected with high efficiency at the input element 3'. After reflection, the light beam meets the total reflection angle, and is transmitted through total reflection in the XZ plane. At the total reflection point of the grating, the light beam and the grating interact. The energy of the beam is mainly concentrated on the negative first-order diffraction and 0-order light. Since the angle θ' between the grating groove 25' and the Y-axis is 45°, the reflective negative one-level passive surface transmits in the YZ plane, and in the process of total reflection transmission, it interacts with the grating again, and the total wave vector change is close to 0. , so as to return to the original XZ plane transmission. The propagation direction and angle of the light beam transmitted to the output element 4' are consistent with the propagation direction and angle of the light beam after the incident image light reaches the input area. And because the input element 3' and the output element 4' are placed symmetrically, the light beam is reflected by the output element 4' and output from the waveguide substrate 1', so the final outgoing light beam is in the same direction as the incident light beam, but passes through the transit element 2' and The light beam of the output element 3' is expanded two-dimensionally on the XY plane to achieve the purpose of pupil expansion. Since the light beam undergoes two reflections and diffractions on the relay element 2', the final added wave vector is 0, so the grating period and orientation angle can accommodate a certain error, and the tolerance is 10%.
请结合图5,在本实施例中,由于输入元件3’和输出元件4’都为镀银反射镜,对可见波长都具有反应,因此,通过设置具有全波段响应特性的中转元件2’即可实现单层光波导镜片的彩色显示。由图可知,反射负一级为折转光束(有效),透射负一级为出射衬底光束(损耗),反射0级为继续在波导衬底1”内传播的光束(有效)。可以看出在RGB谱线位置,该中转元件2”能够有效利用光能,单次折转效率在15%到35%之间,通过多次全反射作用,可以有效将光束在中转元件2”上扩展。RGB色彩的平衡度可以通过初始RGB照明光源的强度来平衡。光栅深度随正x和正y方向,缓慢增加,到传输的末端,反射负一级的效率接近100%。Please refer to Fig. 5. In this embodiment, since both the input element 3' and the output element 4' are silver-plated reflectors, they respond to visible wavelengths. Therefore, by setting the transfer element 2' with full-band response characteristics, that is The color display of the single-layer light waveguide lens can be realized. It can be seen from the figure that the negative level of reflection is the deflected beam (effective), the negative level of transmission is the beam exiting the substrate (loss), and the reflection of level 0 is the beam that continues to propagate in the waveguide substrate 1” (effective). It can be seen In the position of the RGB spectral line, the relay element 2" can effectively utilize light energy, and the single-fold refraction efficiency is between 15% and 35%. Through multiple total reflections, the beam can be effectively expanded on the relay element 2" The balance of RGB color can be balanced by the intensity of the initial RGB lighting source. The depth of the grating increases slowly with the positive x and positive y directions, and at the end of the transmission, the efficiency of the reflection negative level is close to 100%.
请参见图6,本发明再一实施例所示的光波导镜片采用反射全息光栅来作为输入元件3”和输出元件4”,输入元件3”为第一反射全息光栅,输出元件4”为经过反射率调制的第二反射全息光栅,且输入元件3”、输出元件4”和中转元件2”都设置在波导衬底1”的表面上,同时,输入元件3”和输出元件4”的参数与镀银反射镜类似。如图6a所示,通过设置单层的光波导镜片,所述光波导镜片上设有一个所述输入元件3”、中转元件2”和一个所述输出元件4”,该光波导镜片可以实现单层单色显示。由于输入元件3”和输出元件4”都为具有波长敏感性的体光栅,因此需要通过设置多层输入元件3”和输出元件4”的方法来实现彩色显示。如图6b所示,通过设双层的光波导镜片,可以实现双层的RGB(Red,Green,Blue,红绿蓝)彩色显示,其中绿色图像占用一层光波导镜片,红色和蓝色图像共用一层光波导镜片。由于红光与蓝光波长相差较多,而绿光的波长与红光和蓝光都比较接近,若将用于传输绿色图像的输入元件31”和输出元件41”与用于传输蓝色图像和红色图像的输入元件32”和输出元件42”设置在一起,则容易产生串扰,从而影响装置的图像显示性能。如图6c所示,还可以通过通过堆叠三层反射全息光栅(或体全息光栅空间复用)来实现单层的RGB彩色显示。