Movatterモバイル変換


[0]ホーム

URL:


CN107613849A - Systems and methods for damage assessment - Google Patents

Systems and methods for damage assessment
Download PDF

Info

Publication number
CN107613849A
CN107613849ACN201580067812.0ACN201580067812ACN107613849ACN 107613849 ACN107613849 ACN 107613849ACN 201580067812 ACN201580067812 ACN 201580067812ACN 107613849 ACN107613849 ACN 107613849A
Authority
CN
China
Prior art keywords
tissue
energy
ablation
catheter
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580067812.0A
Other languages
Chinese (zh)
Other versions
CN107613849B (en
Inventor
O·阿米拉纳
K·C·阿姆斯特朗
J·H·博文
C·拉森
M·A·米卡德尔
T·J·拉斯布里
N·萨瓦茨彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
460 Medical Co Ltd
George Washington University
Original Assignee
George Washington University
LUXCATH LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by George Washington University, LUXCATH LLCfiledCriticalGeorge Washington University
Priority to CN202110395116.XApriorityCriticalpatent/CN113143440B/en
Publication of CN107613849ApublicationCriticalpatent/CN107613849A/en
Application grantedgrantedCritical
Publication of CN107613849BpublicationCriticalpatent/CN107613849B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Ablation visualization and monitoring systems and methods are provided. In some embodiments, such a method includes applying ablative energy to tissue to form a lesion in the tissue; illuminating the tissue with light to excite NADH in the tissue, wherein the tissue is illuminated in a radial direction, an axial direction, or both; monitoring the level of NADH fluorescence in the illuminated tissue to determine when the level of NADH fluorescence decreases from a basal level at the start of ablation to a predetermined lower level; and, stopping ablation of the tissue when the level of NADH fluorescence reaches a predetermined lower level.

Description

Translated fromChinese
用于损伤评估的系统和方法Systems and methods for damage assessment

相关申请related application

本申请要求于2014年11月3日提交的美国临时申请序列No.62/074,619的权益和优先权,该申请整体上通过引用并入本文。This application claims the benefit of and priority to US Provisional Application Serial No. 62/074,619, filed November 3, 2014, which is hereby incorporated by reference in its entirety.

技术领域technical field

本公开一般而言涉及消融可视化及监视系统及方法。The present disclosure generally relates to ablation visualization and monitoring systems and methods.

背景技术Background technique

心房颤动(AF)是世界上最常见的持续性心律失常,当前影响数百万人。在美国,AF预计到2050年将影响1000万人。AF与增加的死亡率、发病率和受损的生活质量相关联,并且是中风的独立风险因素。发展的AF的严重长期风险突出了疾病的公共卫生负担,仅仅在美国,该疾病的年治疗费用就超过了70亿美元。Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in the world, currently affecting millions of people. In the United States, AF is expected to affect 10 million people by 2050. AF is associated with increased mortality, morbidity and impaired quality of life, and is an independent risk factor for stroke. The serious long-term risk of developing AF highlights the public health burden of the disease, which costs more than $7 billion annually in the United States alone.

已知AF患者的大多数发作是由源自延伸到肺静脉(PV)的肌袖内的病灶(focal)电活动引发的。心房颤动也可以由上腔静脉(superior vena cava)或其它心房结构(即,心脏的传导系统内的其它心脏组织)内的病灶活动引发。这些病灶引发物还可以造成由折返性(reentrant)电活动(或转子)驱动的心房心动过速,折返性电活动然后可以分裂成作为心房颤动的特性的多个电子小波。此外,长时间的AF可以造成心脏细胞膜的功能更改,并且这些改变进一步延续心房颤动。Most attacks in AF patients are known to be initiated by focal electrical activity originating within the muscular sleeve extending into the pulmonary vein (PV). Atrial fibrillation can also be triggered by focal activity within the superior vena cava or other atrial structures (ie, other cardiac tissue within the conduction system of the heart). These focal triggers can also cause atrial tachycardia driven by reentrant electrical activity (or rotor), which can then split into the multiple electrical wavelets that are characteristic of atrial fibrillation. In addition, prolonged AF can cause functional changes in cardiac cell membranes, and these changes further perpetuate atrial fibrillation.

射频消融(RFA)、激光消融和低温消融是医生用于治疗心房颤动的最常见的基于导管的标测和消融系统的技术。医生使用导管来指引能量,以或者破坏病灶引发物或者形成将引发物与心脏的剩余传导系统隔离的电隔离线。后一种技术常见地用于所谓的肺静脉隔离(PVI)。但是,AF消融手术的成功率保持相对停滞,术后一年复发的估计高达30%至50%。导管消融后复发的最常见原因是PVI线中的一个或多个间隙。间隙通常是在手术期间可以暂时地阻断电信号但是随时间推移而愈合并促进心房颤动复发的低效或不完全的损伤(LESION)的结果。Radiofrequency ablation (RFA), laser ablation, and cryoablation are the most common catheter-based mapping and ablation system techniques physicians use to treat atrial fibrillation. Physicians use catheters to direct energy to either destroy the focal trigger or create an electrically isolated wire that isolates the trigger from the rest of the heart's conducting system. The latter technique is commonly used in so-called pulmonary vein isolation (PVI). However, the success rate of AF ablation procedures has remained relatively stagnant, with estimates of recurrence one year after surgery being as high as 30% to 50%. The most common cause of recurrence after catheter ablation is one or more gaps in the PVI line. Gaps are often the result of inefficient or incomplete lesions (LESIONs) that can temporarily block electrical signals during surgery but heal over time and promote atrial fibrillation recurrence.

在大多数使用冲洗消融导管的患者体内能够实现PV隔离(PVI),但随着时间的推移可能会发生AF的复发。复发被认为是由于从恢复的部位、消融线中的间隙或者在初始手术期间未实现透壁性的被消融部位的PV重新连接。因此,损伤评估在导管消融手术中非常重要,使得操作者可以在肺静脉隔离手术期间递送可能的最佳损伤。改善的损伤质量可以减少心房颤动复发。PV isolation (PVI) can be achieved in most patients with irrigated ablation catheters, but recurrence of AF may occur over time. Recurrence was thought to be due to PV reconnection from the restored site, a gap in the ablation line, or an ablated site that did not achieve transmurality during the initial procedure. Therefore, injury assessment is very important in catheter ablation procedures so that the operator can deliver the best possible injury during pulmonary vein isolation procedures. Improved lesion quality can reduce atrial fibrillation recurrence.

实时光学组织表征可以提供在消融期间的电极-组织接触和损伤进展的优异且先前不可能的评估。它还可以提供关于导管尖端的部位处的心肌、胶原蛋白、弹性蛋白组织成分的高度有价值的信息,并且代表对心脏消融的生物物理学的复杂性质的理解上的新的前沿。损伤深度与fNADH信号强度的降低直接相关。应当使用这个信息来优化消融功率和消融能量施用时间的选择,以最大化损伤形成并改善消融手术的成功。因此,需要用于实时光学组织表征的系统和方法。Real-time optical tissue characterization may provide excellent and previously impossible assessment of electrode-tissue contact and lesion progression during ablation. It can also provide highly valuable information about the myocardium, collagen, elastin tissue composition at the site of the catheter tip and represents a new frontier in understanding the complex nature of the biophysics of cardiac ablation. Lesion depth was directly related to a reduction in fNADH signal intensity. This information should be used to optimize the choice of ablation power and timing of ablation energy application to maximize lesion formation and improve the success of the ablation procedure. Therefore, there is a need for systems and methods for real-time optical tissue characterization.

发明内容Contents of the invention

提供了消融可视化及监视系统及方法。Ablation visualization and monitoring systems and methods are provided.

根据本公开的一些方面,提供了一种方法,该方法包括将消融能量施加到组织以在组织中形成损伤;用光能(诸如,例如UV光)照射组织以激发组织中的NADH,其中组织在径向方向、轴向方向或两个方向上被照射;监视被照射的组织中的NADH荧光的水平,以确定NADH荧光的水平何时从消融开始时的基础水平降低到预定的较低水平;并且,当NADH荧光的水平达到预定的较低水平时停止对组织的消融。According to some aspects of the present disclosure, there is provided a method comprising applying ablation energy to tissue to form a lesion in the tissue; irradiating the tissue with light energy (such as, for example, UV light) to excite NADH in the tissue, wherein the tissue Irradiated in a radial direction, an axial direction, or both; monitoring the level of NADH fluorescence in the irradiated tissue to determine when the level of NADH fluorescence decreases from the basal level at the start of ablation to a predetermined lower level and, stopping the ablation of the tissue when the level of NADH fluorescence reaches a predetermined lower level.

根据本公开的一些方面,提供了一种用于监视组织消融的系统,该系统包括导管,该导管包括导管主体和定位在导管主体的远端处的远侧尖端,该远侧尖端限定具有一个或多个开口的照明腔,该一个或多个开口用于在照明腔和组织之间交换光能;与远侧尖端连通的消融系统,用于将消融能量递送至远侧尖端;可视化系统,包括光源、光测量仪器以及与光源和光测量仪器连通并且延伸通过导管主体进入远测尖端的照明腔的一根或多根光纤,其中该一根或多根光纤被配置为将光能传递入和传递出照明室;以及处理器,与消融能量源、光源和光测量仪器连通,该处理器被编程为收集从利用光能(诸如,例如UV光)照射的组织反射的光,其中照射该组织以激发组织中的NADH,同时消融能量被施加到组织以在组织中形成损伤;监视被照射的组织中的NADH荧光的水平,以确定NADH荧光的水平何时从消融开始时的基础水平降低到预定的较低水平;并且,当NADH荧光的水平达到预定的较低水平时使得组织的消融停止。According to some aspects of the present disclosure, a system for monitoring tissue ablation is provided that includes a catheter including a catheter body and a distal tip positioned at a distal end of the catheter body, the distal tip defining a or a plurality of openings for exchanging light energy between the lighting cavity and the tissue; an ablation system in communication with the distal tip for delivering ablation energy to the distal tip; a visualization system, comprising a light source, light measuring instrumentation, and one or more optical fibers in communication with the light source and light measuring instrumentation and extending through the catheter body into an illumination lumen of the distal tip, wherein the one or more optical fibers are configured to transmit optical energy into and passing out of the illumination chamber; and a processor, in communication with the source of ablation energy, the light source, and the light measurement instrument, the processor programmed to collect light reflected from tissue illuminated with optical energy, such as, for example, UV light, wherein the tissue is illuminated with Exciting NADH in tissue while ablative energy is applied to the tissue to form lesions in the tissue; monitoring the level of NADH fluorescence in the irradiated tissue to determine when the level of NADH fluorescence decreases from the basal level at the start of ablation to a predetermined and, stopping ablation of the tissue when the level of NADH fluorescence reaches a predetermined lower level.

附图说明Description of drawings

将参考附图进一步解释目前公开的实施例,其中,贯穿若干视图,由相似的附图标记指代相似的结构。所示出的附图不一定是按比例的,而是将重点一般放在例示目前公开的实施例的原理上。The presently disclosed embodiments will be further explained with reference to the drawings, wherein like reference numerals refer to like structures throughout the several views. The presented drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the presently disclosed embodiments.

图1A例示了本公开的消融可视化及监视系统的实施例。FIG. 1A illustrates an embodiment of an ablation visualization and monitoring system of the present disclosure.

图1B是与本公开的消融可视化及监视系统结合使用的可视化系统的实施例的图。Figure IB is a diagram of an embodiment of a visualization system used in conjunction with the ablation visualization and monitoring system of the present disclosure.

图1C例示了适于与本公开的系统和方法结合使用的示例性计算机系统。Figure 1C illustrates an exemplary computer system suitable for use with the systems and methods of the present disclosure.

图2A-2E例示了本公开的导管的各种实施例。2A-2E illustrate various embodiments of catheters of the present disclosure.

图3例示了根据本公开的用于监视导管和组织之间的接触的示例性荧光频谱图。3 illustrates an exemplary fluorescence spectrogram for monitoring contact between a catheter and tissue according to the present disclosure.

图4例示了各种组织成分的示例性频谱图。Figure 4 illustrates exemplary spectrograms of various tissue components.

图5和图6分别例示了在形成心内膜损伤和心外膜损伤期间fNADH的随时间推移的图。Figures 5 and 6 illustrate graphs of fNADH over time during the development of endocardial and epicardial lesions, respectively.

图7A、图7B和图7C例示了根据本公开的用于监视导管的稳定性的示例性荧光频谱图。7A, 7B, and 7C illustrate exemplary fluorescence spectrograms for monitoring catheter stability according to the present disclosure.

图8A和图8B例示了随着导管从健康组织行进到损伤的边缘并然后行进到损伤的中心的示例性fNADH信号。8A and 8B illustrate exemplary fNADH signals as the catheter travels from healthy tissue to the edge of the lesion and then to the center of the lesion.

图9是在施加消融能量期间随时间推移比较fNADH与阻抗的曲线图。9 is a graph comparing fNADH versus impedance over time during application of ablation energy.

虽然上述附图阐述了目前公开的实施例,但是其它实施例也是预期的,如在讨论中所指出的。作为表示而非限制,本公开给出例示性的实施例。本领域技术人员可以设计出众多其它修改和实施例,这些修改和实施例落入目前公开的实施例的原理的范围和精神内。While the above figures set forth presently disclosed embodiments, other embodiments are also contemplated, as noted in the discussion. This disclosure presents illustrative embodiments by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art that fall within the scope and spirit of the principles of the presently disclosed embodiments.

具体实施方式Detailed ways

本公开提供了用于损伤评估的方法和系统。在一些实施例中,本公开的系统包括被配置为起到两个功能的导管:将消融治疗递送到靶组织的治疗功能以及从导管和组织的接触点收集特征频谱以访问损伤的诊断功能。在一些实施例中,本公开的系统和方法可被用于通过使用烟酰胺腺嘌呤二核苷酸氢(NADH)荧光(fNADH)对组织进行成像。一般而言,系统可以包括具有用于在组织和导管之间交换光的光学系统的导管。在一些实施例中,本系统允许由紫外线(UV)激发所诱导的组织的NADH荧光或其缺乏的直接可视化。从组织返回的NADH荧光特征可以被用来确定组织和导管系统之间的接触的质量。The present disclosure provides methods and systems for damage assessment. In some embodiments, a system of the present disclosure includes a catheter configured to serve two functions: a therapeutic function to deliver ablation therapy to target tissue and a diagnostic function to collect signature spectra from the contact points of the catheter and tissue to access lesions. In some embodiments, the systems and methods of the present disclosure can be used to image tissue by using nicotinamide adenine dinucleotide hydrogen (NADH) fluorescence (fNADH). In general, a system may include a catheter with an optical system for exchanging light between tissue and the catheter. In some embodiments, the present system allows direct visualization of tissue NADH fluorescence, or lack thereof, induced by ultraviolet (UV) excitation. The NADH fluorescence signature returned from the tissue can be used to determine the quality of contact between the tissue and the catheter system.

