相关申请related application
本申请要求以下四项美国临时专利申请的权益,其全部内容通过引用整体并入本文:This application claims the benefit of the following four U.S. Provisional Patent Applications, the entire contents of which are hereby incorporated by reference in their entirety:
1.序列号62/118,560,于2015年2月20日提交。1. Serial No. 62/118,560, filed February 20, 2015.
2.序列号62/193,234,于2015年7月16日提交。2. Serial No. 62/193,234, filed July 16, 2015.
3.序列号62/206,393,于2015年8月18日提交。3. Serial No. 62/206,393, filed August 18, 2015.
4.序列号62/275,216,于2016年1月5日提交。4. Serial No. 62/275,216, filed January 5, 2016.
技术领域technical field
本公开一般涉及基于触觉的系统中的改进的感知技术。The present disclosure generally relates to improved perception techniques in haptic-based systems.
背景技术Background technique
在公共场所中,多点触控表面已经变得普遍,其中大型显示器出现在酒店大厅、商场和其他高客流量区域中。这些系统能够动态地改变它们的界面,允许多个用户同时进行交互,并且具有很少的用法说明。Multi-touch surfaces have become commonplace in public spaces, with large displays appearing in hotel lobbies, shopping malls, and other high-traffic areas. These systems are able to change their interfaces dynamically, allow multiple users to interact simultaneously, and have few instructions for usage.
存在当在接触表面之前接收触觉反馈将是有益的情况。这些包括当显示器的视觉受到限制时、诸如在驾驶时,以及当用户不想触摸装置时、诸如当他们的手脏时。在表面上方提供反馈还将允许在视觉旁边的额外信息通道。There are situations when receiving haptic feedback prior to touching a surface would be beneficial. These include when the view of the display is limited, such as while driving, and when the user does not want to touch the device, such as when their hands are dirty. Providing feedback above the surface would also allow for additional channels of information alongside vision.
空中触觉反馈系统在空中创建触感。创建空中触觉反馈的一种方法是使用超声波。超声波换能器的相控阵列被用于对目标施加声辐射力。在本文中将被称为“声场”的声能的这种连续分布对于包括触觉反馈的一系列应用而言是有用的。The air haptic feedback system creates a sense of touch in the air. One way to create mid-air haptic feedback is to use ultrasound. A phased array of ultrasonic transducers is used to apply an acoustic radiation force to the target. This continuous distribution of acoustic energy, which will be referred to herein as the "sound field", is useful for a range of applications including haptic feedback.
因此,提供用于在交互式表面上方的触觉反馈的各种改进的感知技术并且不需要与工具、附件或表面本身接触的系统是期望的。Accordingly, a system that provides various improved sensing techniques for tactile feedback over an interactive surface and does not require contact with tools, accessories, or the surface itself is desirable.
附图说明Description of drawings
其中相同的附图标记贯穿分离的视图指代相同或功能相似的元素的附图以及下面的详细描述被并入说明书中并形成其一部分,并且用于进一步说明包括要求保护的发明的概念的实施例,并解释了那些实施例的各种原理和优点。The drawings, in which like reference numerals refer to identical or functionally similar elements throughout the separate views, and the following detailed description are incorporated into and form a part of this specification and serve to further illustrate the implementation of concepts including the claimed invention examples, and explain various principles and advantages of those embodiments.
图1是在触觉系统中制成的形状的表示。Figure 1 is a representation of shapes made in a haptic system.
图2是在交互平面中同时产生的五个触觉控制点的示例系列的图示。2 is an illustration of an example series of five haptic control points simultaneously generated in an interaction plane.
图3是在其中控制点通过交互平面移动的声场模拟的选择。Figure 3 is a selection of a sound field simulation in which a control point moves through an interaction plane.
图4是无约束和约束换能器的说明性视图。Figure 4 is an illustrative view of an unconstrained and constrained transducer.
本领域技术人员将理解,附图中的元素为了简明和清楚的目的而被示出,并且未必按比例绘制。例如,附图中的一些元素的尺寸可能相对于其他元素被夸大,以帮助提高对本发明的实施例的理解。Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the invention.
已经通过附图中的常规符号适当地表示了装置和方法组件,仅示出了与理解本发明的实施例有关的那些具体细节,以便不会使用具有本文描述的益处的对于本领域普通技术人员而言将是显而易见的细节模糊本公开。Apparatus and method components have been indicated where appropriate by conventional symbols in the drawings, and only those specific details relevant to the understanding of the embodiments of the invention have been shown so as not to use the Details that would otherwise be obvious obscure the disclosure.
具体实施方式detailed description
I.在触觉系统中创建声场的挑战I.Challenges of Creating Sound Fields in Haptic Systems
已知通过在其中可以存在声场的空间中限定一个或多个控制点来控制声场。每个控制点被分配了等于声场在该控制点处的所期幅度的幅度值。然后控制换能器以在每个控制点处创建表现出所期幅度的声场。It is known to control a sound field by defining one or more control points in the space in which the sound field may exist. Each control point is assigned an amplitude value equal to the expected amplitude of the sound field at that control point. The transducers are then controlled to create a sound field exhibiting the desired amplitude at each control point.
A.人手属性A.Manpower attribute
振动由皮肤内的机械性刺激感受器检测到。皮肤内的机械性刺激感受器对0.4Hz至500Hz范围内的振动有反应。可以调制发出的超声波,以便在由人手可检测的最佳频率范围内创建振动。通过改变调制频率,它也可能改变手上的振动频率,并且这可以被用于创建不同的触觉属性。以不同频率调制不同焦点可以给每个反馈点其自己独立的“感觉”。以这种方式,可以将触觉和视觉反馈相关联,并且还将意义附加到明显不同的纹理,使得可以经由触觉反馈将信息传送给用户。The vibrations are detected by mechanoreceptors in the skin. Mechanoreceptors in the skin respond to vibrations in the range of 0.4 Hz to 500 Hz. The emitted ultrasonic waves can be modulated to create vibrations in the optimal frequency range detectable by the human hand. By changing the modulation frequency, it is also possible to change the vibration frequency on the hand, and this can be used to create different tactile properties. Modulating different focal points at different frequencies can give each feedback point its own independent "feel". In this way, tactile and visual feedback can be correlated, and meaning can also be attached to distinct textures, so that information can be communicated to the user via tactile feedback.
具体地,当人类皮肤与声场进行交互时,由被激发的机械性刺激感受器解释皮肤的振动,并经由神经系统向大脑发送信号。例如,手的掌面具有4种不同类型的机械性刺激感受器,每种机械性刺激感受器响应于不同的频率范围。触发这些感受器的每个所需的力随着振动的频率而变化。例如,Pacinian小体(corpuscle)在大约200Hz处具有其最低的激活阈值,而Meissner小体在10-50Hz之间最为敏感。Specifically, when human skin interacts with a sound field, the vibrations of the skin are interpreted by excited mechanoreceptors, which send signals to the brain via the nervous system. For example, the palm of the hand has 4 different types of mechanoreceptors, each responding to a different range of frequencies. The force required to trigger each of these receptors varies with the frequency of the vibration. For example, Pacinian corpuscles have their lowest activation threshold at about 200 Hz, while Meissner corpuscles are most sensitive between 10-50 Hz.
这些感受器以不同的密度分布在整个皮肤中。例如,由于手中的Pacinian小体的浓度较大,所以200Hz的振动在指尖上不会像手掌上那样感觉强烈。These receptors are distributed throughout the skin in varying densities. For example, a 200Hz vibration will not feel as intensely on the fingertips as it does on the palm due to the greater concentration of Pacinian corpuscles in the hand.
超声波触觉反馈系统在系统的用户的皮肤上创建震动-触感。聚焦的超声波在交叉点处创建足够的力以稍微移位用户的皮肤。典型地,超声波触觉反馈系统使用具有在40kHz处或超过40kHz的频率的超声波,其高于在皮肤中用于感觉的感受器的阈值。因此,用户只能检测到这种聚焦的超声波的开始和停止。为了提供由皮肤中的感受器可检测的感觉,聚焦的超声波以较低频率被调制在感受器的可检测范围内。该范围典型地从1Hz至500Hz。The ultrasonic haptic feedback system creates a vibration-tactile sensation on the skin of the user of the system. The focused ultrasound creates enough force at the point of intersection to slightly displace the user's skin. Typically, ultrasonic tactile feedback systems use ultrasonic waves with a frequency at or above 40 kHz, which is above the threshold of the receptors in the skin for sensation. Therefore, the user can only detect the start and stop of such focused ultrasonic waves. To provide a sensation detectable by receptors in the skin, focused ultrasound waves are modulated at lower frequencies within the detectable range of the receptors. This range is typically from 1 Hz to 500 Hz.
当创建具有空中触觉反馈的系统时,重要的是针对正在作为目标的皮肤的部分选择正确的振动频率。例如,如果以手为目标,则110Hz的振动频率是一个很好的选择,这是因为它可以跨手的所有部分被感觉到,尽管力度不同。When creating a system with mid-air haptic feedback, it is important to choose the correct vibration frequency for the part of the skin that is being targeted. For example, if the hand is the target, a vibration frequency of 110Hz is a good choice because it can be felt across all parts of the hand, albeit at different velocities.
B.发送用于触觉反馈的超声波信号B.Sending ultrasonic signals for haptic feedback
可以通过使用超声波换能器的相控阵列对空中的目标施加声辐射力来创建人类皮肤上的触感。超声波由换能器发送,其中由每个换能器发出的相位被调节,使得波同时到达目标点,以便使施加的声辐射力最大化。The tactile sensation on human skin can be created by applying an acoustic radiation force to a target in the air using a phased array of ultrasonic transducers. Ultrasonic waves are sent by transducers, where the phase emitted by each transducer is adjusted so that the waves arrive at the target point at the same time in order to maximize the applied acoustic radiation force.
通过在空间中限定一个或多个控制点,可以控制声场。每个点都可以被分配了等于在控制点处的所期幅度的值。然后可以控制换能器的物理集合,以创建在控制点处表现出所期幅度的声场。The sound field can be controlled by defining one or more control points in space. Each point may be assigned a value equal to the desired magnitude at the control point. The physical collection of transducers can then be controlled to create a sound field exhibiting a desired amplitude at the control points.
该技术的副作用在于超声波破坏并创建调制频率处的声音。因此,当使用200Hz调制频率来创建触觉反馈时,也产生了200Hz的声音。这种可听声音可能对用户来说是恼人的,并且可以成为被采用的超声波触觉技术的障碍。A side effect of this technique is that the ultrasonic waves destroy and create sounds at the modulation frequency. So when a 200Hz modulation frequency is used to create haptic feedback, a 200Hz sound is also produced. This audible sound can be annoying to the user and can be a hindrance to the adoption of ultrasonic haptic technology.
用于产生单个频率的声场的最佳条件可以通过分配激活系数来表示每个换能器的初始状态来实现。然而,为了创建触觉反馈,可以使用潜在的较低频率的信号来调制该场。例如,可以使用200Hz频率来调制40kHz的声场,以便实现200Hz振动-触觉效果。生成这种振动-触觉效果的方法可以通过在离散和不相交的控制点集合之间平滑地内插换能器激活系数,导致在控制点位置处的平滑的正弦幅度变化,来减少可听内容。这些正弦幅度变化导致生成纯音。虽然在感知响度上比由突然改变换能器的状态而引起的不相干频率内容低得多,但纯音仍然是可听的。Optimal conditions for generating a sound field at a single frequency can be achieved by assigning activation coefficients to represent the initial state of each transducer. However, to create haptic feedback, potentially lower frequency signals can be used to modulate the field. For example, a 200 Hz frequency may be used to modulate a 40 kHz sound field in order to achieve a 200 Hz vibro-haptic effect. Methods for generating such vibro-haptic effects can reduce audible content by smoothly interpolating transducer activation coefficients between discrete and disjoint sets of control points, resulting in smooth sinusoidal amplitude changes at control point locations. These sinusoidal amplitude variations result in pure tones. Pure tones are still audible, although much lower in perceived loudness than the incoherent frequency content caused by sudden changes in the transducer's state.
已知的是调制波形可以被成形为减少所创建的可听噪声的音量(如例如英国专利申请号1415923.0中描述的)。通常,减少和避免焦点处的压力水平的急剧改变将减少可听声音的响度。例如,使用纯方波的调制将产生比使用纯正弦波的调制更响亮的可听声音。It is known that the modulation waveform can be shaped to reduce the volume of the audible noise created (as described eg in UK Patent Application No. 1415923.0). In general, reducing and avoiding sharp changes in stress levels at the focal point will reduce the loudness of audible sounds. For example, modulation using a pure square wave will produce a louder audible sound than modulation using a pure sine wave.
此外,在该声场中,可以限定一个或多个控制点。这些控制点可以使用信号进行幅度调制,并且因此在空中产生振动-触觉反馈。产生反馈的可替代方法是创建可能不是在幅度上被调制的控制点,而是在空间上移动它们,以创建可以被感觉到的时空调制。然后,这两种方法可以被分开使用或一起使用,以便产生声音和不同的纹理。Furthermore, in the sound field, one or more control points may be defined. These control points can be amplitude modulated with a signal and thus generate vibration-haptic feedback in the air. An alternative way to generate feedback is to create control points that may not be modulated in amplitude, but move them spatially to create a spatiotemporal modulation that can be felt. These two methods can then be used separately or together in order to produce sounds and different textures.
II.在触觉系统中创建均匀的感觉II.Creating a sense of uniformity in the haptic system
A.创建优化的触觉反馈的步骤A.Steps to Create Optimized Haptic Feedback
使用复用频率来创建优化的触觉反馈的步骤包括以下:The steps for using multiplexed frequencies to create optimized haptic feedback include the following:
1.了解皮肤中的感受器的分布和频率响应范围,创建均匀的可感知反馈。1. Understand the distribution and frequency response range of receptors in the skin to create uniform perceivable feedback.
2.选择所有感受器的范围内的频率。2. Select a frequency within the range of all receptors.
3.优化振动频率不是仅仅可感知的,而是针对强烈或高质量感觉的最佳可能振动频率。3. Optimizing the vibrational frequency is not just perceivable, but the best possible vibrational frequency for intense or high-quality sensations.
4.动态调整振动频率始终处于最佳频率。4. Dynamically adjust the vibration frequency to always be at the best frequency.
5.复用多个频率以创建跨整个目标区域提供最佳的强度和质量水平的振动。5. Multiplexes multiple frequencies to create vibrations that provide optimal levels of intensity and quality across the entire target area.
B.触觉反馈的优化B.Optimization of Haptic Feedback
为了优化反馈的质量和感知强度,可以在进行交互时动态地改变振动频率。例如,在触觉阈值的情况下,其中手通过一些固定平面并且具有在手和该平面的交叉点处创建的振动线,可以实时调整振动的频率以优化手当前正在振动的区域。一种可能性是在手掌的中心接收到200Hz振动的同时手指接收100Hz振动。To optimize the quality and perceived strength of the feedback, the vibration frequency can be dynamically changed while the interaction is taking place. For example, in the case of a tactile threshold, where the hand passes through some fixed plane and has a vibration line created at the intersection of the hand and this plane, the frequency of the vibration can be adjusted in real time to optimize the area where the hand is currently vibrating. One possibility is that the fingers receive 100 Hz vibrations while the center of the palm receives 200 Hz vibrations.
这种动态调整使用多个反馈点也是可能的。例如,按钮的空中阵列可以由每个按钮的空中的一个局部振动点来表示。当手移动到按钮阵列上以探索其位置和取向时,每个按钮的振动频率可以实时调整,以匹配其目标所在的手的部分的最佳频率。This dynamic adjustment is also possible using multiple feedback points. For example, an aerial array of buttons may be represented by a local vibration point in the air of each button. As the hand moves over the array of buttons to explore its position and orientation, each button's vibration frequency can be adjusted in real time to match the optimal frequency for the part of the hand it targets.
还存在其中动态调整不可能或不期望的许多情况。例如,跟踪系统可能不复杂以确定手的分立部分,或者所需的处理能力可能太高。There are also many situations where dynamic adjustment is not possible or desirable. For example, a tracking system may not be complex enough to determine discrete parts of a hand, or the processing power required may be too high.
在这些情况下,可以复用频率以提供跨作为目标的皮肤区域的一些均匀覆盖。例如,当以手为目标时,反馈点可以使用100Hz和200Hz两者被复用。手掌会对200Hz分量响应强烈,而指尖对100Hz分量响应最强。在这样做时,建立了跨手可以均匀地感觉到的反馈点。In these cases, frequencies can be multiplexed to provide some even coverage across the targeted skin area. For example, when targeting a hand, the feedback points can be multiplexed using both 100Hz and 200Hz. The palm responds strongly to the 200Hz component, while the fingertip responds most strongly to the 100Hz component. In doing so, a feedback point is established that can be felt evenly across the hands.
III.创建不同形状和角部III.Create different shapes and corners
使用振动来生成空中触觉形状导致角部有困难。已经示出触觉边缘检测需要高度局部化的皮肤位移(拉伸),并且在当前使用的超声波频率下,这是不可能的。可以可靠地检测边缘,但角部没有足够大的特征来容易地识别。Using vibration to generate mid-air tactile shapes caused difficulties with the corners. It has been shown that tactile edge detection requires highly localized skin displacement (stretching), and at the currently used ultrasound frequencies, this is not possible. Edges are reliably detected, but corners do not have large enough features to be easily identified.
在超声波领域中使用高压点传送振动并被称为“控制点”。它们在小直径(诸如,8.6mm@40kHz)的波长周围的区域中提供局部反馈。控制点可以以编程方式被布置在3D空间中,以创建空间中的形状的感觉。In the field of ultrasound, high voltage points are used to transmit vibrations and are called "control points". They provide localized feedback in the region around wavelengths of small diameters such as 8.6mm@40kHz. Control points can be programmatically arranged in 3D space to create a sense of shape in space.
随着保真度的收益递减被交换用于增加噪声,对于相隔约两个波长(~2cm@40kHz)的控制点存在事实上的最大密度。这意味着当使用与曲率相关的控制点密度时,必须牺牲边缘保真度以便使角点明显。在许多情况下,甚至这不足以使触觉形状的角部可区分。As diminishing returns in fidelity are traded for increased noise, there is a de facto maximum density for control points separated by about two wavelengths (~2cm @ 40kHz). This means that edge fidelity must be sacrificed in order to make corners apparent when using curvature-dependent control point densities. In many cases, even this is not enough to make the corners of tactile shapes distinguishable.
为了增强角部,可以向内扭曲形状的边缘以强调空间中的角,创建了以使能从空间线索感知角部的方式加重的触觉表示。To enhance the corners, the edges of the shape can be twisted inwards to emphasize the corners in space, creating a tactile representation that is accentuated in such a way that the corners are perceived from spatial cues.
转向图1,左框10中示出的是没有角部增强扭曲的形状。在图1的中心框20中示出的是被应用于触觉上使角部显著的角部增强的扭曲功能。图1的右框30中示出的是应用进一步扭曲的功能,示出了该效果取决于情况和所期效果是可调的。Turning to FIG. 1 , shown in the left box 10 is a shape without corner enhancing distortion. Shown in the center box 20 of FIG. 1 is a corner enhancement twist function applied to tactilely make the corners noticeable. Shown in the right box 30 of Fig. 1 is the function of applying a further distortion, showing that the effect is adjustable depending on the situation and desired effect.
一旦实现了形状扭曲,也可以使用用于增强角部的其它技术。具体地,可以改变曲率相关的控制点密度和时间点的旋转以产生所期效果。这种形状扭曲可以被应用于3D几何形状的部分,以创建具有不同角部的触觉3D几何形状以增加触觉保真度。这也可以被用作使形状中的突出特征显著以引起注意的过程。Once the shape distortion is achieved, other techniques for enhancing the corners can also be used. Specifically, the curvature-dependent density of control points and the rotation of time points can be varied to produce the desired effect. This shape warping can be applied to portions of the 3D geometry to create tactile 3D geometry with different corners for increased haptic fidelity. This can also be used as a process of making prominent features in shapes stand out to draw attention.
IV.创建脉冲点IV.Create Pulse Points
由于对控制点限定和密度的事实上的限制的意识,可以创建触觉上令人愉快的脉冲点。通过强制控制点靠近在一起,它们合并并成为更小、更弱的振动。通过旋转它们并使它们更接近和进一步分开,可以生成局部脉冲感觉,其可以触觉上给予备用或准备提示。Tactilely pleasing impulse points can be created due to the awareness of control point definition and the de facto limit of density. By forcing the control points closer together, they merge and become smaller, weaker vibrations. By rotating them and bringing them closer together and further apart, local impulse sensations can be generated which can tactilely give standby or readiness cues.
转向图2,示出的是在交互平面中同时产生的五个控制点的示例系列的图示。图中的点具有波长的直径。五个点快速旋转,所以它们是不可区分的。在图2的左面板40中,五个点旋转并且分开足够远,以使它们被感知为单个大的触觉点。中心面板50示出了随着点轨道更靠近在一起,触觉点收缩并变弱。在右面板60中,五个控制点已合并成为单个控制点。然后将该过程反转以增加触觉点的尺寸和强度,并且然后循环该系统以生成脉冲感觉。这导致随着时间的推移而感觉更大和更小的点,以产生了触觉上令人愉快的脉冲效果。像这样,图2示出了点的集合,其以圆旋转,其中圆的直径随着时间的推移变得更小/更大。以圆旋转的替代方法是在两个位置之间移动焦点。Turning to FIG. 2 , shown is an illustration of an example series of five control points generated simultaneously in an interaction plane. A point in the graph has a diameter of a wavelength. The five points are rotated quickly so they are indistinguishable. In the left panel 40 of FIG. 2, the five points are rotated and far enough apart that they are perceived as a single large tactile point. The center panel 50 shows that the haptic dots shrink and become weaker as the dot tracks get closer together. In the right panel 60, five control points have been merged into a single control point. The process is then reversed to increase the size and intensity of the haptic points, and the system is then cycled to generate impulse sensations. This results in dots that feel larger and smaller over time, creating a tactilely pleasing pulsing effect. As such, Figure 2 shows a collection of points that rotate in a circle, where the diameter of the circle becomes smaller/larger over time. An alternative to rotating in a circle is to move the focal point between two positions.
转向图3,示出的是其中在控制点中通过交互平面移动的声场模拟的选择(近似由插图黑色边框示出)。沿着每个图的底部边缘的小的填充的黑色圆圈表示已被配置为重现控制点的换能器元件。在左面板70中,控制点在交互平面下被创建,导致在交互空间中没有聚焦。当焦点向上移动时,交互空间包含如中央面板80中示出的控制点。最后,在右面板90中,焦点已经向上移动通过并移出了交互空间。然后将该过程反转并循环以产生脉冲感。因此,通过向前后移动控制点通过插入框,可以在整个中心区域产生脉冲感。在这种情况下的用户检测可能更原生,例如中心区域的光传感器。Turning to FIG. 3 , shown is a selection of a sound field simulation in which control points are moved through an interaction plane (approximately shown by the inset black border). The small filled black circles along the bottom edge of each plot represent transducer elements that have been configured to reproduce control points. In the left panel 70, the control points are created below the interaction plane, resulting in no focus in the interaction space. The interaction space contains control points as shown in the central panel 80 when the focus is moved upwards. Finally, in the right panel 90, the focus has moved up through and out of the interaction space. The process is then reversed and looped to create a pulsing sensation. So by moving the control point back and forth through the inset box, you can create a sense of pulse throughout the central area. User detection in this case could be more native, like a light sensor in the center area.
如这些图中示出的目的是创建“脉动(pulsating)”的感觉。“脉动”被定义为随着时间的推移变得更强/更弱和更大/更小的感觉。相比之下,简单的调制仅随着时间的推移变得更强/更弱。The purpose as shown in these figures is to create a "pulsating" feeling. "Pulsation" is defined as the sensation of getting stronger/weaker and bigger/smaller over time. In contrast, simple modulations only get stronger/weaker over time.
此外,图3示出了一个可能的示例,其中焦点在两个位置之间线性地内插,一个在交互区域下方垂直,并且另一个在上方垂直。当焦点上下移动时,由于超声波聚焦为锥形(图中,左图70和右图90上较大,中间图像80中较小),所以交互区域中经历的感觉变得更大/更小。这也具有使感觉更强/弱的效果,这是因为强度下降从最佳焦点移开(如中间图像80中示出的)。Furthermore, Figure 3 shows a possible example where the focal point is linearly interpolated between two positions, one vertically below the interaction area and the other vertically above. As the focal point moves up and down, the sensation experienced in the interaction area becomes larger/smaller due to the ultrasound focus being cone-shaped (in the figures, larger on the left image 70 and right image 90, and smaller in the middle image 80). This also has the effect of making the perception stronger/weaker as the intensity drop moves away from best focus (as shown in the middle image 80).
通过交互区域上下移动焦点也具有跟踪系统的优点。在垂直方向上需要较少的精度。如图3中示出的,如果交互区域向上或向下移动,则它仍然会经历随着时间的推移变得更大/更小和更强/更弱的感觉。这意味着来自跟踪系统的垂直轴上需要更少的精度,从而允许使用更便宜的跟踪系统。Moving focus up and down through the interaction area also has the advantage of a tracking system. Less precision is required in the vertical direction. As shown in Figure 3, if the interactive area moves up or down, it still experiences the sensation of becoming larger/smaller and stronger/weaker over time. This means that less precision is required on the vertical axis from the tracking system, allowing the use of less expensive tracking systems.
可替代地,改变聚焦位置可以创建脉冲感觉。这具有交替聚焦和散焦控制点的效果,其生成较低保真脉冲。尽管这不太有效,但在要求不需要主动感测的预焙的离线响应的情况下,这可能是潜在有用的。Alternatively, changing the focus position can create a pulsing sensation. This has the effect of alternating focus and defocus control points, which generate lower fidelity pulses. While this is less efficient, it could be potentially useful in situations where prebaked offline responses that do not require active sensing are required.
V.结合和设计可听和触觉反馈V.Combining and Designing Audible and Haptic Feedback
A.设计可听反馈A.Designing for Audible Feedback
当由调制波形创建可听声音时,可以设计产生的声音。例如,不是使用纯波形来调制聚焦的超声波,而是使用“点击”声音的波形对其进行调制,将导致产生可听“点击”声音。因此,调制波形可以被设计并动态地改变以产生任何可听声音。When creating audible sounds from modulated waveforms, the resulting sounds can be engineered. For example, instead of modulating a focused ultrasonic wave with a pure waveform, modulating it with the waveform of a "click" sound will result in an audible "click" sound. Thus, modulation waveforms can be designed and dynamically changed to produce any audible sound.
当使用聚焦的超声载波时,可听声音在焦点处被最强烈地产生并且是定向的。对于用户而言,这意味着声音似乎来源于焦点。这可能在触觉系统中非常有用。例如,可以通过将超声波聚焦到用户的指尖上来创建空中按钮。然后可以使用“点击”声音的波形来调制超声波。用户将感知到来源于其指尖的触觉点击感和可听“点击”声音两者。因此,触觉和音频反馈两者都是在空中相同的位置处创建的。When using a focused ultrasound carrier, audible sound is most intensely produced at the focal point and is directional. To the user, this means that the sound appears to be coming from the focus. This could be very useful in haptic systems. For example, air buttons could be created by focusing ultrasound waves onto a user's fingertip. The waveform of the "click" sound can then be used to modulate the ultrasound waves. The user will perceive both a tactile clicking sensation and an audible "click" sound originating from their fingertips. Thus, both haptic and audio feedback are created at the same location in the air.
B.分离音频和触觉反馈B.Separate audio and haptic feedback
提供最佳触觉反馈的调制波形通常将不同于提供最佳可听声音的调制波形。例如,创建令人愉快的“点击”声音的调制波形可以提供非常弱的触感或者提供强触感的调制波形可能提供烦人的声音。当设计触觉和音频反馈的组合时,因此有必要在两者之间作出权衡。The modulation waveform that provides the best tactile feedback will generally be different than the modulation waveform that provides the best audible sound. For example, a modulation waveform that creates a pleasant "click" sound may provide a very weak tactile sensation or a modulation waveform that provides a strong tactile sensation may provide an annoying sound. When designing a combination of haptic and audio feedback, it is therefore necessary to make a trade-off between the two.
对此的解决方案是在声场内创建多个聚焦点。每个点都可以使用创建触觉效果或创建可听反馈来计划。在简单的按钮点击示例中,可以将一个点定位在指尖上以创建触觉效果,而另一个点可以定位在声场中的其他位置以创建可听声音。在这种情况下,可听点将被定位以避免与用户接触,并且因此将不能被感觉到。The solution to this is to create multiple focal points within the soundstage. Each point can be programmed with creating haptic effects or creating audible feedback. In the simple button click example, one point could be positioned on the fingertip to create a tactile effect, while another point could be positioned elsewhere in the sound field to create an audible sound. In this case, the audible point will be positioned to avoid contact with the user, and thus will not be felt.
C.由听觉声音进行的触觉效果的听觉遮蔽C.Auditory Masking of Haptic Effects by Auditory Sounds
当一个声音的感知受到另一个声音的影响或被其覆盖时,发生声音的听觉遮蔽。由于来自聚焦的超声波的声音是定向的,所以可听点可以被定位于沿着换能器与用户的头部或耳朵之间的路径的任何地方,在那里其然后将最大化该声音的感知音量。相比之下,由触觉点创建的可听声音将从手指反射出来,并且远离用户。因此,它将被感知为更安静。因此,来自触觉点的可听声音将被来自可听点的可听声音遮蔽,并且用户将仅能够听到可听点。Auditorymasking of sounds occurs when the perception of one sound is affected by or covered by another sound. Since the sound from the focused ultrasound is directional, the audible point can be positioned anywhere along the path between the transducer and the user's head or ear where it will then maximize the perception of that sound volume. In contrast, audible sounds created by haptic points would reflect off the finger and away from the user. Therefore, it will be perceived as quieter. Therefore, the audible sound from the haptic point will be masked by the audible sound from the audible point, and the user will only be able to hear the audible point.
触觉和可听点每个可以具有它们自己的单独的调制波形。这允许每种类型的点以最佳波形进行调制,以达到其各自所期效果。实际上,系统并不限于只具有两个同时点。可以具有触觉反馈和可听反馈两者的许多独立且同时的点。Haptic and audible points can each have their own separate modulation waveform. This allows each type of point to be modulated with the optimal waveform to achieve its respective desired effect. In fact, the system is not limited to having only two simultaneous points. There can be many independent and simultaneous points of both tactile and audible feedback.
VI.触觉系统中的时空调制VI.Spatiotemporal modulation in the tactile system
A.绝对相位偏移A.Absolute Phase Offset
为了在换能器激活系数的任何两个复杂空间之间创建平滑的过渡,它们应尽可能少地不同。换能器激活系数的所有集合具有一个备用自由度:它们相对于一些其他激活系数模式的绝对相位。通过将两者捆绑到某个任意的测量点、诸如尽可能地使两者为零相位偏移,这样将两个模式之间移动所需的换能器的频移减至最小。In order to create a smooth transition between any two complex spaces of transducer activation coefficients, they should differ as little as possible. All sets of transducer activation coefficients have one spare degree of freedom: their absolute phase with respect to some other activation coefficient mode. By tying the two to some arbitrary measurement point, such as with zero phase offset as much as possible, this minimizes the frequency shift of the transducers required to move between the two modes.
这在图4中示出,其示出了两个换能器的说明性阵列。该阵列的聚焦是由于两个换能器之间的波形中的相对相位偏移而造成,其被两个换能器之间的角度描述。在无约束的示例中,在左边,时间t=0 100处的相位务必相当大的改变以便达到针对时间t=1 110限定的复杂激活系数。当跨许多换能器缩放时,这会导致瞬态行为、频移和功率无效率。然而,在右边的约束示例中,换能器系数的总和已经被约束在t=0 120和t=1 130处的实线,促进了角度的小改变以获得适当的相对相位。This is shown in Figure 4, which shows an illustrative array of two transducers. The focusing of the array is due to the relative phase shift in the waveform between the two transducers, which is described by the angle between the two transducers. In the unconstrained example, on the left, the phase at time t=0 100 has to change considerably in order to reach the complex activation coefficient defined for time t=1 110 . This leads to transient behavior, frequency shifts and power inefficiencies when scaling across many transducers. However, in the constrained example on the right, the sum of the transducer coefficients has been constrained to the solid line at t=0 120 and t=1 130, facilitating a small change in angle to obtain the proper relative phase.
将任何特定模式的复值换能器激活系数相加可以被用于产生平均值。一旦被计算,该平均值的复共轭可以被采取并且变成单位幅度复数值。然后通过将每个换能器激活系数与该值相乘,平均相位偏移变为零。这使用备用自由度来线性地最小化由每个换能器经历的改变,将无穷小不同模式的换能器激活系数的复相位空间之间的差推向零,一般是用于减少声场和换能器功耗的突然变化的关键必需品。Summing the complex-valued transducer activation coefficients for any particular pattern can be used to generate an average. Once calculated, the complex conjugate of this average can be taken and turned into a unit magnitude complex value. Then by multiplying each transducer activation coefficient by this value, the average phase shift becomes zero. This uses spare degrees of freedom to linearly minimize the change experienced by each transducer, pushing the difference between the complex phase space of the infinitesimally small difference in the complex phase space of the transducer activation coefficients of the different modes, and is generally used to reduce sound fields and transducers. Critical necessity for sudden changes in energy consumption.
B.点、线和形状的时空调制B.Spatiotemporal modulation of points, lines, and shapes
当幅度变化时,创建和销毁控制点(从零增加幅度或将幅度减少到零)与噪声相关联。为了最大程度地减少噪声,可以创建非调制控制点,并围绕参数限定的曲线段集合上移动。虽然非调制控制点将最大程度地减少噪声,但是“较少调制”的控制点也可能在较小程度上减少噪声(即调制在0.5-1之间而不是0-1之间的幅度)。Creating and destroying control points (increasing the magnitude from zero or decreasing the magnitude to zero) is associated with noise when the magnitude changes. To minimize noise, non-modulated control points can be created and moved around a parametrically defined set of curve segments. While non-modulated control points will minimize noise, "less modulated" control points may also reduce noise to a lesser extent (i.e. modulate amplitudes between 0.5-1 rather than 0-1).
限定的曲线将被关闭(其中点将在曲线上连续循环)或者被打开(其中点将反向)。可替代地,点在到达曲线末端时可能会“消失”。当多个点突出显示单个开放曲线时,当它们变得足够接近以被感知为单个点时,针对它们交换位置可能是有用的,以防止输出中的任何感知或物理下降。The defined curve will be closed (where the points will cycle continuously on the curve) or opened (where the points will be reversed). Alternatively, points may "disappear" when they reach the end of the curve. When multiple points highlight a single open curve, it may be useful to swap places for them when they become close enough to be perceived as a single point, to prevent any perceptual or physical drop in the output.
可以被实现为三维样条曲线的该开放或闭合路径曲线是用于创建时空调制反馈的系统的基本构建块。穿过三维空间的这些曲线中的许多可以用作轮廓,并且被用于创建形状或表面的印象。可以使用具有非常小半径的圆形路径来创建点的印象。This open or closed path curve, which can be implemented as a three-dimensional spline, is the basic building block of the system for creating spatiotemporal modulation feedback. Many of these curves through three-dimensional space can be used as contours and are used to create the impression of shape or surface. A circular path with a very small radius can be used to create the impression of points.
由于该技术需要较少的聚焦时间来产生相同的响应,所以较大的区域可以在触觉上被致动。例如,使用控制点“绘制”区域可以被用于创建可以被感觉到刺激皮肤中更多感受器的更宽的空间区域。Since the technique requires less focusing time to produce the same response, larger areas can be tactilely actuated. For example, "painting" regions using control points can be used to create wider spatial regions that can be perceived as stimulating more receptors in the skin.
由于可以被致动的宽区域,可以从位置移除反馈以创建负空间的印象。例如,可以创建缺少一块的圆,以表示触觉基准或生成具有明显缺失区域的感觉区域。通过在空间周围发出触觉,可以对区域进行突出显示,而不必要求它被直接感觉到,例如当问题区域因为可见性原因而必须保持手或肢体的干净时。Thanks to the wide area that can be actuated, feedback can be removed from the position to create the impression of negative space. For example, you can create a circle with a missing piece to represent a tactile fiducial or to generate a sensory region with an apparently missing area. By emitting a haptic sensation around a space, areas can be highlighted without requiring it to be felt directly, such as when problem areas must be kept clean for visibility reasons.
C.来自控制点的参数声音C.Parameter sounds from control points
来自控制点的触觉感觉是通过时空频闪效应的作用生成的。由于触觉效果的来源与幅度调制截然不同,因此幅度调制可以与非触觉可听内容一起使用,而同时在同一点、线或形状上同时创建高质量的触觉感觉。The tactile sensations from the control points are generated through the action of spatiotemporal stroboscopic effects. Since the source of haptic effects is distinct from amplitude modulation, amplitude modulation can be used with non-haptic audible content while simultaneously creating a high-quality haptic sensation on the same point, line, or shape.
该技术的最终目标是产生无声的操作。可听输出与声场的时间变化相关,因此其必须尽可能平滑和减少。为了创建这种效果,可以使用高速更新(优选地大于2kHz)平滑地四周移动超声波聚焦模式的控制点,以在目标点、线和形状处产生感觉,而不是使用更高强度的超声波装置在时间上不变化地产生它们或在时间上操纵它们的幅度。The ultimate goal of this technology is to produce silent operation. The audible output is related to temporal variations of the sound field, so it must be as smooth and reduced as possible. To create this effect, the control points of the ultrasound focus pattern can be smoothly moved around using high speed updates (preferably greater than 2kHz) to create sensations at target points, lines and shapes, rather than using higher intensity ultrasound devices over time Generate them invariantly or manipulate their magnitude in time.
以这种方式调制可以使用比通过简单地考虑机械性刺激感受器或聚焦功率在时间上的密度而预期的那样低得多的频闪频率。因此,立刻组合控制点的时空和幅度调制两者也可以被用于产生更强的触觉反馈。也可以使用控制点运动的不同节奏来提供不同的纹理,并且因此幅度调制可以向时空调制的控制点提供纹理,反之亦然。Modulating in this way allows the use of much lower strobe frequencies than might be expected by simply considering the density of mechanoreceptors or focused power in time. Thus, combining both spatiotemporal and amplitude modulation of control points at once can also be used to generate stronger haptic feedback. Different cadences of control point motion can also be used to provide different textures, and thus amplitude modulation can provide texture to spatiotemporal modulated control points and vice versa.
VII.使用自相交曲线进行频率控制VII.Frequency Control Using Self-Intersecting Curves
创建点并将其移动而不进行幅度调制,可能会触觉上使空中的路径致动。通过以给定的速度和恒定的频率使该点重复遵循路径,可以在空中的路径上生成触觉效果。使路径更长增加了路径距离以及因此点达到给定频率所需的速度。因此,这降低了可用于创建反馈的功率密度。多个点可以在触觉上致动路径以在给定频率处在路径周围创建更均匀的分布。但是,这减少了在这些点处可以承受的功率。另一个显着的限制在于由于开放路径中所涉及的不连续性,诸如例如不同点或线段,路径必须是闭合的或者将导致可听声音。Creating points and moving them without amplitude modulation may tactilely actuate paths in the air. Haptic effects can be generated on a path in the air by making the point repeatedly follow the path at a given velocity and constant frequency. Making the path longer increases the path distance and thus the speed required for a point to reach a given frequency. Therefore, this reduces the power density available to create feedback. Multiple points can tactilely actuate the path to create a more even distribution around the path at a given frequency. However, this reduces the power that can be taken at these points. Another significant limitation is that due to the discontinuities involved in an open path, such as eg different points or line segments, the path must be closed or would result in audible sound.
克服这些问题的一种方法是在点沿着曲线移动时减慢或加速该点。然而,当与时空调制一起使用时,这具有局限性,在于:沿着路径的不同点的频率不能是不同的,并且如果该点太慢,则它变得不太可感知,这是因为它移出在触觉上可感知的频率范围。相反,如果点沿其路径移动太快,则可能创建进一步的空气干扰以及因此可听噪声。One way to overcome these problems is to slow down or speed up the point as it moves along the curve. However, when used with spatiotemporal modulation, this has limitations in that the frequencies at different points along the path cannot be different, and if the point is too slow it becomes less perceptible because it Move out of the tactilely perceivable frequency range. Conversely, if the point moves too fast along its path, further air disturbances and thus audible noise may be created.
代替简单地改变点的速度,可以通过在空间上越过其自身一次或多次的自相交曲线的构建来实现路径上的给定点处的功率量的增加。在交叉点的本地邻域中,可以表示基本路径频率的谐波。频率行为的这种改变也增加了交叉点处的功率,使能在与沿着路径的其他位置相反的交叉区域中实现丰富的行为调色板。这个交叉点也可以被设计成产生仅在人触摸的可检测频率范围内的交叉,或者仅仅在频率范围之外的交叉,并且因此是触觉上不可检测的。它还使能皮肤中不同机械性刺激感受器的特异性和广泛定目标。在许多情况下,在由触觉反馈包围的区域中不存在触觉反馈可能比反馈本身感觉更强烈。Instead of simply varying the speed of a point, an increase in the amount of power at a given point on the path can be achieved by the construction of a self-intersecting curve that spatially crosses itself one or more times. In the local neighborhood of the intersection point, harmonics of the fundamental path frequency may be represented. This change in frequency behavior also increases the power at the intersection, enabling a rich palette of behaviors in the intersection region as opposed to elsewhere along the path. This crossing point can also be designed to produce crossings only within the detectable frequency range of human touch, or only outside the frequency range, and thus not tactilely detectable. It also enables specific and broad targeting of different mechanoreceptors in the skin. In many cases, the absence of haptic feedback in an area surrounded by haptic feedback may feel more intense than the feedback itself.
也可以创建相交一次或多次的多个路径;这将产生体现特定节奏或纹理的触觉节奏模式。这不一定意味着一条或多条路径应该是可重复的,或者每次在同一位置处的曲线的交叉点。在某些情况下,由于单独考虑的点的移动太快或太弱而无法感觉到,所以可以进行设计,使得一个或多个交叉点由于自相交而触觉上被突出显示。在每种情况下,这些多个交叉或自相交曲线可以包含一个或两个点区域和路径段,其中曲线占据相同的空间。It is also possible to create multiple paths that intersect one or more times; this will produce a tactile rhythmic pattern that embodies a particular rhythm or texture. This doesn't necessarily mean that one or more paths should be repeatable, or at the intersection of curves at the same location every time. In some cases, where the movement of points considered alone is too fast or too weak to be felt, it is possible to design such that one or more intersection points are tactilely highlighted due to self-intersection. In each case, these multiple intersecting or self-intersecting curves can contain one or both point regions and path segments where the curves occupy the same space.
沿着在精确位置处限定的曲线移动的点具有真实的物理尺寸。“曲线”的抽象概念并不反映点的尺寸,所以在许多情况下,抽象曲线不必相交,而是点的起作用区域仅仅务必重叠以实现平均功率和频率的增加。由于此,自相交曲线或路径集合可能潜在地导致意想不到的触觉结果。因此,所产生的触觉模式可以使用频率/占有率图形来最佳地可视化,并且这样的频率/占有率图形可以被转换到代表性的触觉曲线和从其转换。Points moving along curves defined at precise locations have real physical dimensions. The abstraction of "curves" does not reflect the size of the points, so in many cases the abstract curves do not have to intersect, but the active areas of the points just have to overlap to achieve an increase in average power and frequency. Because of this, sets of self-intersecting curves or paths can potentially lead to unexpected haptic results. Thus, the resulting haptic patterns can be optimally visualized using frequency/occupancy graphs, and such frequency/occupancy graphs can be converted to and from representative haptic profiles.
VIII.结论VIII.Conclusion
可以选择和组合前述实施例的各种特征以产生改进的基于触觉的系统的许多变化。The various features of the foregoing embodiments can be selected and combined in many variations to produce an improved haptic-based system.
在前面的说明书中,已经描述了具体实施例。然而,本领域普通技术人员可以理解,在不脱离如下面权利要求书所阐述的本发明的范围的情况下,可以进行各种修改和改变。因此,说明书和附图被认为是说明性的而不是限制性的意义,并且所有这些修改旨在被包括在本教导的范围内。In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
可能导致任何益处、优点或解决方案发生或变得更加显着的益处、优点、问题的解决方案以及任何元素不应被解释为任何或所有权利要求的关键的、必需的或基本的特征或元素。本发明仅由所附权利要求限定,包括在本申请的未决期间作出的任何修改以及所发布的那些权利要求的所有等同物。Benefits, advantages, solutions to problems, and any element that may cause any benefit, advantage, or solution to occur or become more pronounced should not be construed as a critical, required, or essential feature or element of any or all claims . The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
此外,在该文献中,诸如第一和第二、顶部和底部等的相关术语可以仅用于将一个实体或动作与另一个实体或动作区分开,而不一定要求或暗示这些实体或动作之间的任何实际的这种关系或顺序。“包含”、“包含了”、“具有”、“具有了”、“包括”、“包括了”、“含有”、“含有了”或其任何其他变体旨在涵盖非排他性包含,使得包含、具有、包括、含有元素列表的过程、方法、物品或装置不仅包括那些元素,而且可以包括未明确列出或者这些元件或方法、物品或装置固有的其它元素。由“包含...一个”、“具有...一个”、“包括...一个”、“含有...一个”开始的元素在没有更多约束的情况下不排除在包含、具有、包括、含有该元素的过程、方法、物品或装置中的额外的相同元素的存在。术语“一”和“一个”被定义为一个或多个,除非本文另有明确说明。术语“基本上”、“本质上”、“大约”、“约”或其任何其他版本被定义为接近于如本领域普通技术人员所理解的。如本文所使用的术语“耦接的”被定义为连接的,尽管不一定是直接的,并且不一定是机械的。以某种方式“配置”的装置或结构至少以该方式进行配置,但也可以以未列出的方式进行配置。Furthermore, in this document, relative terms such as first and second, top and bottom, etc. may be used only to distinguish one entity or action from another, and do not necessarily require or imply a relationship between these entities or actions. any actual such relationship or order between them. "comprises", "comprises", "has", "has", "includes", "includes", "contains", "contains" or any other variation thereof is intended to cover a non-exclusive inclusion such that A process, method, article, or apparatus that has, includes, or contains a list of elements includes not only those elements, but may include other elements that are not expressly listed or inherent to those elements or methods, articles, or apparatus. An element beginning with "contains...a", "has...a", "includes...a", "contains...a" is not excluded from containing, having, The presence of an additional identical element in a process, method, article, or device comprising, comprising, that element. The terms "a" and "an" are defined as one or more, unless expressly stated otherwise herein. The terms "substantially", "essentially", "about", "approximately" or any other version thereof are defined as close to as understood by a person of ordinary skill in the art. The term "coupled" as used herein is defined as connected, although not necessarily directly, and not necessarily mechanically. A device or structure that is "configured" in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
提供本公开的摘要以允许读者快速确定技术公开的性质。应理解的是,提交该摘要不会被用于解释或限制权利要求的范围或含义。另外,在前面的具体实施方式中,可以看出,为了简化本公开的目的,在各种实施例中将各种特征分组在一起。这种公开的方法不应被解释为反映所要求保护的实施例要求比每个权利要求中明确叙述的更多特征的意图。相反,如以下权利要求所反映的那样,发明的主题在于少于单个所公开的实施例的所有特征。因此,以下权利要求特此被并入具体实施方式中,其中每个权利要求独立地作为分开要求保护的主题。The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562118560P | 2015-02-20 | 2015-02-20 | |
| US62/118,560 | 2015-02-20 | ||
| US201562193234P | 2015-07-16 | 2015-07-16 | |
| US62/193,234 | 2015-07-16 | ||
| US201562206393P | 2015-08-18 | 2015-08-18 | |
| US62/206,393 | 2015-08-18 | ||
| US201662275216P | 2016-01-05 | 2016-01-05 | |
| US62/275,216 | 2016-01-05 | ||
| PCT/GB2016/050421WO2016132144A1 (en) | 2015-02-20 | 2016-02-19 | Perceptions in a haptic system |
| Publication Number | Publication Date |
|---|---|
| CN107407969Atrue CN107407969A (en) | 2017-11-28 |
| CN107407969B CN107407969B (en) | 2020-09-11 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201680018683.0AActiveCN107407969B (en) | 2015-02-20 | 2016-02-19 | Method of manipulating a haptic field to produce a desired user perception |
| Country | Link |
|---|---|
| US (4) | US9841819B2 (en) |
| EP (3) | EP3537265B1 (en) |
| JP (3) | JP2018507485A (en) |
| KR (1) | KR102515997B1 (en) |
| CN (1) | CN107407969B (en) |
| AU (1) | AU2016221500B2 (en) |
| CA (1) | CA2976312C (en) |
| ES (2) | ES2896875T3 (en) |
| HK (1) | HK1245937B (en) |
| IL (1) | IL254036B (en) |
| MX (1) | MX2017010254A (en) |
| SG (1) | SG11201706557SA (en) |
| WO (1) | WO2016132144A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11048329B1 (en) | 2017-07-27 | 2021-06-29 | Emerge Now Inc. | Mid-air ultrasonic haptic interface for immersive computing environments |
| CN113711168A (en)* | 2019-04-26 | 2021-11-26 | 哈图优公司 | Haptic feedback device provided with a stiffener |
| US20210397261A1 (en)* | 2020-06-23 | 2021-12-23 | Ultraleap Limited | Features of Airborne Ultrasonic Fields |
| US11768540B2 (en) | 2014-09-09 | 2023-09-26 | Ultrahaptics Ip Ltd | Method and apparatus for modulating haptic feedback |
| US11830351B2 (en) | 2015-02-20 | 2023-11-28 | Ultrahaptics Ip Ltd | Algorithm improvements in a haptic system |
| US11842517B2 (en) | 2019-04-12 | 2023-12-12 | Ultrahaptics Ip Ltd | Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network |
| US11883847B2 (en) | 2018-05-02 | 2024-01-30 | Ultraleap Limited | Blocking plate structure for improved acoustic transmission efficiency |
| US11886639B2 (en) | 2020-09-17 | 2024-01-30 | Ultraleap Limited | Ultrahapticons |
| US11921928B2 (en) | 2017-11-26 | 2024-03-05 | Ultrahaptics Ip Ltd | Haptic effects from focused acoustic fields |
| US12002448B2 (en) | 2019-12-25 | 2024-06-04 | Ultraleap Limited | Acoustic transducer structures |
| US12001610B2 (en) | 2016-08-03 | 2024-06-04 | Ultrahaptics Ip Ltd | Three-dimensional perceptions in haptic systems |
| US12100288B2 (en) | 2015-07-16 | 2024-09-24 | Ultrahaptics Ip Ltd | Calibration techniques in haptic systems |
| US12158522B2 (en) | 2017-12-22 | 2024-12-03 | Ultrahaptics Ip Ltd | Tracking in haptic systems |
| US12191875B2 (en) | 2019-10-13 | 2025-01-07 | Ultraleap Limited | Reducing harmonic distortion by dithering |
| US12345838B2 (en) | 2013-05-08 | 2025-07-01 | Ultrahaptics Ip Ltd | Method and apparatus for producing an acoustic field |
| US12347304B2 (en) | 2017-12-22 | 2025-07-01 | Ultrahaptics Ip Ltd | Minimizing unwanted responses in haptic systems |
| US12373033B2 (en) | 2019-01-04 | 2025-07-29 | Ultrahaptics Ip Ltd | Mid-air haptic textures |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6010012B2 (en)* | 2013-12-03 | 2016-10-19 | 富士フイルム株式会社 | Conductive sheet, capacitive touch panel and display device |
| US9612658B2 (en) | 2014-01-07 | 2017-04-04 | Ultrahaptics Ip Ltd | Method and apparatus for providing tactile sensations |
| WO2015121955A1 (en)* | 2014-02-14 | 2015-08-20 | 富士通株式会社 | Electronic device, input device, and drive control method |
| CA2976312C (en) | 2015-02-20 | 2023-06-13 | Ultrahaptics Ip Limited | Perceptions in a haptic system |
| US11189140B2 (en) | 2016-01-05 | 2021-11-30 | Ultrahaptics Ip Ltd | Calibration and detection techniques in haptic systems |
| US10531212B2 (en) | 2016-06-17 | 2020-01-07 | Ultrahaptics Ip Ltd. | Acoustic transducers in haptic systems |
| US10755538B2 (en) | 2016-08-09 | 2020-08-25 | Ultrahaptics ilP LTD | Metamaterials and acoustic lenses in haptic systems |
| US10943578B2 (en) | 2016-12-13 | 2021-03-09 | Ultrahaptics Ip Ltd | Driving techniques for phased-array systems |
| US10497358B2 (en) | 2016-12-23 | 2019-12-03 | Ultrahaptics Ip Ltd | Transducer driver |
| CN107066096A (en)* | 2017-04-10 | 2017-08-18 | 苏春 | A kind of tactile sensor and method based on ultrasonic phase array |
| US20190197840A1 (en)* | 2017-04-24 | 2019-06-27 | Ultrahaptics Ip Ltd | Grouping and Optimization of Phased Ultrasonic Transducers for Multi-Field Solutions |
| US20180304310A1 (en)* | 2017-04-24 | 2018-10-25 | Ultrahaptics Ip Ltd | Interference Reduction Techniques in Haptic Systems |
| FR3065548B1 (en)* | 2017-04-24 | 2022-02-04 | Commissariat Energie Atomique | TACTILE STIMULATION INTERFACE BY TIME REVERSAL OFFERING ENRICHED SENSATIONS |
| DE102017116012A1 (en)* | 2017-07-17 | 2019-01-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | DISPLAY DEVICES AND PIXEL FOR ONE DISPLAY DEVICE |
| JP7159222B2 (en) | 2017-07-27 | 2022-10-24 | アルコン インコーポレイティド | Control of Laser Surgical Equipment Using Sensory Generators |
| EP3659013B1 (en)* | 2017-07-27 | 2022-03-09 | Alcon Inc. | Controlling a laser surgical device with a sensation generator and a gesture detector |
| WO2019031057A1 (en)* | 2017-08-07 | 2019-02-14 | ソニー株式会社 | Phase computation device, phase computation method, tactile sensation presentation system, and program |
| JP7094088B2 (en)* | 2017-10-19 | 2022-07-01 | 株式会社デンソーテン | Operation input device |
| KR102409934B1 (en)* | 2017-11-21 | 2022-06-16 | 한국전자통신연구원 | Multiple focuses generating apparatus and method using multi-ultrasonic transducer array in non-contact ultrasonic tactile display system |
| KR102419106B1 (en)* | 2017-12-04 | 2022-07-08 | 한국전자통신연구원 | Tactile display apparatus and method using non-contact ultrasonic tactile display |
| US20190310710A1 (en)* | 2018-04-04 | 2019-10-10 | Ultrahaptics Limited | Dynamic Haptic Feedback Systems |
| JPWO2019244716A1 (en)* | 2018-06-19 | 2021-06-24 | ソニーグループ株式会社 | Information processing equipment, information processing methods, and programs |
| US11098951B2 (en) | 2018-09-09 | 2021-08-24 | Ultrahaptics Ip Ltd | Ultrasonic-assisted liquid manipulation |
| US11378997B2 (en) | 2018-10-12 | 2022-07-05 | Ultrahaptics Ip Ltd | Variable phase and frequency pulse-width modulation technique |
| US11132060B2 (en) | 2018-12-04 | 2021-09-28 | International Business Machines Corporation | Collaborative interactions and feedback with midair interfaces |
| EP3906462B1 (en) | 2019-01-04 | 2025-06-18 | Ultrahaptics IP Ltd | Mid-air haptic textures |
| US11067687B2 (en) | 2019-04-25 | 2021-07-20 | Elwha, Llc | Multipath acoustic holography and virtual haptics |
| US10916107B1 (en)* | 2019-07-29 | 2021-02-09 | Elwha Llc | Time-domain and frequency-domain enhancements for acoustic haptography |
| JP7406328B2 (en)* | 2019-09-10 | 2023-12-27 | 株式会社東海理化電機製作所 | Control device, control method, and program |
| JP7282639B2 (en)* | 2019-09-10 | 2023-05-29 | 株式会社東海理化電機製作所 | Control device, control method and program |
| US11553295B2 (en) | 2019-10-13 | 2023-01-10 | Ultraleap Limited | Dynamic capping with virtual microphones |
| US11169610B2 (en) | 2019-11-08 | 2021-11-09 | Ultraleap Limited | Tracking techniques in haptic systems |
| US11054910B1 (en) | 2020-03-02 | 2021-07-06 | Emerge Now Inc. | System and method for producing mid-air tactile stimulation |
| CN111459324B (en)* | 2020-03-30 | 2023-06-30 | 北京工业大学 | Ultrasonic lamb wave touch screen |
| JP2023113979A (en)* | 2020-07-08 | 2023-08-17 | 株式会社ニコン | SOUND FIELD GENERATION DEVICE, SOUND FIELD GENERATION METHOD, AND SOUND FIELD GENERATION PROGRAM |
| US12032770B2 (en) | 2020-11-23 | 2024-07-09 | Toyota Motor Engineering & Manufacturing North America, Inc. | Haptic array device and control of focus point height and focus point direction |
| US20230036123A1 (en)* | 2021-07-15 | 2023-02-02 | Ultraleap Limited | Control Point Manipulation Techniques in Haptic Systems |
| US20230215248A1 (en)* | 2022-01-02 | 2023-07-06 | Ultraleap Limited | Mid-Air Haptic Generation Analytic Techniques |
| US12037008B2 (en) | 2022-04-07 | 2024-07-16 | Toyota Research Institute, Inc. | Systems and methods for communicating a blending parameter |
| US12383066B2 (en) | 2022-04-26 | 2025-08-12 | Toyota Motor Engineering & Manufacturing North America, Inc. | Chair with shape memory material-based movement synchronized with visual content |
| US12299199B2 (en) | 2022-05-19 | 2025-05-13 | Apple Inc. | Low-power salient haptics |
| US12366923B2 (en) | 2022-09-26 | 2025-07-22 | Pison Technology, Inc. | Systems and methods for gesture inference using ML model selection |
| US12366920B2 (en) | 2022-09-26 | 2025-07-22 | Pison Technology, Inc. | Systems and methods for gesture inference using transformations |
| US12340627B2 (en) | 2022-09-26 | 2025-06-24 | Pison Technology, Inc. | System and methods for gesture inference using computer vision |
| US12241458B2 (en) | 2023-02-16 | 2025-03-04 | Toyota Motor Engineering & Manufacturing North America, Inc. | Actuator with contracting member |
| US12270386B2 (en) | 2023-02-16 | 2025-04-08 | Toyota Motor Engineering & Manufacturing North America, Inc. | Shape memory material member-based actuator |
| US12163507B2 (en) | 2023-02-22 | 2024-12-10 | Toyota Motor Engineering & Manufacturing North America, Inc. | Contracting member-based actuator with clutch |
| US12152570B2 (en) | 2023-02-22 | 2024-11-26 | Toyota Motor Engineering & Manufacturing North America, Inc. | Shape memory material member-based actuator with electrostatic clutch preliminary class |
| WO2024247706A1 (en)* | 2023-06-02 | 2024-12-05 | ソニーグループ株式会社 | Information processing device and method, and program |
| US12234811B1 (en) | 2023-08-21 | 2025-02-25 | Toyota Motor Engineering & Manufacturing North America, Inc. | Monitoring a state of a shape memory material member |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101227764A (en)* | 2006-12-15 | 2008-07-23 | 诺基亚公司 | Apparatus, method and program product for providing tactile feedback generated by sound |
| CN101828161A (en)* | 2007-10-18 | 2010-09-08 | 微软公司 | Three-dimensional object simulation using audio, visual, and tactile feedback |
| CN102395939A (en)* | 2009-04-21 | 2012-03-28 | 摩托罗拉移动公司 | Methods and devices for consistency of the haptic response across a touch sensitive device |
| CN103247296A (en)* | 2011-02-11 | 2013-08-14 | 英默森公司 | Sound-to-Haptic Effect Transformation System Using Waveforms |
| GB2513884A (en)* | 2013-05-08 | 2014-11-12 | Univ Bristol | Method and apparatus for producing an acoustic field |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4218921A (en) | 1979-07-13 | 1980-08-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method and apparatus for shaping and enhancing acoustical levitation forces |
| CA1175359A (en) | 1981-01-30 | 1984-10-02 | John G. Martner | Arrayed ink jet apparatus |
| FR2551611B1 (en) | 1983-08-31 | 1986-10-24 | Labo Electronique Physique | NOVEL ULTRASONIC TRANSDUCER STRUCTURE AND ULTRASONIC ECHOGRAPHY MEDIA EXAMINATION APPARATUS COMPRISING SUCH A STRUCTURE |
| EP0309003B1 (en) | 1984-02-15 | 1994-12-07 | Trw Inc. | Surface acoustic wave spectrum analyzer |
| JPS62258597A (en) | 1986-04-25 | 1987-11-11 | Yokogawa Medical Syst Ltd | Ultrasonic transducer |
| US5226000A (en) | 1988-11-08 | 1993-07-06 | Wadia Digital Corporation | Method and system for time domain interpolation of digital audio signals |
| EP0528910A4 (en) | 1990-05-14 | 1993-12-22 | Commonwealth Scientific And Industrial Research Organization | A coupling device |
| EP0498015B1 (en) | 1991-02-07 | 1993-10-06 | Siemens Aktiengesellschaft | Process for manufacturing ultrasonic transducers |
| US5243344A (en) | 1991-05-30 | 1993-09-07 | Koulopoulos Michael A | Digital-to-analog converter--preamplifier apparatus |
| JP3243821B2 (en) | 1992-02-27 | 2002-01-07 | ヤマハ株式会社 | Electronic musical instrument |
| US5426388A (en) | 1994-02-15 | 1995-06-20 | The Babcock & Wilcox Company | Remote tone burst electromagnetic acoustic transducer pulser |
| US5477736A (en) | 1994-03-14 | 1995-12-26 | General Electric Company | Ultrasonic transducer with lens having electrorheological fluid therein for dynamically focusing and steering ultrasound energy |
| US5511296A (en) | 1994-04-08 | 1996-04-30 | Hewlett Packard Company | Method for making integrated matching layer for ultrasonic transducers |
| US5583405A (en) | 1994-08-11 | 1996-12-10 | Nabco Limited | Automatic door opening and closing system |
| EP0857378A1 (en)* | 1995-06-05 | 1998-08-12 | Christian Constantinov | Ultrasonic sound system and method for producing virtual sound |
| US7225404B1 (en) | 1996-04-04 | 2007-05-29 | Massachusetts Institute Of Technology | Method and apparatus for determining forces to be applied to a user through a haptic interface |
| US5859915A (en) | 1997-04-30 | 1999-01-12 | American Technology Corporation | Lighted enhanced bullhorn |
| US6193936B1 (en) | 1998-11-09 | 2001-02-27 | Nanogram Corporation | Reactant delivery apparatuses |
| US6029518A (en) | 1997-09-17 | 2000-02-29 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Manipulation of liquids using phased array generation of acoustic radiation pressure |
| US6647359B1 (en) | 1999-07-16 | 2003-11-11 | Interval Research Corporation | System and method for synthesizing music by scanning real or simulated vibrating object |
| US6307302B1 (en) | 1999-07-23 | 2001-10-23 | Measurement Specialities, Inc. | Ultrasonic transducer having impedance matching layer |
| JP2001062928A (en)* | 1999-08-30 | 2001-03-13 | Hitachi Ltd | Three-dimensional modeling device, method and material |
| CN100358393C (en) | 1999-09-29 | 2007-12-26 | 1...有限公司 | Method and apparatus for directing sound |
| US6771294B1 (en) | 1999-12-29 | 2004-08-03 | Petri Pulli | User interface |
| US6925187B2 (en) | 2000-03-28 | 2005-08-02 | American Technology Corporation | Horn array emitter |
| US6503204B1 (en) | 2000-03-31 | 2003-01-07 | Acuson Corporation | Two-dimensional ultrasonic transducer array having transducer elements in a non-rectangular or hexagonal grid for medical diagnostic ultrasonic imaging and ultrasound imaging system using same |
| US7284027B2 (en) | 2000-05-15 | 2007-10-16 | Qsigma, Inc. | Method and apparatus for high speed calculation of non-linear functions and networks using non-linear function calculations for digital signal processing |
| DE10026077B4 (en) | 2000-05-25 | 2007-03-22 | Siemens Ag | Beamforming method |
| DE10051133A1 (en) | 2000-10-16 | 2002-05-02 | Siemens Ag | Beamforming method |
| US6768921B2 (en) | 2000-12-28 | 2004-07-27 | Z-Tech (Canada) Inc. | Electrical impedance method and apparatus for detecting and diagnosing diseases |
| US7463249B2 (en) | 2001-01-18 | 2008-12-09 | Illinois Tool Works Inc. | Acoustic wave touch actuated switch with feedback |
| US7058147B2 (en) | 2001-02-28 | 2006-06-06 | At&T Corp. | Efficient reduced complexity windowed optimal time domain equalizer for discrete multitone-based DSL modems |
| AU2002320088A1 (en) | 2001-06-13 | 2002-12-23 | Marc G. Apple | Brachytherapy device and method |
| US6436051B1 (en) | 2001-07-20 | 2002-08-20 | Ge Medical Systems Global Technology Company, Llc | Electrical connection system for ultrasonic receiver array |
| US6758094B2 (en) | 2001-07-31 | 2004-07-06 | Koninklijke Philips Electronics, N.V. | Ultrasonic transducer wafer having variable acoustic impedance |
| WO2003019125A1 (en) | 2001-08-31 | 2003-03-06 | Nanyang Techonological University | Steering of directional sound beams |
| US7623114B2 (en) | 2001-10-09 | 2009-11-24 | Immersion Corporation | Haptic feedback sensations based on audio output from computer devices |
| EP1461598B1 (en) | 2001-12-13 | 2014-04-02 | UNIVERSITY OF WYOMING RESEARCH CORPORATION, doing business as, WESTERN RESEARCH INSTITUTE | Volatile organic compound sensor system |
| KR20040081461A (en) | 2002-01-18 | 2004-09-21 | 어메리컨 테크놀로지 코포레이션 | Modulator-amplifier |
| US6800987B2 (en) | 2002-01-22 | 2004-10-05 | Measurement Specialties, Inc. | Protective housing for ultrasonic transducer apparatus |
| US20030182647A1 (en) | 2002-03-19 | 2003-09-25 | Radeskog Mattias Dan | Automatic interactive component placement for electronics-CAD software through the use of force simulations |
| US20040052387A1 (en) | 2002-07-02 | 2004-03-18 | American Technology Corporation. | Piezoelectric film emitter configuration |
| US7720229B2 (en) | 2002-11-08 | 2010-05-18 | University Of Maryland | Method for measurement of head related transfer functions |
| JP4192672B2 (en) | 2003-05-16 | 2008-12-10 | 株式会社日本自動車部品総合研究所 | Ultrasonic sensor |
| US7190496B2 (en) | 2003-07-24 | 2007-03-13 | Zebra Imaging, Inc. | Enhanced environment visualization using holographic stereograms |
| WO2005017965A2 (en) | 2003-08-06 | 2005-02-24 | Measurement Specialities, Inc. | Ultrasonic air transducer arrays using polymer piezoelectric films and impedance matching structures for ultrasonic polymer transducer arrays |
| DE10342263A1 (en) | 2003-09-11 | 2005-04-28 | Infineon Technologies Ag | Optoelectronic component and optoelectronic arrangement with an optoelectronic component |
| US7872963B2 (en) | 2003-12-27 | 2011-01-18 | Electronics And Telecommunications Research Institute | MIMO-OFDM system using eigenbeamforming method |
| US20050212760A1 (en) | 2004-03-23 | 2005-09-29 | Marvit David L | Gesture based user interface supporting preexisting symbols |
| US7107159B2 (en) | 2004-03-29 | 2006-09-12 | Peter Thomas German | Systems and methods to determine elastic properties of materials |
| EP1759268A2 (en) | 2004-05-17 | 2007-03-07 | Epos Technologies Limited | Acoustic robust synchronization signaling for acoustic positioning system |
| US7689639B2 (en) | 2004-06-04 | 2010-03-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Complex logarithmic ALU |
| US7865236B2 (en) | 2004-10-20 | 2011-01-04 | Nervonix, Inc. | Active electrode, bio-impedance based, tissue discrimination system and methods of use |
| US7138620B2 (en) | 2004-10-29 | 2006-11-21 | Silicon Light Machines Corporation | Two-dimensional motion sensor |
| US20060090955A1 (en) | 2004-11-04 | 2006-05-04 | George Cardas | Microphone diaphragms defined by logarithmic curves and microphones for use therewith |
| US7692661B2 (en) | 2005-01-26 | 2010-04-06 | Pixar | Method of creating and evaluating bandlimited noise for computer graphics |
| WO2006086743A2 (en) | 2005-02-09 | 2006-08-17 | American Technology Corporation | In-band parametric sound generation system |
| US7345600B1 (en) | 2005-03-09 | 2008-03-18 | Texas Instruments Incorporated | Asynchronous sampling rate converter |
| GB0508194D0 (en) | 2005-04-22 | 2005-06-01 | The Technology Partnership Plc | Pump |
| US9459632B2 (en) | 2005-06-27 | 2016-10-04 | Coactive Drive Corporation | Synchronized array of vibration actuators in a network topology |
| WO2015006467A1 (en) | 2013-07-09 | 2015-01-15 | Coactive Drive Corporation | Synchronized array of vibration actuators in an integrated module |
| US7233722B2 (en) | 2005-08-15 | 2007-06-19 | General Display, Ltd. | System and method for fiber optics based direct view giant screen flat panel display |
| EP1929836A2 (en) | 2005-09-20 | 2008-06-11 | Koninklijke Philips Electronics N.V. | Audio transducer system |
| EP1775989B1 (en) | 2005-10-12 | 2008-12-10 | Yamaha Corporation | Speaker array and microphone array |
| US20070094317A1 (en) | 2005-10-25 | 2007-04-26 | Broadcom Corporation | Method and system for B-spline interpolation of a one-dimensional signal using a fractional interpolation ratio |
| WO2007124955A2 (en) | 2006-05-01 | 2007-11-08 | Ident Technology Ag | Haptic input device |
| EP2032199A2 (en) | 2006-06-14 | 2009-03-11 | Koninklijke Philips Electronics N.V. | Device for transdermal drug delivery and method of operating such a device |
| US7425874B2 (en) | 2006-06-30 | 2008-09-16 | Texas Instruments Incorporated | All-digital phase-locked loop for a digital pulse-width modulator |
| US20100030076A1 (en) | 2006-08-01 | 2010-02-04 | Kobi Vortman | Systems and Methods for Simultaneously Treating Multiple Target Sites |
| JP2008074075A (en) | 2006-09-25 | 2008-04-03 | Canon Inc | Image forming apparatus and control method thereof |
| EP1911530B1 (en) | 2006-10-09 | 2009-07-22 | Baumer Electric AG | Ultrasound converter with acoustic impedance adjustment |
| WO2008064230A2 (en) | 2006-11-20 | 2008-05-29 | Personics Holdings Inc. | Methods and devices for hearing damage notification and intervention ii |
| KR100889726B1 (en) | 2007-02-02 | 2009-03-24 | 한국전자통신연구원 | Tactile stimulation device and device using the same |
| FR2912817B1 (en)* | 2007-02-21 | 2009-05-22 | Super Sonic Imagine Sa | METHOD FOR OPTIMIZING WAVE FOCUSING THROUGH AN INTRODUCING ELEMENT OF ABERATIONS |
| DE102007018266A1 (en) | 2007-04-10 | 2008-10-16 | Seereal Technologies S.A. | Holographic projection system with optical waveguide tracking and means for correcting the holographic reconstruction |
| US8269168B1 (en) | 2007-04-30 | 2012-09-18 | Physical Logic Ag | Meta materials integration, detection and spectral analysis |
| US9100748B2 (en) | 2007-05-04 | 2015-08-04 | Bose Corporation | System and method for directionally radiating sound |
| US9317110B2 (en) | 2007-05-29 | 2016-04-19 | Cfph, Llc | Game with hand motion control |
| JP5012889B2 (en) | 2007-10-16 | 2012-08-29 | 株式会社村田製作所 | Piezoelectric micro blower |
| FR2923612B1 (en) | 2007-11-12 | 2011-05-06 | Super Sonic Imagine | INSONIFYING DEVICE COMPRISING A THREE-DIMENSIONAL NETWORK OF SPIRAL EMITTERS PROVIDED TO GENERATE A HIGH-INTENSITY FOCUSED WAVE BEAM |
| FI20075879A0 (en) | 2007-12-05 | 2007-12-05 | Valtion Teknillinen | Device for measuring pressure, sound pressure variation, magnetic field, acceleration, vibration and gas composition |
| US20100262008A1 (en)* | 2007-12-13 | 2010-10-14 | Koninklijke Philips Electronics N.V. | Robotic ultrasound system with microadjustment and positioning control using feedback responsive to acquired image data |
| GB0804739D0 (en) | 2008-03-14 | 2008-04-16 | The Technology Partnership Plc | Pump |
| US20090251421A1 (en) | 2008-04-08 | 2009-10-08 | Sony Ericsson Mobile Communications Ab | Method and apparatus for tactile perception of digital images |
| US8369973B2 (en) | 2008-06-19 | 2013-02-05 | Texas Instruments Incorporated | Efficient asynchronous sample rate conversion |
| CN102089633B (en) | 2008-07-08 | 2013-01-02 | 布鲁尔及凯尔声音及振动测量公司 | Method for reconstructing an acoustic field |
| US20100013613A1 (en) | 2008-07-08 | 2010-01-21 | Jonathan Samuel Weston | Haptic feedback projection system |
| US8162840B2 (en) | 2008-07-16 | 2012-04-24 | Syneron Medical Ltd | High power ultrasound transducer |
| GB2464117B (en) | 2008-10-03 | 2015-01-28 | Hiwave Technologies Uk Ltd | Touch sensitive device |
| JP2010109579A (en) | 2008-10-29 | 2010-05-13 | Nippon Telegr & Teleph Corp <Ntt> | Sound output element array and sound output method |
| US8199953B2 (en) | 2008-10-30 | 2012-06-12 | Avago Technologies Wireless Ip (Singapore) Pte. Ltd. | Multi-aperture acoustic horn |
| US9569001B2 (en) | 2009-02-03 | 2017-02-14 | Massachusetts Institute Of Technology | Wearable gestural interface |
| US10564721B2 (en) | 2009-03-12 | 2020-02-18 | Immersion Corporation | Systems and methods for using multiple actuators to realize textures |
| EP2426951A4 (en) | 2009-04-28 | 2017-06-07 | Panasonic Intellectual Property Management Co., Ltd. | Hearing aid device and hearing aid method |
| US8009022B2 (en) | 2009-05-29 | 2011-08-30 | Microsoft Corporation | Systems and methods for immersive interaction with virtual objects |
| RU2011154213A (en) | 2009-06-03 | 2013-07-20 | ДЗЕ ТЕКНОЛОДЖИ ПАРТНЕРШИП ПиЭлСи | HYDRAULIC DISK PUMP |
| US7920078B2 (en) | 2009-06-19 | 2011-04-05 | Conexant Systems, Inc. | Systems and methods for variable rate conversion |
| EP2271129A1 (en) | 2009-07-02 | 2011-01-05 | Nxp B.V. | Transducer with resonant cavity |
| KR20110005587A (en) | 2009-07-10 | 2011-01-18 | 삼성전자주식회사 | Method and apparatus for generating vibration of a mobile terminal |
| US20110010958A1 (en) | 2009-07-16 | 2011-01-20 | Wayne Clark | Quiet hair dryer |
| WO2011024074A2 (en) | 2009-08-26 | 2011-03-03 | Insightec Ltd. | Asymmetric phased-array ultrasound transducer |
| GB0916707D0 (en) | 2009-09-23 | 2009-11-04 | Elliptic Laboratories As | Acoustic motion determination |
| US8027224B2 (en) | 2009-11-11 | 2011-09-27 | Brown David A | Broadband underwater acoustic transducer |
| WO2011069964A1 (en) | 2009-12-11 | 2011-06-16 | Sorama Holding B.V. | Acoustic transducer assembly |
| JP5681727B2 (en) | 2009-12-28 | 2015-03-11 | コーニンクレッカ フィリップス エヌ ヴェ | Optimization of high-density focused ultrasonic transducer |
| KR20110093379A (en) | 2010-02-12 | 2011-08-18 | 주식회사 팬택 | Apparatus and method therefor, channel status information feedback, transmission method of base station |
| US20110199342A1 (en) | 2010-02-16 | 2011-08-18 | Harry Vartanian | Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound |
| JP5457874B2 (en) | 2010-02-19 | 2014-04-02 | 日本電信電話株式会社 | Local reproduction apparatus, method and program |
| US9357280B2 (en) | 2010-04-20 | 2016-05-31 | Nokia Technologies Oy | Apparatus having an acoustic display |
| WO2011138783A1 (en) | 2010-05-05 | 2011-11-10 | Technion Research & Development Foundation Ltd. | Method and system of manipulating bilayer membranes |
| US8519982B2 (en)* | 2010-06-21 | 2013-08-27 | Sony Corporation | Active acoustic touch location for electronic devices |
| NZ587483A (en) | 2010-08-20 | 2012-12-21 | Ind Res Ltd | Holophonic speaker system with filters that are pre-configured based on acoustic transfer functions |
| JP5343946B2 (en) | 2010-08-25 | 2013-11-13 | 株式会社デンソー | Tactile presentation device |
| US8607922B1 (en) | 2010-09-10 | 2013-12-17 | Harman International Industries, Inc. | High frequency horn having a tuned resonant cavity |
| US8782109B2 (en) | 2010-09-10 | 2014-07-15 | Texas Instruments Incorporated | Asynchronous sample rate conversion using a polynomial interpolator with minimax stopband attenuation |
| US8422721B2 (en) | 2010-09-14 | 2013-04-16 | Frank Rizzello | Sound reproduction systems and method for arranging transducers therein |
| KR101221513B1 (en) | 2010-12-13 | 2013-01-21 | 가천대학교 산학협력단 | Graphic haptic electronic board and method for transferring visual information to visually impaired people as haptic information |
| DE102011017250B4 (en) | 2011-01-07 | 2022-12-01 | Maxim Integrated Products, Inc. | Touch feedback system, haptic feedback system, and method for providing haptic feedback |
| US9076429B2 (en) | 2011-01-31 | 2015-07-07 | Wayne State University | Acoustic metamaterials |
| GB201101870D0 (en) | 2011-02-03 | 2011-03-23 | The Technology Partnership Plc | Pump |
| JP5961246B2 (en) | 2011-03-22 | 2016-08-02 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Ultrasonic CMUT with suppressed acoustic coupling to the substrate |
| JP5367001B2 (en) | 2011-03-24 | 2013-12-11 | ツインバード工業株式会社 | Hairdryer |
| US10061387B2 (en) | 2011-03-31 | 2018-08-28 | Nokia Technologies Oy | Method and apparatus for providing user interfaces |
| WO2012135373A2 (en) | 2011-04-01 | 2012-10-04 | Analog Devices, Inc. | A dedicated user interface controller for feedback responses |
| WO2012149225A2 (en)* | 2011-04-26 | 2012-11-01 | The Regents Of The University Of California | Systems and devices for recording and reproducing senses |
| US8833510B2 (en) | 2011-05-05 | 2014-09-16 | Massachusetts Institute Of Technology | Phononic metamaterials for vibration isolation and focusing of elastic waves |
| US9421291B2 (en) | 2011-05-12 | 2016-08-23 | Fifth Third Bank | Hand dryer with sanitizing ionization assembly |
| US20120299853A1 (en)* | 2011-05-26 | 2012-11-29 | Sumit Dagar | Haptic interface |
| KR101290763B1 (en) | 2011-06-08 | 2013-07-29 | 가천대학교 산학협력단 | System and method for providing learning information for visually impaired people based on haptic electronic board |
| WO2013018579A1 (en) | 2011-08-03 | 2013-02-07 | 株式会社村田製作所 | Ultrasound transducer |
| US9417754B2 (en) | 2011-08-05 | 2016-08-16 | P4tents1, LLC | User interface system, method, and computer program product |
| CN103797379A (en) | 2011-09-22 | 2014-05-14 | 皇家飞利浦有限公司 | Ultrasound measurement assembly for multidirectional measurement |
| US9143879B2 (en) | 2011-10-19 | 2015-09-22 | James Keith McElveen | Directional audio array apparatus and system |
| US20130100008A1 (en) | 2011-10-19 | 2013-04-25 | Stefan J. Marti | Haptic Response Module |
| WO2013059833A1 (en)* | 2011-10-21 | 2013-04-25 | Neurotrek, Inc. | Method and system for direct communication |
| ES2624605T3 (en) | 2011-10-28 | 2017-07-17 | Regeneron Pharmaceuticals, Inc. | Humanized IL-6 and IL-6 receptor |
| KR101355532B1 (en) | 2011-11-21 | 2014-01-24 | 알피니언메디칼시스템 주식회사 | High Intensity Focused Ultrasound Transducer |
| CA2859045A1 (en) | 2011-12-29 | 2013-07-04 | Mighty Cast, Inc. | Interactive base and token capable of communicating with computing device |
| US9513053B2 (en) | 2013-03-14 | 2016-12-06 | Revive Electronics, LLC | Methods and apparatuses for drying electronic devices |
| US8711118B2 (en) | 2012-02-15 | 2014-04-29 | Immersion Corporation | Interactivity model for shared feedback on mobile devices |
| US20120223880A1 (en) | 2012-02-15 | 2012-09-06 | Immersion Corporation | Method and apparatus for producing a dynamic haptic effect |
| KR102046102B1 (en) | 2012-03-16 | 2019-12-02 | 삼성전자주식회사 | Artificial atom and Metamaterial and Device including the same |
| US8570296B2 (en)* | 2012-05-16 | 2013-10-29 | Immersion Corporation | System and method for display of multiple data channels on a single haptic display |
| GB201208853D0 (en) | 2012-05-18 | 2012-07-04 | Hiwave Technologies Uk Ltd | Panel for use in vibratory panel device |
| WO2013179179A2 (en) | 2012-05-31 | 2013-12-05 | Koninklijke Philips N.V. | Ultrasound transducer assembly and method for driving an ultrasound transducer head |
| WO2013184746A1 (en) | 2012-06-08 | 2013-12-12 | A.L.M Holding Company | Biodiesel emulsion for cleaning bituminous coated equipment |
| EP2702935A1 (en) | 2012-08-29 | 2014-03-05 | Agfa HealthCare N.V. | System and method for optical coherence tomography and positioning element |
| US9552673B2 (en) | 2012-10-17 | 2017-01-24 | Microsoft Technology Licensing, Llc | Grasping virtual objects in augmented reality |
| IL223086A (en)* | 2012-11-18 | 2017-09-28 | Noveto Systems Ltd | Method and system for generation of sound fields |
| US8947387B2 (en) | 2012-12-13 | 2015-02-03 | Immersion Corporation | System and method for identifying users and selecting a haptic response |
| US9459697B2 (en) | 2013-01-15 | 2016-10-04 | Leap Motion, Inc. | Dynamic, free-space user interactions for machine control |
| US9202313B2 (en) | 2013-01-21 | 2015-12-01 | Microsoft Technology Licensing, Llc | Virtual interaction with image projection |
| US9323397B2 (en) | 2013-03-11 | 2016-04-26 | The Regents Of The University Of California | In-air ultrasonic rangefinding and angle estimation |
| US9208664B1 (en) | 2013-03-11 | 2015-12-08 | Amazon Technologies, Inc. | Adjusting structural characteristics of a device |
| ES2731556T3 (en) | 2013-03-13 | 2019-11-15 | Bae Systems Plc | A metamaterial |
| US9886941B2 (en) | 2013-03-15 | 2018-02-06 | Elwha Llc | Portable electronic device directed audio targeted user system and method |
| US9647464B2 (en) | 2013-03-15 | 2017-05-09 | Fujifilm Sonosite, Inc. | Low noise power sources for portable electronic systems |
| US20170238807A9 (en) | 2013-03-15 | 2017-08-24 | LX Medical, Inc. | Tissue imaging and image guidance in luminal anatomic structures and body cavities |
| US20140269207A1 (en) | 2013-03-15 | 2014-09-18 | Elwha Llc | Portable Electronic Device Directed Audio Targeted User System and Method |
| CN105324651B (en) | 2013-06-12 | 2017-07-28 | 阿特拉斯·科普柯工业技术公司 | The method and power tool of the elongation with ultrasonic measurement fastener performed by power tool |
| US20150003204A1 (en)* | 2013-06-27 | 2015-01-01 | Elwha Llc | Tactile feedback in a two or three dimensional airspace |
| US8884927B1 (en)* | 2013-06-27 | 2014-11-11 | Elwha Llc | Tactile feedback generated by phase conjugation of ultrasound surface acoustic waves |
| US9804675B2 (en) | 2013-06-27 | 2017-10-31 | Elwha Llc | Tactile feedback generated by non-linear interaction of surface acoustic waves |
| US20150006645A1 (en) | 2013-06-28 | 2015-01-01 | Jerry Oh | Social sharing of video clips |
| US20150005039A1 (en) | 2013-06-29 | 2015-01-01 | Min Liu | System and method for adaptive haptic effects |
| GB2516820A (en) | 2013-07-01 | 2015-02-11 | Nokia Corp | An apparatus |
| US10228242B2 (en) | 2013-07-12 | 2019-03-12 | Magic Leap, Inc. | Method and system for determining user input based on gesture |
| KR101484230B1 (en) | 2013-07-24 | 2015-01-16 | 현대자동차 주식회사 | Touch display device for vehicle and driving method thereof |
| JP2015035657A (en) | 2013-08-07 | 2015-02-19 | 株式会社豊田中央研究所 | Notification device and input device |
| US9576084B2 (en) | 2013-08-27 | 2017-02-21 | Halliburton Energy Services, Inc. | Generating a smooth grid for simulating fluid flow in a well system environment |
| US9576445B2 (en) | 2013-09-06 | 2017-02-21 | Immersion Corp. | Systems and methods for generating haptic effects associated with an envelope in audio signals |
| US20150078136A1 (en) | 2013-09-13 | 2015-03-19 | Mitsubishi Heavy Industries, Ltd. | Conformable Transducer With Self Position Sensing |
| CN105556591B (en) | 2013-09-19 | 2020-08-14 | 香港科技大学 | Active control of thin-film acoustic metamaterials |
| KR101550601B1 (en) | 2013-09-25 | 2015-09-07 | 현대자동차 주식회사 | Curved touch display apparatus for providing tactile feedback and method thereof |
| EP2863654B1 (en) | 2013-10-17 | 2018-08-01 | Oticon A/s | A method for reproducing an acoustical sound field |
| EP3175791B1 (en) | 2013-11-04 | 2021-09-08 | Ecential Robotics | Method for reconstructing a 3d image from 2d x-ray images |
| GB201322103D0 (en) | 2013-12-13 | 2014-01-29 | The Technology Partnership Plc | Fluid pump |
| US9366588B2 (en) | 2013-12-16 | 2016-06-14 | Lifescan, Inc. | Devices, systems and methods to determine area sensor |
| US20150189457A1 (en)* | 2013-12-30 | 2015-07-02 | Aliphcom | Interactive positioning of perceived audio sources in a transformed reproduced sound field including modified reproductions of multiple sound fields |
| US20150189455A1 (en)* | 2013-12-30 | 2015-07-02 | Aliphcom | Transformation of multiple sound fields to generate a transformed reproduced sound field including modified reproductions of the multiple sound fields |
| US9612658B2 (en) | 2014-01-07 | 2017-04-04 | Ultrahaptics Ip Ltd | Method and apparatus for providing tactile sensations |
| JP6311197B2 (en) | 2014-02-13 | 2018-04-18 | 本田技研工業株式会社 | Sound processing apparatus and sound processing method |
| US9945818B2 (en) | 2014-02-23 | 2018-04-17 | Qualcomm Incorporated | Ultrasonic authenticating button |
| US10203762B2 (en) | 2014-03-11 | 2019-02-12 | Magic Leap, Inc. | Methods and systems for creating virtual and augmented reality |
| US9649558B2 (en) | 2014-03-14 | 2017-05-16 | Sony Interactive Entertainment Inc. | Gaming device with rotatably placed cameras |
| KR101464327B1 (en) | 2014-03-27 | 2014-11-25 | 연세대학교 산학협력단 | Apparatus, system and method for providing air-touch feedback |
| KR20150118813A (en) | 2014-04-15 | 2015-10-23 | 삼성전자주식회사 | Providing Method for Haptic Information and Electronic Device supporting the same |
| WO2016022187A2 (en) | 2014-05-12 | 2016-02-11 | Chirp Microsystems | Time of flight range finding with an adaptive transmit pulse and adaptive receiver processing |
| US10579207B2 (en) | 2014-05-14 | 2020-03-03 | Purdue Research Foundation | Manipulating virtual environment using non-instrumented physical object |
| US10198030B2 (en) | 2014-05-15 | 2019-02-05 | Federal Express Corporation | Wearable devices for courier processing and methods of use thereof |
| CN103984414B (en) | 2014-05-16 | 2018-12-25 | 北京智谷睿拓技术服务有限公司 | The method and apparatus for generating tactile feedback |
| US9863699B2 (en) | 2014-06-09 | 2018-01-09 | Terumo Bct, Inc. | Lyophilization |
| WO2015194510A1 (en) | 2014-06-17 | 2015-12-23 | 国立大学法人名古屋工業大学 | Silenced ultrasonic focusing device |
| KR101687017B1 (en) | 2014-06-25 | 2016-12-16 | 한국과학기술원 | Hand localization system and the method using head worn RGB-D camera, user interaction system |
| FR3023036A1 (en) | 2014-06-27 | 2016-01-01 | Orange | RE-SAMPLING BY INTERPOLATION OF AUDIO SIGNAL FOR LOW-LATER CODING / DECODING |
| WO2016007920A1 (en) | 2014-07-11 | 2016-01-14 | New York University | Three dimensional tactile feedback system |
| KR101659050B1 (en) | 2014-07-14 | 2016-09-23 | 한국기계연구원 | Air-coupled ultrasonic transducer using metamaterials |
| US9600083B2 (en) | 2014-07-15 | 2017-03-21 | Immersion Corporation | Systems and methods to generate haptic feedback for skin-mediated interactions |
| JP2016035646A (en) | 2014-08-01 | 2016-03-17 | 株式会社デンソー | Tactile device, and tactile display including the same |
| US9525944B2 (en) | 2014-08-05 | 2016-12-20 | The Boeing Company | Apparatus and method for an active and programmable acoustic metamaterial |
| GB2530036A (en) | 2014-09-09 | 2016-03-16 | Ultrahaptics Ltd | Method and apparatus for modulating haptic feedback |
| WO2016073936A2 (en) | 2014-11-07 | 2016-05-12 | Chirp Microsystems | Package waveguide for acoustic sensor with electronic delay compensation |
| US10427034B2 (en) | 2014-12-17 | 2019-10-01 | Igt Canada Solutions Ulc | Contactless tactile feedback on gaming terminal with 3D display |
| CA2875033C (en) | 2014-12-17 | 2022-07-26 | Fayez Idris | Contactless tactile feedback on gaming terminal with 3d display |
| NL2014025B1 (en) | 2014-12-19 | 2016-10-12 | Umc Utrecht Holding Bv | High intensity focused ultrasound apparatus. |
| US9779713B2 (en) | 2014-12-24 | 2017-10-03 | United Technologies Corporation | Acoustic metamaterial gate |
| GB2539368A (en) | 2015-02-09 | 2016-12-21 | Univ Erasmus Med Ct Rotterdam | Intravascular photoacoustic imaging |
| CA2976312C (en) | 2015-02-20 | 2023-06-13 | Ultrahaptics Ip Limited | Perceptions in a haptic system |
| CN107534810B (en) | 2015-02-20 | 2019-12-20 | 超级触觉资讯处理有限公司 | Method for providing improved haptic feedback |
| US9911232B2 (en) | 2015-02-27 | 2018-03-06 | Microsoft Technology Licensing, Llc | Molding and anchoring physically constrained virtual environments to real-world environments |
| EP3266224B1 (en) | 2015-04-08 | 2021-05-19 | Huawei Technologies Co., Ltd. | Apparatus and method for driving an array of loudspeakers |
| CN108883335A (en) | 2015-04-14 | 2018-11-23 | 约翰·詹姆斯·丹尼尔斯 | Wearable electronic multisensory interfaces for man-machine or man-man |
| AU2016100399B4 (en) | 2015-04-17 | 2017-02-02 | Apple Inc. | Contracting and elongating materials for providing input and output for an electronic device |
| JP6818746B2 (en) | 2015-05-24 | 2021-01-20 | リブオニックス・インコーポレイテッドLivOnyx Inc. | Systems and methods for surface hygiene |
| US10210858B2 (en)* | 2015-06-30 | 2019-02-19 | Pixie Dust Technologies, Inc. | System and method for manipulating objects in a computational acoustic-potential field |
| US10818162B2 (en) | 2015-07-16 | 2020-10-27 | Ultrahaptics Ip Ltd | Calibration techniques in haptic systems |
| US9865072B2 (en) | 2015-07-23 | 2018-01-09 | Disney Enterprises, Inc. | Real-time high-quality facial performance capture |
| US10313012B2 (en) | 2015-08-03 | 2019-06-04 | Phase Sensitive Innovations, Inc. | Distributed array for direction and frequency finding |
| US10416306B2 (en) | 2015-08-17 | 2019-09-17 | Texas Instruments Incorporated | Methods and apparatus to measure and analyze vibration signatures |
| US11106273B2 (en) | 2015-10-30 | 2021-08-31 | Ostendo Technologies, Inc. | System and methods for on-body gestural interfaces and projection displays |
| US10318008B2 (en) | 2015-12-15 | 2019-06-11 | Purdue Research Foundation | Method and system for hand pose detection |
| US20170181725A1 (en) | 2015-12-25 | 2017-06-29 | General Electric Company | Joint ultrasound imaging system and method |
| US11189140B2 (en) | 2016-01-05 | 2021-11-30 | Ultrahaptics Ip Ltd | Calibration and detection techniques in haptic systems |
| US9818294B2 (en) | 2016-01-06 | 2017-11-14 | Honda Motor Co., Ltd. | System for indicating vehicle presence and method thereof |
| EP3207817A1 (en) | 2016-02-17 | 2017-08-23 | Koninklijke Philips N.V. | Ultrasound hair drying and styling |
| US10091344B2 (en) | 2016-03-28 | 2018-10-02 | International Business Machines Corporation | Displaying virtual target window on mobile device based on user intent |
| US10877559B2 (en) | 2016-03-29 | 2020-12-29 | Intel Corporation | System to provide tactile feedback during non-contact interaction |
| US9936324B2 (en) | 2016-04-04 | 2018-04-03 | Pixie Dust Technologies, Inc. | System and method for generating spatial sound using ultrasound |
| US10228758B2 (en) | 2016-05-20 | 2019-03-12 | Disney Enterprises, Inc. | System for providing multi-directional and multi-person walking in virtual reality environments |
| US10140776B2 (en) | 2016-06-13 | 2018-11-27 | Microsoft Technology Licensing, Llc | Altering properties of rendered objects via control points |
| US10531212B2 (en) | 2016-06-17 | 2020-01-07 | Ultrahaptics Ip Ltd. | Acoustic transducers in haptic systems |
| US10268275B2 (en) | 2016-08-03 | 2019-04-23 | Ultrahaptics Ip Ltd | Three-dimensional perceptions in haptic systems |
| US10755538B2 (en) | 2016-08-09 | 2020-08-25 | Ultrahaptics ilP LTD | Metamaterials and acoustic lenses in haptic systems |
| CA3033852C (en) | 2016-08-15 | 2023-04-11 | Georgia Tech Research Corporation | Electronic device and method of controlling the same |
| US10394317B2 (en) | 2016-09-15 | 2019-08-27 | International Business Machines Corporation | Interaction with holographic image notification |
| US10945080B2 (en) | 2016-11-18 | 2021-03-09 | Stages Llc | Audio analysis and processing system |
| US10373452B2 (en) | 2016-11-29 | 2019-08-06 | Immersion Corporation | Targeted haptic projection |
| US10943578B2 (en) | 2016-12-13 | 2021-03-09 | Ultrahaptics Ip Ltd | Driving techniques for phased-array systems |
| US10497358B2 (en) | 2016-12-23 | 2019-12-03 | Ultrahaptics Ip Ltd | Transducer driver |
| WO2018129197A1 (en) | 2017-01-04 | 2018-07-12 | Nvidia Corporation | Cloud generation of content to be streamed to vr/ar platforms using a virtual view broadcaster |
| US10289909B2 (en) | 2017-03-06 | 2019-05-14 | Xerox Corporation | Conditional adaptation network for image classification |
| US20180304310A1 (en) | 2017-04-24 | 2018-10-25 | Ultrahaptics Ip Ltd | Interference Reduction Techniques in Haptic Systems |
| WO2018200424A1 (en) | 2017-04-24 | 2018-11-01 | Ultrahaptics Ip Ltd | Algorithm enhancements for haptic-based phased-array systems |
| US20190197840A1 (en) | 2017-04-24 | 2019-06-27 | Ultrahaptics Ip Ltd | Grouping and Optimization of Phased Ultrasonic Transducers for Multi-Field Solutions |
| US10469973B2 (en) | 2017-04-28 | 2019-11-05 | Bose Corporation | Speaker array systems |
| EP3409380A1 (en) | 2017-05-31 | 2018-12-05 | Nxp B.V. | Acoustic processor |
| US10168782B1 (en) | 2017-06-05 | 2019-01-01 | Rockwell Collins, Inc. | Ultrasonic haptic feedback control system and method |
| CN107340871A (en) | 2017-07-25 | 2017-11-10 | 深识全球创新科技(北京)有限公司 | The devices and methods therefor and purposes of integrated gesture identification and ultrasonic wave touch feedback |
| US11048329B1 (en) | 2017-07-27 | 2021-06-29 | Emerge Now Inc. | Mid-air ultrasonic haptic interface for immersive computing environments |
| US10327974B2 (en) | 2017-08-02 | 2019-06-25 | Immersion Corporation | Haptic implants |
| US10512839B2 (en) | 2017-09-28 | 2019-12-24 | Igt | Interacting with three-dimensional game elements using gaze detection |
| US11531395B2 (en) | 2017-11-26 | 2022-12-20 | Ultrahaptics Ip Ltd | Haptic effects from focused acoustic fields |
| US11269047B2 (en) | 2017-12-06 | 2022-03-08 | Invensense, Inc. | Three dimensional object-localization and tracking using ultrasonic pulses with synchronized inertial position determination |
| EP3729418B1 (en) | 2017-12-22 | 2024-11-20 | Ultrahaptics Ip Ltd | Minimizing unwanted responses in haptic systems |
| EP3729417B1 (en) | 2017-12-22 | 2025-09-10 | Ultrahaptics Ip Ltd | Tracking in haptic systems |
| WO2019122915A1 (en) | 2017-12-22 | 2019-06-27 | Ultrahaptics Ip Ltd | Human interactions with mid-air haptic systems |
| US11175739B2 (en) | 2018-01-26 | 2021-11-16 | Immersion Corporation | Method and device for performing actuator control based on an actuator model |
| US20190310710A1 (en) | 2018-04-04 | 2019-10-10 | Ultrahaptics Limited | Dynamic Haptic Feedback Systems |
| CA3098642C (en) | 2018-05-02 | 2022-04-19 | Ultrahaptics Ip Ltd | Blocking plate structure for improved acoustic transmission efficiency |
| KR20210008073A (en) | 2018-05-11 | 2021-01-20 | 나노세미, 인크. | Digital compensator for nonlinear systems |
| CN109101111B (en) | 2018-08-24 | 2021-01-29 | 吉林大学 | Touch sense reproduction method and device integrating electrostatic force, air squeeze film and mechanical vibration |
| JP7014100B2 (en) | 2018-08-27 | 2022-02-01 | 日本電信電話株式会社 | Expansion equipment, expansion method and expansion program |
| US11098951B2 (en) | 2018-09-09 | 2021-08-24 | Ultrahaptics Ip Ltd | Ultrasonic-assisted liquid manipulation |
| WO2020049322A1 (en) | 2018-09-09 | 2020-03-12 | Ultrahaptics Ip Limited | Event triggering in phased-array systems |
| US11378997B2 (en) | 2018-10-12 | 2022-07-05 | Ultrahaptics Ip Ltd | Variable phase and frequency pulse-width modulation technique |
| KR102756358B1 (en) | 2018-12-18 | 2025-01-17 | 삼성전자주식회사 | Detector, method of object detection, learning apparatus, and learning method for domain transformation |
| KR102230421B1 (en) | 2018-12-28 | 2021-03-22 | 한국과학기술원 | Apparatus and method of controlling virtual model |
| EP3906462B1 (en) | 2019-01-04 | 2025-06-18 | Ultrahaptics IP Ltd | Mid-air haptic textures |
| US11455495B2 (en) | 2019-04-02 | 2022-09-27 | Synthesis Ai, Inc. | System and method for visual recognition using synthetic training data |
| US11842517B2 (en) | 2019-04-12 | 2023-12-12 | Ultrahaptics Ip Ltd | Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network |
| WO2021074602A1 (en) | 2019-10-13 | 2021-04-22 | Ultraleap Limited | Hardware algorithm for complex-valued exponentiation and logarithm using simplified sub-steps |
| US11553295B2 (en) | 2019-10-13 | 2023-01-10 | Ultraleap Limited | Dynamic capping with virtual microphones |
| US11374586B2 (en) | 2019-10-13 | 2022-06-28 | Ultraleap Limited | Reducing harmonic distortion by dithering |
| US11169610B2 (en) | 2019-11-08 | 2021-11-09 | Ultraleap Limited | Tracking techniques in haptic systems |
| US11715453B2 (en) | 2019-12-25 | 2023-08-01 | Ultraleap Limited | Acoustic transducer structures |
| US20210303758A1 (en) | 2020-03-31 | 2021-09-30 | Ultraleap Limited | Accelerated Hardware Using Dual Quaternions |
| US11816267B2 (en) | 2020-06-23 | 2023-11-14 | Ultraleap Limited | Features of airborne ultrasonic fields |
| US11886639B2 (en) | 2020-09-17 | 2024-01-30 | Ultraleap Limited | Ultrahapticons |
| WO2022101642A1 (en) | 2020-11-16 | 2022-05-19 | Ultraleap Limited | Intent driven dynamic gesture recognition system |
| US20220252550A1 (en) | 2021-01-26 | 2022-08-11 | Ultraleap Limited | Ultrasound Acoustic Field Manipulation Techniques |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101227764A (en)* | 2006-12-15 | 2008-07-23 | 诺基亚公司 | Apparatus, method and program product for providing tactile feedback generated by sound |
| CN101828161A (en)* | 2007-10-18 | 2010-09-08 | 微软公司 | Three-dimensional object simulation using audio, visual, and tactile feedback |
| CN102395939A (en)* | 2009-04-21 | 2012-03-28 | 摩托罗拉移动公司 | Methods and devices for consistency of the haptic response across a touch sensitive device |
| CN103247296A (en)* | 2011-02-11 | 2013-08-14 | 英默森公司 | Sound-to-Haptic Effect Transformation System Using Waveforms |
| GB2513884A (en)* | 2013-05-08 | 2014-11-12 | Univ Bristol | Method and apparatus for producing an acoustic field |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12345838B2 (en) | 2013-05-08 | 2025-07-01 | Ultrahaptics Ip Ltd | Method and apparatus for producing an acoustic field |
| US12204691B2 (en) | 2014-09-09 | 2025-01-21 | Ultrahaptics Ip Ltd | Method and apparatus for modulating haptic feedback |
| US11768540B2 (en) | 2014-09-09 | 2023-09-26 | Ultrahaptics Ip Ltd | Method and apparatus for modulating haptic feedback |
| US11830351B2 (en) | 2015-02-20 | 2023-11-28 | Ultrahaptics Ip Ltd | Algorithm improvements in a haptic system |
| US12100288B2 (en) | 2015-07-16 | 2024-09-24 | Ultrahaptics Ip Ltd | Calibration techniques in haptic systems |
| US12001610B2 (en) | 2016-08-03 | 2024-06-04 | Ultrahaptics Ip Ltd | Three-dimensional perceptions in haptic systems |
| US12271528B2 (en) | 2016-08-03 | 2025-04-08 | Ultrahaptics Ip Ltd | Three-dimensional perceptions in haptic systems |
| US11392206B2 (en) | 2017-07-27 | 2022-07-19 | Emerge Now Inc. | Mid-air ultrasonic haptic interface for immersive computing environments |
| US11048329B1 (en) | 2017-07-27 | 2021-06-29 | Emerge Now Inc. | Mid-air ultrasonic haptic interface for immersive computing environments |
| US11921928B2 (en) | 2017-11-26 | 2024-03-05 | Ultrahaptics Ip Ltd | Haptic effects from focused acoustic fields |
| US12347304B2 (en) | 2017-12-22 | 2025-07-01 | Ultrahaptics Ip Ltd | Minimizing unwanted responses in haptic systems |
| US12158522B2 (en) | 2017-12-22 | 2024-12-03 | Ultrahaptics Ip Ltd | Tracking in haptic systems |
| US11883847B2 (en) | 2018-05-02 | 2024-01-30 | Ultraleap Limited | Blocking plate structure for improved acoustic transmission efficiency |
| US12370577B2 (en) | 2018-05-02 | 2025-07-29 | Ultrahaptics Ip Ltd | Blocking plate structure for improved acoustic transmission efficiency |
| US12373033B2 (en) | 2019-01-04 | 2025-07-29 | Ultrahaptics Ip Ltd | Mid-air haptic textures |
| US11842517B2 (en) | 2019-04-12 | 2023-12-12 | Ultrahaptics Ip Ltd | Using iterative 3D-model fitting for domain adaptation of a hand-pose-estimation neural network |
| CN113711168A (en)* | 2019-04-26 | 2021-11-26 | 哈图优公司 | Haptic feedback device provided with a stiffener |
| US12191875B2 (en) | 2019-10-13 | 2025-01-07 | Ultraleap Limited | Reducing harmonic distortion by dithering |
| US12002448B2 (en) | 2019-12-25 | 2024-06-04 | Ultraleap Limited | Acoustic transducer structures |
| US11816267B2 (en)* | 2020-06-23 | 2023-11-14 | Ultraleap Limited | Features of airborne ultrasonic fields |
| US20210397261A1 (en)* | 2020-06-23 | 2021-12-23 | Ultraleap Limited | Features of Airborne Ultrasonic Fields |
| US12393277B2 (en) | 2020-06-23 | 2025-08-19 | Ultraleap Limited | Features of airborne ultrasonic fields |
| US11886639B2 (en) | 2020-09-17 | 2024-01-30 | Ultraleap Limited | Ultrahapticons |
| Publication number | Publication date |
|---|---|
| US9841819B2 (en) | 2017-12-12 |
| US10930123B2 (en) | 2021-02-23 |
| IL254036A0 (en) | 2017-10-31 |
| JP2023123472A (en) | 2023-09-05 |
| US20190206202A1 (en) | 2019-07-04 |
| EP3537265A1 (en) | 2019-09-11 |
| ES2896875T3 (en) | 2022-02-28 |
| EP3259653A1 (en) | 2017-12-27 |
| US20160246374A1 (en) | 2016-08-25 |
| HK1245937B (en) | 2020-05-22 |
| CA2976312C (en) | 2023-06-13 |
| AU2016221500A1 (en) | 2017-08-31 |
| BR112017017869A2 (en) | 2018-04-10 |
| IL254036B (en) | 2021-01-31 |
| KR102515997B1 (en) | 2023-03-29 |
| AU2016221500B2 (en) | 2021-06-10 |
| US10101814B2 (en) | 2018-10-16 |
| EP3916525A1 (en) | 2021-12-01 |
| JP2021119486A (en) | 2021-08-12 |
| KR20170116161A (en) | 2017-10-18 |
| CN107407969B (en) | 2020-09-11 |
| JP2018507485A (en) | 2018-03-15 |
| EP3537265B1 (en) | 2021-09-29 |
| EP3916525B1 (en) | 2024-09-18 |
| CA2976312A1 (en) | 2016-08-25 |
| EP3259653B1 (en) | 2019-04-24 |
| SG11201706557SA (en) | 2017-09-28 |
| WO2016132144A1 (en) | 2016-08-25 |
| US20210183215A1 (en) | 2021-06-17 |
| MX2017010254A (en) | 2018-03-07 |
| US20180101234A1 (en) | 2018-04-12 |
| ES2731673T3 (en) | 2019-11-18 |
| US11550432B2 (en) | 2023-01-10 |
| EP3916525C0 (en) | 2024-09-18 |
| Publication | Publication Date | Title |
|---|---|---|
| CN107407969B (en) | Method of manipulating a haptic field to produce a desired user perception | |
| US12204691B2 (en) | Method and apparatus for modulating haptic feedback | |
| HK1245937A1 (en) | Method for producing an acoustic field in a haptic system | |
| BR112017017869B1 (en) | TACTILE SYSTEM, RELATED METHODS AND PROCESSES | |
| HK1241090B (en) | Method, system and computer program product for modulating haptic feedback using ultrasound | |
| HK1241090A1 (en) | Method, system and computer program product for modulating haptic feedback using ultrasound |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |