技术领域technical field
本发明涉及多点激光冲击成形技术领域,尤其是一种多点激光冲击成形的有限元模拟方法。The invention relates to the technical field of multi-point laser shock forming, in particular to a finite element simulation method of multi-point laser shock forming.
背景技术Background technique
激光冲击成形是一个新型的激光应用领域,凭借快速敏捷的塑性精确成形发展而来的一种全新的零件成形工艺技术,在获取所需形状零件的同时在零件表层还能产生具有一定厚度的残余压应力。激光冲击成形是利用高功率密度、短脉冲的激光器,通过特定的光学元件形成相应的激光光斑光束,该光束透过流动的水约束层照射到吸收层上,吸收层吸收激光能量发生气化产生蒸汽,蒸汽在约束层水的约束情况下,继续吸收激光能量形成等离子体冲击波,由于约束层的作用,等离子体冲击波产生向零件内部传播的应力波,当产生的应力超过材料的动态屈服强度时,零件产生宏观塑性变形。Laser shock forming is a new type of laser application field. It is a brand-new part forming technology developed by virtue of fast and agile plastic and precise forming. While obtaining the required shape parts, it can also produce a certain thickness of residue on the surface of the parts. Compressive stress. Laser shock forming is to use a high-power density, short-pulse laser to form a corresponding laser spot beam through a specific optical element. The beam passes through the flowing water-constrained layer and irradiates the absorbing layer. The absorbing layer absorbs the laser energy and vaporizes to produce Steam, under the confinement of water in the confinement layer, the steam continues to absorb the laser energy to form a plasma shock wave. Due to the effect of the confinement layer, the plasma shock wave produces a stress wave that propagates to the interior of the part. When the generated stress exceeds the dynamic yield strength of the material , the part produces macroscopic plastic deformation.
为了获得所需形状的激光冲击成形零件,需要对激光冲击工艺参数进行优化,然而由于多点激光冲击成形机理的复杂性以及成形中诸多可变因素的影响,使得在优化工艺参数上存在很大困难。如果仅依靠实验数据和操作经验来确定工艺参数,则将花费大量的人力、物力和时间,增加制造成本。在对大型零件的激光冲击成形时,更是如此。通过充分利用材料的成形性能和零件的结构特征,结合有限元模拟计算,来挖掘新的成形工艺方法。因此将有限元模拟引入到多点激光冲击成形中,对激光冲击成形工艺参数进行优化。在实际操作中,由于光斑尺寸很小,成形的零件一般尺寸比较大,激光冲击成形过程中所需光斑的数量成千上万,同时在激光冲击区域网格还需要进行细化,这样有限元模拟的计算量将非常巨大,受到计算成本的限制,现在迫切需要一种新型的多点激光冲击成形有限元模拟方法。In order to obtain the desired shape of the laser shock forming part, it is necessary to optimize the laser shock process parameters. However, due to the complexity of the multi-point laser shock forming mechanism and the influence of many variable factors in the forming process, there is a great deal of difficulty in optimizing the process parameters. difficulty. If we only rely on experimental data and operating experience to determine the process parameters, it will take a lot of manpower, material resources and time, and increase the manufacturing cost. This is especially true when it comes to laser shock forming of large parts. By making full use of the forming properties of materials and the structural characteristics of parts, combined with finite element simulation calculations, new forming process methods are discovered. Therefore, the finite element simulation is introduced into multi-point laser shock forming to optimize the process parameters of laser shock forming. In actual operation, due to the small size of the spot, the size of the formed part is generally relatively large. The number of spots required in the laser shock forming process is tens of thousands. At the same time, the grid in the laser shock area needs to be refined. The calculation amount of the simulation will be very huge, limited by the calculation cost, a new finite element simulation method of multi-point laser shock forming is urgently needed.