在一些实施例中,导管在其远端处包括消融治疗系统并且被耦合到包括光源(诸如激光器)和光谱仪的诊断单元。导管可以包括从光源和光谱仪延伸到导管的远侧尖端的一根或多根光纤,以向导管和组织之间的接触点提供照射光并且从接触点接收并向光谱仪递送特征NADH频谱。特征NADH频谱可以被用来评估靶组织中的损伤。在一些实施例中,本公开的方法包括照射具有损伤的组织、接收组织的特征频谱以及基于来自组织的特征频谱执行损伤的定性评估。分析可以在消融损伤形成之前、期间和之后实时地发生。应当注意的是,虽然本公开的系统和方法是结合心脏组织和NADH频谱描述的,但是本公开的系统和方法可以与其它类型的组织和其它类型的荧光结合使用。In some embodiments, the catheter includes an ablation therapy system at its distal end and is coupled to a diagnostic unit including a light source (such as a laser) and a spectrometer. The catheter may include one or more optical fibers extending from the light source and spectrometer to the distal tip of the catheter to provide illuminating light to the point of contact between the catheter and tissue and to receive and deliver the characteristic NADH spectrum from the point of contact to the spectrometer. Characteristic NADH spectra can be used to assess damage in target tissues. In some embodiments, methods of the present disclosure include irradiating tissue with a lesion, receiving a characteristic spectrum of the tissue, and performing a qualitative assessment of the lesion based on the characteristic spectrum from the tissue. Analysis can occur in real-time before, during and after ablation lesion formation. It should be noted that although the systems and methods of the present disclosure are described in connection with cardiac tissue and NADH spectra, the systems and methods of the present disclosure may be used in conjunction with other types of tissue and other types of fluorescence.

系统:诊断单元System: Diagnostic Unit

参照图1A,用于提供消融治疗的系统100可以包括消融治疗系统110、可视化系统120以及导管140。在一些实施例中,系统100还可以包括一个或多个冲洗系统170、超声系统190以及导航系统200。系统还可以包括显示器180,其可以是单独的显示器或可视化系统120的一部分,如以下所描述的。在一些实施例中,该系统包括RF发生器、冲洗泵170、冲洗尖端消融导管140以及可视化系统120。Referring to FIG. 1A , a system 100 for providing ablation therapy may include an ablation therapy system 110 , a visualization system 120 and a catheter 140 . In some embodiments, system 100 may also include one or more of irrigation system 170 , ultrasound system 190 , and navigation system 200 . The system may also include a display 180, which may be a separate display or part of the visualization system 120, as described below. In some embodiments, the system includes an RF generator, irrigation pump 170 , irrigation tip ablation catheter 140 , and visualization system 120 .

在一些实施例中,消融治疗系统110被设计为向导管140供应消融能量。消融治疗系统110可以包括一个或多个能量源,该一个或多个能量源可以生成射频(RF)能量、微波能量、电能、电磁能、低温能量、激光能量、超声能量、声能、化学能、热能或者可以被用来消融组织的任何其它类型的能量。在一些实施例中,导管140适于消融能量,其中消融能量是RF能量、低温能量、激光、化学、电穿孔、高强度聚焦超声或超声以及微波中的一种或多种。In some embodiments, ablation therapy system 110 is designed to supply ablation energy to catheter 140 . Ablation therapy system 110 may include one or more energy sources that may generate radio frequency (RF) energy, microwave energy, electrical energy, electromagnetic energy, cryogenic energy, laser energy, ultrasound energy, acoustic energy, chemical energy , thermal energy, or any other type of energy that can be used to ablate tissue. In some embodiments, catheter 140 is adapted for ablation energy, wherein the ablation energy is one or more of RF energy, cryogenic energy, laser, chemical, electroporation, high intensity focused ultrasound or ultrasound, and microwaves.

参照图1B,可视化系统120可以包括光源122、光测量仪器124和计算机系统126。Referring to FIG. 1B , visualization system 120 may include light source 122 , light measurement instrument 124 , and computer system 126 .

在一些实施例中,光源122可以具有在靶荧光团(在一些实施例中是NADH)吸收范围内的输出波长,以便在健康心肌细胞中诱导荧光。在一些实施例中,光源122是可以生成UV光以激发NADH荧光的固态激光器。在一些实施例中,波长可以是大约355nm或355nm+/-30nm。在一些实施例中,光源122可以是UV激光器。激光器生成的UV光可以提供多得多的用于照明的功率,并且可以更高效地耦合到如在导管140的一些实施例中所使用的基于光纤的照明系统中。在一些实施例中,本系统可以使用具有高达150mW的可调节功率的激光器。In some embodiments, light source 122 may have an output wavelength within the absorption range of the target fluorophore (NADH in some embodiments) to induce fluorescence in healthy cardiomyocytes. In some embodiments, light source 122 is a solid-state laser that can generate UV light to excite NADH fluorescence. In some embodiments, the wavelength may be approximately 355 nm or 355 nm +/- 30 nm. In some embodiments, light source 122 may be a UV laser. Laser-generated UV light can provide much more power for illumination and can be more efficiently coupled into fiber optic-based illumination systems as used in some embodiments of catheter 140 . In some embodiments, the present system can use lasers with adjustable power up to 150 mW.

光源122上的波长范围可以由所关注的解剖结构界定,或者用户特定选择造成最大NADH荧光而不激发胶原蛋白的过多荧光的波长,其中胶原蛋白的荧光在仅稍短的波长处表现出吸收峰。在一些实施例中,光源122具有从300nm至400nm的波长。在一些实施例中,光源122具有从330nm至370nm的波长。在一些实施例中,光源122具有从330nm到355nm的波长。在一些实施例中,可以使用窄带的355nm的源。光源122的输出功率可以足够高,以产生可恢复的组织荧光特征,但还没有高到诱导细胞损害。如下面将要描述的,光源122可以耦合到光纤,以将光递送到导管140。The wavelength range on the light source 122 can be defined by the anatomy of interest, or a user-specific selection of wavelengths that result in maximal NADH fluorescence without exciting excessive fluorescence of collagen, which exhibits absorption at only slightly shorter wavelengths peak. In some embodiments, light source 122 has a wavelength from 300 nm to 400 nm. In some embodiments, light source 122 has a wavelength from 330 nm to 370 nm. In some embodiments, light source 122 has a wavelength from 330 nm to 355 nm. In some embodiments, a narrowband 355nm source may be used. The output power of light source 122 may be high enough to produce recoverable tissue fluorescence signatures, but not high enough to induce cellular damage. As will be described below, light source 122 may be coupled to an optical fiber to deliver light to catheter 140 .

在一些实施例中,本公开的系统可以利用光谱仪作为光测量仪器124。在一些实施例中,光测量仪器124可以包括连接到计算机系统126的相机,用于分析和观察组织荧光。在一些实施例中,相机对于对应于NADH荧光的波长可以具有高的量子效率。一种这样的相机是Andor iXon DV860。光谱仪124可以耦合到成像束,其中成像束可以延伸到导管140中,以进行组织的可视化。在一些实施例中,用于光谱的成像束和用于照明的光纤可以组合。在435nm和485nm之间(在一些实施例中,为460nm)的光学带通滤波器可以插入在成像束和相机之间,以阻挡NADH荧光发射带之外的光。换句话说,可以利用具有50nm带宽的、中心波长为460nm的滤波器。在一些实施例中,其它光学带通滤波器可以插入在成像束和相机之间,以阻挡根据正被成像的组织的峰值荧光选择的NADH荧光发射带之外的光。In some embodiments, systems of the present disclosure may utilize a spectrometer as the light measurement instrument 124 . In some embodiments, light measurement instrument 124 may include a camera connected to computer system 126 for analysis and observation of tissue fluorescence. In some embodiments, the camera may have high quantum efficiency for wavelengths corresponding to NADH fluorescence. One such camera is the Andor iXon DV860. Spectrometer 124 may be coupled to an imaging beam, which may extend into catheter 140 for visualization of tissue. In some embodiments, imaging bundles for spectroscopy and optical fibers for illumination may be combined. An optical bandpass filter between 435nm and 485nm (in some embodiments, 460nm) can be inserted between the imaging beam and the camera to block light outside the NADH fluorescence emission band. In other words, a filter with a center wavelength of 460 nm having a bandwidth of 50 nm can be utilized. In some embodiments, other optical bandpass filters may be inserted between the imaging beam and the camera to block light outside the NADH fluorescence emission band selected based on the peak fluorescence of the tissue being imaged.

在一些实施例中,光测量仪器124可以是CCD(电荷耦合器件)相机。在一些实施例中,可以选择光谱仪124,使得其能够收集尽可能多的光子并且对图像贡献最小的噪声。通常,对于活细胞的荧光成像,CCD相机应当在大约460nm处具有至少在50-70%之间的量子效率,指示30-50%的光子将被忽略。在一些实施例中,相机在460nm处具有大约90%的量子效率。相机可以具有80KHz的采样率。在一些实施例中,光谱仪124可以具有8e-(电子)或更少的读出噪声。在一些实施例中,光谱仪124具有3e-的最小读出噪声。在本公开的系统和方法中可以使用其它光测量仪器。In some embodiments, light measurement instrument 124 may be a CCD (charge coupled device) camera. In some embodiments, spectrometer 124 may be selected such that it collects as many photons as possible while contributing minimal noise to the image. Typically, for fluorescence imaging of living cells, a CCD camera should have a quantum efficiency of at least between 50-70% at approximately 460 nm, indicating that 30-50% of the photons will be ignored. In some embodiments, the camera has a quantum efficiency of about 90% at 460nm. The camera may have a sampling rate of 80KHz. In some embodiments, spectrometer 124 may have a readout noise of 8e-(electrons) or less. In some embodiments, spectrometer 124 has a minimum read noise of 3e-. Other light measurement instruments may be used in the systems and methods of the present disclosure.

光纤可以将收集的光递送到阻挡355nm的反射激发波长的长通滤波器,但是使得从组织发射的在滤波器的截止点(cutoff)之上的波长处的荧光通过。来自组织的经滤波的光可以然后由光测量仪器124捕获并分析。计算机系统126从光测量仪器124获取信息并将其显示给医生。The optical fiber can deliver the collected light to a long pass filter that blocks the reflected excitation wavelength of 355 nm, but passes fluorescence emitted from the tissue at wavelengths above the filter's cutoff. The filtered light from the tissue may then be captured and analyzed by light measurement instrument 124 . Computer system 126 obtains information from light measuring instrument 124 and displays it to the physician.

在一些实施例中,通过分析光数据所产生的数字图像可以被用来进行损伤的2D和3D重建,从而示出尺寸、形状和分析所需的任何其它特性。在一些实施例中,图像束可以连接到光测量仪器124,光测量仪器124可以从NADH荧光(fNADH)生成正在被检查的损伤的数字图像,该数字图像可以显示在显示器180上。在一些实施例中,这些图像可以实时地显示给用户。可以通过使用软件来分析图像,以获得实时细节(例如,在图像的特定部位的强度或辐射能量),以帮助用户确定是否需要或期望进一步的干预。在一些实施例中,NADH荧光可以被直接传送到计算机系统126。In some embodiments, the digital images produced by analyzing the optical data can be used to perform 2D and 3D reconstructions of lesions, showing size, shape and any other characteristics required for analysis. In some embodiments, the image beam may be connected to light measurement instrument 124 which may generate a digital image of the lesion being examined from NADH fluorescence (fNADH), which may be displayed on display 180 . In some embodiments, these images may be displayed to the user in real time. Images can be analyzed using software to obtain real-time details (eg, intensity or radiant energy at specific parts of the image) to help the user determine if further intervention is needed or desired. In some embodiments, NADH fluorescence may be transmitted directly to computer system 126 .

在一些实施例中,可以分析由光测量仪器124获取的光学数据,以提供关于在消融期间和之后的损伤的信息,包括但不限于损伤深度和损伤尺寸。在一些实施例中,可以分析来自光测量仪器的数据,以确定导管140是否与心肌表面接触,以及导管尖端对心肌表面施加多少压力。在一些实施例中,分析来自光测量仪器124的数据,以确定组织中存在胶原蛋白或弹性蛋白。在一些实施例中,分析来自光测量仪器的数据,并经由图形用户界面以向用户提供关于损伤进展、损伤质量、心肌接触、组织胶原蛋白含量和组织弹性蛋白含量的实时反馈的方式可视化地呈现给用户。In some embodiments, optical data acquired by light measurement instrument 124 may be analyzed to provide information about the lesion during and after ablation, including but not limited to lesion depth and lesion size. In some embodiments, data from the light measuring instrument can be analyzed to determine whether the catheter 140 is in contact with the surface of the myocardium, and how much pressure the catheter tip is exerting on the surface of the myocardium. In some embodiments, data from light measurement instrument 124 is analyzed to determine the presence of collagen or elastin in the tissue. In some embodiments, data from light measuring instruments is analyzed and presented visually via a graphical user interface in a manner that provides the user with real-time feedback on injury progression, injury quality, myocardial contact, tissue collagen content, and tissue elastin content to the user.

返回去参照图1A,在一些实施例中,本公开的系统100还可以包括超声系统190。导管140可以配备有与超声系统190连通的超声换能器。在一些实施例中,超声可以示出组织深度,组织深度与代谢活动或损伤深度相结合可以被用来确定损伤是否是透壁的。在一些实施例中,超声换能器可以位于导管140的远侧区段中,并且可选地位于远侧电极的尖端中。超声换能器可以被配置为或者在导管尖端的下方或者在邻近导管尖端处评估组织厚度。在一些实施例中,导管140可以包括适于提供覆盖其中导管尖端相对垂直于心肌或相对平行于心肌的情况的深度信息的多个换能器。Referring back to FIG. 1A , in some embodiments, the system 100 of the present disclosure may also include an ultrasound system 190 . Catheter 140 may be equipped with an ultrasound transducer in communication with ultrasound system 190 . In some embodiments, ultrasound can show tissue depth, which combined with metabolic activity or lesion depth can be used to determine whether the lesion is transmural. In some embodiments, an ultrasound transducer may be located in the distal section of catheter 140, and optionally in the tip of the distal electrode. The ultrasound transducer may be configured to assess tissue thickness either beneath or adjacent to the catheter tip. In some embodiments, catheter 140 may include a plurality of transducers adapted to provide depth information covering situations in which the catheter tip is relatively perpendicular to the myocardium or relatively parallel to the myocardium.

参照图1A,如上面所指出的,系统100还可以包括冲洗系统170。在一些实施例中,冲洗系统170将生理盐水泵入导管140中,以在消融治疗期间冷却尖端电极。这可以有助于防止形成蒸汽爆裂(steam pops)和炭(char)(即,粘附到尖端的凝块,该凝块可以最终离开原位(dislodge)并造成溶栓事件)。在一些实施例中,冲洗流体相对于导管140外部的压力维持在正压力,用于连续地冲刷一个或多个开口154。Referring to FIG. 1A , as noted above, the system 100 may also include an irrigation system 170 . In some embodiments, irrigation system 170 pumps saline into catheter 140 to cool the tip electrode during ablation therapy. This can help prevent the formation of steam pops and char (ie, clots that adhere to the tip, which can eventually dislodge and cause a thrombolytic event). In some embodiments, the irrigation fluid is maintained at a positive pressure relative to the pressure exterior of conduit 140 for continuously flushing one or more openings 154 .

参照图1A,系统100还可以包括用于定位和导航导管140的导航系统200。在一些实施例中,导管140可以包括与导航系统200连通的一个或多个电磁位置传感器。在一些实施例中,电磁位置传感器可以被用来在导航系统200中定位导管的尖端。传感器从源位置拾取电磁能量,并通过三角测量或其它手段计算位置。在一些实施例中,导管140包括多于一个适于在导航系统显示器上给出导管主体142的位置和导管主体的曲率的换能器。在一些实施例中,导航系统200可以包括一个或多个磁体,并且由磁体在电磁传感器上产生的磁场的更改可以将导管的尖端偏转到期望的方向。还可以采用其它导航系统,包括手动导航。Referring to FIG. 1A , system 100 may also include a navigation system 200 for locating and navigating catheter 140 . In some embodiments, catheter 140 may include one or more electromagnetic position sensors in communication with navigation system 200 . In some embodiments, an electromagnetic position sensor may be used to locate the tip of the catheter in the navigation system 200 . Sensors pick up electromagnetic energy from the source location and calculate the location by triangulation or other means. In some embodiments, catheter 140 includes more than one transducer adapted to give the position of catheter body 142 and the curvature of the catheter body on a navigation system display. In some embodiments, the navigation system 200 may include one or more magnets, and modification of the magnetic field produced by the magnets on the electromagnetic sensor may deflect the tip of the catheter into a desired direction. Other navigation systems may also be employed, including manual navigation.

计算机系统126可以被编程为对系统100的各种模块进行控制,包括例如对光源122的控制、对光测量仪器124的控制,对应用特定软件的执行、对超声、导航和冲洗系统的控制以及类似操作。Computer system 126 can be programmed to control the various modules of system 100, including, for example, control of light source 122, control of light measuring instrument 124, execution of application-specific software, control of ultrasound, navigation and irrigation systems, and Similar operation.

作为示例,图1C示出了可以结合本公开的方法和系统使用的典型处理体系架构308的图。计算机处理设备340可以耦合到显示器340AA,以进行图形输出。处理器342可以是能够执行软件的计算机处理器342。典型的示例可以是计算机处理器(诸如处理器)、ASIC、微处理器等。处理器342可以耦合到存储器346,存储器346通常是用于在处理器342执行时储存指令和数据的易失性RAM存储器。处理器342还可以耦合到储存设备348,储存设备348可以是非易失性储存介质,诸如硬盘驱动器、FLASH驱动器、带驱动器、DVDROM或类似设备。尽管没有示出,但是计算机处理设备340通常包括各种形式的输入和输出。I/O可以包括网络适配器、USB适配器、蓝牙无线电收发装置、鼠标、键盘、触摸板、显示器、触摸屏、LED、振动设备、扬声器、麦克风、传感器,或用于与计算机处理设备340一起使用的任何其它输入或输出设备。处理器342还可以耦合到其它类型的计算机可读介质,包括但不限于电子、光学、磁或其它能够为处理器(诸如处理器342)提供计算机可读指令的储存或传输设备。各种其它形式的计算机可读介质可以向计算机传输或运送指令,包括有线的和无线的路由器、专用或公共网络或者其它传输设备或信道。指令可以包括来自任何计算机编程语言(包括例如C、C++、C#、Visual Basic、Java、Python、Perl和JavaScript)的代码。As an example, FIG. 1C shows a diagram of a typical processing architecture 308 that may be used in conjunction with the methods and systems of the present disclosure. Computer processing device 340 may be coupled to display 340AA for graphical output. Processor 342 may be a computer processor 342 capable of executing software. A typical example would be a computer processor such as or processor), ASIC, microprocessor, etc. Processor 342 may be coupled to memory 346, which is typically volatile RAM memory for storing instructions and data while processor 342 is executing. The processor 342 may also be coupled to a storage device 348, which may be a non-volatile storage medium such as a hard drive, FLASH drive, tape drive, DVDROM, or similar device. Although not shown, computer processing device 340 typically includes various forms of input and output. I/O may include network adapters, USB adapters, Bluetooth radios, mice, keyboards, touchpads, displays, touch screens, LEDs, vibrating devices, speakers, microphones, sensors, or any other other input or output devices. Processor 342 may also be coupled to other types of computer-readable media, including but not limited to electronic, optical, magnetic, or other storage or transmission devices capable of providing computer-readable instructions to a processor, such as processor 342 . Various other forms of computer-readable media can transmit or carry instructions to the computer, including wired and wireless routers, private or public networks, or other transmission devices or channels. Instructions may include code from any computer programming language including, for example, C, C++, C#, Visual Basic, Java, Python, Perl, and JavaScript.

程序349可以是包含指令和/或数据的计算机程序或计算机可读代码,并且可以储存在储存设备348上。指令可以包括来自任何计算机编程语言(包括例如C、C++、C#、VisualBasic、Java、Python、Perl和JavaScript)的代码。在典型的场景中,处理器204可以将程序349的指令和/或数据的一些或全部加载到存储器346中,以供执行。程序349可以是任何计算机程序或进程,包括但不限于web浏览器、浏览器应用、地址登记进程、应用或者任何其它计算机应用或进程。程序349可以包括各种指令和子例程,当其被加载到存储器346中并由处理器342执行时,使得处理器342执行各种操作,其中一些或全部操作可以实现本文公开的用于管理医疗护理的方法。程序349可以储存在任何类型的非瞬态计算机可读介质上,诸如但不限于硬盘驱动器、可移除驱动器、CD、DVD或任何其它类型的计算机可读介质。The program 349 may be a computer program or computer readable code including instructions and/or data, and may be stored on the storage device 348 . Instructions may include code from any computer programming language including, for example, C, C++, C#, VisualBasic, Java, Python, Perl, and JavaScript. In a typical scenario, processor 204 may load some or all of the instructions and/or data of program 349 into memory 346 for execution. Program 349 may be any computer program or process, including but not limited to a web browser, browser application, address registry process, application, or any other computer application or process. Program 349 may include various instructions and subroutines that, when loaded into memory 346 and executed by processor 342, cause processor 342 to perform various operations, some or all of which may implement the methods disclosed herein for managing medical method of care. Program 349 may be stored on any type of non-transitory computer readable medium, such as but not limited to a hard drive, removable drive, CD, DVD, or any other type of computer readable medium.

在一些实施例中,计算机系统可以被编程为执行本公开的方法的步骤,并且控制本系统的各个部分,以执行实现本公开的方法的必要操作。在一些实施例中,处理器可以被编程为收集由组织反射的光(其中利用UV光照射组织以激发组织中的NADH),同时将消融能量施加到组织以在组织中形成损伤;监视被照射的组织中的NADH荧光的水平,以确定NADH荧光的水平何时从消融开始时的基础水平降低到预定的较低水平;并且当NADH荧光的水平达到预定的较低水平时(自动地或通过提示用户)使得组织的消融停止。在一些实施例中,可以收集从被照射的组织反射的荧光(包括但不限于NADH荧光)的频谱,以区分组织类型。在一些实施例中,利用具有在大约300nm和大约400nm之间的波长的光照射组织。在一些实施例中,监视具有在大约450nm和470nm之间的波长的反射光的水平。在一些实施例中,被监视的频谱可以在410nm和520nm之间。附加地或可替代地,可以监视更宽的频谱,诸如(作为非限制性示例)在375nm和575nm之间。在一些实施例中,可以同时向用户显示NADH荧光频谱和更宽的频谱。在一些实施例中,可以通过选自由射频(RF)能量、微波能量、电能、电磁能、低温能量、激光能量、超声能量、声能、化学能、热能及其组合所组成的组的消融能量来创建损伤。在一些实施例中,处理器可以在NADH荧光峰被检测到时(自动地或通过提示用户)开始手术,因此它可以在整个手术中被监视。如上面所指出的,这些方法可以与其它诊断方法(诸如超声监视)结合使用。In some embodiments, a computer system can be programmed to perform the steps of the methods of the present disclosure, and control various parts of the system to perform the necessary operations to implement the methods of the present disclosure. In some embodiments, the processor can be programmed to collect light reflected by the tissue (where the tissue is irradiated with UV light to excite NADH in the tissue) while applying ablation energy to the tissue to form lesions in the tissue; monitoring the irradiated the level of NADH fluorescence in the tissue to determine when the level of NADH fluorescence decreases from the basal level at the start of ablation to a predetermined lower level; and when the level of NADH fluorescence reaches a predetermined lower level (either automatically or by Prompt the user) to stop the ablation of the tissue. In some embodiments, a spectrum of fluorescence reflected from irradiated tissue, including but not limited to NADH fluorescence, may be collected to differentiate tissue types. In some embodiments, the tissue is irradiated with light having a wavelength between about 300 nm and about 400 nm. In some embodiments, the level of reflected light having a wavelength between approximately 450 nm and 470 nm is monitored. In some embodiments, the spectrum being monitored may be between 410nm and 520nm. Additionally or alternatively, a wider frequency spectrum may be monitored, such as (as a non-limiting example) between 375nm and 575nm. In some embodiments, the NADH fluorescence spectrum and the wider spectrum can be displayed to the user simultaneously. In some embodiments, ablation energy selected from the group consisting of radiofrequency (RF) energy, microwave energy, electrical energy, electromagnetic energy, cryogenic energy, laser energy, ultrasonic energy, acoustic energy, chemical energy, thermal energy, and combinations thereof may be applied. to create damage. In some embodiments, the processor can initiate the procedure (either automatically or by prompting the user) when the NADH fluorescence peak is detected, so it can be monitored throughout the procedure. As noted above, these methods can be used in conjunction with other diagnostic methods such as ultrasound monitoring.

系统:导管System: Catheter

如上面所讨论的,导管140可以基于容纳光纤的标准消融导管,其中光纤用于照明和光谱。在一些实施例中,导管140是可转向的冲洗RF消融导管,其可以经由标准的经中隔手术(transseptal procedure)和常见的进入工具(access tools)通过护套被递送到心内膜空间。在导管147的手柄上,为了治疗,可以存在针对标准RF发生器和冲洗系统170的连接。导管手柄147还使光纤通过,光纤然后连接到诊断单元,以获得组织测量。As discussed above, catheter 140 may be based on a standard ablation catheter housing optical fibers for illumination and spectroscopy. In some embodiments, catheter 140 is a steerable irrigated RF ablation catheter that can be delivered through a sheath into the endocardial space via standard transseptal procedures and common access tools. On the handle of the catheter 147 there may be a connection for a standard RF generator and irrigation system 170 for treatment. Catheter handle 147 also passes optical fibers which are then connected to the diagnostic unit to obtain tissue measurements.

返回去参照图1A,导管140包括具有近端144和远端146的导管主体142。导管主体142可以由生物相容性材料制成,并且可以足够柔软以能够将导管140转向和推进到消融的部位。在一些实施例中,导管主体142可以具有刚度可变的区。例如,导管140的刚度可以从近端144朝着远端146增加。在一些实施例中,导管主体142的刚度被选择为使得能够将导管140递送到期望的心脏位置。在一些实施例中,导管140可以是可转向的冲洗射频(RF)消融导管,其可以通过护套被递送到心内膜空间,并且在心脏左侧的情况下,经由使用常见的进入工具的标准的经中隔手术。导管140可以包括在近端144处的手柄147。手柄147可以与导管的一个或多个内腔连通,以允许仪器或材料传递通过导管140。在一些实施例中,为了治疗,手柄147可以包括针对标准RF发生器和冲洗系统170的连接。在一些实施例中,导管140还可以包括一个或多个被配置为容纳用于照明和光谱的光纤的适配器。Referring back to FIG. 1A , catheter 140 includes a catheter body 142 having a proximal end 144 and a distal end 146 . Catheter body 142 may be made of a biocompatible material and may be sufficiently flexible to be able to steer and advance catheter 140 to the site of ablation. In some embodiments, catheter body 142 may have regions of variable stiffness. For example, the stiffness of catheter 140 may increase from proximal end 144 toward distal end 146 . In some embodiments, the stiffness of catheter body 142 is selected to enable delivery of catheter 140 to a desired cardiac location. In some embodiments, catheter 140 may be a steerable irrigated radiofrequency (RF) ablation catheter that may be delivered through a sheath into the endocardial space and, in the case of the left side of the heart, via Standard transseptal surgery. Catheter 140 may include a handle 147 at proximal end 144 . Handle 147 may communicate with one or more lumens of the catheter to allow delivery of instruments or materials through catheter 140 . In some embodiments, handle 147 may include connections for a standard RF generator and irrigation system 170 for therapy. In some embodiments, catheter 140 may also include one or more adapters configured to accommodate optical fibers for illumination and spectroscopy.

参照图1A,在远端146处,导管140可以包括远侧尖端148,该远侧尖端148具有侧壁156和前壁158。前壁158可以是例如扁平的、锥形的或圆顶状的。在一些实施例中,远侧尖端148可以被配置为充当用于诊断目的(诸如用于电描记图感测)、用于治疗目的(诸如用于发射消融能量)或二者兼有的电极。在需要消融能量的一些实施例中,导管140的远侧尖端148可以用作消融电极或消融元件。Referring to FIG. 1A , at distal end 146 , catheter 140 may include a distal tip 148 having a side wall 156 and a front wall 158 . Front wall 158 may be, for example, flat, tapered, or dome-shaped. In some embodiments, the distal tip 148 may be configured to serve as an electrode for diagnostic purposes (such as for electrogram sensing), for therapeutic purposes (such as for emitting ablation energy), or both. In some embodiments where ablation energy is desired, distal tip 148 of catheter 140 may serve as an ablation electrode or ablation element.

在实施RF能量的实施例中,将远侧尖端148耦合到RF能量源(在导管的外部)的布线可以被传递通过导管的内腔。远侧尖端148可以包括与导管的一个或多个内腔连通的端口。远侧尖端148可以由任何生物相容性材料制成。在一些实施例中,如果远侧尖端148被配置为充当电极,则远侧尖端148可以由金属(包括但不限于铂、铂-铱、不锈钢、钛或类似材料)制成。In embodiments implementing RF energy, wiring coupling the distal tip 148 to the RF energy source (external to the catheter) may be passed through the lumen of the catheter. Distal tip 148 may include a port that communicates with one or more lumens of the catheter. Distal tip 148 may be made of any biocompatible material. In some embodiments, if distal tip 148 is configured to act as an electrode, distal tip 148 may be made of metal, including but not limited to platinum, platinum-iridium, stainless steel, titanium, or similar materials.

参照图2A,光纤或成像束150可以从可视化系统120被传递通过导管主体142,并进入由远侧尖端148限定的照明腔或隔室152。远侧尖端148可以设有一个或多个开口154,用于在照明腔152与组织之间交换光能。在一些实施例中,即使具有多个开口154,远侧尖端148作为消融电极的功能也不受连累。开口可以安置在前壁156上、侧壁158上或两者上。开口154还可以用作冲洗端口。光被光纤150递送到远侧尖端148,在那里它照射远侧尖端148附近的组织。该照明光或者被反射或者使组织发荧光。由组织反射和由组织发荧光的光可以由远侧尖端148内的光纤150收集并被运送回可视化系统120。在一些实施例中,相同的光纤或光纤束150可以被用来既指引远侧尖端外部的光以照射导管140外部的组织,又收集来自组织的光。Referring to FIG. 2A , an optical fiber or imaging bundle 150 may be passed from visualization system 120 through catheter body 142 and into an illumination lumen or compartment 152 defined by distal tip 148 . Distal tip 148 may be provided with one or more openings 154 for exchanging light energy between illumination lumen 152 and tissue. In some embodiments, even with multiple openings 154, the function of distal tip 148 as an ablation electrode is not compromised. The openings may be positioned on the front wall 156, the side walls 158, or both. Opening 154 may also serve as a flush port. The light is delivered by optical fiber 150 to distal tip 148 where it illuminates tissue near distal tip 148 . This illuminating light is either reflected or causes the tissue to fluoresce. Light reflected by and fluoresced by the tissue may be collected by optical fiber 150 within distal tip 148 and carried back to visualization system 120 . In some embodiments, the same optical fiber or fiber optic bundle 150 may be used to both direct light outside the distal tip to illuminate tissue outside catheter 140 and collect light from the tissue.

参照图2A,在一些实施例中,导管140可以具有可视化内腔161,可以通过该可视化内腔161将光纤150推进通过导管主体142。可以将光纤150推进通过可视化内腔161,进入照明腔152,以照射组织并通过开口154接收反射光。根据需要,可以推进光纤150通过开口154超过照明腔152。Referring to FIG. 2A , in some embodiments, catheter 140 can have a visualization lumen 161 through which optical fiber 150 can be advanced through catheter body 142 . Optical fiber 150 may be advanced through visualization lumen 161 , into illumination cavity 152 to illuminate tissue and receive reflected light through opening 154 . Optical fiber 150 may be advanced through opening 154 beyond illumination cavity 152 as desired.