Please refer to Fig. 6, the optical waveguide lens shown in another embodiment of the present invention adopts reflective holographic grating as input element 3" and output element 4", the input element 3" is the first reflective holographic grating, and the output element 4" is the The second reflective holographic grating with reflectivity modulation, and the input element 3", the output element 4" and the transfer element 2" are all arranged on the surface of the waveguide substrate 1", and at the same time, the parameters of the input element 3" and the output element 4" Similar to silver-coated mirrors. As shown in Figure 6a, by setting a single-layer optical waveguide lens, the optical waveguide lens is provided with an input element 3", a transfer element 2" and an output element 4", the optical waveguide lens can realize Single-layer monochrome display. Since both the input element 3" and the output element 4" are volume gratings with wavelength sensitivity, it is necessary to set multi-layer input element 3" and output element 4" to achieve color display. As shown As shown in 6b, double-layer RGB (Red, Green, Blue, red, green, blue) color display can be realized by setting double-layer optical waveguide lenses, wherein the green image occupies one layer of optical waveguide lenses, and the red and blue images share one layer. Layer optical waveguide lens. Since the wavelengths of red light and blue light differ greatly, while the wavelength of green light is relatively close to that of red light and blue light, if the input element 31" and output element 41" used to transmit green images are used to transmit If the input element 32" and the output element 42" of the blue image and the red image are set together, crosstalk is likely to occur, thereby affecting the image display performance of the device. As shown in Figure 6c, it is also possible to stack three layers of reflective holographic gratings ( Or volume holographic grating spatial multiplexing) to achieve single-layer RGB color display.
请结合图7,在单层彩色或者多层彩色显示的情况下,中转元件2”可以根据响应波长进行优化设计。由于输入元件31”、32”和输出元件41”42”都为具有波长敏感性的体光栅,其反射波长可通过体光栅的周期进行调控。由图可知,通过优化中转元2”件的光栅周期,反射负一级在红绿蓝波段可以分别得到衍射效率极大,同时透射负一级效率为0。Please refer to Figure 7, in the case of single-layer color or multi-layer color display, the relay element 2" can be optimized according to the response wavelength. Since the input elements 31", 32" and output elements 41" and 42" are wavelength-sensitive It is a permanent volume grating, and its reflection wavelength can be regulated by the period of the volume grating. It can be seen from the figure that by optimizing the grating period of the relay element 2", the diffraction efficiency of the reflection negative level in the red, green and blue bands can be greatly increased, and at the same time The transmission negative first order efficiency is 0.
综上所述:本发明的光波导镜片和显示装置通过在输入元件和输出元件中设置一个中转元件,该中转元件为衍射式浮雕光栅,光束通过输入元件射入至中转元件后,进行两次相消的反射衍射,使其在第一方向上扩展,最后通过输出元件在第二方向上进行扩展,完成输出图像的2D扩展,具有优秀的扩瞳效果,同时,中转元件的光栅周期和取向在一定容差内仍能保证相位条件的守恒,降低了镜片的加工难度。To sum up: the optical waveguide lens and the display device of the present invention set a transition element in the input element and the output element, the transition element is a diffractive relief grating, after the light beam enters the transition element through the input element, it performs two The destructive reflection diffraction makes it expand in the first direction, and finally expands in the second direction through the output element to complete the 2D expansion of the output image, which has an excellent pupil expansion effect. At the same time, the grating period and orientation of the relay element The conservation of the phase condition can still be guaranteed within a certain tolerance, which reduces the processing difficulty of the lens.