发明内容Contents of the invention
本发明所要解决的技术问题在于,提供一种多点激光冲击成形的有限元模拟方法,采用理论与有限元模拟相结合的方法,在较少的时间内确定多点激光冲击成形所需的工艺参数,从而花费较少的成本即可建立起激光冲击成形工艺参数与所需零件形状之间的关系。The technical problem to be solved by the present invention is to provide a finite element simulation method for multi-point laser shock forming, which uses a combination of theory and finite element simulation to determine the process required for multi-point laser shock forming in a relatively short period of time parameters, so that the relationship between the laser shock forming process parameters and the desired part shape can be established at a low cost.
为解决上述技术问题,本发明提供一种多点激光冲击成形的有限元模拟方法,包括如下步骤:In order to solve the above technical problems, the present invention provides a finite element simulation method for multi-point laser shock forming, which includes the following steps:
(1)采用有限元模拟软件ABAQUS首先对具有一定尺寸的特征单元体进行多点激光冲击模拟,获得厚度方向不同位置总的残余应力分布σTOT;(1) Using the finite element simulation software ABAQUS, first perform multi-point laser shock simulation on a characteristic unit body with a certain size, and obtain the total residual stress distribution σTOT at different positions in the thickness direction;
(2)由理论公式σLSP=σTOT-σEQ,得到由激光冲击诱导产生的残余应力σLSP厚度方向分布;σEQ为平衡应力;(2) According to the theoretical formula σLSP = σTOT -σEQ , the residual stress σLSP induced by laser shock is distributed in the thickness direction; σEQ is the equilibrium stress;
(3)在Matlab中对激光冲击诱导产生的残余应力σLSP厚度方向分布数据进行拟合,得到σLSP在厚度方向分布的拟合函数;(3) Fit the residual stress σLSP thickness distribution data induced by laser shock in Matlab to obtain the fitting function of σLSP distribution in the thickness direction;
(4)在ABAQUS中利用用户子程序SIGINI来定义初始应力场,进而对具有实际分析几何尺寸的零件进行隐式分析,最后获得特定激光冲击工艺参数作用下所需的零件形状。(4) In ABAQUS, the user subroutine SIGINI is used to define the initial stress field, and then implicitly analyze the parts with the actual analysis geometric dimensions, and finally obtain the required part shape under the action of specific laser shock process parameters.
优选的,步骤(1)中,多点激光冲击模拟具体包括如下步骤:Preferably, in step (1), the multi-point laser shock simulation specifically includes the following steps:
(11)建立几何模型及定义材料属性;(11) Establish geometric models and define material properties;
(12)设置显式分析步;分析步的时间应确保在每个分析步中动能最后趋近于0;(12) Set an explicit analysis step; the time of the analysis step should ensure that the kinetic energy finally approaches 0 in each analysis step;
(13)施加载荷和划分网格;(13) Applying loads and dividing meshes;
(14)提交分析作业及后处理;完成有限元计算,获得厚度方向不同位置总的残余应力分布σTOT,其中厚度方向为Z轴方向,总的残余应力分布σTOT包括两个方向的残余应力,分别为X轴向的应力σTOT,XX和Y轴向的应力σTOT,YY。(14) Submit the analysis work and post-processing; complete the finite element calculation, and obtain the total residual stress distribution σTOT at different positions in the thickness direction, where the thickness direction is the Z-axis direction, and the total residual stress distribution σTOT includes residual stress in two directions , are the stress σTOT,XX in the X-axis and the stress σTOT,YY in the Y-axis, respectively.
优选的,步骤(11)中,采用如下模型来描述TC4钛合金的动态本构关系;Preferably, in step (11), adopt following model to describe the dynamic constitutive relation of TC4 titanium alloy;
式中:A为屈服强度,B和n反映了材料的应变硬化特征,C反映了应变率对材料性能的影响,εp代表等效塑性应变,代表参考应变速率,代表动态应变率。In the formula: A is the yield strength, B and n reflect the strain hardening characteristics of the material, C reflects the influence of the strain rate on the material properties,εp represents the equivalent plastic strain, represents the reference strain rate, stands for the dynamic strain rate.
优选的,步骤(1)中,具有一定尺寸的特征单元体与实际多点激光冲击成形零件在厚度方向具有相同尺寸,长宽尺寸比实际多点激光冲击成形零件小。Preferably, in step (1), the characteristic unit body with a certain size has the same size as the actual multi-point laser shock forming part in the thickness direction, and the length and width dimensions are smaller than the actual multi-point laser shock forming part.