如图2A和图2B中所示,除了可视化内腔161,导管140还可以包括用于将冲洗流体从冲洗系统170传递到远侧尖端148中的开口154(冲洗端口)的冲洗内腔163和用于诸如例如通过将用于RF消融能量的导线传递通过消融内腔164将消融能量从消融治疗系统110传递到远侧尖端148的消融内腔164。应当注意的是,导管的内腔可以被用于多个用途,并且多于一个内腔可以被用于相同的用途。此外,虽然图2A和图2B示出内腔是同心的,但是可以使用内腔的其它配置。As shown in FIGS. 2A and 2B , in addition to visualization lumen 161 , catheter 140 may also include irrigation lumen 163 and irrigation lumen 163 for delivering irrigation fluid from irrigation system 170 to opening 154 (irrigation port) in distal tip 148 . Ablation lumen 164 for delivering ablation energy from ablation therapy system 110 to distal tip 148 such as, for example, by passing a guide wire for RF ablation energy through ablation lumen 164 . It should be noted that the lumen of the catheter may be used for multiple purposes, and more than one lumen may be used for the same purpose. Furthermore, while Figures 2A and 2B show the lumens as being concentric, other configurations of lumens may be used.

如图2A和图2B中所示,在一些实施例中,导管的中心内腔可以被用作可视化内腔161。在一些实施例中,如图2C中所示,可视化内腔161可以相对于导管140的中心通路偏离地设定。As shown in FIGS. 2A and 2B , in some embodiments, the central lumen of the catheter may be used as visualization lumen 161 . In some embodiments, visualization lumen 161 may be positioned offset relative to the central passage of catheter 140 as shown in FIG. 2C .

在一些实施例中,光也可以被直接径向地指引离开侧壁156中的开口154,可替代地或附加地,被指引通过前壁158中的开口。以这种方式,照明腔152和组织之间的光能交换可以相对于导管的纵向中心轴线轴向地、径向地或两者兼有地在多条路径上发生,如图2E中所示。当解剖结构不允许导管尖端与靶部位正交时,这是有用的。当需要增加的照明时,这也可以是有用的。在一些实施例中,附加的光纤150可以被使用并且可以在相对于导管140的径向方向上偏转,以允许照明和返回的光沿着导管的长度离开和进入。In some embodiments, light may also be directed radially directly out of opening 154 in side wall 156 , alternatively or additionally, through an opening in front wall 158 . In this manner, the exchange of optical energy between the illumination lumen 152 and the tissue can occur on multiple paths axially, radially, or both relative to the longitudinal central axis of the catheter, as shown in FIG. 2E . This is useful when the anatomy does not allow the catheter tip to be orthogonal to the target site. This can also be useful when increased lighting is required. In some embodiments, additional optical fibers 150 may be used and may be deflected in a radial direction relative to catheter 140 to allow illumination and return light to exit and enter along the length of the catheter.

参照图2D,为了使得能够(相对于导管的纵向中心轴线轴向地和径向地)在多条路径上在照明腔152与组织之间进行光能交换,可以在照明腔152中设置光指引构件160。光指引构件160可以将照明光指引到组织,并且将通过远侧尖端148内的一个或多个开口154返回的光指引到光纤150。光指引构件160也可以由任何生物相容性材料(诸如例如不锈钢、铂、铂合金、石英、蓝宝石、熔融石英、金属化塑料或其它类似材料)制成,其具有反射光或可以被修改成反射光的表面。光指引构件160可以是圆锥形的(即,光滑的)或是具有任意数量的侧面的有小面的(faceted)。光指引构件160可以被成形为使光以任何期望的角度弯曲。在一些实施例中,光指引构件160可以被成形为将光反射成仅通过一个或多个开口。在一些实施例中,用于光指引构件160的材料选自当暴露于310nm至370nm之间的照明时不发荧光的材料。在一些实施例中,如图2D中所示,光指引构件160可以包括通过反射镜的中心线的一个或多个孔162,这些孔允许照明和反射光在两个方向,即轴向地,直接与导管140对齐地,通过。当远侧尖端148的最远表面与解剖结构接触时,这种轴向路径可以是有用的。当解剖结构不允许远侧尖端148的最远表面与靶部位接触时,如有时候在治疗心房颤动时常见的肺静脉隔离手术期间患者的左心房的情况下,替代的径向路径(如图2E中所示)可以是有用的。在一些实施例中,透镜作用(lensing)可能不是在所有通路中都是必需的,并且光学系统与冲洗系统170是相容的,因为光通过冷却流体(其常常是生理盐水)。冲洗系统170还可以用来从孔162冲刷血液,从而保持光学部件清洁。Referring to FIG. 2D , in order to enable exchange of light energy between the illumination lumen 152 and the tissue on multiple paths (axially and radially with respect to the longitudinal central axis of the catheter), light guides may be provided in the illumination lumen 152. Member 160. Light directing member 160 may direct illumination light to tissue and light returning through one or more openings 154 in distal tip 148 to optical fiber 150 . The light directing member 160 may also be made of any biocompatible material (such as, for example, stainless steel, platinum, platinum alloys, quartz, sapphire, fused silica, metalized plastic, or other similar materials) that reflects light or that can be modified to A surface that reflects light. The light directing member 160 may be conical (ie, smooth) or faceted with any number of sides. Light directing member 160 may be shaped to bend light at any desired angle. In some embodiments, light directing member 160 may be shaped to reflect light only through one or more openings. In some embodiments, the material used for light directing member 160 is selected from materials that do not fluoresce when exposed to illumination between 310 nm and 370 nm. In some embodiments, as shown in FIG. 2D , the light directing member 160 may include one or more holes 162 through the centerline of the mirror, which holes allow illumination and reflection of light in two directions, i.e., axially, In direct alignment with conduit 140, pass through. This axial path may be useful when the distal-most surface of the distal tip 148 is in contact with anatomy. When the anatomy does not allow the most distal surface of the distal tip 148 to contact the target site, as is sometimes the case in the patient's left atrium during pulmonary vein isolation procedures commonly seen in the treatment of atrial fibrillation, an alternative radial path (Fig. 2E shown in ) can be useful. In some embodiments, lensing may not be necessary in all pathways, and the optics are compatible with irrigation system 170 because light passes through a cooling fluid (which is often saline). The flushing system 170 can also be used to flush blood from the aperture 162, thereby keeping the optics clean.

使用的方法usage instructions

在一些实施例中,提供了用于监视组织消融的方法。这种方法可以通过显示NADH荧光的水平来提供能够影响损伤形成的各种因素的实时可视化反馈,如下所述。In some embodiments, methods for monitoring tissue ablation are provided. This approach can provide real-time visual feedback of various factors that can influence damage formation by displaying the level of NADH fluorescence, as described below.

在一些实施例中,该方法包括向组织施加消融能量以在组织中形成损伤;用UV光照射组织以激发组织中的NADH,其中组织在径向方向、轴向方向或两个方向上被照射;监视被照射的组织中的NADH荧光的水平,以确定NADH荧光的水平何时从消融开始时的基础水平降低到预定的较低水平;并且当NADH荧光的水平达到预定的较低水平时停止对组织的消融。在一些实施例中,可以收集从被照射的组织反射的荧光(包括但不限于NADH荧光)的频谱,以区分组织类型。在一些实施例中,利用具有在大约300nm和大约400nm之间的波长的光照射组织。在一些实施例中,监视具有在大约450nm和470nm之间的波长的反射光的水平。在一些实施例中,被监视的频谱可以在410nm和520nm之间。附加地或可替代地,可以监视更宽的频谱,诸如(作为非限制性示例)在375nm和575nm之间。在一些实施例中,可以通过选自由射频(RF)能量、微波能量、电能、电磁能、低温能量、激光能量、超声能量、声能、化学能、热能及其组合所组成的组的消融能量来创建损伤。在一些实施例中,方法可以在NADH荧光峰被检测到时开始,因此它可以在整个手术中被监视。如上面所指出的,这些方法可以与其它诊断方法(诸如超声监视)结合使用。In some embodiments, the method comprises applying ablation energy to the tissue to form a lesion in the tissue; irradiating the tissue with UV light to excite NADH in the tissue, wherein the tissue is irradiated in a radial direction, an axial direction, or both ; monitor the level of NADH fluorescence in the irradiated tissue to determine when the level of NADH fluorescence decreases from the basal level at the start of ablation to a predetermined lower level; and stop when the level of NADH fluorescence reaches a predetermined lower level Ablation of tissue. In some embodiments, a spectrum of fluorescence reflected from irradiated tissue, including but not limited to NADH fluorescence, may be collected to differentiate tissue types. In some embodiments, the tissue is irradiated with light having a wavelength between about 300 nm and about 400 nm. In some embodiments, the level of reflected light having a wavelength between approximately 450 nm and 470 nm is monitored. In some embodiments, the spectrum being monitored may be between 410nm and 520nm. Additionally or alternatively, a wider frequency spectrum may be monitored, such as (as a non-limiting example) between 375nm and 575nm. In some embodiments, ablation energy selected from the group consisting of radiofrequency (RF) energy, microwave energy, electrical energy, electromagnetic energy, cryogenic energy, laser energy, ultrasonic energy, acoustic energy, chemical energy, thermal energy, and combinations thereof may be applied. to create damage. In some embodiments, the method can start when the NADH fluorescence peak is detected so it can be monitored throughout the procedure. As noted above, these methods can be used in conjunction with other diagnostic methods such as ultrasound monitoring.

损伤前解剖评估Pre-injury anatomical assessment

在大约350至大约360nm波长处的心脏组织的照明可以引起来自存在于心肌细胞的线粒体中的NADH的自动荧光响应。心肌fNADH响应的变化性可以指示导管被定位成抵着组织。在一些实施例中,可以捕获从350nm至850nm(或者如图3中所示从400nm至700nm)范围的整个频谱特征,其中NADH的峰值荧光在460nm左右出现。循环系统中的血液能够吸收光,因此当导管在血池中时不会检测到荧光,这将指示导管和组织之间没有接触。当导管接触心肌时,引起特性组织荧光频谱特征,这将指示良好的接触响应。另一方面,如果以过大的力推动导管而造成隆起,则短暂的缺血会导致荧光升高,并且频谱特征偏移到基线之上。这种反馈的使用可以帮助减少在导管消融和操纵期间穿孔的风险,将帮助避免在次优的组织接触部位处的消融,并因此减少RF消融时间。Illumination of cardiac tissue at a wavelength of about 350 to about 360 nm can elicit an autofluorescent response from NADH present in the mitochondria of cardiomyocytes. Variability in myocardial fNADH response may indicate that the catheter is positioned against the tissue. In some embodiments, the entire spectrum of features ranging from 350nm to 850nm (or from 400nm to 700nm as shown in Figure 3) can be captured, with peak fluorescence of NADH occurring around 460nm. Blood in the circulatory system absorbs light, so no fluorescence is detected when the catheter is in the blood pool, which would indicate no contact between the catheter and tissue. When the catheter touches the myocardium, a characteristic tissue fluorescence spectral signature is induced, which would indicate a good touch response. On the other hand, if the catheter is pushed with excessive force causing a bulge, transient ischemia can result in increased fluorescence and shifts of spectral features above baseline. The use of this feedback can help reduce the risk of perforation during catheter ablation and manipulation, will help avoid ablation at suboptimal tissue contact sites, and thus reduce RF ablation time.

损伤形成评估Lesion Formation Assessment

返回频谱的信息内容可以在损伤形成期间实时获得。频谱的分析和显示可以添加损伤的定性评估,因为是它实时形成的。图4示出了在损伤形成期间来自355nm的照明源的返回频谱。fNADH峰在大约450nm和550nm之间。在消融期间,当形成成功的损伤时,在近似450nm和550nm之间的返回频谱的幅值随时间的推移显著下降。该效果是由于当细胞被消融时的代谢活动的减少以及因此fNADH的减少。该下降可以被用作何时停止消融的指示。在一些实施例中,可以在fNADH信号减少80%或更多时停止消融。在一些实施例中,fNADH信号减少超过50%并且所得的稳态fNADH信号实现超过特定时间段(诸如5秒或10秒)可以被用作停止点。在一些实施例中,fNADH信号经特定时间段(诸如长达10秒)减少60%或更多并且所得的稳态fNADH信号超过5秒可以被使用。The information content of the returned spectrum can be obtained in real time during lesion formation. Analysis and display of the spectrum can add to the qualitative assessment of damage as it develops in real time. Figure 4 shows the return spectrum from a 355nm illumination source during lesion formation. The fNADH peak is between approximately 450nm and 550nm. During ablation, when a successful lesion is formed, the amplitude of the return spectrum between approximately 450nm and 550nm decreases significantly over time. This effect is due to a reduction in metabolic activity and thus fNADH when cells are ablated. This drop can be used as an indication of when to stop ablation. In some embodiments, ablation may be stopped when the fNADH signal is reduced by 80% or more. In some embodiments, a reduction in fNADH signal of more than 50% and the resulting steady state fNADH signal achieved for more than a certain period of time (such as 5 seconds or 10 seconds) may be used as a stopping point. In some embodiments, fNADH signal is reduced by 60% or more over a specified period of time (such as up to 10 seconds) and the resulting steady state fNADH signal over 5 seconds can be used.

参照图4,在一些实施例中,可以在更宽的频谱上收集频谱特征。例如,胶原蛋白组织的频谱图案不同于在健康心肌上察看到的频谱图案。当对胶原蛋白组织进行成像时,频谱的峰向左偏移。这可以被用户用来识别被视为主要是心肌的区域或者被更难消融的胶原蛋白覆盖的区域。Referring to Figure 4, in some embodiments, spectral features may be collected over a wider frequency spectrum. For example, the spectral pattern of collagen tissue differs from that observed in healthy myocardium. When imaging collagen tissue, the peak of the spectrum is shifted to the left. This can be used by the user to identify areas that are considered to be primarily myocardium or areas covered by collagen that is more difficult to ablate.

图5和图6还分别例示了在心内膜和心外膜表面上成功的RF损伤形成期间的该现象。在两组图中,与fNADH(450nm至470nm)相关的波长的峰幅值被归一化并相对于消融时间绘制。如在图5中可以看到的,在前10秒钟内存在峰幅值的急剧下降,并且在向心内膜施加能量的持续时间始终存在持续的低水平。图6示出了相同的图,但是RF能量被施加到心外膜。此外,在两个图中效果是类似的,从而示出本系统和方法对于从心脏的任一表面消融心律失常的技术会是有益的。这可能是重要的,因为损伤可以在比原来认为的更短的时间里良好地形成,并且持续的能量施加可能是过多的(参见下面关于阻抗的讨论)。在文献中已经充分记录了对血池或组织或二者的过多消融能量会导致显著的负面结果和手术性并发症,诸如心内蒸汽爆裂、心内膜下腔形成(心脏的内膜的心内膜剥脱(denudation))、血栓(凝块)形成、栓塞(凝块迁移)、中风,甚至死亡。因此,在确保最佳或甚至足够的损伤的同时限制能量递送的能力在心脏消融中是有益的。Figures 5 and 6 also illustrate this phenomenon during successful RF lesion formation on endocardial and epicardial surfaces, respectively. In both sets of graphs, peak amplitudes at wavelengths associated with fNADH (450 nm to 470 nm) were normalized and plotted against ablation time. As can be seen in Figure 5, there is a sharp drop in peak amplitude within the first 10 seconds, and there is a persistent low level throughout the duration of energy application to the endocardium. Figure 6 shows the same diagram, but with RF energy applied to the epicardium. Furthermore, the effects are similar in both figures, showing that the present system and method would be beneficial for the technique of ablating arrhythmias from either surface of the heart. This may be important because lesions may well form in shorter times than originally thought, and sustained energy application may be excessive (see discussion on impedance below). It has been well documented in the literature that excessive ablation energy to the blood pool or tissue or both can lead to significant negative outcomes and procedural complications such as intracardiac steam burst, subendocardial space formation (the lining of the heart's endocardial denudation), thrombosis (clot) formation, embolism (clot migration), stroke, and even death. Therefore, the ability to limit energy delivery while ensuring optimal or even adequate damage is beneficial in cardiac ablation.