并且,通过设置单片或双片或者三片光波导镜片,该光波导镜片和显示装置能够实现单色显示和/或彩色显示Moreover, by setting a single or double or three optical waveguide lenses, the optical waveguide lens and display device can realize monochrome display and/or color display
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711218213.1ACN107797287A (en) | 2017-11-28 | 2017-11-28 | Fiber waveguide eyeglass and display device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201711218213.1ACN107797287A (en) | 2017-11-28 | 2017-11-28 | Fiber waveguide eyeglass and display device |
| Publication Number | Publication Date |
|---|---|
| CN107797287Atrue CN107797287A (en) | 2018-03-13 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201711218213.1APendingCN107797287A (en) | 2017-11-28 | 2017-11-28 | Fiber waveguide eyeglass and display device |
| Country | Link |
|---|---|
| CN (1) | CN107797287A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019179136A1 (en)* | 2018-03-23 | 2019-09-26 | 京东方科技集团股份有限公司 | Display apparatus and display method |
| GB2573793A (en)* | 2018-05-17 | 2019-11-20 | Wave Optics Ltd | Optical structure for augmented reality display |
| CN110716276A (en)* | 2019-10-21 | 2020-01-21 | 杭州光粒科技有限公司 | Optical waveguide lens, manufacturing method thereof and AR glasses |
| WO2020042636A1 (en)* | 2018-08-29 | 2020-03-05 | 深圳珑璟光电技术有限公司 | Near-eye display device |
| WO2020082216A1 (en)* | 2018-10-22 | 2020-04-30 | 歌尔股份有限公司 | Diffraction waveguide device, display device, and manufacuturing method |
| CN111656258A (en)* | 2018-04-19 | 2020-09-11 | 迪斯帕列斯有限公司 | Diffractive exit pupil expander device for display applications |
| CN111665625A (en)* | 2019-03-07 | 2020-09-15 | 苏州苏大维格科技集团股份有限公司 | Biplate waveguide lens and three-dimensional display device |
| WO2020237684A1 (en)* | 2019-05-31 | 2020-12-03 | 深圳市柔宇科技有限公司 | Optical waveguide lens and near-eye display device |
| CN112415656A (en)* | 2019-08-22 | 2021-02-26 | 苏州苏大维格科技集团股份有限公司 | A holographic diffractive waveguide lens and an augmented reality color display device |
| CN113009694A (en)* | 2021-02-26 | 2021-06-22 | 深圳珑璟光电科技有限公司 | Optical machine module based on color double-layer grating waveguide sheet |
| KR20210110727A (en)* | 2019-05-30 | 2021-09-08 | 애플 인크. | Optical systems with optical expansion couplers |
| CN113678053A (en)* | 2019-01-14 | 2021-11-19 | 伊奎蒂公司 | Digital writing of large diffraction grating patterns |
| CN113721362A (en)* | 2021-09-03 | 2021-11-30 | 深圳市光舟半导体技术有限公司 | Optical pupil expanding device, display device, light beam expanding method and image display method |
| WO2021238758A1 (en)* | 2020-05-25 | 2021-12-02 | 华为技术有限公司 | Display apparatus and near-eye display device |
| WO2022012244A1 (en)* | 2020-07-13 | 2022-01-20 | 宁波舜宇光电信息有限公司 | Near-eye display device, optical structure suitable for near-eye display device, and assembly method for optical structure |
| JP2022544895A (en)* | 2019-08-23 | 2022-10-24 | メタ プラットフォームズ テクノロジーズ, リミテッド ライアビリティ カンパニー | Dispersion Compensation in Volume Bragg Grating-Based Waveguide Displays |
| US11885928B2 (en) | 2019-02-01 | 2024-01-30 | Carl Zeiss Jena Gmbh | Functionalized waveguide for a detector system |
| WO2024024678A1 (en)* | 2022-07-26 | 2024-02-01 | Sony Group Corporation | Light guide plate unit and image display device |
| WO2024078268A1 (en)* | 2022-10-13 | 2024-04-18 | 青岛海信激光显示股份有限公司 | Laser device and projection system |
| US12066664B2 (en) | 2019-02-01 | 2024-08-20 | Carl Zeiss Jena Gmbh | Screen comprising a transparent base body |
| US12130461B2 (en) | 2019-02-01 | 2024-10-29 | Carl Zeiss Jena Gmbh | Functionalized waveguide for a detector system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101460883A (en)* | 2006-06-02 | 2009-06-17 | 诺基亚公司 | Stereoscopic exit pupil expander display |
| CN106338832A (en)* | 2016-11-09 | 2017-01-18 | 苏州苏大维格光电科技股份有限公司 | Single holographic diffraction optical waveguide lens and 3D display device |
| CN106575034A (en)* | 2014-08-03 | 2017-04-19 | 威福光学有限公司 | Exit pupil expanding diffractive optical waveguiding device |
| WO2017083160A1 (en)* | 2015-11-10 | 2017-05-18 | Microsoft Technology Licensing, Llc | Waveguide gratings to improve intensity distributions |
| CN107329261A (en)* | 2017-06-08 | 2017-11-07 | 东南大学 | A kind of head mounted display part based on holographical wave guide |
| CN207502824U (en)* | 2017-11-28 | 2018-06-15 | 苏州苏大维格光电科技股份有限公司 | Optical waveguide eyeglass and display device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101460883A (en)* | 2006-06-02 | 2009-06-17 | 诺基亚公司 | Stereoscopic exit pupil expander display |
| CN106575034A (en)* | 2014-08-03 | 2017-04-19 | 威福光学有限公司 | Exit pupil expanding diffractive optical waveguiding device |
| WO2017083160A1 (en)* | 2015-11-10 | 2017-05-18 | Microsoft Technology Licensing, Llc | Waveguide gratings to improve intensity distributions |
| CN106338832A (en)* | 2016-11-09 | 2017-01-18 | 苏州苏大维格光电科技股份有限公司 | Single holographic diffraction optical waveguide lens and 3D display device |
| CN107329261A (en)* | 2017-06-08 | 2017-11-07 | 东南大学 | A kind of head mounted display part based on holographical wave guide |
| CN207502824U (en)* | 2017-11-28 | 2018-06-15 | 苏州苏大维格光电科技股份有限公司 | Optical waveguide eyeglass and display device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019179136A1 (en)* | 2018-03-23 | 2019-09-26 | 京东方科技集团股份有限公司 | Display apparatus and display method |
| US11016241B2 (en) | 2018-03-23 | 2021-05-25 | Boe Technology Group Co., Ltd. | Display device and display method |
| US12019236B2 (en) | 2018-04-19 | 2024-06-25 | Dispelix Oy | Diffractive exit pupil expander arrangement for display applications |
| CN111656258A (en)* | 2018-04-19 | 2020-09-11 | 迪斯帕列斯有限公司 | Diffractive exit pupil expander device for display applications |
| US11782275B2 (en) | 2018-05-17 | 2023-10-10 | Snap Inc. | Optical structure for augmented reality display |
| GB2573793A (en)* | 2018-05-17 | 2019-11-20 | Wave Optics Ltd | Optical structure for augmented reality display |
| US12216283B2 (en) | 2018-05-17 | 2025-02-04 | Snap Inc. | Optical structure for augmented reality display |
| WO2020042636A1 (en)* | 2018-08-29 | 2020-03-05 | 深圳珑璟光电技术有限公司 | Near-eye display device |
| WO2020082216A1 (en)* | 2018-10-22 | 2020-04-30 | 歌尔股份有限公司 | Diffraction waveguide device, display device, and manufacuturing method |
| CN113678053B (en)* | 2019-01-14 | 2024-05-28 | 伊奎蒂公司 | Digital writing of large diffraction grating patterns |
| US12153217B2 (en) | 2019-01-14 | 2024-11-26 | Vuzix Corporation | Digital writing of large diffraction grating patterns |
| CN113678053A (en)* | 2019-01-14 | 2021-11-19 | 伊奎蒂公司 | Digital writing of large diffraction grating patterns |
| US11885928B2 (en) | 2019-02-01 | 2024-01-30 | Carl Zeiss Jena Gmbh | Functionalized waveguide for a detector system |
| US12066664B2 (en) | 2019-02-01 | 2024-08-20 | Carl Zeiss Jena Gmbh | Screen comprising a transparent base body |
| US12130461B2 (en) | 2019-02-01 | 2024-10-29 | Carl Zeiss Jena Gmbh | Functionalized waveguide for a detector system |
| CN111665625A (en)* | 2019-03-07 | 2020-09-15 | 苏州苏大维格科技集团股份有限公司 | Biplate waveguide lens and three-dimensional display device |
| CN113508321A (en)* | 2019-05-30 | 2021-10-15 | 苹果公司 | Optical system with light expanding coupler |
| JP2022521675A (en)* | 2019-05-30 | 2022-04-12 | アップル インコーポレイテッド | Optical system with optical magnifying coupler |
| KR20210110727A (en)* | 2019-05-30 | 2021-09-08 | 애플 인크. | Optical systems with optical expansion couplers |
| JP7216219B2 (en) | 2019-05-30 | 2023-01-31 | アップル インコーポレイテッド | Optical system with optical magnifying coupler |
| US11994672B2 (en) | 2019-05-30 | 2024-05-28 | Apple Inc. | Optical systems with light-expanding couplers |
| CN113508321B (en)* | 2019-05-30 | 2023-09-08 | 苹果公司 | Optical system with light expansion coupler |
| EP4332664A3 (en)* | 2019-05-30 | 2024-05-15 | Apple Inc. | Optical systems with light-expanding couplers |
| KR102618440B1 (en)* | 2019-05-30 | 2023-12-27 | 애플 인크. | Optical systems with optical expansion couplers |
| WO2020237684A1 (en)* | 2019-05-31 | 2020-12-03 | 深圳市柔宇科技有限公司 | Optical waveguide lens and near-eye display device |
| CN112415656A (en)* | 2019-08-22 | 2021-02-26 | 苏州苏大维格科技集团股份有限公司 | A holographic diffractive waveguide lens and an augmented reality color display device |
| JP2022544895A (en)* | 2019-08-23 | 2022-10-24 | メタ プラットフォームズ テクノロジーズ, リミテッド ライアビリティ カンパニー | Dispersion Compensation in Volume Bragg Grating-Based Waveguide Displays |
| CN110716276A (en)* | 2019-10-21 | 2020-01-21 | 杭州光粒科技有限公司 | Optical waveguide lens, manufacturing method thereof and AR glasses |
| WO2021238758A1 (en)* | 2020-05-25 | 2021-12-02 | 华为技术有限公司 | Display apparatus and near-eye display device |
| WO2022012244A1 (en)* | 2020-07-13 | 2022-01-20 | 宁波舜宇光电信息有限公司 | Near-eye display device, optical structure suitable for near-eye display device, and assembly method for optical structure |
| CN113009694A (en)* | 2021-02-26 | 2021-06-22 | 深圳珑璟光电科技有限公司 | Optical machine module based on color double-layer grating waveguide sheet |
| US11789268B2 (en) | 2021-09-03 | 2023-10-17 | Shenzhen Optiark Semiconductor Technologies Limited | Optical expander device |
| WO2023029360A1 (en)* | 2021-09-03 | 2023-03-09 | 深圳市光舟半导体技术有限公司 | Optical pupil expansion apparatus, display apparatus, beam expansion method, and image display method |
| CN113721362B (en)* | 2021-09-03 | 2023-01-31 | 深圳市光舟半导体技术有限公司 | Optical pupil expanding device, display device, light beam expanding method and image display method |
| CN113721362A (en)* | 2021-09-03 | 2021-11-30 | 深圳市光舟半导体技术有限公司 | Optical pupil expanding device, display device, light beam expanding method and image display method |
| WO2024024678A1 (en)* | 2022-07-26 | 2024-02-01 | Sony Group Corporation | Light guide plate unit and image display device |
| WO2024078268A1 (en)* | 2022-10-13 | 2024-04-18 | 青岛海信激光显示股份有限公司 | Laser device and projection system |
| Publication | Publication Date | Title |
|---|---|---|
| CN107797287A (en) | Fiber waveguide eyeglass and display device | |
| US10852481B2 (en) | Color separation in planar waveguides using wavelength filters | |
| CN110596807B (en) | Waveguide structure, display device, and electronic apparatus | |
| US11960087B2 (en) | Optical device and display apparatus with same images for left and right eyes | |
| JP7390378B2 (en) | Methods and systems for high efficiency eyepieces in augmented reality devices | |
| CN103941398B (en) | See-Through Glasses Display | |
| WO2019010857A1 (en) | Holographic waveguide lens and augmented reality display device | |
| CN114236819A (en) | Waveguide display two-dimensional pupil expanding method based on polarizer holographic grating | |
| CN113568167B (en) | Lens unit and AR apparatus including the same | |
| CN207502824U (en) | Optical waveguide eyeglass and display device | |
| US11536963B2 (en) | Optical device for augmented reality having improved light efficiency | |
| WO2021218454A1 (en) | Lens unit and ar device comprising same | |
| CN116381948A (en) | Optical waveguide and display device | |
| JP7441443B2 (en) | Optical systems and mixed reality devices | |
| US20240264354A1 (en) | Dual diffraction grating in-coupler for reduced waveguide thickness background | |
| US20230400618A1 (en) | Single mode full color waveguide combiner using asymmetric transmissive and reflective diffraction gratings | |
| WO2022157228A1 (en) | Uniform incoupler for conical incidence | |
| WO2021233877A1 (en) | High-uniformity high refractive index material transmissive and reflective diffraction gratings | |
| TWI814557B (en) | Optical module and augmented reality near-eye display including the same | |
| TW202409470A (en) | Light guide display system including freeform volume grating | |
| CN118465901A (en) | Two-dimensional coupling super-structured grating structure, two-dimensional grating waveguide and wearing equipment for near-to-eye display | |
| CN118732139A (en) | Volume holographic grating and single-pupil binocular waveguide | |
| CN119224911A (en) | Near-eye display optical waveguide and near-eye display device |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information | ||
| CB02 | Change of applicant information | Address after:215000 Xinchang Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, No. 68 Applicant after:SUZHOU SUDAVIG SCIENCE AND TECHNOLOGY GROUP Co.,Ltd. Applicant after:Suzhou University Address before:215000 Xinchang Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, No. 68 Applicant before:SVG OPTRONICS, Co.,Ltd. Applicant before:Suzhou University |