优选的,步骤(2)中的由激光冲击诱导产生的残余应力σLSP厚度方向分布,其中厚度方向为Z轴方向,σLSP包括两个方向的残余应力,分别为X轴向的应力σLSP,XX和Y轴向的应力σLSP,YY。Preferably, the residual stress σLSP induced by laser shock in step (2) is distributed in the thickness direction, wherein the thickness direction is the Z-axis direction, and σLSP includes residual stress in two directions, which are respectively the stress σLSP in the X-axis, XX and Y axial stress σLSP,YY .
本发明的有益效果为:首先在ABAQUS中对具有较小几何尺寸的特征单元体进行模拟分析,获得实际多点激光冲击成形零件厚度方向的残余应力分布,同时多点激光冲击过程数值模拟只需进行显式分析,对于多光斑的激光冲击强化载荷施加过程,采用Fortran语言编辑的子程序实现不同位置不同时刻的加载,提高了效率,大大减少了计算成本;同时采用Matlab对模拟得到的残余应力数据进一步进行拟合处理,获得残余应力分布函数,提高了数据分析的效率和准确性;最后将由不同的工艺参数(激光功率密度、光斑半径、冲击强化路线、强化次数、搭接率、脉宽)得到的厚度方向残余应力分布数据作为初始应力场,由用户子程序SIGINI进行定义,对具有实际几何大尺寸零件进行隐式分析,获得所需形状的零件,因此该方法具有快速化、低成本、简便易行、计算准确的特点,具有较好工程应用前景。The beneficial effects of the present invention are as follows: firstly, in ABAQUS, the characteristic unit body with smaller geometric size is simulated and analyzed to obtain the residual stress distribution in the thickness direction of the actual multi-point laser shock forming part, and at the same time, the numerical simulation of the multi-point laser shock process only needs to For explicit analysis, for the multi-spot laser shock strengthening load application process, the subroutine edited by Fortran language is used to realize the loading at different positions and at different times, which improves the efficiency and greatly reduces the calculation cost; at the same time, Matlab is used to analyze the simulated residual stress The data is further fitted and processed to obtain the residual stress distribution function, which improves the efficiency and accuracy of data analysis; finally, different process parameters (laser power density, spot radius, impact strengthening route, strengthening times, lap rate, pulse width ) is used as the initial stress field, which is defined by the user subroutine SIGINI, and implicitly analyzes large-size parts with actual geometry to obtain parts with the required shape. Therefore, this method is fast and low-cost. , easy to implement, accurate calculation, and has good engineering application prospects.
附图说明Description of drawings
图1为本发明的方法流程示意图。Fig. 1 is a schematic flow chart of the method of the present invention.
图2为本发明的多激光冲击成形加载区域示意图。Fig. 2 is a schematic diagram of the multi-laser shock forming loading area of the present invention.
图3为本发明的多激光冲击成形得到的最终零件形状示意图。Fig. 3 is a schematic diagram of the final part shape obtained by the multi-laser shock forming of the present invention.
具体实施方式detailed description
如图1所示,一种多点激光冲击成形的有限元模拟方法,包括如下步骤:As shown in Figure 1, a finite element simulation method for multi-point laser shock forming includes the following steps:
(1)采用有限元模拟软件ABAQUS首先对具有一定尺寸的特征单元体进行多点激光冲击模拟,获得厚度方向不同位置总的残余应力分布σTOT;(1) Using the finite element simulation software ABAQUS, first perform multi-point laser shock simulation on a characteristic unit body with a certain size, and obtain the total residual stress distribution σTOT at different positions in the thickness direction;
(2)由理论公式σLSP=σTOT-σEQ,得到由激光冲击诱导产生的残余应力σLSP厚度方向分布;σEQ为平衡应力;(2) According to the theoretical formula σLSP = σTOT -σEQ , the residual stress σLSP induced by laser shock is distributed in the thickness direction; σEQ is the equilibrium stress;
(3)在Matlab中对激光冲击诱导产生的残余应力σLSP厚度方向分布数据进行拟合,得到σLSP在厚度方向分布的拟合函数;(3) Fit the residual stress σLSP thickness distribution data induced by laser shock in Matlab to obtain the fitting function of σLSP distribution in the thickness direction;
(4)在ABAQUS中利用用户子程序SIGINI来定义初始应力场,进而对具有实际分析几何尺寸的零件进行隐式分析,最后获得特定激光冲击工艺参数作用下所需的零件形状。(4) In ABAQUS, the user subroutine SIGINI is used to define the initial stress field, and then implicitly analyze the parts with the actual analysis geometric dimensions, and finally obtain the required part shape under the action of specific laser shock process parameters.
下面结合具体实例对实施多点激光冲击成形的有限元模拟方法作以下详细描述:The following is a detailed description of the finite element simulation method for implementing multi-point laser shock forming in combination with specific examples:
首先是针对多点激光冲击特征单元体进行数值模拟,此过程只需采用Explicit求解器。多点激光冲击过程数值模拟包括以下步骤:The first is to carry out numerical simulation for the multi-point laser shock characteristic unit body, and this process only needs to use the Explicit solver. The numerical simulation of the multi-point laser shock process includes the following steps:
1.1.建立几何模型及定义材料属性:激光冲击强化薄壁件实际尺寸为150mm*30mm*3mm,模拟分析的特征单元体几何尺寸为25mm*25mm*3mm,材料密度为4500kg/m3,泊松比0.34,弹性模量为110GPa。采用Johnson-Cook模型来描述TC4钛合金的动态本构关系,公式1为该模型的表达式。1.1. Establish a geometric model and define material properties: the actual size of the laser shock strengthened thin-walled part is 150mm*30mm*3mm, the geometric size of the characteristic unit body of the simulation analysis is 25mm*25mm*3mm, and the material density is 4500kg/m3 , Poisson The ratio is 0.34, and the modulus of elasticity is 110GPa. The Johnson-Cook model is used to describe the dynamic constitutive relation of TC4 titanium alloy, and Equation 1 is the expression of the model.
式中:A为屈服强度,B和n反映了材料的应变硬化特征,C反映了应变率对材料性能的影响,εp代表等效塑性应变,代表参考应变速率,代表动态应变率;In the formula: A is the yield strength, B and n reflect the strain hardening characteristics of the material, C reflects the effect of the strain rate on the material properties,εp represents the equivalent plastic strain, represents the reference strain rate, represents the dynamic strain rate;
1.2.设置显式分析步:分析步的时间应确保在每个分析步中动能最后趋近于0;1.2. Set an explicit analysis step: the time of the analysis step should ensure that the kinetic energy finally approaches 0 in each analysis step;
1.3.施加载荷和划分网格:加载区域如图2所示,冲击波峰值压力为3.8GPa,采用平顶光束,圆形光班,光斑大小为3mm,脉冲宽度设置为10ns,搭接率为50%,使用Fortran编辑子程序进行多光斑不同位置和不同时刻载荷的施加;在激光冲击强化区域进行网格细化,网格大小为150μmx150μmx75μm;1.3. Applying load and dividing the grid: the loading area is shown in Figure 2, the peak pressure of the shock wave is 3.8GPa, a flat-top beam is used, a circular light class is used, the spot size is 3mm, the pulse width is set to 10ns, and the overlap rate is 50 %, use the Fortran editing subroutine to apply loads at different positions and at different times of the multi-spot; carry out grid refinement in the laser shock strengthening area, and the grid size is 150μmx150μmx75μm;
1.4.提交分析作业及后处理:完成有限元计算,获得厚度方向不同位置总的残余应力分布σTOT,其中厚度方向为Z轴方向,总的残余应力分布σTOT包括两个方向的残余应力,分别为X轴向的应力σTOT,XX和Y轴向的应力σTOT,YY。1.4. Submit analysis work and post-processing: complete the finite element calculation, and obtain the total residual stress distribution σTOT at different positions in the thickness direction, where the thickness direction is the Z-axis direction, and the total residual stress distribution σTOT includes residual stress in two directions, are the stresses σTOT,XX in the X-axis and σTOT,YY in the Y-axis, respectively.
由理论公式σLSP=σTOT-σEQ,得到由激光冲击诱导产生的残余应力σLSP厚度方向分布,其中厚度方向为Z轴方向,σLSP包括两个方向的残余应力,分别为X轴向的应力σLSP,XX和Y轴向的应力σLSP,YY。According to the theoretical formula σLSP = σTOT -σEQ , the distribution of the residual stress σLSP induced by laser shock in the thickness direction is obtained, where the thickness direction is the Z-axis direction, and σLSP includes the residual stress in two directions, which are X-axis The stress σLSP,XX and the stress σLSP,YY in the Y axis.
在Matlab中对激光冲击诱导产生的残余应力σLSP厚度方向分布数据进行拟合,得到不同区域σLSP在厚度方向分布的拟合函数,分别为:In Matlab, the residual stress σLSP thickness distribution data induced by laser shock was fitted, and the fitting functions of the distribution of σLSP in the thickness direction in different regions were obtained, respectively:
当0≤X≤50;100≤X≤150;0≤Z≤1.68时When 0≤X≤50; 100≤X≤150; 0≤Z≤1.68
σLSP,XX=-208.6-376.5*cos(z*2.687)+174.1*sin(z*2.687)σLSP,XX =-208.6-376.5*cos(z*2.687)+174.1*sin(z*2.687)
-36.31*cos(2*z*2.687)+99.75*(2*z*2.687)-36.31*cos(2*z*2.687)+99.75*(2*z*2.687)
σLSP,YY=-188.3-361.4*cos(z*2.68)+149.1*sin(z*2.68)σLSP,YY =-188.3-361.4*cos(z*2.68)+149.1*sin(z*2.68)
-42.68*cos(2*z*2.68)+92.94*(2*z*2.68)-42.68*cos(2*z*2.68)+92.94*(2*z*2.68)
当50≤X≤100;1.68≤Z≤3时When 50≤X≤100; 1.68≤Z≤3
σLSP,XX=-211+196*cos(z*2.627)-372.8*sin(z*2.627)σLSP,XX =-211+196*cos(z*2.627)-372.8*sin(z*2.627)
+27.71*cos(2*z*2.627)+104.6*(2*z*2.627)+27.71*cos(2*z*2.627)+104.6*(2*z*2.627)
σLSP,YY=-189.2+173.5*cos(z*2.634)-355*sin(z*2.634)σLSP, YY =-189.2+173.5*cos(z*2.634)-355*sin(z*2.634)
+31.82*cos(2*z*2.634)+99.06*(2*z*2.634)+31.82*cos(2*z*2.634)+99.06*(2*z*2.634)
在ABAQUS中利用用户子程序SIGINI来定义初始应力场,进而对具有实际分析几何尺寸的零件进行隐式分析,最后获得特定激光冲击工艺参数作用下,所需的零件形状,最终零件形状如图3所示。In ABAQUS, the user subroutine SIGINI is used to define the initial stress field, and then implicitly analyze the parts with actual analysis geometric dimensions, and finally obtain the required part shape under the action of specific laser shock process parameters. The final part shape is shown in Figure 3 shown.
尽管本发明就优选实施方式进行了示意和描述,但本领域的技术人员应当理解,只要不超出本发明的权利要求所限定的范围,可以对本发明进行各种变化和修改。Although the present invention has been illustrated and described in terms of preferred embodiments, those skilled in the art should understand that various changes and modifications can be made to the present invention without departing from the scope defined by the claims of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710721496.5ACN107633115A (en) | 2017-08-22 | 2017-08-22 | The Finite Element Method of multiple spot laser impact forming |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710721496.5ACN107633115A (en) | 2017-08-22 | 2017-08-22 | The Finite Element Method of multiple spot laser impact forming |
| Publication Number | Publication Date |
|---|---|
| CN107633115Atrue CN107633115A (en) | 2018-01-26 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710721496.5APendingCN107633115A (en) | 2017-08-22 | 2017-08-22 | The Finite Element Method of multiple spot laser impact forming |
| Country | Link |
|---|---|
| CN (1) | CN107633115A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111310375A (en)* | 2020-02-14 | 2020-06-19 | 广东工业大学 | Machining method for optimizing shock wave pressure of laser double-sided simultaneous opposite impact titanium alloy blade |
| CN111931408A (en)* | 2020-08-13 | 2020-11-13 | 广东工业大学 | Finite element simulation method for laser spalling process |
| CN113221394A (en)* | 2021-02-08 | 2021-08-06 | 西北工业大学 | Simulation method for laser shot-peening forming of integral wall panel of airplane |
| CN114492113A (en)* | 2022-01-05 | 2022-05-13 | 南京航空航天大学 | A Numerical Simulation and Optimization Method of Impact Damage Based on Laser Mapping Solid Mesh |
| CN116593289A (en)* | 2023-05-15 | 2023-08-15 | 南京航空航天大学 | A method for determining plastic strain of titanium alloy high temperature tensile notched specimen |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5988982A (en)* | 1997-09-09 | 1999-11-23 | Lsp Technologies, Inc. | Altering vibration frequencies of workpieces, such as gas turbine engine blades |
| CN101275177A (en)* | 2007-11-30 | 2008-10-01 | 江苏大学 | A controlled laser shot peening method and device for anti-fatigue manufacturing |
| CN103143593A (en)* | 2011-12-07 | 2013-06-12 | 江苏大学 | Laser shock wave metal plate reshaping method and device |
| CN104866652A (en)* | 2015-04-29 | 2015-08-26 | 西北工业大学 | Finite element simulation method for shot-peening strengthening deformation based on ABAQUS |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5988982A (en)* | 1997-09-09 | 1999-11-23 | Lsp Technologies, Inc. | Altering vibration frequencies of workpieces, such as gas turbine engine blades |
| CN101275177A (en)* | 2007-11-30 | 2008-10-01 | 江苏大学 | A controlled laser shot peening method and device for anti-fatigue manufacturing |
| CN103143593A (en)* | 2011-12-07 | 2013-06-12 | 江苏大学 | Laser shock wave metal plate reshaping method and device |
| CN104866652A (en)* | 2015-04-29 | 2015-08-26 | 西北工业大学 | Finite element simulation method for shot-peening strengthening deformation based on ABAQUS |
| Title |
|---|
| A T DEWALD .ETAL: "Eigenstrain-based model for prediction of laser peeningresidual stresses in arb. Part 1 model description.pdf", 《THE JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN》* |
| P. PAGLIARO .ETAL: "Measuring Multiple Residual-Stress Components using the Contour Method and Multiple Cuts", 《EXPERIMENTAL MECHANICS》* |
| WILLIAM BRAISTED .ECT: "Finite element simulation of laser shock peening", 《INTERNATIONAL JOURNAL OF FATIGUE 21》* |
| 余天宇 等: "平顶光束激光冲击2024铝合金诱导残余应力场的模拟与实验", 《中国激光》* |
| 叶鸿伟: "激光喷丸强化诱导的三维残余应力场分析及其评价", 《中国优秀硕士学位论文全文数据库 信息科技辑》* |
| 戴毅斌 等: "多点激光微冲击成形的数值模拟研究", 《红外与激光工程》* |
| 朱然 等: "三维平顶光束激光冲击2024铝合金的残余应力场数值模拟", 《中国激光》* |
| 杨永红 等 著: "《现代飞机机翼壁板数字化喷丸成形技术》", 31 August 2012, 西北工业大学出版社* |
| 杨涛 等 著: "《末敏末修灵巧弹药技术与效能分析》", 31 October 2016, 国防工业出版社* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111310375A (en)* | 2020-02-14 | 2020-06-19 | 广东工业大学 | Machining method for optimizing shock wave pressure of laser double-sided simultaneous opposite impact titanium alloy blade |
| CN111310375B (en)* | 2020-02-14 | 2023-05-16 | 广东工业大学 | A processing method for optimizing the shock wave pressure of titanium alloy blades on both sides of the laser |