参照图7A、图7B和图7C,在一些实施例中,可以监视频谱特征,以确定损伤形成期间的导管稳定性。例如,如图7A中所示,平滑的响应对应于稳定的导管,因为fNADH强度的逐渐减少指示消融损伤随着时间的推移形成。图7B示出了更尖锐、更嘈杂的响应,其对应于相对于组织间歇的或偏移的导管的尖端。图7C示出导管移动也可以在消融期间基于fNADH被拾取,当导管跳到不同的位置时,看到fNADH的瞬时偏移。Referring to Figures 7A, 7B, and 7C, in some embodiments, spectral features may be monitored to determine catheter stability during lesion formation. For example, as shown in Figure 7A, a smooth response corresponds to a stable catheter, as a gradual decrease in fNADH intensity indicates that an ablation lesion develops over time. Figure 7B shows a sharper, noisier response corresponding to a catheter tip that is intermittent or offset relative to the tissue. Figure 7C shows that catheter movement can also be picked up based on fNADH during ablation, seeing a momentary shift in fNADH as the catheter jumps to a different location.

损伤后解剖评估Post-injury anatomical assessment

最后,询问组织以识别不良消融或不充分损伤形成的区域(即,残留间隙和导电区)的能力是当今消融范例中的挑战。使用多个导管仅是电可行的,并且耗时、费力,并利用相当多的透视(X射线辐射曝光)。该系统可以光学和可视化地识别间隙,而无需电询问,从而产生对先前消融中遗漏的区域的更快、更安全和更好的识别。这在急性手术以及重复消融或者先前失败的消融手术的情况下都具有重要意义。Finally, the ability to interrogate tissue to identify areas of poor ablation or insufficient lesion formation (ie, residual gaps and conductive regions) is a challenge in today's ablation paradigm. Using multiple catheters is only electrically feasible, and is time consuming, laborious, and utilizes considerable fluoroscopy (X-ray radiation exposure). The system can identify gaps optically and visually without electrical interrogation, resulting in faster, safer and better identification of areas missed in previous ablation. This has important implications both in acute surgery as well as in the case of repeated or previously failed ablation procedures.

图8A和图8B示出了本公开的系统和方法如何可以被用来评估先前形成的损伤,无论它们是慢性的还是新产生的。图8A示出了当导管尖端从健康心肌移动到现有损伤的边缘以及然后在现有损伤的中心上方时的导管尖端的顺序示意表示。图8B示出了在355nm照明下返回的光谱的归一化峰幅值的合成。fNADH中心的波长在与导管尖端接触的心肌的状态完全相关的信号幅度方面有显著差异。8A and 8B illustrate how the systems and methods of the present disclosure can be used to assess previously formed lesions, whether they are chronic or newly developed. Figure 8A shows a sequential schematic representation of the catheter tip as it moves from healthy myocardium to the edge of an existing lesion and then over the center of the existing lesion. Figure 8B shows the synthesis of the normalized peak amplitudes of the spectra returned under 355 nm illumination. The wavelength of the center of fNADH differs significantly in signal amplitude that correlates perfectly with the state of the myocardium in contact with the catheter tip.

与阻抗的比较Comparison with Impedance

作为非限制性示例,图9对比在损伤形成期间的fNADH响应与治疗阻抗。阻抗是全世界的消融手术期间使用的标准指标。通常测量从导管的尖端到粘附到患者躯干的消融接地垫。医生预计在消融能量发作后的前2秒或3秒中看到近似10ohm至15ohm的下降。如果阻抗没有下降,则医生知道这可能是由于导管与心肌接触不良,于是损伤尝试被中断,并且导管被重新定位。可以使用上述方法来确保导管和组织之间的更好接触。如果阻抗确实下降并维持新的水平,则医生继续施加损伤形成能量达通常固定的时间(30秒至60秒或更长时间)。如果阻抗随着时间的推移而上升,则这是导管的尖端潜在过热的指标,并且如果不减弱的话会导致蒸汽形成的危险情况,从而导致心脏壁破裂或导管顶端的炭的积累,其中炭可能离开原位并变成栓塞体(embolic body)。As a non-limiting example, Figure 9 compares fNADH response to treatment impedance during lesion formation. Impedance is a standard metric used during ablation procedures worldwide. Usually measured from the tip of the catheter to the ablation ground pad adhered to the patient's torso. Physicians expect to see approximately a 10 ohm to 15 ohm drop in the first 2 or 3 seconds after the onset of ablative energy. If the impedance does not drop, the doctor knows it may be due to poor catheter-to-myocardial contact, so the injury attempt is interrupted, and the catheter is repositioned. The methods described above can be used to ensure better contact between catheter and tissue. If the impedance does drop and maintain the new level, the physician continues to apply the lesion-forming energy for a usually fixed amount of time (30 seconds to 60 seconds or more). If the impedance rises over time, it is an indicator of potential overheating of the catheter's tip and, if not subsided, can lead to a dangerous situation of vapor formation leading to rupture of the heart wall or accumulation of char at the catheter tip, which may Leaving the original place and becoming an embolic body.

如图9中所示,与治疗阻抗信噪比(SNR)相比,fNADH光学响应的SNR将表明fNADH是损伤形成质量的良好指标。fNADH幅值的幅度改变近似为80%,其中相同下降在归一化的阻抗上是小于10%。光学特征与阻抗的该比较也指示了相对于阻抗的对组织中的活动的更直接反映,因为阻抗常常更多是从电极通过血池到接地垫的电气路径的反映。通过使用光学方案,如果维持良好的接触,则光特征中的所有都来自组织,而没有任何源自血池。照此,光学特征比阻抗特征更加能高度反映组织中的活动。As shown in Figure 9, the SNR of the fNADH optical response compared to the treatment impedance signal-to-noise ratio (SNR) would indicate that fNADH is a good indicator of the quality of lesion formation. The magnitude change in fNADH amplitude was approximately 80%, with the same drop in normalized impedance being less than 10%. This comparison of optical characteristics to impedance also indicates a more direct reflection of activity in the tissue relative to impedance, since impedance is often more of a reflection of the electrical path from the electrode through the blood pool to the ground pad. By using an optical scheme, if good contact is maintained, all of the light signatures come from the tissue and none from the blood pool. As such, optical signatures are more highly reflective of activity in tissue than impedance signatures.

阐述前述公开仅仅是为了例示本公开的各种非限制性实施例,而不是旨在作为限制。由于本领域普通技术人员可以想到结合本公开的精神和实质的本公开实施例的修改,因此目前公开的实施例应当被解释为包括在所附权利要求及其等同物的范围内的所有内容。本申请中引用的所有参考文献都整体上通过引用并入本文。The foregoing disclosure has been set forth merely to illustrate various non-limiting embodiments of the present disclosure and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the present disclosure can occur to those skilled in the art, the presently disclosed embodiments should be construed to include all that comes within the scope of the appended claims and their equivalents. All references cited in this application are hereby incorporated by reference in their entirety.

Claims (20)

CN201580067812.0A2014-11-032015-11-03 System and method for damage assessmentActiveCN107613849B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202110395116.XACN113143440B (en)2014-11-032015-11-03Systems and methods for injury assessment

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US201462074619P2014-11-032014-11-03
US62/074,6192014-11-03
PCT/US2015/058824WO2016073476A1 (en)2014-11-032015-11-03Systems and methods for lesion assessment

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
CN202110395116.XADivisionCN113143440B (en)2014-11-032015-11-03Systems and methods for injury assessment

Publications (2)

Publication NumberPublication Date
CN107613849Atrue CN107613849A (en)2018-01-19
CN107613849B CN107613849B (en)2021-05-04

Family

ID=55851383

Family Applications (2)

Application NumberTitlePriority DateFiling Date
CN202110395116.XAActiveCN113143440B (en)2014-11-032015-11-03Systems and methods for injury assessment
CN201580067812.0AActiveCN107613849B (en)2014-11-032015-11-03 System and method for damage assessment

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
CN202110395116.XAActiveCN113143440B (en)2014-11-032015-11-03Systems and methods for injury assessment

Country Status (7)

CountryLink
US (2)US10722301B2 (en)
EP (1)EP3215002B1 (en)
JP (2)JP2017537681A (en)
KR (1)KR102499045B1 (en)
CN (2)CN113143440B (en)
AU (1)AU2015343258B2 (en)
WO (1)WO2016073476A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN113180820A (en)*2021-04-302021-07-30广州迪光医学科技有限公司Radial laser ablation catheter

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9014789B2 (en)2011-09-222015-04-21The George Washington UniversitySystems and methods for visualizing ablated tissue
AU2012312066C1 (en)2011-09-222016-06-16460Medical, Inc.Systems and methods for visualizing ablated tissue
JP6737705B2 (en)2013-11-142020-08-12ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity Method of operating system for determining depth of injury site and system for generating images of heart tissue
JP2017500550A (en)2013-11-202017-01-05ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity System and method for hyperspectral analysis of cardiac tissue
KR102499045B1 (en)2014-11-032023-02-10더 조지 워싱턴 유니버시티Systems and methods for lesion assessment
EP3215001A4 (en)2014-11-032018-04-04Luxcath, LLCSystems and methods for assessment of contact quality
US10779904B2 (en)2015-07-192020-09-22460Medical, Inc.Systems and methods for lesion formation and assessment
CN109310333A (en)*2016-06-112019-02-05波士顿科学医学有限公司 Systems and methods for monitoring tissue ablation using tissue autofluorescence
WO2018044919A1 (en)*2016-09-012018-03-08The George Washington UniversityEnzyme-dependent fluorescence recovery of nadh after photobleaching to assess dehydrogenase activity of living tissues
EP3614940B1 (en)*2017-04-282024-11-20Arrinex, Inc.Systems for locating blood vessels in the treatment of rhinitis
US11090082B2 (en)*2017-05-122021-08-17Covidien LpColpotomy systems, devices, and methods with rotational cutting
DE102019102839A1 (en)2019-02-052020-08-06Olympus Winter & Ibe Gmbh Irrigation fluid for resection
DE102019102841A1 (en)2019-02-052020-08-06Olympus Winter & Ibe Gmbh Detachable insulating insert for use in a resectoscope
JP7212756B2 (en)*2019-02-282023-01-25オリンパス株式会社 Medical system, energy control method, and processor
DE102019106430A1 (en)2019-03-132020-09-17Olympus Winter & Ibe Gmbh Electrode instrument and resectoscope with gripping function
CN114727839A (en)*2019-11-182022-07-08瑟卡科学有限公司Device port for epicardial ablation with inflatable balloon
EP4087511A4 (en)*2020-01-082024-02-14460Medical, Inc.Systems and methods for optical interrogation of ablation lesions
US20220031377A1 (en)*2020-07-282022-02-03460Medical, Inc.Systems and Methods for Lesion Formation and Assessment
US12076071B2 (en)2020-08-142024-09-03Kardium Inc.Systems and methods for treating tissue with pulsed field ablation
US20230098670A1 (en)*2021-09-292023-03-30Cilag Gmbh InternationalSurgical devices, systems, and methods using multi-source imaging
US12295667B2 (en)2021-09-292025-05-13Cilag Gmbh InternationalSurgical devices, systems, and methods using multi-source imaging
US20230191222A1 (en)*2021-12-212023-06-22Shuhari Group, LLCImpact And Movement Sensing To Measure Performance
CN120641021A (en)*2023-02-092025-09-12奥林巴斯医疗株式会社 Medical device, medical system, learning device, operating method and program of medical device
CN119564326B (en)*2025-02-102025-06-10四川锦江电子医疗器械科技股份有限公司 Pulsed electric field ablation control device

Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5421337A (en)*1989-04-141995-06-06Massachusetts Institute Of TechnologySpectral diagnosis of diseased tissue
WO1997037622A1 (en)*1996-04-081997-10-16The University Of Southern CaliforniaMethod and apparatus for using laser-induced fluorescence during photoretractive keratectomy
US20060025760A1 (en)*2002-05-062006-02-02Podhajsky Ronald JBlood detector for controlling anesu and method therefor
CN101045016A (en)*2006-02-172007-10-03韦伯斯特生物官能公司Lesion assessment by pacing
CN101502442A (en)*2008-02-052009-08-12北京迈迪顶峰医疗科技有限公司Radio frequency ablation system, ablation controller and radio frequency ablation device
US20090292211A1 (en)*2002-07-052009-11-26Vanderbilt UniversityMethods and Apparatus for Optical Spectroscopic Detection of Cell and Tissue Death
CN104066368A (en)*2011-09-222014-09-24乔治华盛顿大学 Systems and methods for visualizing ablated tissue

Family Cites Families (356)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3387305A (en)1966-02-091968-06-11Rocky Mountain SportsKnee protector
US3831467A (en)1973-03-161974-08-27R MooreKnee brace
US4024873A (en)1976-05-241977-05-24Becton, Dickinson And CompanyBalloon catheter assembly
US4619247A (en)1983-03-311986-10-28Sumitomo Electric Industries, Ltd.Catheter
JPS60182928A (en)1984-03-011985-09-18オリンパス光学工業株式会社Endoscope having solid image pick-up element mounted therein
JPS63262613A (en)1987-04-201988-10-28Olympus Optical Co LtdStereoscopic vision endoscope device
DE68925586T2 (en)1988-12-211996-10-24Massachusetts Inst Technology METHOD FOR LASER-INDUCED FLUORESCENCE OF TISSUE
US5584799A (en)1989-09-111996-12-17Gray; James C.Splint/therapeutic device
US5074306A (en)1990-02-221991-12-24The General Hospital CorporationMeasurement of burn depth in skin
JP3164609B2 (en)1990-10-312001-05-08オリンパス光学工業株式会社 Endoscope device
CA2042075C (en)1991-05-082001-01-23Branko PalcicEndoscopic imaging system
US5540681A (en)*1992-04-101996-07-30Medtronic CardiorhythmMethod and system for radiofrequency ablation of tissue
US5350375A (en)1993-03-151994-09-27Yale UniversityMethods for laser induced fluorescence intensity feedback control during laser angioplasty
WO1995003843A1 (en)1993-07-301995-02-09The Regents Of The University Of CaliforniaEndocardial infusion catheter
US5749830A (en)1993-12-031998-05-12Olympus Optical Co., Ltd.Fluorescent endoscope apparatus
US5590660A (en)1994-03-281997-01-07Xillix Technologies Corp.Apparatus and method for imaging diseased tissue using integrated autofluorescence
AU2373695A (en)1994-05-031995-11-29Board Of Regents, The University Of Texas SystemApparatus and method for noninvasive doppler ultrasound-guided real-time control of tissue damage in thermal therapy
US20080154257A1 (en)2006-12-222008-06-26Shiva ShararehReal-time optoacoustic monitoring with electophysiologic catheters
US5810802A (en)1994-08-081998-09-22E.P. Technologies, Inc.Systems and methods for controlling tissue ablation using multiple temperature sensing elements
US6423055B1 (en)1999-07-142002-07-23Cardiofocus, Inc.Phototherapeutic wave guide apparatus
US8025661B2 (en)1994-09-092011-09-27Cardiofocus, Inc.Coaxial catheter instruments for ablation with radiant energy
US6572609B1 (en)1999-07-142003-06-03Cardiofocus, Inc.Phototherapeutic waveguide apparatus
US5954665A (en)1995-06-071999-09-21Biosense, Inc.Cardiac ablation catheter using correlation measure
US5713364A (en)1995-08-011998-02-03Medispectra, Inc.Spectral volume microprobe analysis of materials
AU1130797A (en)*1995-08-241997-03-19Purdue Research FoundationFluorescence lifetime-based imaging and spectroscopy in tissues and other random media
US6309352B1 (en)1996-01-312001-10-30Board Of Regents, The University Of Texas SystemReal time optoacoustic monitoring of changes in tissue properties
US5885258A (en)1996-02-231999-03-23Memory Medical Systems, Inc.Medical instrument with slotted memory metal tube
US5904651A (en)1996-10-281999-05-18Ep Technologies, Inc.Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
JP3003597B2 (en)1996-11-182000-01-31日本電気株式会社 Solid-state imaging device
US5833688A (en)1997-02-241998-11-10Boston Scientific CorporationSensing temperature with plurality of catheter sensors
US6208886B1 (en)1997-04-042001-03-27The Research Foundation Of City College Of New YorkNon-linear optical tomography of turbid media
US6124597A (en)1997-07-072000-09-26Cedars-Sinai Medical CenterMethod and devices for laser induced fluorescence attenuation spectroscopy
WO1999013934A1 (en)1997-09-121999-03-25Nippon Zeon Co., Ltd.Balloon catheter
US6238389B1 (en)1997-09-302001-05-29Boston Scientific CorporationDeflectable interstitial ablation device
US6289236B1 (en)1997-10-102001-09-11The General Hospital CorporationMethods and apparatus for distinguishing inflamed and tumorous bladder tissue
US6937885B1 (en)1997-10-302005-08-30Hypermed, Inc.Multispectral/hyperspectral medical instrument
EP1051104B1 (en)1998-01-262008-04-09Massachusetts Institute Of TechnologyFluorescence imaging endoscope
US6174291B1 (en)1998-03-092001-01-16Spectrascience, Inc.Optical biopsy system and methods for tissue diagnosis
US6251107B1 (en)1998-06-252001-06-26Cardima, Inc.Ep catheter
US6112123A (en)1998-07-282000-08-29Endonetics, Inc.Device and method for ablation of tissue
US8024027B2 (en)1998-09-032011-09-20Hyperspectral Imaging, Inc.Infrared endoscopic balloon probes
IL141864A0 (en)1998-09-112002-03-10Spectrx IncMulti-modal optical tissue diagnostic system
US6178346B1 (en)1998-10-232001-01-23David C. AmundsonInfrared endoscopic imaging in a liquid with suspended particles: method and apparatus
US6701176B1 (en)1998-11-042004-03-02Johns Hopkins University School Of MedicineMagnetic-resonance-guided imaging, electrophysiology, and ablation
US6210406B1 (en)1998-12-032001-04-03Cordis Webster, Inc.Split tip electrode catheter and signal processing RF ablation system
US6423057B1 (en)1999-01-252002-07-23The Arizona Board Of Regents On Behalf Of The University Of ArizonaMethod and apparatus for monitoring and controlling tissue temperature and lesion formation in radio-frequency ablation procedures
EP1196081B1 (en)1999-07-022013-08-21HyperMed Imaging, Inc.Integrated imaging apparatus
JP2001017379A (en)1999-07-092001-01-23Fuji Photo Film Co LtdFluorescent diagnostic device
US6219566B1 (en)1999-07-132001-04-17Photonics Research OntarioMethod of measuring concentration of luminescent materials in turbid media
US8900219B2 (en)1999-07-142014-12-02Cardiofocus, Inc.System and method for visualizing tissue during ablation procedures
US8540704B2 (en)1999-07-142013-09-24Cardiofocus, Inc.Guided cardiac ablation catheters
US9033961B2 (en)1999-07-142015-05-19Cardiofocus, Inc.Cardiac ablation catheters for forming overlapping lesions
EP1207788A4 (en)1999-07-192009-12-09St Jude Medical Atrial FibrillApparatus and method for ablating tissue
US6343228B1 (en)1999-10-192002-01-29The Hong Kong University Of Science And TechnologyMethod and apparatus for fluorescence imaging of tissue
US6542767B1 (en)1999-11-092003-04-01Biotex, Inc.Method and system for controlling heat delivery to a target
US8221402B2 (en)2000-01-192012-07-17Medtronic, Inc.Method for guiding a medical device
US6663622B1 (en)2000-02-112003-12-16Iotek, Inc.Surgical devices and methods for use in tissue ablation procedures
GR1004180B (en)2000-03-282003-03-11����������� ����� ��������� (����)Method and system for characterization and mapping of tissue lesions
US20020107514A1 (en)2000-04-272002-08-08Hooven Michael D.Transmural ablation device with parallel jaws
AU2001249874A1 (en)2000-04-272001-11-12Medtronic, Inc.System and method for assessing transmurality of ablation lesions
US7252664B2 (en)2000-05-122007-08-07Cardima, Inc.System and method for multi-channel RF energy delivery with coagulum reduction
CA2408176A1 (en)2000-05-122001-11-22Cardima, Inc.Multi-channel rf energy delivery with coagulum reduction
US6975898B2 (en)2000-06-192005-12-13University Of WashingtonMedical imaging, diagnosis, and therapy using a scanning single optical fiber system
IL138683A0 (en)2000-09-252001-10-31Vital Medical LtdApparatus and method for monitoring tissue vitality parameters
US6450971B1 (en)2000-10-052002-09-17Scimed Life Systems, Inc.Temperature measuring balloon
US6663561B2 (en)2000-10-052003-12-16Pentax CorporationVideo endoscope system
US7047068B2 (en)2000-12-112006-05-16C.R. Bard, Inc.Microelectrode catheter for mapping and ablation
JP2002253500A (en)2001-03-052002-09-10Olympus Optical Co LtdLight source device for endoscope
US6743225B2 (en)2001-03-272004-06-01Uab Research FoundationElectrophysiologic measure of endpoints for ablation lesions created in fibrillating substrates
US7959626B2 (en)2001-04-262011-06-14Medtronic, Inc.Transmural ablation systems and methods
US6989010B2 (en)2001-04-262006-01-24Medtronic, Inc.Ablation system and method of use
US6663627B2 (en)2001-04-262003-12-16Medtronic, Inc.Ablation system and method of use
US7250048B2 (en)2001-04-262007-07-31Medtronic, Inc.Ablation system and method of use
US6648883B2 (en)2001-04-262003-11-18Medtronic, Inc.Ablation system and method of use
US7255695B2 (en)2001-04-272007-08-14C.R. Bard, Inc.Systems and methods for three-dimensional mapping of electrical activity
US7727229B2 (en)2001-05-012010-06-01C.R. Bard, Inc.Method and apparatus for altering conduction properties in the heart and in adjacent vessels
EP1418972A1 (en)2001-05-012004-05-19C.R. Bard, Inc.Method and apparatus for altering conduction properties along pathways in the heart and in vessels in conductive communication with the heart
US20030208252A1 (en)2001-05-142003-11-06O' Boyle Gary S.Mri ablation catheter
US7992573B2 (en)2001-06-192011-08-09The Trustees Of The University Of PennsylvaniaOptically guided system for precise placement of a medical catheter in a patient
US8078268B2 (en)2001-06-282011-12-13Chemimage CorporationSystem and method of chemical imaging using pulsed laser excitation and time-gated detection to determine tissue margins during surgery
US7596404B2 (en)2001-06-282009-09-29Chemimage CorporationMethod of chemical imaging to determine tissue margins during surgery
US6761716B2 (en)2001-09-182004-07-13Cardiac Pacemakers, Inc.System and method for assessing electrode-tissue contact and lesion quality during RF ablation by measurement of conduction time
AU2002325761A1 (en)2001-09-282003-04-14Institut De Cardiologie De MontrealMethod for identification and visualization of atrial tissue
JP2005512686A (en)2001-11-092005-05-12カーディオ−オプティクス, インコーポレイテッド Coronary sinus access catheter with anterior imaging means
US20030120144A1 (en)2001-11-162003-06-26Grabek James R.Intrapericardial temperature measurement device and method
US7749157B2 (en)2001-12-042010-07-06Estech, Inc. (Endoscopic Technologies, Inc.)Methods and devices for minimally invasive cardiac surgery for atrial fibrillation
US12121289B2 (en)2008-05-092024-10-22Atricure, Inc.Conduction block systems and methods
US20040092806A1 (en)2001-12-112004-05-13Sagon Stephen WMicroelectrode catheter for mapping and ablation
US6825928B2 (en)2001-12-192004-11-30Wisconsin Alumni Research FoundationDepth-resolved fluorescence instrument
US20040215310A1 (en)2002-01-172004-10-28Omar AmiranaStent and delivery method for applying RF energy to a pulmonary vein and the atrial wall around its ostium to eliminate atrial fibrillation while preventing stenosis of the pulmonary vein thereafter
US7967816B2 (en)2002-01-252011-06-28Medtronic, Inc.Fluid-assisted electrosurgical instrument with shapeable electrode
US20050075629A1 (en)2002-02-192005-04-07Afx, Inc.Apparatus and method for assessing tissue ablation transmurality
US7192427B2 (en)2002-02-192007-03-20Afx, Inc.Apparatus and method for assessing transmurality of a tissue ablation
US7846157B2 (en)2002-03-152010-12-07C.R. Bard, Inc.Method and apparatus for control of ablation energy and electrogram acquisition through multiple common electrodes in an electrophysiology catheter
US6746401B2 (en)2002-05-062004-06-08Scimed Life Systems, Inc.Tissue ablation visualization
US8956280B2 (en)2002-05-302015-02-17Intuitive Surgical Operations, Inc.Apparatus and methods for placing leads using direct visualization
EP1513440A2 (en)2002-05-302005-03-16The Board of Trustees of The Leland Stanford Junior UniversityApparatus and method for coronary sinus access
AU2003238656A1 (en)2002-06-252004-01-06Glucon Inc.Method and apparatus for performing myocardial revascularization
AU2003279097A1 (en)*2002-09-302004-04-19Vanderbilt UniversityOptical apparatus for guided liver tumor treatment and methods
US7306593B2 (en)2002-10-212007-12-11Biosense, Inc.Prediction and assessment of ablation of cardiac tissue
US7001383B2 (en)2002-10-212006-02-21Biosense, Inc.Real-time monitoring and mapping of ablation lesion formation in the heart
US7837676B2 (en)2003-02-202010-11-23Recor Medical, Inc.Cardiac ablation devices
ATE476908T1 (en)2003-04-182010-08-15Medispectra Inc SYSTEM AND DIAGNOSTIC METHOD FOR OPTICAL DETECTION OF SUSPICIOUS AREAS IN A TISSUE SAMPLE
US7539530B2 (en)2003-08-222009-05-26Infraredx, Inc.Method and system for spectral examination of vascular walls through blood during cardiac motion
US7534204B2 (en)2003-09-032009-05-19Guided Delivery Systems, Inc.Cardiac visualization devices and methods
US20060009755A1 (en)2003-09-042006-01-12Sra Jasbir SMethod and system for ablation of atrial fibrillation and other cardiac arrhythmias
WO2005027730A2 (en)2003-09-192005-03-31The General Hospital CorporationFluorescence polarization imaging devices and methods
US7395118B2 (en)2003-09-252008-07-01Advanced Neuromodulation Systems, Inc.System and method for implantable stimulation lead employing optical fibers
US8172747B2 (en)2003-09-252012-05-08Hansen Medical, Inc.Balloon visualization for traversing a tissue wall
JP2007508911A (en)2003-10-202007-04-12ザ ジョンズ ホプキンス ユニバーシティ Catheter and method for ablating atrial tissue
WO2005044124A1 (en)2003-10-302005-05-19Medical Cv, Inc.Apparatus and method for laser treatment
US7232437B2 (en)2003-10-302007-06-19Medical Cv, Inc.Assessment of lesion transmurality
US20050137459A1 (en)2003-12-172005-06-23Scimed Life Systems, Inc.Medical device with OLED illumination light source
US7587236B2 (en)2004-01-082009-09-08Lawrence Livermore National Security, LlcOptical spectroscopy for the detection of ischemic tissue injury
US20050215899A1 (en)2004-01-152005-09-29Trahey Gregg EMethods, systems, and computer program products for acoustic radiation force impulse (ARFI) imaging of ablated tissue
US20050228452A1 (en)2004-02-112005-10-13Mourlas Nicholas JSteerable catheters and methods for using them
US20050197623A1 (en)2004-02-172005-09-08Leeflang Stephen A.Variable steerable catheters and methods for using them
JP2007537011A (en)2004-05-142007-12-20メドトロニック・インコーポレーテッド Method and apparatus for treating atrial fibrillation by reducing mass
US7640046B2 (en)2004-06-182009-12-29Cardiac Pacemakers, Inc.Methods and apparatuses for localizing myocardial infarction during catheterization
US7527625B2 (en)2004-08-042009-05-05Olympus CorporationTransparent electrode for the radiofrequency ablation of tissue
US20060089637A1 (en)2004-10-142006-04-27Werneth Randell LAblation catheter
US20060089636A1 (en)2004-10-272006-04-27Christopherson Mark AUltrasound visualization for transurethral needle ablation
US10413188B2 (en)2004-11-172019-09-17Lawrence Livermore National Security, LlcAssessment of tissue or lesion depth using temporally resolved light scattering spectroscopy
US20060229515A1 (en)2004-11-172006-10-12The Regents Of The University Of CaliforniaFiber optic evaluation of tissue modification
US20060122587A1 (en)2004-11-172006-06-08Shiva ShararehApparatus for real time evaluation of tissue ablation
US8548570B2 (en)2004-11-292013-10-01Hypermed Imaging, Inc.Hyperspectral imaging of angiogenesis
JP4656924B2 (en)2004-12-032011-03-23株式会社トプコン Spectral fundus image data measurement device
US7367944B2 (en)2004-12-132008-05-06Tel Hashomer Medical Research Infrastructure And Services Ltd.Method and system for monitoring ablation of tissues
US8858495B2 (en)2004-12-282014-10-14St. Jude Medical, Atrial Fibrillation Division, Inc.Five degree of freedom ultrasound catheter and catheter control handle
US7776033B2 (en)2005-01-082010-08-17Boston Scientific Scimed, Inc.Wettable structures including conductive fibers and apparatus including the same
US7862561B2 (en)2005-01-082011-01-04Boston Scientific Scimed, Inc.Clamp based lesion formation apparatus with variable spacing structures
US7727231B2 (en)2005-01-082010-06-01Boston Scientific Scimed, Inc.Apparatus and methods for forming lesions in tissue and applying stimulation energy to tissue in which lesions are formed
US7729750B2 (en)2005-01-202010-06-01The Regents Of The University Of CaliforniaMethod and apparatus for high resolution spatially modulated fluorescence imaging and tomography
US7860555B2 (en)2005-02-022010-12-28Voyage Medical, Inc.Tissue visualization and manipulation system
US8137333B2 (en)2005-10-252012-03-20Voyage Medical, Inc.Delivery of biological compounds to ischemic and/or infarcted tissue
US10064540B2 (en)2005-02-022018-09-04Intuitive Surgical Operations, Inc.Visualization apparatus for transseptal access
US8050746B2 (en)2005-02-022011-11-01Voyage Medical, Inc.Tissue visualization device and method variations
US8078266B2 (en)2005-10-252011-12-13Voyage Medical, Inc.Flow reduction hood systems
US7930016B1 (en)2005-02-022011-04-19Voyage Medical, Inc.Tissue closure system
US7860556B2 (en)2005-02-022010-12-28Voyage Medical, Inc.Tissue imaging and extraction systems
US20080009747A1 (en)2005-02-022008-01-10Voyage Medical, Inc.Transmural subsurface interrogation and ablation
US7918787B2 (en)2005-02-022011-04-05Voyage Medical, Inc.Tissue visualization and manipulation systems
US20080015569A1 (en)2005-02-022008-01-17Voyage Medical, Inc.Methods and apparatus for treatment of atrial fibrillation
CA2947613C (en)2005-04-042019-11-05Hypermed Imaging, Inc.Hyperspectral imaging in diabetes and peripheral vascular disease
US20070016130A1 (en)2005-05-062007-01-18Leeflang Stephen AComplex Shaped Steerable Catheters and Methods for Making and Using Them
DE102005021205B4 (en)2005-05-072007-08-16Mfd Diagnostics Gmbh Method and device for the local detection of the vitality of living cells in cell cultures or in tissue
US20070038126A1 (en)2005-06-232007-02-15Pyle Jason LSystem and method for monitoring of end organ oxygenation by measurement of in vivo cellular energy status
US8556851B2 (en)2005-07-052013-10-15Angioslide Ltd.Balloon catheter
DE102005032755B4 (en)2005-07-132014-09-04Siemens Aktiengesellschaft System for performing and monitoring minimally invasive procedures
EP2363073B1 (en)2005-08-012015-10-07St. Jude Medical Luxembourg Holding S.à.r.l.Medical apparatus system having optical fiber load sensing capability
US7681579B2 (en)2005-08-022010-03-23Biosense Webster, Inc.Guided procedures for treating atrial fibrillation
US8583220B2 (en)2005-08-022013-11-12Biosense Webster, Inc.Standardization of catheter-based treatment for atrial fibrillation
US7877128B2 (en)2005-08-022011-01-25Biosense Webster, Inc.Simulation of invasive procedures
US7740584B2 (en)2005-08-162010-06-22The General Electric CompanyMethod and system for mapping physiology information onto ultrasound-based anatomic structure
JP4681981B2 (en)2005-08-182011-05-11Hoya株式会社 Electronic endoscope device
US7824397B2 (en)2005-08-192010-11-02Boston Scientific Scimed, Inc.Occlusion apparatus
WO2007023407A1 (en)2005-08-252007-03-01Koninklijke Philips Electronics, N.V.System and method for electrophysiology regaining support to continue line and ring ablations
US20070270717A1 (en)2005-09-302007-11-22Cornova, Inc.Multi-faceted optical reflector
JP5129749B2 (en)2005-09-302013-01-30コルノヴァ インク System for probe inspection and treatment of body cavities
US8929973B1 (en)2005-10-242015-01-06Lockheed Martin CorporationApparatus and method for characterizing optical sources used with human and animal tissues
US8221310B2 (en)2005-10-252012-07-17Voyage Medical, Inc.Tissue visualization device and method variations
US9254163B2 (en)2005-12-062016-02-09St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
US8406866B2 (en)2005-12-062013-03-26St. Jude Medical, Atrial Fibrillation Division, Inc.System and method for assessing coupling between an electrode and tissue
US8998890B2 (en)2005-12-062015-04-07St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
BRPI0621017A2 (en)2005-12-062011-11-29St Jude Medical Atrial Fibrill Div tissue ablation electrode junction evaluation
US8603084B2 (en)2005-12-062013-12-10St. Jude Medical, Atrial Fibrillation Division, Inc.System and method for assessing the formation of a lesion in tissue
US8317783B2 (en)2005-12-062012-11-27St. Jude Medical, Atrial Fibrillation Division, Inc.Assessment of electrode coupling for tissue ablation
US8403925B2 (en)2006-12-062013-03-26St. Jude Medical, Atrial Fibrillation Division, Inc.System and method for assessing lesions in tissue
US9492226B2 (en)2005-12-062016-11-15St. Jude Medical, Atrial Fibrillation Division, Inc.Graphical user interface for real-time RF lesion depth display
CN101404968B (en)2006-01-132012-04-18康沃特克科技公司 Devices, systems and methods for compression treatment of body parts
US20070185479A1 (en)2006-02-062007-08-09Liming LauMethods and devices for performing ablation and assessing efficacy thereof
WO2007109554A2 (en)2006-03-172007-09-27Voyage Medical, Inc.Tissue visualization and manipulation systems
US20070225697A1 (en)2006-03-232007-09-27Ketan ShroffApparatus and methods for cardiac ablation
US9220917B2 (en)2006-04-122015-12-29The Invention Science Fund I, LlcSystems for autofluorescent imaging and target ablation
US20080058786A1 (en)2006-04-122008-03-06Searete Llc, A Limited Liability Corporation Of The State Of DelawareAutofluorescent imaging and target ablation
US8129105B2 (en)2006-04-132012-03-06Ralph ZuckermanMethod and apparatus for the non-invasive measurement of tissue function and metabolism by determination of steady-state fluorescence anisotropy
US8628520B2 (en)2006-05-022014-01-14Biosense Webster, Inc.Catheter with omni-directional optical lesion evaluation
WO2007134039A2 (en)2006-05-082007-11-22Medeikon CorporationInterferometric characterization of ablated tissue
US20100198065A1 (en)2009-01-302010-08-05VyntronUS, Inc.System and method for ultrasonically sensing and ablating tissue
EP2540246B8 (en)2006-05-122020-10-07Vytronus, Inc.Device for ablating body tissue
JP2007313169A (en)2006-05-292007-12-06Olympus CorpLesion extractor and lesion extraction method
CN101453942B (en)2006-05-302012-01-11皇家飞利浦电子股份有限公司Apparatus for depth-resolved measurements of properties of tissue
EP2034890A4 (en)2006-06-012011-02-16Gen Hospital Corp IN VIVO OPTICAL IMAGING METHOD COMPRISING THE ANALYSIS OF DYNAMIC IMAGES
US9220402B2 (en)2006-06-072015-12-29Intuitive Surgical Operations, Inc.Visualization and treatment via percutaneous methods and devices
US8048063B2 (en)2006-06-092011-11-01Endosense SaCatheter having tri-axial force sensor
US8567265B2 (en)2006-06-092013-10-29Endosense, SATriaxial fiber optic force sensing catheter
US7662152B2 (en)2006-06-132010-02-16Biosense Webster, Inc.Catheter with multi port tip for optical lesion evaluation
EP2038002A4 (en)2006-06-282010-12-29Bard Inc C R METHODS AND APPARATUS FOR ASSESSING AND ENHANCING ELECTRODE CONTACT WITH CARDIAC TISSUE
US20080033241A1 (en)2006-08-012008-02-07Ruey-Feng PehLeft atrial appendage closure
WO2008028149A2 (en)2006-09-012008-03-06Voyage Medical, Inc.Electrophysiology mapping and visualization system
US20080097476A1 (en)2006-09-012008-04-24Voyage Medical, Inc.Precision control systems for tissue visualization and manipulation assemblies
US10004388B2 (en)2006-09-012018-06-26Intuitive Surgical Operations, Inc.Coronary sinus cannulation
WO2008028298A1 (en)2006-09-062008-03-13University Health NetworkFluorescence quantification and image acquisition in highly turbid media
US8147484B2 (en)2006-10-232012-04-03Biosense Webster, Inc.Apparatus and method for monitoring early formation of steam pop during ablation
US10335131B2 (en)2006-10-232019-07-02Intuitive Surgical Operations, Inc.Methods for preventing tissue migration
DE102006050885B4 (en)2006-10-272016-11-03Siemens Healthcare Gmbh Device for generating tissue section images
US8986298B2 (en)2006-11-172015-03-24Biosense Webster, Inc.Catheter with omni-directional optical tip having isolated optical paths
US20080183036A1 (en)2006-12-182008-07-31Voyage Medical, Inc.Systems and methods for unobstructed visualization and ablation
US9226648B2 (en)2006-12-212016-01-05Intuitive Surgical Operations, Inc.Off-axis visualization systems
US8131350B2 (en)2006-12-212012-03-06Voyage Medical, Inc.Stabilization of visualization catheters
US7766907B2 (en)2006-12-282010-08-03St. Jude Medical, Atrial Fibrillation Division, Inc.Ablation catheter with sensor array and discrimination circuit to minimize variation in power density
US7591816B2 (en)2006-12-282009-09-22St. Jude Medical, Atrial Fibrillation Division, Inc.Irrigated ablation catheter having a pressure sensor to detect tissue contact
US8460285B2 (en)2006-12-292013-06-11St. Jude Medical, Atrial Fibrillation Division, Inc.Ablation catheter electrode having multiple thermal sensors and method of use
US8144966B2 (en)2007-03-022012-03-27Wisconsin Alumni Research FoundationUse of endogenous fluorescence to identify invading metastatic breast tumor cells
US20080221448A1 (en)2007-03-072008-09-11Khuri-Yakub Butrus TImage-guided delivery of therapeutic tools duing minimally invasive surgeries and interventions
US20080228079A1 (en)2007-03-162008-09-18Donaldson Brenda LClinical utilization of contrast agents to define specific areas within the myocardial wall to provide guidance and localization for ablation, cyroablation, or other techniques in patients with post myocardial infarction
JP2008229024A (en)2007-03-202008-10-02Olympus CorpFluorescence observation device
EP2136702B1 (en)2007-03-262015-07-01Boston Scientific LimitedHigh resolution electrophysiology catheter
EP2148608A4 (en)2007-04-272010-04-28Voyage Medical IncComplex shape steerable tissue visualization and manipulation catheter
US8657805B2 (en)2007-05-082014-02-25Intuitive Surgical Operations, Inc.Complex shape steerable tissue visualization and manipulation catheter
WO2008141238A1 (en)2007-05-112008-11-20Voyage Medical, Inc.Visual electrode ablation systems
US10220187B2 (en)2010-06-162019-03-05St. Jude Medical, LlcAblation catheter having flexible tip with multiple flexible electrode segments
WO2008154578A1 (en)2007-06-112008-12-18Board Of Regents, The University Of Texas SystemCharacterization of a near-infrared laparoscopic hyperspectral imaging system
US7976537B2 (en)2007-06-282011-07-12Biosense Webster, Inc.Optical pyrometric catheter for tissue temperature monitoring during cardiac ablation
US8123745B2 (en)2007-06-292012-02-28Biosense Webster, Inc.Ablation catheter with optically transparent, electrically conductive tip
US20090030276A1 (en)2007-07-272009-01-29Voyage Medical, Inc.Tissue visualization catheter with imaging systems integration
US8131379B2 (en)2007-08-272012-03-06St. Jude Medical Atrial Fibrillation Division, Inc.Cardiac tissue elasticity sensing
US8235985B2 (en)2007-08-312012-08-07Voyage Medical, Inc.Visualization and ablation system variations
US20090062790A1 (en)2007-08-312009-03-05Voyage Medical, Inc.Direct visualization bipolar ablation systems
DE102007043732A1 (en)2007-09-132009-04-02Siemens Ag A myocardial tissue ablation device for the treatment of cardiac arrhythmias by ablation of myocardial tissue in a patient, and associated catheter and associated method
DE102007043731A1 (en)2007-09-132009-04-02Siemens Ag Medical image recording device, in particular for the production of image recordings in the context of a treatment of cardiac arrhythmias, and associated method
US20090082660A1 (en)2007-09-202009-03-26Norbert RahnClinical workflow for treatment of atrial fibrulation by ablation using 3d visualization of pulmonary vein antrum in 2d fluoroscopic images
NL2002010C2 (en)2007-09-282009-10-06Gen ElectricImaging and navigation system for atrial fibrillation treatment, displays graphical representation of catheter position acquired using tracking system and real time three-dimensional image obtained from imaging devices, on display
US8535308B2 (en)2007-10-082013-09-17Biosense Webster (Israel), Ltd.High-sensitivity pressure-sensing probe
JP5372356B2 (en)2007-10-182013-12-18オリンパスメディカルシステムズ株式会社 Endoscope apparatus and method for operating endoscope apparatus
US8322335B2 (en)*2007-10-222012-12-04Uptake Medical Corp.Determining patient-specific vapor treatment and delivery parameters
US8195271B2 (en)2007-11-062012-06-05Siemens AktiengesellschaftMethod and system for performing ablation to treat ventricular tachycardia
US20090125022A1 (en)2007-11-122009-05-14Voyage Medical, Inc.Tissue visualization and ablation systems
US8500730B2 (en)*2007-11-162013-08-06Biosense Webster, Inc.Catheter with omni-directional optical tip having isolated optical paths
US8906011B2 (en)2007-11-162014-12-09Kardium Inc.Medical device for use in bodily lumens, for example an atrium
US8702690B2 (en)2007-11-162014-04-22St. Jude Medical, Atrial Fibrillation Division, Inc.Device and method for real-time lesion estimation during ablation
US20090143640A1 (en)2007-11-262009-06-04Voyage Medical, Inc.Combination imaging and treatment assemblies
US8849380B2 (en)2007-11-262014-09-30Canfield Scientific Inc.Multi-spectral tissue imaging
US8353907B2 (en)2007-12-212013-01-15Atricure, Inc.Ablation device with internally cooled electrodes
US8998892B2 (en)2007-12-212015-04-07Atricure, Inc.Ablation device with cooled electrodes and methods of use
US9204927B2 (en)2009-05-132015-12-08St. Jude Medical, Atrial Fibrillation Division, Inc.System and method for presenting information representative of lesion formation in tissue during an ablation procedure
US7996078B2 (en)2007-12-312011-08-09St. Jude Medical, Atrial Fibrillation Division, Inc.Systems and methods of photodynamic-based cardiac ablation via the esophagus
US8858609B2 (en)2008-02-072014-10-14Intuitive Surgical Operations, Inc.Stent delivery under direct visualization
US20090306643A1 (en)*2008-02-252009-12-10Carlo PapponeMethod and apparatus for delivery and detection of transmural cardiac ablation lesions
US10219742B2 (en)2008-04-142019-03-05Novadaq Technologies ULCLocating and analyzing perforator flaps for plastic and reconstructive surgery
US8298227B2 (en)2008-05-142012-10-30Endosense SaTemperature compensated strain sensing catheter
CA3194784A1 (en)2008-05-202009-11-26University Health NetworkDevice and method for fluorescence-based imaging and monitoring
US10568535B2 (en)2008-05-222020-02-25The Trustees Of Dartmouth CollegeSurgical navigation with stereovision and associated methods
US8357149B2 (en)2008-06-052013-01-22Biosense Webster, Inc.Filter for simultaneous pacing and ablation
WO2010011820A2 (en)2008-07-232010-01-28St. Jude Medical, Inc.Ablation and monitoring system including a fiber optic imaging catheter and an optical coherence tomography system
JP2010029382A (en)2008-07-282010-02-12Olympus Medical Systems CorpEndoscope insertion aid and endoscope apparatus
EP2165643B1 (en)2008-09-172012-04-18FUJIFILM CorporationImage obtaining method and image obtaining apparatus
US9545216B2 (en)2011-08-052017-01-17Mc10, Inc.Catheter balloon methods and apparatus employing sensing elements
US8333012B2 (en)2008-10-102012-12-18Voyage Medical, Inc.Method of forming electrode placement and connection systems
US8808281B2 (en)2008-10-212014-08-19Microcube, LlcMicrowave treatment devices and methods
US9033885B2 (en)2008-10-302015-05-19Vytronus, Inc.System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion
US9220924B2 (en)2008-10-302015-12-29Vytronus, Inc.System and method for energy delivery to tissue while monitoring position, lesion depth, and wall motion
US9192789B2 (en)2008-10-302015-11-24Vytronus, Inc.System and method for anatomical mapping of tissue and planning ablation paths therein
US8414508B2 (en)2008-10-302013-04-09Vytronus, Inc.System and method for delivery of energy to tissue while compensating for collateral tissue
US9468364B2 (en)2008-11-142016-10-18Intuitive Surgical Operations, Inc.Intravascular catheter with hood and image processing systems
AU2009313687B2 (en)2008-11-172015-11-26Vytronus, Inc.Systems and methods for ablating body tissue
KR20110095400A (en)*2008-12-042011-08-24사노피 Novel Polymorphs of Azabicyclo-Trifluoromethyl Benzamide Derivatives
US20100152728A1 (en)2008-12-112010-06-17Park Christopher JMethod and apparatus for determining the efficacy of a lesion
US20100160768A1 (en)2008-12-242010-06-24Marrouche Nassir FTherapeutic outcome assessment for atrial fibrillation
US8864757B2 (en)2008-12-312014-10-21St. Jude Medical, Atrial Fibrillation Division, Inc.System and method for measuring force and torque applied to a catheter electrode tip
US8948851B2 (en)2009-01-202015-02-03The Trustees Of Dartmouth CollegeMethod and apparatus for depth-resolved fluorescence, chromophore, and oximetry imaging for lesion identification during surgery
US20100204561A1 (en)2009-02-112010-08-12Voyage Medical, Inc.Imaging catheters having irrigation
GB0903534D0 (en)2009-03-032009-04-08Leicester Gordon CSafety harness
CA2759507A1 (en)2009-04-282010-11-11Empowering Engineering Technologies Corp.Adjustable prosthesis
CA2703347C (en)2009-05-082016-10-04Endosense SaMethod and apparatus for controlling lesion size in catheter-based ablation treatment
US8774906B2 (en)2009-05-152014-07-08Koninklijke Philips N.V.Apparatus, method and computer program for determining a property of a heart
WO2010144402A2 (en)2009-06-082010-12-16Surgivision, Inc.Mri-guided surgical systems with preset scan planes
US8597222B2 (en)2009-06-122013-12-03Under Armour, Inc.Garment with adjustable compression
EP2442773B2 (en)2009-06-162016-08-24Otto Bock HealthCare GmbHCompression bandage
US20100331838A1 (en)2009-06-252010-12-30Estech, Inc. (Endoscopic Technologies, Inc.)Transmurality clamp systems and methods
DE102009034249A1 (en)2009-07-222011-03-24Siemens Aktiengesellschaft A method and apparatus for controlling ablation energy to perform an electrophysiology catheter application
CN102686181B (en)2009-08-272016-08-10新泽西理工学院Integrated fiber Raman spectrum and radio-frequency (RF) ablation
US9326814B2 (en)2009-09-152016-05-03The Arizona Board Of Regents On Behalf Of The University Of ArizonaSystem and method for predicting lesion size shortly after onset of RF energy delivery
US8443501B2 (en)2009-09-182013-05-21Joseph A. MahonAdjustable prosthetic interfaces and related systems and methods
WO2011041638A2 (en)2009-10-022011-04-07Cardiofocus, Inc.Cardiac ablation system with automatic safety shut-off feature
US20110082450A1 (en)2009-10-022011-04-07Cardiofocus, Inc.Cardiac ablation system with inflatable member having multiple inflation settings
US8702688B2 (en)2009-10-062014-04-22Cardiofocus, Inc.Cardiac ablation image analysis system and process
US20110257563A1 (en)2009-10-262011-10-20Vytronus, Inc.Methods and systems for ablating tissue
US8568401B2 (en)2009-10-272013-10-29Covidien LpSystem for monitoring ablation size
US8382750B2 (en)2009-10-282013-02-26Vivant Medical, Inc.System and method for monitoring ablation size
ES2874194T3 (en)2009-12-162021-11-04Boston Scient Scimed Inc Arrangements for making an endoluminal anatomical structure
US9134243B2 (en)2009-12-182015-09-15University Health NetworkSystem and method for sub-surface fluorescence imaging
US8926604B2 (en)2009-12-232015-01-06Biosense Webster (Israel) Ltd.Estimation and mapping of ablation volume
EP4160192B1 (en)2010-01-252024-05-29University Health NetworkDevice, system and method for quantifying fluorescence and optical properties
JP5719159B2 (en)2010-03-152015-05-13ソニー株式会社 Evaluation device
US9654745B2 (en)2010-03-172017-05-16Haishan ZengRapid multi-spectral imaging methods and apparatus and applications for cancer detection and localization
JP5432793B2 (en)2010-03-292014-03-05オリンパス株式会社 Fluorescence endoscope device
AU2011241103A1 (en)2010-04-132012-11-08Sentreheart, Inc.Methods and devices for treating atrial fibrillation
US9918787B2 (en)2010-05-052018-03-20St. Jude Medical, Atrial Fibrillation Division, Inc.Monitoring, managing and/or protecting system and method for non-targeted tissue
US20140171806A1 (en)2012-12-172014-06-19Biosense Webster (Israel), Ltd.Optical lesion assessment
DE102010032755B4 (en)2010-07-292019-05-23Siemens Healthcare Gmbh Method of visualizing an atrium of the heart of a patient
WO2012025856A1 (en)2010-08-232012-03-01Koninklijke Philips Electronics N.V.Mapping system and method for medical procedures
US9763642B2 (en)*2010-10-142017-09-19Koninklijke Philips N.V.Property determination apparatus for determining a property of an object
US9254090B2 (en)2010-10-222016-02-09Intuitive Surgical Operations, Inc.Tissue contrast imaging systems
US20120123276A1 (en)*2010-11-162012-05-17Assaf GovariCatheter with optical contact sensing
WO2012066430A1 (en)2010-11-182012-05-24Koninklijke Philips Electronics N.V.Medical device with ultrasound transducers embedded in flexible foil
US8998893B2 (en)2010-12-072015-04-07Boaz AvitallCatheter systems for cardiac arrhythmia ablation
US11246653B2 (en)2010-12-072022-02-15Boaz AvitallCatheter systems for cardiac arrhythmia ablation
JP5485190B2 (en)2011-01-192014-05-07富士フイルム株式会社 Endoscope device
JP5485191B2 (en)2011-01-192014-05-07富士フイルム株式会社 Endoscope device
JP2012147937A (en)2011-01-192012-08-09Sony CorpLaser therapy apparatus, laser therapy system and assessment method
US9265557B2 (en)2011-01-312016-02-23Medtronic Ablation Frontiers LlcMulti frequency and multi polarity complex impedance measurements to assess ablation lesions
WO2012109557A2 (en)2011-02-102012-08-16Dc Devices, Inc.Apparatus and methods to create and maintain an intra-atrial pressure relief opening
US9233241B2 (en)*2011-02-282016-01-12Ethicon Endo-Surgery, Inc.Electrical ablation devices and methods
US9743881B2 (en)2011-03-292017-08-29Koninklijke Philips N.V.Photoacoustic catheter for functional-imaging-based ablation monitoring
US8986292B2 (en)2011-04-132015-03-24St. Jude Medical, Inc.Optical feedback RF ablator and ablator tip
US9387031B2 (en)2011-07-292016-07-12Medtronic Ablation Frontiers LlcMesh-overlayed ablation and mapping device
US8900228B2 (en)2011-09-012014-12-02Biosense Webster (Israel) Ltd.Catheter adapted for direct tissue contact and pressure sensing
US9014789B2 (en)2011-09-222015-04-21The George Washington UniversitySystems and methods for visualizing ablated tissue
DE102011083522B4 (en)2011-09-272015-06-18Friedrich-Alexander-Universität Erlangen-Nürnberg Method and device for visualizing the quality of an ablation procedure
US10791950B2 (en)2011-09-302020-10-06Biosense Webster (Israel) Ltd.In-vivo calibration of contact force-sensing catheters using auto zero zones
JP5830348B2 (en)2011-10-262015-12-09オリンパス株式会社 Imaging device
CN103917155B (en)2011-11-072017-02-15皇家飞利浦有限公司Detection apparatus for determining state of tissue
US10456196B2 (en)2011-12-152019-10-29Biosense Webster (Israel) Ltd.Monitoring and tracking bipolar ablation
JP2015506209A (en)2011-12-282015-03-02ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Ablation probe and ablation and ultrasound imaging system
US9687289B2 (en)2012-01-042017-06-27Biosense Webster (Israel) Ltd.Contact assessment based on phase measurement
JP2015506234A (en)2012-01-102015-03-02ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Electrophysiology system
WO2013116316A1 (en)2012-01-302013-08-08Scanadu IncorporatedHyperspectral imaging systems, units, and methods
JP6038957B2 (en)2012-02-142016-12-07セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド A system for evaluating the effects of ablation treatment of cardiac tissue using photoacoustic method
EP2817061B1 (en)2012-02-242018-02-07Isolase, Ltd.Improvements in ablation techniques for the treatment of atrial fibrillation
US20130281920A1 (en)*2012-04-202013-10-24Elwha LLC, a limited liability company of the State of DelawareEndometrial Ablation
US20130282005A1 (en)2012-04-242013-10-24Siemens CorporationCatheter navigation system
US20130296840A1 (en)2012-05-012013-11-07Medtronic Ablation Frontiers LlcSystems and methods for detecting tissue contact during ablation
US8900225B2 (en)2012-05-072014-12-02Biosense Webster (Israel) Ltd.Automatic ablation tracking
CN107374723B (en)2012-05-112020-08-28美敦力Af卢森堡有限责任公司Catheter apparatus
WO2013177061A1 (en)2012-05-212013-11-28The Regents Of The University Of Colorado, A Body CorporateThree-dimensional mapping and therapy of prostate cancer
US9226767B2 (en)*2012-06-292016-01-05Ethicon Endo-Surgery, Inc.Closed feedback control for electrosurgical device
WO2014028770A1 (en)2012-08-152014-02-20Burdette Everette CMri compatible ablation catheter system incorporating directional high-intensity ultrasound for treatment
US20140073907A1 (en)2012-09-122014-03-13Convergent Life Sciences, Inc.System and method for image guided medical procedures
US20140058244A1 (en)2012-08-212014-02-27Regents Of The University Of MinnesotaPhotoacoustic monitoring
US20140058246A1 (en)2012-08-272014-02-27Birinder Robert BovejaSystem and methods for real-time cardiac mapping
US8923959B2 (en)2012-08-272014-12-30Birinder Robert BovejaMethods and system for real-time cardiac mapping
US10098692B2 (en)2012-11-302018-10-16Intuitive Surgical Operations, Inc.Apparatus and method for delivery and monitoring of ablation therapy
US20140163360A1 (en)2012-12-072014-06-12Boston Scientific Scimed, Inc.Irrigated catheter
US20140171936A1 (en)2012-12-172014-06-19Biosense Webster (Israel) Ltd.Irrigated catheter tip with temperature sensor and optic fiber arrays
US9615878B2 (en)2012-12-212017-04-11Volcano CorporationDevice, system, and method for imaging and tissue characterization of ablated tissue
RU2015127205A (en)2013-01-082017-02-15Зэ Брайгхэм Энд Вименс Хоспитал, Инк. METHOBOLISM VISUALIZATION METHODS FOR THE ASSESSMENT OF OOCYTES AND EMBRYONS
US20140276771A1 (en)2013-03-152014-09-18Volcano CorporationSystems and methods for controlled tissue ablation
US10194830B2 (en)2013-03-152019-02-05University Of Utah Research FoundationHigh temporal resolution monitoring of contact between catheter tip and target tissue during a real-time-MRI-guided ablation
US20140276687A1 (en)2013-03-152014-09-18Volcano CorporationAssessment of varicose vein ablation via imaging or functional measurement analysis
KR20150140760A (en)2013-04-082015-12-16아파마 메디칼, 인크.Cardiac ablation catheters and methods of use thereof
US10098694B2 (en)2013-04-082018-10-16Apama Medical, Inc.Tissue ablation and monitoring thereof
US9907471B2 (en)2013-10-082018-03-06The Board Of Trustees Of The Leland Stanford Junior UniversityVisualization of heart wall tissue
CN203525125U (en)2013-10-302014-04-09山西医科大学Visual special device for bladder water sac expansion
CN106028914B (en)2013-11-142020-09-15乔治华盛顿大学 System and method for determining lesion depth using fluorescence imaging
JP6737705B2 (en)2013-11-142020-08-12ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity Method of operating system for determining depth of injury site and system for generating images of heart tissue
JP2017500550A (en)2013-11-202017-01-05ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity System and method for hyperspectral analysis of cardiac tissue
US10278775B2 (en)2013-12-312019-05-07Biosense Webster (Israel) Ltd.Catheter utilizing optical spectroscopy for measuring tissue contact area
KR102499045B1 (en)2014-11-032023-02-10더 조지 워싱턴 유니버시티Systems and methods for lesion assessment
EP3215001A4 (en)2014-11-032018-04-04Luxcath, LLCSystems and methods for assessment of contact quality
EP3223735A4 (en)2014-11-252018-07-11Luxcath, LLCVisualization catheters
US10779904B2 (en)2015-07-192020-09-22460Medical, Inc.Systems and methods for lesion formation and assessment
WO2017083785A1 (en)2015-11-132017-05-18Boston Scientific Scimed, Inc.Direct visualization devices, systems, and methods for transseptal crossing
EP4087511A4 (en)2020-01-082024-02-14460Medical, Inc.Systems and methods for optical interrogation of ablation lesions
US20210369118A1 (en)2020-05-272021-12-02The George Washington UniversityLesion visualization using dual wavelength approach
US20220031377A1 (en)2020-07-282022-02-03460Medical, Inc.Systems and Methods for Lesion Formation and Assessment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5421337A (en)*1989-04-141995-06-06Massachusetts Institute Of TechnologySpectral diagnosis of diseased tissue
WO1997037622A1 (en)*1996-04-081997-10-16The University Of Southern CaliforniaMethod and apparatus for using laser-induced fluorescence during photoretractive keratectomy
US20060025760A1 (en)*2002-05-062006-02-02Podhajsky Ronald JBlood detector for controlling anesu and method therefor
US20090292211A1 (en)*2002-07-052009-11-26Vanderbilt UniversityMethods and Apparatus for Optical Spectroscopic Detection of Cell and Tissue Death
CN101045016A (en)*2006-02-172007-10-03韦伯斯特生物官能公司Lesion assessment by pacing
CN101502442A (en)*2008-02-052009-08-12北京迈迪顶峰医疗科技有限公司Radio frequency ablation system, ablation controller and radio frequency ablation device
CN104066368A (en)*2011-09-222014-09-24乔治华盛顿大学 Systems and methods for visualizing ablated tissue

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN113180820A (en)*2021-04-302021-07-30广州迪光医学科技有限公司Radial laser ablation catheter

Also Published As

Publication numberPublication date
AU2015343258A1 (en)2017-05-18
WO2016073476A1 (en)2016-05-12
JP2021104333A (en)2021-07-26
JP7178053B2 (en)2022-11-25
JP2017537681A (en)2017-12-21
EP3215002B1 (en)2024-03-20
US20160120599A1 (en)2016-05-05
KR20170116005A (en)2017-10-18
AU2015343258B2 (en)2020-07-16
US10722301B2 (en)2020-07-28
US20200352645A1 (en)2020-11-12
US11559352B2 (en)2023-01-24
EP3215002A1 (en)2017-09-13
CN113143440B (en)2024-07-30
KR102499045B1 (en)2023-02-10
CN113143440A (en)2021-07-23
EP3215002A4 (en)2018-08-01
CN107613849B (en)2021-05-04

Similar Documents

PublicationPublication DateTitle
US11559352B2 (en)Systems and methods for lesion assessment
AU2020257151B2 (en)Systems and methods for assessment of contact quality
JP7116151B2 (en) Systems for lesion formation and assessment
CN116056651A (en)Systems and methods for lesion formation and assessment
CN115103647A (en) Systems and methods for optical interrogation of ablative lesions

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
TA01Transfer of patent application right

Effective date of registration:20190820

Address after:Columbia Special Administrative Region

Applicant after:Univ George Washington

Applicant after:460 Medical Co., Ltd.

Address before:Columbia Special Administrative Region

Applicant before:Univ George Washington

Applicant before:Laks Kaiser LLC

TA01Transfer of patent application right
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp