Movatterモバイル変換


[0]ホーム

URL:


CN107619829B - The method that GINS2 gene knockouts are carried out to mescenchymal stem cell using CRISPR-CAS systems - Google Patents

The method that GINS2 gene knockouts are carried out to mescenchymal stem cell using CRISPR-CAS systems
Download PDF

Info

Publication number
CN107619829B
CN107619829BCN201710955489.1ACN201710955489ACN107619829BCN 107619829 BCN107619829 BCN 107619829BCN 201710955489 ACN201710955489 ACN 201710955489ACN 107619829 BCN107619829 BCN 107619829B
Authority
CN
China
Prior art keywords
gins2
stem cell
leu
ala
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710955489.1A
Other languages
Chinese (zh)
Other versions
CN107619829A (en
Inventor
杨骏
刘语方
张立平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Pinggang Biotechnology Co ltd
Original Assignee
Nanjing Ping Gang Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Ping Gang Biotechnology Co LtdfiledCriticalNanjing Ping Gang Biotechnology Co Ltd
Priority to CN201710955489.1ApriorityCriticalpatent/CN107619829B/en
Publication of CN107619829ApublicationCriticalpatent/CN107619829A/en
Application grantedgrantedCritical
Publication of CN107619829BpublicationCriticalpatent/CN107619829B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Landscapes

Abstract

GINS2 gene editings are carried out for mescenchymal stem cell using CRISPR cas9 systems the present invention provides a kind of, more particularly to a kind of foundation of the mescenchymal stem cell cell line of structure GINS2 gene knockouts.Which use new synergistic protein CREnhancer1.0, can significantly improve intracellular CRISPR/Cas9 gene editings efficiency.Mesenchymal stem cell GINS2 provided by the invention, which knocks out plasmid, has preferable genetic stability.

Description

GINS2 gene knockouts are carried out to mescenchymal stem cell using CRISPR-CAS systemsMethod
Technical field
Present invention offer is a kind of to carry out GINS2 gene editings using CRISPR-cas systems for mescenchymal stem cell, specialIt is not to be related to a kind of foundation of the mescenchymal stem cell cell line of structure GINS2 gene knockouts.
Background technology
Mescenchymal stem cell (mesenchymal stem cells, MSC) is a kind of with the of self-replication capacity and multidirectionalThe adult stem cell of differentiation potential, this stem cell can develop into os osseum, cartilage, fat and other kinds of cell.Between fillMatter stem cell can receive transplanting, and they can grow into what type of cell and depend on its position injected.For example, byThe mescenchymal stem cell of injection heart can form new tissue of health etc..
Mescenchymal stem cell (MSCs) is a kind of multipotential stem cell, is derived from the mesoderm and ectoderm of mesoderm growing early stage.MainlyIt is present in connective tissue and organ interstitial, it is the abundantest with content in myeloid tissue, since marrow is its main source,It is referred to as mesenchymal stem cell.Mescenchymal stem cell belongs to non-terminally differentiated cells, its existing interstitial cell, and has endotheliumThe feature of cell and epithelial cell.Mescenchymal stem cell is in vitro under specific inductive condition, can be divided into fat, cartilage, bone,The Various Tissues cell such as muscle, tendon, nerve, liver, cardiac muscle, beta Cell of islet and endothelium, after continuous passage culture and freezen protectiveStill there is multi-lineage potential.Whether self or allogenic mescenchymal stem cell generally will not all cause host'sImmune response.Due to this immunological characteristic that mescenchymal stem cell has, makes it in autoimmune disease and various replaceGeneration treatment etc. has wide potential applicability in clinical practice.The structure and function of histoorgan can be rebuild by autotransplantation,And it can avoid immunological rejection.
The clinical research of mescenchymal stem cell is carried out in many countries, and the U.S. has approved 60 remainder clinical tests, withThe increasingly mature of mescenchymal stem cell and its relevant technologies, China also has approved multinomial clinical test, and it is dry to have entered into mesenchymaThe stage of cell core technical research.The development of stem-cell research work, including the high match cell of country are reinforced energetically in ChinaMore authoritative research institutions including genetic engineering Co., Ltd, cell products National Engineering Research Centre and each place umbilical cordInto clinic is guided investigative technique by blood bank.It is used to treat the Therapy study of more than ten kind refractory diseases for mescenchymal stem cell,Restore hematopoiesis in addition to being used for promoting, is improved other than leukaemia and refractory anemia etc. with candidate stem cell co-transplantation, be additionally operable to the heartCranial vascular disease, hepatic sclerosis, bone and muscle degenerative disease, brain and neurologic defict, senile dementia and lupus erythematosus and hardThe Therapy study of the autoimmune diseases such as skin disease, the partial clinical test result having been achieved with are encouraging.Research so farShow that the mescenchymal stem cell in umbilical cord source is not only able to the ideal substitute as mesenchymal stem cell, and hasThe application potential of bigger.Umbilical cord mesenchymal stem cells express the peculiar molecular marker of a variety of embryonic stem cells, have differentiation potentialGreatly, proliferative capacity is strong, immunogenicity is low, the limitation of convenient material drawing, amoral ethics problem, is easy to the features such as preparation of industrialization,It is therefore possible to the multipotential stem cells as most potential applicability in clinical practice.
GINS2 is one of DNA replication dna complex GINS family members, is located on human chromosome 16q24, mRNA length is1196bp, the protein that coding relative molecular mass is 21000.GINS is a kind of replicative helicase, before being moved to replication forkOpen DNA double chain.Studies have shown that GINS family members play a role in the generation of cancer, as GINS family members are invadingIt is overexpressed in attacking property melanoma, also there is document to show that DNA replication dna GAP-associated protein GAP plays the role of in different cells different, such asIn terms of determining that centerbody replicates quantity and the pathogenetic different phase of disease, GINS has played certain function, especially with dyeThe separation of colour solid is closely related.
And it is seldom in the report of tumour related field about GINS2 at present.In CN106620703 A, for people GINS2The siRNA sequence of gene, rna interference vector and RNA interfere slow virus, further have detected the heavy of GINS2 genesThe silent influence of efficiency, GINS2-siRNA slow virus to tumor cell proliferation ability and level of apoptosis, as a result display use the side RNAiThe proliferation of tumour cell can effectively be inhibited under method after the expression of mediator GINS2 genes and growth and promote its apoptosis, show GINS2Gene is proto-oncogene, can be used as the target spot of oncotherapy, can be used as inhibition by the expression of RNAi mode silence GINS2 genesThe effective means of tumor development.But in this study, it is interfered using SiRNA, the method has knockout not thoroughBottom, the defect for the knockout heredity that cannot stablize.In (Integration of Genomic, Biologic, and ChemicalApproaches to Target p53 Loss and Gain-of-Function in Triple NegativeBreastCancer in), although referring to CRISPR/Cas can be used for MCM2, GINS2, C19orf43, ELOVL2, ARL4D,DNM3OS, FGFR2, IFIT2, MPPED2, B2M, ERRFI1, GLUL CASP4, CPED1, SPTLC2, CMTM6, CFH, CARS2,SUMF1, but an only conception, there is no implement.CRISPR modifications are carried out for different genes to be not simply easy to setMeter, it needs to overcome numerous obstacles, has greatly experiment difficult.
Versatility based on mescenchymal stem cell, the mescenchymal stem cell in order to study knockout GINS2 genes are controlled in cancerFunction in terms for the treatment of, establishing the mescenchymal stem cell cell line of knockout GINS2 genes becomes particularly important.
Invention content
The object of the present invention is to provide a kind of mescenchymal stem cells knocking out GINS2 genes, effectively overcome the prior artThe technological deficiency of heredity cannot be stablized by carrying out interference using siRNA.
To achieve the above object, the present invention provides a kind of target of CRISPR-cas systems, according to the gene sequence of GINS2The specific selectable target site of row, design is following (dashed part indicates PAM motifs):
GINS2-sgRNA1:5’to 3’gcgtctcctccgggacgctgagg
GINS2-sgRNA2:5’to 3’ccgaggagaccgtgaggctctgg
GINS2-sgRNA3:5’to 3’attcctcgccgagaaggagctgg
GINS2-sgRNA4:5’to 3’gtcgcctgctccctccagagtgg
GINS2-sgRNA5:5’to 3’cctgctccctccagagtggatgg
GINS2-sgRNA6:5’to 3’gtggatggatgtagaaaagttgg
GINS2-sgRNA7:5’to 3’aatgcccagcccttactacatgg
GINS2-sgRNA8:5’to 3’tcccgaaggcagacgaaatccgg
GINS2-sgRNA9:5’to 3’ggcagacgaaatccggaccctgg
GINS2-sgRNA10:5’to 3’tgacagctttgtgagacagcagg
GINS2-sgRNA11:5’to 3’cagctttgtgagacagcaggagg
GINS2-sgRNA12:5’to 3’gctggataacttgaccttgatgg
GINS2-sgRNA13:5’to 3’ttgatggagatcaacaccagcgg
GINS2-sgRNA14:5’to 3’ccgcacgaacctccagcctctgg
GINS2-sgRNA15:5’to 3’tctggagagtactcagtctcagg
GINS2-sgRNA16:5’to 3’gtctcaggacttctagagaaagg
GINS2-sgRNA17:5’to 3’gatgcatgaaaaatgtgtgatgg
GINS2-sgRNA18:5’to 3’gaaaaatgtgtgatggtgcaagg
GINS2-sgRNA19:5’to 3’atggtgcaaggaatggattcagg
GINS2-sgRNA20:5’to 3’gtccttaaaacttagctccctgg
GINS2-sgRNA21:5’to 3’tccttaaaacttagctccctggg
GINS2-sgRNA22:5’to 3’tctccctagcagagccacttggg
GINS2-sgRNA23:5’to 3’tgcatggaagccatcacacttgg
GINS2-sgRNA24:5’to 3’gcaggtgttcagtgactggtagg
GINS2-sgRNA25:5’to 3’ctggtaggtgtagatacagcagg
According to these target sites, it is as follows to design specific sgRNA:
GINS2-sgRNA1:5’to 3’gcgtctcctccgggacgctg
GINS2-sgRNA2:5’to 3’ccgaggagaccgtgaggctc
GINS2-sgRNA3:5’to 3’attcctcgccgagaaggagc
GINS2-sgRNA4:5’to 3’gtcgcctgctccctccagag
GINS2-sgRNA5:5’to 3’cctgctccctccagagtgga
GINS2-sgRNA6:5’to 3’gtggatggatgtagaaaagt
GINS2-sgRNA7:5’to 3’aatgcccagcccttactaca
GINS2-sgRNA8:5’to 3’tcccgaaggcagacgaaatc
GINS2-sgRNA9:5’to 3’ggcagacgaaatccggaccc
GINS2-sgRNA10:5’to 3’tgacagctttgtgagacagc
GINS2-sgRNA11:5’to 3’cagctttgtgagacagcagg
GINS2-sgRNA12:5’to 3’gctggataacttgaccttga
GINS2-sgRNA13:5’to 3’ttgatggagatcaacaccag
GINS2-sgRNA14:5’to 3’ccgcacgaacctccagcctc
GINS2-sgRNA15:5’to 3’tctggagagtactcagtctc
GINS2-sgRNA16:5’to 3’gtctcaggacttctagagaa
GINS2-sgRNA17:5’to 3’gatgcatgaaaaatgtgtga
GINS2-sgRNA18:5’to 3’gaaaaatgtgtgatggtgca
GINS2-sgRNA19:5’to 3’atggtgcaaggaatggattc
GINS2-sgRNA20:5’to 3’gtccttaaaacttagctccc
GINS2-sgRNA21:5’to 3’tccttaaaacttagctccct
GINS2-sgRNA22:5’to 3’tctccctagcagagccactt
GINS2-sgRNA23:5’to 3’tgcatggaagccatcacact
GINS2-sgRNA24:5’to 3’gcaggtgttcagtgactggt
GINS2-sgRNA25:5’to 3’ctggtaggtgtagatacagc
In order to improve gene editing efficiency, including synergistic protein is introduced into mescenchymal stem cell, the synergistic proteinCREnhancer1.0 is by SEQ ID NO:Nucleotide sequence coded protein shown in 1.
Further, the synergistic protein is comprising a) or b):
a)SEQ ID NO:The polynucleotide sequence of nucleotide sequence coded protein shown in 1;
b)SEQ ID NO:Amino acid sequence shown in 2.
Further, synergistic protein CREnhancer1.0 genes, the synergistic protein of structure EGFP labels are clonedCREnhancer1.0 Lentivirals pack slow virus, modified stem cell with GP2-293T cells.
Further, a kind of system carrying out gene editing using CRISPR/Cas9 in mescenchymal stem cell is provided,It is characterized in that the system comprises:(1) it is used to express SEQ ID NO:The plasmid of CREnhancer1.0 genes described in 1;(2) plasmid for the expression PX330 that sgRNA is already inserted into (it can express sgRNA and cas9).
Further, sgRNA the and cas9 expression vectors can also be other expression vectors commonly used in the art.
To achieve the above object, the present invention also provides a kind of mescenchymal stem cell cell lines of structure GINS2 gene knockoutsMethod, including editor's positive cell will be obtained in the gene editing system introducing mescenchymal stem cell, it then breeds, harvestThe stem cell.
Specific mescenchymal stem cell is human marrow mesenchymal stem cell (hMSCs) PC015, and purchase is biological from Shanghai Ai YanScience and Technology Ltd..
The present invention provides a kind of mescenchymal stem cell cell system, methods of structure GINS2 gene knockouts, have following excellentPoint:The present invention constructs the cell line of GINS2 gene knockouts in mescenchymal stem cell, screen and optimize obtain it is bestSgRNA knocks out efficient, passage stabilization.
Below by drawings and examples, technical scheme of the present invention will be described in further detail.
Description of the drawings
Fig. 1 PX330 plasmid figures;
SgRNA insertion points figure in Fig. 2 PX330;
25 sgRNA genetic marker efficiency schematic diagrames of Fig. 3;
Specific implementation mode
The technical solution for the method for improving genome editorial efficiency is further illustrated the present invention below by specific embodiment.
The structure of embodiment 1, CRISPR expression vectors
The design of gRNA
According to the gene order of target gene, by the unique optimum design method of applicant, specific screening obtains specificThe form of sgRNA is as follows:
GINS2-sgRNA1:5’to 3’gcgtctcctccgggacgctg
GINS2-sgRNA2:5’to 3’ccgaggagaccgtgaggctc
GINS2-sgRNA3:5’to 3’attcctcgccgagaaggagc
GINS2-sgRNA4:5’to 3’gtcgcctgctccctccagag
GINS2-sgRNA5:5’to 3’cctgctccctccagagtgga
GINS2-sgRNA6:5’to 3’gtggatggatgtagaaaagt
GINS2-sgRNA7:5’to 3’aatgcccagcccttactaca
GINS2-sgRNA8:5’to 3’tcccgaaggcagacgaaatc
GINS2-sgRNA9:5’to 3’ggcagacgaaatccggaccc
GINS2-sgRNA10:5’to 3’tgacagctttgtgagacagc
GINS2-sgRNA11:5’to 3’cagctttgtgagacagcagg
GINS2-sgRNA12:5’to 3’gctggataacttgaccttga
GINS2-sgRNA13:5’to 3’ttgatggagatcaacaccag
GINS2-sgRNA14:5’to 3’ccgcacgaacctccagcctc
GINS2-sgRNA15:5’to 3’tctggagagtactcagtctc
GINS2-sgRNA16:5’to 3’gtctcaggacttctagagaa
GINS2-sgRNA17:5’to 3’gatgcatgaaaaatgtgtga
GINS2-sgRNA18:5’to 3’gaaaaatgtgtgatggtgca
GINS2-sgRNA19:5’to 3’atggtgcaaggaatggattc
GINS2-sgRNA20:5’to 3’gtccttaaaacttagctccc
GINS2-sgRNA21:5’to 3’tccttaaaacttagctccct
GINS2-sgRNA22:5’to 3’tctccctagcagagccactt
GINS2-sgRNA23:5’to 3’tgcatggaagccatcacact
GINS2-sgRNA24:5’to 3’gcaggtgttcagtgactggt
GINS2-sgRNA25:5’to 3’ctggtaggtgtagatacagc
According to above-mentioned gRNA, positive oligonucleotide sequence is obtained plus CACC at its end 5', at the ends 5' of its complementary strandIn addition AAAC obtains reverse oligonucleotide sequence, it is respectively synthesized forward and reverse oligonucleotide sequence, then by the sequence of synthesisDenaturation, annealing, obtain the double chain DNA fragment with BbsI cohesive ends, as follows:It is positive:5’-CACCNNNNNNNNNNNNNNNNNNNN is reversed:NNNNNNNNNNNNNNNNNNNNCAAA-5 ', denaturation, annealing system are:2μlPositive 2 μ l reverse oligonucleotides chain (50 μM) of oligonucleotide chain (50 μM), 46 μ ll*NEBbuffer press following procedure in PCR instrumentOperation:90 DEG C, 4min;70 DEG C, 10min;37 DEG C, 20min;25 DEG C, 20min.
Double chain oligonucleotide chain after annealing contains the cohesive end of BbsI, directly with by the pX330- of BbsI digestionsU6-Chimeric_BB-CBh-hSpCas9 (hereinafter referred to as PX330) (SEQ ID NO.3) carrier is attached, can obtainPX330-gRNA-Cas9 recombinant plasmids.
Digestion system:39.3 μ l, 10*FD buffer of water, 52 3.7 37 DEG C of water-baths of μ l (2 μ g) of μ l, PX330 of μ l, BbsIPlasmid after 2h digestions is directly recycled with plastic recovery kit.
Linked system:0.5 μ l of annealed product, the PX330 plasmids 2 μ l of 2 μ 1,5*ligation buffer of linearisation,T4DNA Ligase (3units/ μ 1), 1 μ l, the connection product that water 4.5 μ l, 16 DEG C of water-bath 2h obtain above-mentioned steps convertJM109 competent cells are coated on the LB tablets of Amp+, and picking positive colony connects bacterium, and 37 DEG C of shaking tables shake bacterium and stay overnight, plasmid extractionKit extracts plasmid and carries out sequencing identification, obtains PX330-gRNA plasmids.
Embodiment 2 clones synergistic protein CREnhancer1.0 and carrier construction
Synergistic protein CREnhancer1.0 genes are cloned, by full genome synthetic method, obtain SEQ ID NO:1 instituteThe gene order stated is respectively 5'- according to upstream and downstream primer sequence using the sequence as templateATGCAGGAGAACCTGGCCCCCTG-3', 5'-CAGGCAGCTCACGCTCCTCTCG-3', primer and full-length genome are by ShanghaiSheng Gong Co., Ltds synthesize.PCR reaction amplification CREnhancer1.0 gene target gene fragments, amplification reaction system are as follows:95DEG C, 40s, 57 DEG C, 1min, 72 DEG C, 1min, 72 DEG C, 10min, recycle 35 times, PCR product by Shanghai Sheng Gong Co., Ltds carry outSequencing, by sequencing, in conjunction with SEQ ID NO:1 exactly matches.Then, the target gene of PCR amplification is connected to empty carrierOn slow virus carrier pHIV-CS-CDF-CG-PRE, recombined lentivirus vector is identified by the methods of PCR amplification, digestion, sequencing.It is built successfully in conjunction with proof recombined lentivirus vector.Then by the recombined lentivirus vector plasmid with helper plasmid together coinfectionHuman marrow mesenchymal stem cell (hMSCs) PC015, the people's bone that can express CREnhancer1.0 genes is packaged by recombinationMarrow interstital stem cell.By PCR screening and identifications, the stem cell of stable transfection is applied for subsequent gene editor.
Applications of 3 CRISPR/Cas9 of embodiment in bone marrow interstital stem cell
CRISPR/Cas9 based on the pBGN plasmids of fusion containing BSD-fsEGFP edits carrier
(1) BSD-fsEGFP fusions:Using Standard PCR, well known BSD genes, 5 '-PCR primer bands are expandedThe sites HindIII, 3 '-PCR primers introduce the sites I-SceI and EcoRI.PCR product (BSD) is inserted into EGFP plasmid (EGFP coresThe sequence that nucleotide sequence is known in the art, such as shown in sequence 1 in CN105647968A and sequence 2) in CMV drivings andThe sites HindIII and EcoRI between the code areas EGFP generate the plasmid pBGN, BSD- of the fusion containing BSD-fsEGFPFsEGFP fusion nucleotides sequences be classified as in CN105647968A sequence 3 and sequence 4 shown in).The fusion is by CMVDriving or PGK driving son drivings, but EGFP is inactive due to frameshit, claims fsEGFP.
5 '-PCR primers are
CTCAAGCTTAACTAAACCATGGCCAAGCCTTTGTCTCAAGAAG,
3 '-PCR primers are
AGAATTCCAGTAGGGATAACAGGGTAATGCCAGGTCCGCCCTCCCACACATAACCAGAG。
(2) plasmid pBGN, expression plasmid cotransfection bone marrow interstital stem cell prepared by embodiment 1 will be tested.With untransfectedThe stem cell of the synergy gene of embodiment 2 as positive control, meanwhile, by the parallel transfectional cell of GFP expression plasmids routinelyTo measure transfection efficiency, the CRISPR/Cas9 gene editing relative efficiencies of transfection efficiency correction acquisition are utilized.
(4) after transfecting 2-3 days, measured by flow cytometry GFP is utilized+The frequency of cell.
(5) the CRISPR/Cas9 gene editing relative efficiencies that specific sgRNA is mediated are calculated.This relative efficiency is by GFP sunProperty cell frequencies and transfection efficiency ratio represent, the results are shown in Figure 3.We have found that the synergistic protein of untransfected embodiment 2Stem cell in GFP positive cell frequencies be significantly lower than transfected embodiment 2 synergistic protein cell.Wherein at 25In sgRNA, only GINS2-sgRNA7 and GINS2-sgRNA23 have preferable gene editing effect.It is prepared using empty carrierNegative control there is no GFP positive cells, wherein P values to be respectively less than 0.01, have statistical significance.
(GINS2-sgRNA23 is used obtained after CRISPR is edited bone marrow interstital stem cell GINS2-sgRNA23Stem cell) and bone marrow interstital stem cell GINS2-sgRNA7 stablize secondary culture, after culture 40 instead of, by being directed toGINS2PCR is sequenced, it is found that the gene is still mutant inactive, maintain the effect that gene is knocked.This absolutely proves, thisThe system that knocks out of invention has preferable stability.
It should be noted last that the above examples are only used to illustrate the technical scheme of the present invention and are not limiting, although ginsengIt is described the invention in detail according to preferred embodiment, it will be understood by those of ordinary skill in the art that, it can be to the present inventionTechnical solution be modified or replaced equivalently, without departing from the spirit of the technical scheme of the invention and range.
Sequence table
<110>The Luoyang bio tech ltd Xuan Zhi
<120>The method that GINS2 gene knockouts are carried out to mescenchymal stem cell using CRISPR-CAS systems
<160> 7
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1578
<212> DNA
<213>Artificial sequence (2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 1
atgcaggaga acctggcccc ctggggcgag ctggccaccg acaacatcat cctgaccgtg 60
cccaccacca acctgcaggc cctgaaggac cccgagcccg tgctgaggct gtgggacgag 120
atgatgcagg ccgtggccag gctggccgcc gagcccttcc ccttcaggag gcccgagagg 180
atcgtggccg acgtgcagat cagcgccggc tggatgcaca gcggctaccc catcatgtgc 240
cacctggaga gcgtgaagga gatcatcaac gagatggaca tgaggagcag gggcgtgtgg 300
ggccccatcc acgagctggg ccacaaccag cagaggcacg gctgggagtt ccccccccac 360
accaccgagg ccacctgcaa cctgtggagc gtgtacgtgc acgagaccgt gctgggcatc 420
cccagggccc aggcccacga ggccctgagc ccccccgaga gggagaggag gatcaaggcc 480
cacctgggca agggcgcccc cctgtgcgac tggaacgtgt ggaccgccct ggagacctac 540
ctgcaggtgc tgagcaggaa cagcggcagg aggggcgtgg acggcaggct ggtgcacacc 600
tgcatcaagg ccggcgccgt gaggtggctg gccaggggcc agaccggcaa ggtgggcgtg 660
aacaccaacc tgaaggacct gtgccccctg ctgagcgagc acggcctgca gtgcagcctg 720
gagccccacc tgaacagcga cctgtgcgtg tactgctgca aggcctacag cgacaaggag 780
gccaagcagc tgcaggagtt cgtggccgag ggcggcggcc tgctgatcgg cggccaggcc 840
tggtggtggg ccagccagaa ccccggccac tgccccctgg ccggcttccc cggcaacatc 900
atcctgaact gcttcggcct gagcatcctg ccccagaccc tgaaggccgg ctgcttcccc 960
gtgcccaccc ccgagatgag gagctaccac ttcaggaagg ccctgagcca gttccaggcc1020
atcctgaacc acgagaacgg caacctggag aagagctgcc tggccaagct gagggtggac1080
ggcgccgcct tcctgcagat ccccgccgag ggcgtgcccg cctacatcag cctgcacagg1140
ctgctgagga agatgctgag gggcagcggc ctgcccgccg tgagcaggga gaaccccgtg1200
gccagcgaca gctacgaggc cgccgtgctg agcctggcca ccggcctggc ccacagcggc1260
accgactgca gccagctggc ccagggcctg ggcacctgga cctgcagcag cagcctgtac1320
cccagcaagc accccatcac cgtggagatc aacggcatca accccggcaa caacgactgc1380
tgggtgagca ccggcctgta cctgctggag ggccagaacg ccgaggtgag cctgagcgag1440
gccgccgcca gcgccggcct gagggtgcag atcggctgcc acaccgacga cctgaccaag1500
gccaggaagc tgagcagggc ccccatggtg acccaccagt gctggatgga caggaccgag1560
aggagcgtga gctgcctg 1578
<210> 2
<211> 526
<212> PRT
<213>Artificial sequence (2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 2
Met Gln Glu Asn Leu Ala Pro Trp Gly Glu Leu Ala Thr Asp Asn Ile
1 5 10 15
Ile Leu Thr Val Pro Thr Thr Asn Leu Gln Ala Leu Lys Asp Pro Glu
20 25 30
Pro Val Leu Arg Leu Trp Asp Glu Met Met Gln Ala Val Ala Arg Leu
35 40 45
Ala Ala Glu Pro Phe Pro Phe Arg Arg Pro Glu Arg Ile Val Ala Asp
50 55 60
Val Gln Ile Ser Ala Gly Trp Met His Ser Gly Tyr Pro Ile Met Cys
65 70 75 80
His Leu Glu Ser Val Lys Glu Ile Ile Asn Glu Met Asp Met Arg Ser
85 90 95
Arg Gly Val Trp Gly Pro Ile His Glu Leu Gly His Asn Gln Gln Arg
100 105 110
His Gly Trp Glu Phe Pro Pro His Thr Thr Glu Ala Thr Cys Asn Leu
115 120 125
Trp Ser Val Tyr Val His Glu Thr Val Leu Gly Ile Pro Arg Ala Gln
130 135 140
Ala His Glu Ala Leu Ser Pro Pro Glu Arg Glu Arg Arg Ile Lys Ala
145 150 155 160
His Leu Gly Lys Gly Ala Pro Leu Cys Asp Trp Asn Val Trp Thr Ala
165 170 175
Leu Glu Thr Tyr Leu Gln Val Leu Ser Arg Asn Ser Gly Arg Arg Gly
180 185 190
Val Asp Gly Arg Leu Val His Thr Cys Ile Lys Ala Gly Ala Val Arg
195 200 205
Trp Leu Ala Arg Gly Gln Thr Gly Lys Val Gly Val Asn Thr Asn Leu
210 215 220
Lys Asp Leu Cys Pro Leu Leu Ser Glu His Gly Leu Gln Cys Ser Leu
225 230 235 240
Glu Pro His Leu Asn Ser Asp Leu Cys Val Tyr Cys Cys Lys Ala Tyr
245 250 255
Ser Asp Lys Glu Ala Lys Gln Leu Gln Glu Phe Val Ala Glu Gly Gly
260 265 270
Gly Leu Leu Ile Gly Gly Gln Ala Trp Trp Trp Ala Ser Gln Asn Pro
275 280 285
Gly His Cys Pro Leu Ala Gly Phe Pro Gly Asn Ile Ile Leu Asn Cys
290 295 300
Phe Gly Leu Ser Ile Leu Pro Gln Thr Leu Lys Ala Gly Cys Phe Pro
305 310 315 320
Val Pro Thr Pro Glu Met Arg Ser Tyr His Phe Arg Lys Ala Leu Ser
325 330 335
Gln Phe Gln Ala Ile Leu Asn His Glu Asn Gly Asn Leu Glu Lys Ser
340 345 350
Cys Leu Ala Lys Leu Arg Val Asp Gly Ala Ala Phe Leu Gln Ile Pro
355 360 365
Ala Glu Gly Val Pro Ala Tyr Ile Ser Leu His Arg Leu Leu Arg Lys
370 375 380
Met Leu Arg Gly Ser Gly Leu Pro Ala Val Ser Arg Glu Asn Pro Val
385 390 395 400
Ala Ser Asp Ser Tyr Glu Ala Ala Val Leu Ser Leu Ala Thr Gly Leu
405 410 415
Ala His Ser Gly Thr Asp Cys Ser Gln Leu Ala Gln Gly Leu Gly Thr
420 425 430
Trp Thr Cys Ser Ser Ser Leu Tyr Pro Ser Lys His Pro Ile Thr Val
435 440 445
Glu Ile Asn Gly Ile Asn Pro Gly Asn Asn Asp Cys Trp Val Ser Thr
450 455 460
Gly Leu Tyr Leu Leu Glu Gly Gln Asn Ala Glu Val Ser Leu Ser Glu
465 470 475 480
Ala Ala Ala Ser Ala Gly Leu Arg Val Gln Ile Gly Cys His Thr Asp
485 490 495
Asp Leu Thr Lys Ala Arg Lys Leu Ser Arg Ala Pro Met Val Thr His
500 505 510
Gln Cys Trp Met Asp Arg Thr Glu Arg Ser Val Ser Cys Leu
515 520 525
<210> 3
<211> 8506
<212> DNA
<213>Artificial sequence (2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 3
gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60
ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120
aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180
atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240
cgaaacaccg ggtcttcgag aagacctgtt ttagagctag aaatagcaag ttaaaataag 300
gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttttttg ttttagagct 360
agaaatagca agttaaaata aggctagtcc gtttttagcg cgtgcgccaa ttctgcagac 420
aaatggctct agaggtaccc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 480
ccaacgaccc ccgcccattg acgtcaatag taacgccaat agggactttc cattgacgtc 540
aatgggtgga gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc 600
caagtacgcc ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tgtgcccagt 660
acatgacctt atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta 720
ccatggtcga ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac 780
ccccaatttt gtatttattt attttttaat tattttgtgc agcgatgggg gcgggggggg 840
ggggggggcg cgcgccaggc ggggcggggc ggggcgaggg gcggggcggg gcgaggcgga 900
gaggtgcggc ggcagccaat cagagcggcg cgctccgaaa gtttcctttt atggcgaggc 960
ggcggcggcg gcggccctat aaaaagcgaa gcgcgcggcg ggcgggagtc gctgcgacgc1020
tgccttcgcc ccgtgccccg ctccgccgcc gcctcgcgcc gcccgccccg gctctgactg1080
accgcgttac tcccacaggt gagcgggcgg gacggccctt ctcctccggg ctgtaattag1140
ctgagcaaga ggtaagggtt taagggatgg ttggttggtg gggtattaat gtttaattac1200
ctggagcacc tgcctgaaat cacttttttt caggttggac cggtgccacc atggactata1260
aggaccacga cggagactac aaggatcatg atattgatta caaagacgat gacgataaga1320
tggccccaaa gaagaagcgg aaggtcggta tccacggagt cccagcagcc gacaagaagt1380
acagcatcgg cctggacatc ggcaccaact ctgtgggctg ggccgtgatc accgacgagt1440
acaaggtgcc cagcaagaaa ttcaaggtgc tgggcaacac cgaccggcac agcatcaaga1500
agaacctgat cggagccctg ctgttcgaca gcggcgaaac agccgaggcc acccggctga1560
agagaaccgc cagaagaaga tacaccagac ggaagaaccg gatctgctat ctgcaagaga1620
tcttcagcaa cgagatggcc aaggtggacg acagcttctt ccacagactg gaagagtcct1680
tcctggtgga agaggataag aagcacgagc ggcaccccat cttcggcaac atcgtggacg1740
aggtggccta ccacgagaag taccccacca tctaccacct gagaaagaaa ctggtggaca1800
gcaccgacaa ggccgacctg cggctgatct atctggccct ggcccacatg atcaagttcc1860
ggggccactt cctgatcgag ggcgacctga accccgacaa cagcgacgtg gacaagctgt1920
tcatccagct ggtgcagacc tacaaccagc tgttcgagga aaaccccatc aacgccagcg1980
gcgtggacgc caaggccatc ctgtctgcca gactgagcaa gagcagacgg ctggaaaatc2040
tgatcgccca gctgcccggc gagaagaaga atggcctgtt cggaaacctg attgccctga2100
gcctgggcct gacccccaac ttcaagagca acttcgacct ggccgaggat gccaaactgc2160
agctgagcaa ggacacctac gacgacgacc tggacaacct gctggcccag atcggcgacc2220
agtacgccga cctgtttctg gccgccaaga acctgtccga cgccatcctg ctgagcgaca2280
tcctgagagt gaacaccgag atcaccaagg cccccctgag cgcctctatg atcaagagat2340
acgacgagca ccaccaggac ctgaccctgc tgaaagctct cgtgcggcag cagctgcctg2400
agaagtacaa agagattttc ttcgaccaga gcaagaacgg ctacgccggc tacattgacg2460
gcggagccag ccaggaagag ttctacaagt tcatcaagcc catcctggaa aagatggacg2520
gcaccgagga actgctcgtg aagctgaaca gagaggacct gctgcggaag cagcggacct2580
tcgacaacgg cagcatcccc caccagatcc acctgggaga gctgcacgcc attctgcggc2640
ggcaggaaga tttttaccca ttcctgaagg acaaccggga aaagatcgag aagatcctga2700
ccttccgcat cccctactac gtgggccctc tggccagggg aaacagcaga ttcgcctgga2760
tgaccagaaa gagcgaggaa accatcaccc cctggaactt cgaggaagtg gtggacaagg2820
gcgcttccgc ccagagcttc atcgagcgga tgaccaactt cgataagaac ctgcccaacg2880
agaaggtgct gcccaagcac agcctgctgt acgagtactt caccgtgtat aacgagctga2940
ccaaagtgaa atacgtgacc gagggaatga gaaagcccgc cttcctgagc ggcgagcaga3000
aaaaggccat cgtggacctg ctgttcaaga ccaaccggaa agtgaccgtg aagcagctga3060
aagaggacta cttcaagaaa atcgagtgct tcgactccgt ggaaatctcc ggcgtggaag3120
atcggttcaa cgcctccctg ggcacatacc acgatctgct gaaaattatc aaggacaagg3180
acttcctgga caatgaggaa aacgaggaca ttctggaaga tatcgtgctg accctgacac3240
tgtttgagga cagagagatg atcgaggaac ggctgaaaac ctatgcccac ctgttcgacg3300
acaaagtgat gaagcagctg aagcggcgga gatacaccgg ctggggcagg ctgagccgga3360
agctgatcaa cggcatccgg gacaagcagt ccggcaagac aatcctggat ttcctgaagt3420
ccgacggctt cgccaacaga aacttcatgc agctgatcca cgacgacagc ctgaccttta3480
aagaggacat ccagaaagcc caggtgtccg gccagggcga tagcctgcac gagcacattg3540
ccaatctggc cggcagcccc gccattaaga agggcatcct gcagacagtg aaggtggtgg3600
acgagctcgt gaaagtgatg ggccggcaca agcccgagaa catcgtgatc gaaatggcca3660
gagagaacca gaccacccag aagggacaga agaacagccg cgagagaatg aagcggatcg3720
aagagggcat caaagagctg ggcagccaga tcctgaaaga acaccccgtg gaaaacaccc3780
agctgcagaa cgagaagctg tacctgtact acctgcagaa tgggcgggat atgtacgtgg3840
accaggaact ggacatcaac cggctgtccg actacgatgt ggaccatatc gtgcctcaga3900
gctttctgaa ggacgactcc atcgacaaca aggtgctgac cagaagcgac aagaaccggg3960
gcaagagcga caacgtgccc tccgaagagg tcgtgaagaa gatgaagaac tactggcggc4020
agctgctgaa cgccaagctg attacccaga gaaagttcga caatctgacc aaggccgaga4080
gaggcggcct gagcgaactg gataaggccg gcttcatcaa gagacagctg gtggaaaccc4140
ggcagatcac aaagcacgtg gcacagatcc tggactcccg gatgaacact aagtacgacg4200
agaatgacaa gctgatccgg gaagtgaaag tgatcaccct gaagtccaag ctggtgtccg4260
atttccggaa ggatttccag ttttacaaag tgcgcgagat caacaactac caccacgccc4320
acgacgccta cctgaacgcc gtcgtgggaa ccgccctgat caaaaagtac cctaagctgg4380
aaagcgagtt cgtgtacggc gactacaagg tgtacgacgt gcggaagatg atcgccaaga4440
gcgagcagga aatcggcaag gctaccgcca agtacttctt ctacagcaac atcatgaact4500
ttttcaagac cgagattacc ctggccaacg gcgagatccg gaagcggcct ctgatcgaga4560
caaacggcga aaccggggag atcgtgtggg ataagggccg ggattttgcc accgtgcgga4620
aagtgctgag catgccccaa gtgaatatcg tgaaaaagac cgaggtgcag acaggcggct4680
tcagcaaaga gtctatcctg cccaagagga acagcgataa gctgatcgcc agaaagaagg4740
actgggaccc taagaagtac ggcggcttcg acagccccac cgtggcctat tctgtgctgg4800
tggtggccaa agtggaaaag ggcaagtcca agaaactgaa gagtgtgaaa gagctgctgg4860
ggatcaccat catggaaaga agcagcttcg agaagaatcc catcgacttt ctggaagcca4920
agggctacaa agaagtgaaa aaggacctga tcatcaagct gcctaagtac tccctgttcg4980
agctggaaaa cggccggaag agaatgctgg cctctgccgg cgaactgcag aagggaaacg5040
aactggccct gccctccaaa tatgtgaact tcctgtacct ggccagccac tatgagaagc5100
tgaagggctc ccccgaggat aatgagcaga aacagctgtt tgtggaacag cacaagcact5160
acctggacga gatcatcgag cagatcagcg agttctccaa gagagtgatc ctggccgacg5220
ctaatctgga caaagtgctg tccgcctaca acaagcaccg ggataagccc atcagagagc5280
aggccgagaa tatcatccac ctgtttaccc tgaccaatct gggagcccct gccgccttca5340
agtactttga caccaccatc gaccggaaga ggtacaccag caccaaagag gtgctggacg5400
ccaccctgat ccaccagagc atcaccggcc tgtacgagac acggatcgac ctgtctcagc5460
tgggaggcga caaaaggccg gcggccacga aaaaggccgg ccaggcaaaa aagaaaaagt5520
aagaattcct agagctcgct gatcagcctc gactgtgcct tctagttgcc agccatctgt5580
tgtttgcccc tcccccgtgc cttccttgac cctggaaggt gccactccca ctgtcctttc5640
ctaataaaat gaggaaattg catcgcattg tctgagtagg tgtcattcta ttctgggggg5700
tggggtgggg caggacagca agggggagga ttgggaagag aatagcaggc atgctgggga5760
gcggccgcag gaacccctag tgatggagtt ggccactccc tctctgcgcg ctcgctcgct5820
cactgaggcc gggcgaccaa aggtcgcccg acgcccgggc tttgcccggg cggcctcagt5880
gagcgagcga gcgcgcagct gcctgcaggg gcgcctgatg cggtattttc tccttacgca5940
tctgtgcggt atttcacacc gcatacgtca aagcaaccat agtacgcgcc ctgtagcggc6000
gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact tgccagcgcc6060
ctagcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc cggctttccc6120
cgtcaagctc taaatcgggg gctcccttta gggttccgat ttagtgcttt acggcacctc6180
gaccccaaaa aacttgattt gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg6240
gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact6300
ggaacaacac tcaaccctat ctcgggctat tcttttgatt tataagggat tttgccgatt6360
tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa ttttaacaaa6420
atattaacgt ttacaatttt atggtgcact ctcagtacaa tctgctctga tgccgcatag6480
ttaagccagc cccgacaccc gccaacaccc gctgacgcgc cctgacgggc ttgtctgctc6540
ccggcatccg cttacagaca agctgtgacc gtctccggga gctgcatgtg tcagaggttt6600
tcaccgtcat caccgaaacg cgcgagacga aagggcctcg tgatacgcct atttttatag6660
gttaatgtca tgataataat ggtttcttag acgtcaggtg gcacttttcg gggaaatgtg6720
cgcggaaccc ctatttgttt atttttctaa atacattcaa atatgtatcc gctcatgaga6780
caataaccct gataaatgct tcaataatat tgaaaaagga agagtatgag tattcaacat6840
ttccgtgtcg cccttattcc cttttttgcg gcattttgcc ttcctgtttt tgctcaccca6900
gaaacgctgg tgaaagtaaa agatgctgaa gatcagttgg gtgcacgagt gggttacatc6960
gaactggatc tcaacagcgg taagatcctt gagagttttc gccccgaaga acgttttcca7020
atgatgagca cttttaaagt tctgctatgt ggcgcggtat tatcccgtat tgacgccggg7080
caagagcaac tcggtcgccg catacactat tctcagaatg acttggttga gtactcacca7140
gtcacagaaa agcatcttac ggatggcatg acagtaagag aattatgcag tgctgccata7200
accatgagtg ataacactgc ggccaactta cttctgacaa cgatcggagg accgaaggag7260
ctaaccgctt ttttgcacaa catgggggat catgtaactc gccttgatcg ttgggaaccg7320
gagctgaatg aagccatacc aaacgacgag cgtgacacca cgatgcctgt agcaatggca7380
acaacgttgc gcaaactatt aactggcgaa ctacttactc tagcttcccg gcaacaatta7440
atagactgga tggaggcgga taaagttgca ggaccacttc tgcgctcggc ccttccggct7500
ggctggttta ttgctgataa atctggagcc ggtgagcgtg gaagccgcgg tatcattgca7560
gcactggggc cagatggtaa gccctcccgt atcgtagtta tctacacgac ggggagtcag7620
gcaactatgg atgaacgaaa tagacagatc gctgagatag gtgcctcact gattaagcat7680
tggtaactgt cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt7740
taatttaaaa ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa7800
cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga7860
gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg7920
gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc7980
agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag8040
aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc8100
agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg8160
cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac8220
accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga8280
aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt8340
ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag8400
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg8460
gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgt 8506
<210> 4
<211> 23
<212> DNA
<213>Artificial sequence (2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 4
atgcaggaga acctggcccc ctg 23
<210> 5
<211> 22
<212> DNA
<213>Artificial sequence (2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 5
caggcagctc acgctcctct cg 22
<210> 6
<211> 20
<212> DNA
<213>Artificial sequence (2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 6
aatgcccagc ccttactaca 20
<210> 7
<211> 20
<212> DNA
<213>Artificial sequence (2 Ambystoma laterale x Ambystoma jeffersonianum)
<400> 7
tgcatggaag ccatcacact 20

Claims (4)

CN201710955489.1A2017-10-142017-10-14The method that GINS2 gene knockouts are carried out to mescenchymal stem cell using CRISPR-CAS systemsActiveCN107619829B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201710955489.1ACN107619829B (en)2017-10-142017-10-14The method that GINS2 gene knockouts are carried out to mescenchymal stem cell using CRISPR-CAS systems

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201710955489.1ACN107619829B (en)2017-10-142017-10-14The method that GINS2 gene knockouts are carried out to mescenchymal stem cell using CRISPR-CAS systems

Publications (2)

Publication NumberPublication Date
CN107619829A CN107619829A (en)2018-01-23
CN107619829Btrue CN107619829B (en)2018-08-24

Family

ID=61091912

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201710955489.1AActiveCN107619829B (en)2017-10-142017-10-14The method that GINS2 gene knockouts are carried out to mescenchymal stem cell using CRISPR-CAS systems

Country Status (1)

CountryLink
CN (1)CN107619829B (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP3613852A3 (en)2011-07-222020-04-22President and Fellows of Harvard CollegeEvaluation and improvement of nuclease cleavage specificity
US20150044192A1 (en)2013-08-092015-02-12President And Fellows Of Harvard CollegeMethods for identifying a target site of a cas9 nuclease
US9359599B2 (en)2013-08-222016-06-07President And Fellows Of Harvard CollegeEngineered transcription activator-like effector (TALE) domains and uses thereof
US9322037B2 (en)2013-09-062016-04-26President And Fellows Of Harvard CollegeCas9-FokI fusion proteins and uses thereof
US9526784B2 (en)2013-09-062016-12-27President And Fellows Of Harvard CollegeDelivery system for functional nucleases
US9228207B2 (en)2013-09-062016-01-05President And Fellows Of Harvard CollegeSwitchable gRNAs comprising aptamers
US11053481B2 (en)2013-12-122021-07-06President And Fellows Of Harvard CollegeFusions of Cas9 domains and nucleic acid-editing domains
EP3177718B1 (en)2014-07-302022-03-16President and Fellows of Harvard CollegeCas9 proteins including ligand-dependent inteins
SG10202104041PA (en)2015-10-232021-06-29Harvard CollegeNucleobase editors and uses thereof
WO2018027078A1 (en)2016-08-032018-02-08President And Fellows Of Harard CollegeAdenosine nucleobase editors and uses thereof
WO2018031683A1 (en)2016-08-092018-02-15President And Fellows Of Harvard CollegeProgrammable cas9-recombinase fusion proteins and uses thereof
WO2018039438A1 (en)2016-08-242018-03-01President And Fellows Of Harvard CollegeIncorporation of unnatural amino acids into proteins using base editing
EP3526320A1 (en)2016-10-142019-08-21President and Fellows of Harvard CollegeAav delivery of nucleobase editors
US10745677B2 (en)2016-12-232020-08-18President And Fellows Of Harvard CollegeEditing of CCR5 receptor gene to protect against HIV infection
EP3592853A1 (en)2017-03-092020-01-15President and Fellows of Harvard CollegeSuppression of pain by gene editing
EP3592381A1 (en)2017-03-092020-01-15President and Fellows of Harvard CollegeCancer vaccine
JP2020510439A (en)2017-03-102020-04-09プレジデント アンド フェローズ オブ ハーバード カレッジ Base-editing factor from cytosine to guanine
WO2018176009A1 (en)2017-03-232018-09-27President And Fellows Of Harvard CollegeNucleobase editors comprising nucleic acid programmable dna binding proteins
WO2018209320A1 (en)2017-05-122018-11-15President And Fellows Of Harvard CollegeAptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
CN111801345A (en)2017-07-282020-10-20哈佛大学的校长及成员们Methods and compositions using an evolved base editor for Phage Assisted Continuous Evolution (PACE)
WO2019139645A2 (en)2017-08-302019-07-18President And Fellows Of Harvard CollegeHigh efficiency base editors comprising gam
CA3082251A1 (en)2017-10-162019-04-25The Broad Institute, Inc.Uses of adenosine base editors
EP3724214A4 (en)2017-12-152021-09-01The Broad Institute Inc. SYSTEMS AND PROCEDURES FOR PREDICTING REPAIR RESULTS IN GENE ENGINEERING
US12157760B2 (en)2018-05-232024-12-03The Broad Institute, Inc.Base editors and uses thereof
CN108707604B (en)*2018-05-302019-07-23江西汉氏联合干细胞科技有限公司CNE10 gene knockout is carried out using CRISPR-Cas system in epidermal stem cells
CN108715850B (en)*2018-06-052020-10-23艾一生命科技(广东)有限公司GING2 gene knockout in epidermal stem cells by using CRISPR-Cas system
CN108893473B (en)*2018-07-252020-06-19浙江玉安康瑞生物科技有限公司Rab23 gene knockout in epidermal stem cells by using CRISPR-Cas system
US12281338B2 (en)2018-10-292025-04-22The Broad Institute, Inc.Nucleobase editors comprising GeoCas9 and uses thereof
US12351837B2 (en)2019-01-232025-07-08The Broad Institute, Inc.Supernegatively charged proteins and uses thereof
CN109777780A (en)*2019-01-312019-05-21上海拉德钫斯生物科技有限公司A method of the mescenchymal stem cell cell line of building RBM17 gene knockout
WO2020191246A1 (en)2019-03-192020-09-24The Broad Institute, Inc.Methods and compositions for editing nucleotide sequences
WO2021072328A1 (en)2019-10-102021-04-15The Broad Institute, Inc.Methods and compositions for prime editing rna
AU2021267940A1 (en)2020-05-082022-12-08President And Fellows Of Harvard CollegeMethods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN111733160A (en)*2020-06-302020-10-02沈阳万类生物科技有限公司Method for performing CKIP-1 gene knockout on mesenchymal stem cells by using CRISPR-Cas9 system

Also Published As

Publication numberPublication date
CN107619829A (en)2018-01-23

Similar Documents

PublicationPublication DateTitle
CN107619829B (en)The method that GINS2 gene knockouts are carried out to mescenchymal stem cell using CRISPR-CAS systems
CN107760684B (en)The method that RBM17 gene knockouts are carried out to mescenchymal stem cell using CRISPR-CAS systems
CN107586779B (en)The method that CASP3 gene knockouts are carried out to mescenchymal stem cell using CRISPR-CAS systems
CN104498493B (en)The method of CRISPR/Cas9 specific knockdown hepatitis type B viruses and the gRNA for selectively targeted HBV DNA
CN109055544B (en)Molecular marker of atherosclerosis and application thereof
CN109182503B (en)Molecular marker of atherosclerosis and application thereof
CN111235080A (en) Gene recombinant Escherichia coli and production method of serotonin
CN110964725A (en) sgRNA that specifically recognizes porcine KIT gene and its coding DNA, kit and application
CN110564775A (en)Method for improving genome site-specific modification efficiency
CN110499336B (en)Method for improving genome site-directed modification efficiency by using small molecule compound
CN107988250B (en)Construction method of universal chlamydomonas foreign gene expression vector
CN110241098B (en) Truncated high specificity variant of CRISPR nuclease SpCas9 of Streptococcus pyogenes and its application
DK2571998T3 (en) METHOD AND KIT FOR IDENTIFICATION OF CHEMICAL COMPOUNDS MADE TO INHIBIT HUMAN PAPILLOMA VIRUS REPLICATION
CN111518221B (en)Recombinant IL-15 fusion protein and application thereof
CN109136228B (en)Application of long-chain non-coding RNA-NKILA in bone tissue injury repair
CN110272881B (en) Endonuclease SpCas9 Highly Specific Truncating Variant TSpCas9-V1/V2 and Its Application
CN114774468B (en)Allele molecular marker and anti-blue-ear-disease pig group construction method
CN112662697B (en) A kind of Chlamydomonas reinhardtii TCTN1 expression plasmid and its construction method and application
CN106636023B (en)A method of enhancing zwf gene promoter expression intensity
KR101445903B1 (en)Dna plasmids having improved expression and stability
CN109136227B (en)Application of long-chain non-coding RNA-HOXA-AS2 in bone tissue injury repair
CN111909914A (en)High PAM compatibility truncated variant txCas9 of endonuclease SpCas9 and application thereof
CN110527698A (en)A method of genome fixed point insertion efficiency is improved using small molecule compound
CN100355889C (en)Design constructing method of gene engineering recombined dyad bone shape protein
CN106520818B (en) A method for rapidly complementing the deleted gene of Riemerella anatipestifer

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
TA01Transfer of patent application right
TA01Transfer of patent application right

Effective date of registration:20180713

Address after:510000 Guangdong science and Technology Industrial Development Zone, Guangzhou, 231 and 233 podium B1B2 Building 1, two, three, four

Applicant after:BOAO ZONGHENG NETWORK TECHNOLOGY Co.,Ltd.

Address before:471000 Luoyang economic and Technological Development Zone, Henan Province, south of Qianmen Street, south of Qianjiang street, 1 units 1-1404 of Yuejiang Road, 1 buildings.

Applicant before:LUOYANG XUANZHI BIOLOGICAL TECHNOLOGY Co.,Ltd.

Effective date of registration:20180713

Address after:No. 14, Qinhuai District, Qinhuai District, Nanjing, Jiangsu

Applicant after:NANJING PINGGANG BIOTECHNOLOGY Co.,Ltd.

Address before:510000 Guangdong science and Technology Industrial Development Zone, Guangzhou, 231 and 233 podium B1B2 Building 1, two, three, four

Applicant before:BOAO ZONGHENG NETWORK TECHNOLOGY Co.,Ltd.

GR01Patent grant
GR01Patent grant
PE01Entry into force of the registration of the contract for pledge of patent right
PE01Entry into force of the registration of the contract for pledge of patent right

Denomination of invention:Method for performing GINS2 gene knockout on mesenchymal stem cells by using CRISPR-CAS system

Effective date of registration:20190628

Granted publication date:20180824

Pledgee:Jiangsu credit Company Limited by Guarantee

Pledgor:NANJING PINGGANG BIOTECHNOLOGY Co.,Ltd.

Registration number:2019320000311

PC01Cancellation of the registration of the contract for pledge of patent right
PC01Cancellation of the registration of the contract for pledge of patent right

Date of cancellation:20210728

Granted publication date:20180824

Pledgee:Jiangsu credit Company Limited by Guarantee

Pledgor:NANJING PINGGANG BIOTECHNOLOGY Co.,Ltd.

Registration number:2019320000311

PE01Entry into force of the registration of the contract for pledge of patent right
PE01Entry into force of the registration of the contract for pledge of patent right

Denomination of invention:Gins2 gene knockout of mesenchymal stem cells using crispr-cas system

Effective date of registration:20210729

Granted publication date:20180824

Pledgee:Jiangsu Credit Financing Guarantee Co.,Ltd.

Pledgor:NANJING PINGGANG BIOTECHNOLOGY Co.,Ltd.

Registration number:Y2021980007020

PC01Cancellation of the registration of the contract for pledge of patent right
PC01Cancellation of the registration of the contract for pledge of patent right

Date of cancellation:20220725

Granted publication date:20180824

Pledgee:Jiangsu Credit Financing Guarantee Co.,Ltd.

Pledgor:NANJING PINGGANG BIOTECHNOLOGY Co.,Ltd.

Registration number:Y2021980007020


[8]ページ先頭

©2009-2025 Movatter.jp