| CN111931408A (en)* | 2020-08-13 | 2020-11-13 | 广东工业大学 | Finite element simulation method for laser spalling process |
| CN113221394A (en)* | 2021-02-08 | 2021-08-06 | 西北工业大学 | Simulation method for laser shot-peening forming of integral wall panel of airplane |
| CN113221394B (en)* | 2021-02-08 | 2023-03-17 | 西北工业大学 | Simulation method for laser shot blasting forming of integral wall panel of airplane |
| CN114492113A (en)* | 2022-01-05 | 2022-05-13 | 南京航空航天大学 | A Numerical Simulation and Optimization Method of Impact Damage Based on Laser Mapping Solid Mesh |
| WO2023131035A1 (en)* | 2022-01-05 | 2023-07-13 | 南京航空航天大学 | Impact damage numerical simulation optimization method based on laser mapping of entity grid |
| CN114492113B (en)* | 2022-01-05 | 2024-06-11 | 南京航空航天大学 | Impact damage numerical simulation optimization method based on laser mapping solid grids |
| CN116593289A (en)* | 2023-05-15 | 2023-08-15 | 南京航空航天大学 | A method for determining plastic strain of titanium alloy high temperature tensile notched specimen |
| Publication | Publication Date | Title |
|---|---|---|
| CN107633115A (en) | The Finite Element Method of multiple spot laser impact forming | |
| CN107217133B (en) | Laser impact intensified Finite Element Method | |
| CN108038266A (en) | A kind of method for numerical simulation of selective laser repair process | |
| CN103246772A (en) | ABAQUS-based finite element simulation method of correcting welding deformation through ultrasonic shot-peening | |
| CN104866652B (en) | A kind of Finite Element Method of the shot peening strengthening deformation based on ABAQUS | |
| CN103246774B (en) | The method of numerical simulation P92 steel-pipe welding heat-affected zone width | |
| CN104978456A (en) | General valve design optimization method | |
| Ni et al. | Numerical and experimental study of bubble impact on a solid wall | |
| CN108984984B (en) | A method for analyzing the effect of ultrasonic impact treatment on residual stress of metal components formed by laser selective melting | |
| Feli et al. | Finite element simulation of welding sequences effect on residual stresses in multipass butt-welded stainless steel pipes | |
| Kumar et al. | Finite element modeling of electromagnetic crimping of Cu-SS tube-to-tube joint along with simulation of destructive testing for strength prediction of the joint | |
| CN107180131B (en) | Method for Determining Deformation Curvature Radius of Thin-Walled Parts Strengthened by Multi-point Laser Shock | |
| Wang et al. | Research on simulation of nanosecond pulsed laser processing for TC4 titanium alloy: A novel model simplification and correction method | |
| Hu et al. | Three-dimensional numerical simulation and experimental study of sheet metal bending by laser peen forming | |
| Wang et al. | Simulation of residual stress and micro-plastic deformation induced by laser shock imprinting on TC4 titanium alloy aero-engine blade | |
| Khurana et al. | Design for additive manufacturing of cellular compliant mechanism using thermal history feedback | |
| CN103279629A (en) | Energy utilization rate numerical calculation method of laser deep melting point welding | |
| Liu et al. | Multi-objective optimization of the subsurface residual stress field of TC4 alloy in machine hammer peening | |
| Abhishek et al. | Numerical investigation of residual stress field induced by array-type laser shock peening | |
| CN113065272A (en) | Method for rapidly realizing numerical simulation of welding deformation | |
| Long et al. | An improved SPH for simulating SLM process with recoil pressure | |
| Lind et al. | Augmented single loop single vector algorithm using nonlinear approximations of constraints in reliability-based design optimization | |
| Hua et al. | Laser shock forming of aluminum sheet: Finite element analysis and experimental study | |
| Monfared | Numerical simulation of welding distortion in thin plates | |
| Tang et al. | Numerical simulation of residual stresses in welding and ultrasonic impact treatment process |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20180126 |