Movatterモバイル変換


[0]ホーム

URL:


CN107320910A - A kind of submissive rehabilitation ectoskeleton of upper limbs - Google Patents

A kind of submissive rehabilitation ectoskeleton of upper limbs
Download PDF

Info

Publication number
CN107320910A
CN107320910ACN201710518866.5ACN201710518866ACN107320910ACN 107320910 ACN107320910 ACN 107320910ACN 201710518866 ACN201710518866 ACN 201710518866ACN 107320910 ACN107320910 ACN 107320910A
Authority
CN
China
Prior art keywords
forearm
fixed
large arm
arm
elbow joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710518866.5A
Other languages
Chinese (zh)
Other versions
CN107320910B (en
Inventor
朱秋国
石拓
熊蓉
吴俊�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJUfiledCriticalZhejiang University ZJU
Priority to CN201710518866.5ApriorityCriticalpatent/CN107320910B/en
Publication of CN107320910ApublicationCriticalpatent/CN107320910A/en
Application grantedgrantedCritical
Publication of CN107320910BpublicationCriticalpatent/CN107320910B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开一种上肢柔顺康复外骨骼,包括依次连接的大臂、小臂和手部,大臂包括转动驱动装置,驱动小臂转动,小臂通过被动关节机构调整手部与小臂的位置,转动驱动装置还包括具有内环、外环和弹性结构的肘关节执行器和与其并联的阻尼模块,运动过程中,大臂的转动驱动装置带动肘关节执行器的内环转动,内环通过弹性结构带动外环转动,外环带动小臂转动,阻尼模块用来抑制运动过程中由肘关节执行器的弹性结构产生的小臂的机械振动。本发明的上肢柔顺康复外骨骼整体机构轻,且能避免运动过程中的刚性冲击,保证机构本身以及人体的安全性,且大小臂的伸缩机构保证了机构适应不同身材的人,确保了机构的适用性。

The invention discloses an exoskeleton for supple rehabilitation of upper limbs, which includes a large arm, a small arm and a hand connected in sequence. The large arm includes a rotating drive device to drive the small arm to rotate, and the small arm adjusts the positions of the hand and the small arm through a passive joint mechanism. , the rotation driving device also includes an elbow joint actuator with an inner ring, an outer ring and an elastic structure and a damping module connected in parallel with it. During the movement, the rotation driving device of the big arm drives the inner ring of the elbow joint actuator to rotate, and the inner ring passes through The elastic structure drives the outer ring to rotate, and the outer ring drives the forearm to rotate. The damping module is used to suppress the mechanical vibration of the forearm generated by the elastic structure of the elbow joint actuator during the movement. The overall mechanism of the upper limb supple rehabilitation exoskeleton of the present invention is light, and can avoid rigid impact during exercise, ensuring the safety of the mechanism itself and the human body, and the telescopic mechanism of the large and small arms ensures that the mechanism can adapt to people of different sizes and ensures the stability of the mechanism. applicability.

Description

Translated fromChinese
一种上肢柔顺康复外骨骼A supple rehabilitation exoskeleton for upper limbs

技术领域technical field

本发明涉及医疗机器人技术领域,具体涉及一种上肢柔顺康复外骨骼。The invention relates to the technical field of medical robots, in particular to an exoskeleton for flexible rehabilitation of upper limbs.

背景技术Background technique

我国人口基数庞大,肢体伤残人口数量逐年增多,而且随着老龄化进程加速,生理机能 衰退、骨关节病、脑血管疾病等发病率增高,使得我国康复装备供应和康复临床的需求出现 巨大空缺。我国康复科室和康复设备供给严重不足,截止2012年底,拥有康复科的综合医院 为3288家,远远不能满足要求。另外,很多患者家庭在医疗康复上又面临着更为严重的经济 约束。因此,开发具有我们自主知识产权的康复外骨骼非常紧迫。my country has a huge population base, and the number of physically disabled people is increasing year by year. With the acceleration of the aging process, the incidence of physiological function decline, bone and joint diseases, and cerebrovascular diseases has increased, which has caused a huge gap in the supply of rehabilitation equipment and clinical rehabilitation in my country. . The supply of rehabilitation departments and rehabilitation equipment in my country is seriously insufficient. By the end of 2012, there were 3,288 general hospitals with rehabilitation departments, which is far from meeting the requirements. In addition, many families of patients face more serious financial constraints in medical rehabilitation. Therefore, it is very urgent to develop rehabilitation exoskeletons with our independent intellectual property rights.

康复外骨骼作为一种典型的医疗机器人,是当下机器人研究和产业的热点,是中国智能 制造的重点支持和发展方向之一。常规的康复治疗多为由医师与患者进行一对一、长时间的 运动辅助治疗,或者通过机器对患者进行持续被动治疗。但是,患者在治疗后半期仍然需要 通过自身神经支配进行康复训练才能达到较好的治疗效果。因此,在康复后半期阶段应指导 患者多进行半主动和主动训练。而康复外骨骼不仅可以改善这种重复性一对一训练的效率低、 成本高、且不宜在家操作的工作,而且可以使治疗更加量化和科学化,目前一些康复外骨骼 产品已经在临床得到了应用。As a typical medical robot, rehabilitation exoskeleton is a hotspot in robot research and industry, and one of the key support and development directions of China's intelligent manufacturing. Conventional rehabilitation treatment is mostly one-on-one, long-term exercise-assisted treatment between doctors and patients, or continuous passive treatment of patients through machines. However, in the second half of treatment, patients still need rehabilitation training through their own innervation to achieve a better therapeutic effect. Therefore, in the second half of rehabilitation, patients should be instructed to perform more semi-active and active training. The rehabilitation exoskeleton can not only improve the low efficiency, high cost and unsuitable home operation of repetitive one-on-one training, but also make the treatment more quantitative and scientific. At present, some rehabilitation exoskeleton products have been clinically obtained. application.

上肢康复外骨骼的研究从上世纪开始,已经经过几十年的研究,开发出了牵引式、人工 肌肉气动式、绳驱动式和外骨骼式等形式的上肢康复设备。The research on exoskeleton for upper limb rehabilitation began in the last century, and after decades of research, upper limb rehabilitation equipment in the form of traction, artificial muscle pneumatic, rope-driven and exoskeleton has been developed.

如申请公布号为CN102499857A的专利文献公开的一种外骨骼可穿戴式上肢康复机器人, 包括肩关节外骨骼,肘关节外骨骼,腕关节外骨骼与手部外骨骼。其中,肩关节外骨骼有两 个自由度;肘关节外骨骼有两个自由度;腕关节外骨骼有一个自由度;手部外骨骼有3个自 由度。总共八个自由度。对于大功率电机使用谐波减速器传动及盘式电机,实现零回转误差 以及驱动与患者关节的良好贴合,可以通过蓄电池驱动,解决了传统康复装置活动范围受限 的问题,具有便携的特性。但由于为整体驱动机构为刚性,缺少与患者之间的良好交互功能, 运动过程中产生的刚性冲击,易造成减速器以及其他机构的磨损,也会对患者造成不适感。。For example, the patent document with application publication number CN102499857A discloses a wearable exoskeleton upper limb rehabilitation robot, including a shoulder joint exoskeleton, an elbow joint exoskeleton, a wrist joint exoskeleton and a hand exoskeleton. Among them, the shoulder exoskeleton has two degrees of freedom; the elbow exoskeleton has two degrees of freedom; the wrist exoskeleton has one degree of freedom; the hand exoskeleton has three degrees of freedom. There are eight degrees of freedom in total. For high-power motors, harmonic reducer transmission and disc motors are used to achieve zero rotation error and good fit between the drive and the patient's joints. It can be driven by batteries, which solves the problem of limited range of motion of traditional rehabilitation devices, and has the characteristics of portability. . However, due to the rigidity of the overall driving mechanism, it lacks a good interaction function with the patient, and the rigid impact generated during the movement may easily cause wear of the reducer and other mechanisms, and also cause discomfort to the patient. .

申请公布号为CN204562790U的专利文献提供的气动肌肉驱动的上肢康复机器人,其特 征在于:采用外骨骼的助力运动形式,实现人体上肢肩关节、肘关节、腕关节主要运动功能 的康复训练。机器人包括肩关节,肘关节,腕关节。其中肩关节具有屈曲/伸展、内收/外摆两 个自由度,肘关节具有屈曲/伸展一个自由度,腕关节具有屈曲/伸展一个自由度。所有的关节 轴均采用两条旋向相反的气动肌肉驱动,机器人关节的运动柔顺性能好,较好地满足了康复 训练人机工程学的要求。但是气动肌肉位置控制精度低,在运动过程中不可避免颤动,而且 气动设备需要配带的辅助设备较多,比如气泵等,工作噪声较大、使用和携带不方便。The application publication number is the pneumatic muscle-driven upper limb rehabilitation robot provided by the patent literature of CN204562790U, which is characterized in that: it adopts the power-assisted movement form of the exoskeleton to realize the rehabilitation training of the main movement functions of the shoulder joint, elbow joint and wrist joint of the human upper limb. The robot includes shoulder joints, elbow joints, and wrist joints. The shoulder joint has two degrees of freedom of flexion/extension and adduction/swing, the elbow joint has one degree of freedom of flexion/extension, and the wrist joint has one degree of freedom of flexion/extension. All the joint axes are driven by two pneumatic muscles with opposite rotations. The joints of the robot have good motion compliance and meet the ergonomic requirements of rehabilitation training. However, the position control accuracy of the pneumatic muscle is low, and it is inevitable to vibrate during the exercise process. Moreover, the pneumatic equipment needs to be equipped with many auxiliary equipment, such as air pumps, etc., and the working noise is relatively large, and it is inconvenient to use and carry.

申请公布号为CN105411815A的专利文献提供的一种可穿戴式二自由度肘部康复训练装 置,它涉及一种肘部康复训练装置,具体涉及一种可穿戴式二自由度肘部康复训练装置。但是由 于未刚性驱动因此同样存在刚性冲击问题。A wearable two-degree-of-freedom elbow rehabilitation training device provided by the patent document whose application publication number is CN105411815A relates to an elbow rehabilitation training device, in particular to a wearable two-degree-of-freedom elbow rehabilitation training device. But because it is not rigidly driven, there is also the problem of rigid impact.

为了解决上述康复机器人所存在的问题,本发明主要研究具有柔顺特性的上肢康复外骨 骼机器人。In order to solve the existing problems of the above-mentioned rehabilitation robot, the present invention mainly studies the upper limb rehabilitation exoskeleton robot with compliant characteristics.

发明内容Contents of the invention

针对上述问题,本发明提供了一种上肢柔顺康复外骨骼,解决了现有技术运动过程中存 在的高刚性、大冲击、人机交互体验差、以及缺少主动/半主动反向阻抗训练功能等问题。In view of the above problems, the present invention provides a supple rehabilitation exoskeleton for the upper limbs, which solves the problems of high rigidity, large impact, poor human-computer interaction experience, and lack of active/semi-active reverse impedance training functions in the prior art. question.

本发明采取的技术方案如下:The technical scheme that the present invention takes is as follows:

一种上肢柔顺康复外骨骼,包括依次连接的大臂1、小臂2和手部3,所述大臂1包括转 动驱动装置1.4,用于驱动所述的小臂2转动,所述的小臂2通过被动关节机构调整手部3与所述的小臂2的位置,其特征在于,An exoskeleton for flexible rehabilitation of the upper limbs, comprising a large arm 1, a small arm 2 and a hand 3 connected in sequence, the large arm 1 includes a rotating drive device 1.4 for driving the rotation of the small arm 2, and the small arm 2 The arm 2 adjusts the position of the hand 3 and the forearm 2 through a passive joint mechanism, which is characterized in that,

所述的转动驱动装置1.4包括一个肘关节执行器1.4.5和与所述的肘关节执行器1.4.5并 联的阻尼模块1.4.6,所述的肘关节执行器1.4.5包括同心并能相对转动的内环与外环,以及 所述的内环1.4.5.2与所述的外环1.4.5.1之间的弹性结构;所述的内环与所述的大臂连接,所 述的外环与所述的小臂连接;The rotary driving device 1.4 includes an elbow joint actuator 1.4.5 and a damping module 1.4.6 connected in parallel with the elbow joint actuator 1.4.5, and the elbow joint actuator 1.4.5 includes a concentric and capable Relatively rotating inner ring and outer ring, and the elastic structure between the inner ring 1.4.5.2 and the outer ring 1.4.5.1; the inner ring is connected with the big arm, and the outer The ring is connected to the forearm;

运动过程中,所述的大臂1中的转动驱动装置1.4带动所述的肘关节执行器1.4.5的内环 转动,所述的内环通过所述的弹性结构带动所述的外环转动,所述的外环带动所述的小臂2 转动,所述的阻尼模块用来抑制运动过程中由所述的肘关节执行器1.4.5的弹性结构产生的小 臂的机械振动。During the movement, the rotation driving device 1.4 in the boom 1 drives the inner ring of the elbow joint actuator 1.4.5 to rotate, and the inner ring drives the outer ring to rotate through the elastic structure , the outer ring drives the forearm 2 to rotate, and the damping module is used to suppress the mechanical vibration of the forearm generated by the elastic structure of the elbow joint actuator 1.4.5 during the movement.

进一步的,所述大臂包括:Further, the boom includes:

大臂伸缩机构1.1,用于沿人体手臂调节大臂1长度;The boom telescopic mechanism 1.1 is used to adjust the length of the boom 1 along the human arm;

大臂固持装置1.2,固定在所述的大臂伸缩机构1.1上,用于绑定人体大臂与上肢康复外 骨骼机构;The arm holding device 1.2 is fixed on the arm telescopic mechanism 1.1, and is used for binding the human arm and the upper limb rehabilitation exoskeleton mechanism;

电机架1.3,所述电机架1.3安装在大臂伸缩机构1.1下端,用于安装所述的转动驱动装 置1.4;Motor frame 1.3, described motor frame 1.3 is installed on the lower end of boom telescoping mechanism 1.1, is used for installing described rotating drive device 1.4;

转动驱动装置1.4,用于驱动小臂2的转动;The rotation drive device 1.4 is used to drive the rotation of the small arm 2;

限位模块1.5,所述的限位模块1.5固定在所述的转动驱动装置1.4末端,用于运动状态 下限制所述的小臂2的运动范围在人体安全范围内;Limiting module 1.5, said limiting module 1.5 is fixed on the end of said rotating drive device 1.4, and is used to limit the range of motion of said forearm 2 in a moving state within the safe range of the human body;

静态锁定模块机构1.6,安装在所述的限位模块1.5上,用于在静态牵引过程中固定小臂2的角度位置;The static locking module mechanism 1.6 is installed on the limit module 1.5, and is used to fix the angular position of the forearm 2 during the static traction process;

进一步的,所述转动驱动装置1.4包括:Further, the rotary driving device 1.4 includes:

固定在所述的电机架1.3上的驱动电机1.4.1;The drive motor 1.4.1 fixed on the motor frame 1.3;

固定在所述的电机架1.3上与驱动电机1.4.1配合的锥齿轮组1.4.2;The bevel gear set 1.4.2 fixed on the motor frame 1.3 and matched with the drive motor 1.4.1;

固定在所述的电机架1.3上与所述的锥齿轮组1.4.2配合的同步带轮组1.4.3;A synchronous pulley set 1.4.3 fixed on the motor frame 1.3 and matched with the bevel gear set 1.4.2;

固定在所述的电机架1.3上与所述的同步带轮组1.4.3配合的谐波减速器1.4.4;The harmonic reducer 1.4.4 fixed on the motor frame 1.3 and matched with the synchronous pulley set 1.4.3;

与所述的谐波减速器1.4.4配合的肘关节执行器1.4.5;An elbow joint actuator 1.4.5 coordinated with the harmonic reducer 1.4.4;

与所述的肘关节执行器1.4.5并联的阻尼模块1.4.6;A damping module 1.4.6 connected in parallel with the elbow joint actuator 1.4.5;

所述的肘关节执行器1.4.5包括同心并能相对转动的内环1.4.5.2与外环1.4.5.1,以及内 环外环之间的弹性结构;所述的内环1.4.5.2与所述的谐波减速器1.4.4固定,外环1.4.5.1与 小臂输出法兰2.1固定;The elbow joint actuator 1.4.5 includes a concentric and relatively rotatable inner ring 1.4.5.2 and an outer ring 1.4.5.1, and an elastic structure between the inner ring and the outer ring; the inner ring 1.4.5.2 and the The harmonic reducer 1.4.4 described above is fixed, and the outer ring 1.4.5.1 is fixed to the arm output flange 2.1;

第一角度传感器1.4.7,其与所述的肘关节执行器1.4.5的内环1.4.5.2固定连接;The first angle sensor 1.4.7 is fixedly connected to the inner ring 1.4.5.2 of the elbow joint actuator 1.4.5;

第二角度传感器1.4.8,其与所述的肘关节执行器1.4.5的外环1.4.5.1固定连接。The second angle sensor 1.4.8 is fixedly connected with the outer ring 1.4.5.1 of the elbow joint actuator 1.4.5.

进一步的,所述大臂伸缩机构1.1包括:Further, the boom telescoping mechanism 1.1 includes:

大臂固定块1.1.1,用于固定所述的电机架1.3与大臂固持装置1.2;The boom fixing block 1.1.1 is used to fix the motor frame 1.3 and the boom holding device 1.2;

大臂滑块1.1.2,其与所述的大臂固定块1.1.1套接,且能够相对滑动;The boom slider 1.1.2 is socketed with the boom fixing block 1.1.1 and can slide relatively;

第一凸轮手柄1.1.3,其固定在所述的大臂固定块1.1.1上且能够压紧所述的大臂滑块1.1.2 与所述的大臂固定块1.1.1,通过摩擦力将所述的大臂滑块1.1.2固定在所需位置。The first cam handle 1.1.3 is fixed on the boom fixing block 1.1.1 and can press the boom slider 1.1.2 and the boom fixing block 1.1.1 by friction The force fixes the boom slider 1.1.2 in the required position.

进一步的,所述大臂固持装置1.2包括:Further, the boom holding device 1.2 includes:

固定在所述的大臂滑块1.1.2的大臂固定架1.2.1;The boom fixing frame 1.2.1 fixed on the boom slider 1.1.2;

固定在所述的大臂固持装置架上的一组大臂固定叶片1.2.2;A set of boom fixing blades 1.2.2 fixed on the boom holding device frame;

所述大臂固持装置1.2固定于所述的大臂滑块1.1.2上,能够绑定人体大臂。The arm holding device 1.2 is fixed on the arm slider 1.1.2, and can bind the arm of the human body.

进一步的,所述小臂包括:Further, the forearm includes:

小臂输出法兰2.1,一端与所述的转动驱动装置1.4铰接;Forearm output flange 2.1, one end is hinged with the said rotating drive device 1.4;

小臂伸缩模块2.2,与所述的小臂输出法兰2.1的另一端固定连接;The arm telescopic module 2.2 is fixedly connected with the other end of the arm output flange 2.1;

小臂固持装置2.3,固定在所述的小臂伸缩模块2.2上,用于固定人体小臂。The forearm holding device 2.3 is fixed on the forearm telescopic module 2.2 and is used for fixing the forearm of the human body.

进一步的,所述小臂伸缩模块2.2包括:Further, the forearm telescopic module 2.2 includes:

小臂固定块2.2.1,固定在所述的小臂输出法兰2.1上;The forearm fixing block 2.2.1 is fixed on the forearm output flange 2.1;

小臂滑块2.2.2,其与所述的小臂固定块2.2.1套接,且能相对滑动;The forearm slider 2.2.2 is socketed with the forearm fixing block 2.2.1 and can slide relatively;

第二凸轮手柄2.2.3,固定在所述的小臂固定块2.2.1上,通过摩擦力将所述的小臂滑块 2.2.2固定在所需位置。The second cam handle 2.2.3 is fixed on the forearm fixing block 2.2.1, and fixes the forearm sliding block 2.2.2 at the required position by friction.

进一步的,所述的小臂固持装置2.3包括第一小臂固持装置2.3.1和第二小臂固持装置 2.3.2;Further, the forearm holding device 2.3 includes a first forearm holding device 2.3.1 and a second forearm holding device 2.3.2;

所述第一小臂固持装置2.3.1包括:固定在所述的小臂固定块2.2.1上的第一小臂固定架 2.3.1.1;固定在所述的第一小臂固定架2.3.1.1上的第一组小臂固定叶片2.3.1.2;The first forearm holding device 2.3.1 includes: a first forearm fixing frame 2.3.1.1 fixed on the forearm fixing block 2.2.1; fixed on the first forearm fixing frame 2.3. 1.1 The first set of forearm fixed blades 2.3.1.2;

所述第二小臂固持装置2.3.2包括:固定在所述的小臂滑块2.2.2上的第二小臂固定架 2.3.2.1;固定在所述的第二小臂固定架2.3.2.1上的第二组小臂固定叶片2.3.2.2;The second forearm holding device 2.3.2 includes: the second forearm fixing frame 2.3.2.1 fixed on the forearm slider 2.2.2; the second forearm fixing frame 2.3. 2.3.2.2 on the second set of arm fixed blades on 2.1;

进一步的,所述手部3包括:Further, the hands 3 include:

手腕侧旋关节机构3.1,固定在所述的小臂2的下端,能够实现两个角度的位置固定;The wrist lateral rotation joint mechanism 3.1 is fixed on the lower end of the forearm 2, and can realize position fixation at two angles;

手部屈伸关节机构3.2,固定在所述的手腕侧旋关节机构3.1下端,能够调整角度适应不 同人手部的长度与厚度,并能够通过旋钮锁定位置;The hand flexion and extension joint mechanism 3.2 is fixed on the lower end of the wrist lateral rotation joint mechanism 3.1, and the angle can be adjusted to adapt to the length and thickness of different human hands, and the position can be locked by the knob;

手柄机构3.3,固定在所述的手部屈伸关节机构3.2下端,用于人手握持。The handle mechanism 3.3 is fixed at the lower end of the hand flexion-extension joint mechanism 3.2, and is used for holding by human hands.

本发明的有益效果是:通过结构优化,确保了上肢康复外骨骼整体机构的轻量化,保证 了所需的输出力矩和功率。通过肘关节执行器,避免了运动过程中发生的刚性冲击,保证了 机构本身以及人体的安全性,还可通过控制算法,实现关节的反向阻抗功能,满足康复治疗 后期主动/半主动的康复训练需求,有助于提升康复训练的效果。通过并联阻尼元件限制了运 动过程中弹性元件的抖动,保证了整体系统运动的位置精度。采用刚性绑带,有助于人体固 持机构保持固持角度。大小臂的伸缩机构保证了机构适应不同身材的人,确保了机构的适用 性。The beneficial effects of the present invention are: through structural optimization, the overall mechanism of the upper limb rehabilitation exoskeleton is lightened, and the required output torque and power are guaranteed. Through the elbow joint actuator, the rigid impact during the movement is avoided, ensuring the safety of the mechanism itself and the human body. The control algorithm can also be used to realize the reverse impedance function of the joint to meet the active/semi-active rehabilitation in the later stage of rehabilitation treatment. Training needs help to improve the effect of rehabilitation training. The vibration of the elastic element during the movement is limited by the parallel damping element, which ensures the position accuracy of the overall system movement. Rigid straps are used to help the body retaining mechanism maintain the retaining angle. The telescopic mechanism of the big and small arms ensures that the mechanism is adapted to people of different statures and ensures the applicability of the mechanism.

附图说明Description of drawings

图1是本发明一种上肢柔顺康复外骨骼的结构示意图;Fig. 1 is a schematic structural view of an upper extremity supple rehabilitation exoskeleton of the present invention;

图2是大臂的结构示意图;Fig. 2 is the structural representation of big arm;

图3是小臂及手部的结构示意图;Fig. 3 is a schematic diagram of the structure of the forearm and the hand;

图4是转动驱动装置结构示意图;Fig. 4 is a structural schematic diagram of a rotary drive device;

图5是大臂固持装置结构示意图;Fig. 5 is a structural schematic diagram of the boom holding device;

图6是小臂固持装置结构示意图;Fig. 6 is a schematic structural view of the forearm holding device;

图7是肘关节执行器原理示意图;Fig. 7 is a schematic diagram of the principle of the elbow joint actuator;

图8是肘关节执行器结构示意图;Fig. 8 is a schematic diagram of the structure of the elbow joint actuator;

1大臂,1.1大臂伸缩机构,1.1.1大臂固定块,1.1.2大臂滑块,1.1.3第一凸轮手柄,1.2 大臂固持装置,1.2.1大臂固定架,1.2.2大臂固定叶片,1.3电机架,1.4转动驱动装置,1.4.1 驱动电机,1.4.2锥齿轮组,1.4.3同步带轮组,1.4.4谐波减速器,1.4.5肘关节执行器,1.4.5.1 外环,1.4.5.2内环,1.4.6阻尼模块,1.4.7第一角度传感器,1.4.8第二角度传感器,1.5限位 模块,1.6静态锁定模块机构,2小臂,2.1小臂输出法兰,2.2小臂伸缩模块,2.2.1小臂固定 块,2.2.2小臂滑块,2.2.3第二凸轮手柄,2.3小臂固持装置,2.3.1第一小臂固持装置,2.3.1.1 第一小臂固定架,2.3.1.2第一组小臂固定叶片,2.3.2第二小臂固持装置,2.3.2.1第一小臂固 定架,2.3.2.2第二组小臂固定叶片,3手部,3.1手腕侧旋关节机构,3.2手部屈伸关节机构, 3.3手柄机构。1 boom, 1.1 boom telescoping mechanism, 1.1.1 boom fixing block, 1.1.2 boom slider, 1.1.3 first cam handle, 1.2 boom holding device, 1.2.1 boom fixing frame, 1.2. 2 large arm fixed blades, 1.3 motor frame, 1.4 rotating drive device, 1.4.1 drive motor, 1.4.2 bevel gear set, 1.4.3 synchronous pulley set, 1.4.4 harmonic reducer, 1.4.5 elbow joint execution 1.4.5.1 outer ring, 1.4.5.2 inner ring, 1.4.6 damping module, 1.4.7 first angle sensor, 1.4.8 second angle sensor, 1.5 limit module, 1.6 static locking module mechanism, 2 forearm , 2.1 Arm output flange, 2.2 Arm telescopic module, 2.2.1 Arm fixing block, 2.2.2 Arm slider, 2.2.3 Second cam handle, 2.3 Arm holding device, 2.3.1 First small arm Arm holding device, 2.3.1.1 First forearm fixing frame, 2.3.1.2 First set of forearm fixing blades, 2.3.2 Second forearm holding device, 2.3.2.1 First forearm fixing frame, 2.3.2.2 Second A group of forearm fixed blades, 3 hands, 3.1 wrist lateral rotation joint mechanism, 3.2 hand flexion and extension joint mechanism, 3.3 handle mechanism.

具体实施方式detailed description

如图1~8所示,一种上肢柔顺康复外骨骼,包括依次铰接的大臂1、小臂2和手部3。大 臂1设有驱动小臂2的转动驱动装置1.4。As shown in FIGS. 1-8 , an exoskeleton for flexible rehabilitation of upper limbs includes a large arm 1 , a small arm 2 and a hand 3 which are sequentially articulated. Boom 1 is provided with the rotary driving device 1.4 that drives small arm 2.

大臂1包括用于沿人体手臂调节大臂1长度的大臂伸缩机构1.1、固定在大臂伸缩机构 1.1上,用于绑定人体大臂与上肢康复外骨骼机构的大臂固持装置1.2、安装在大臂伸缩机构 1.1下端,用于安装转动驱动装置1.4的电机架1.3、用于驱动小臂2的转动驱动装置1.4、固 定在转动驱动装置1.4末端,用于运动状态下限制小臂2的运动范围在人体安全范围内的限 位模块1.5、安装在限位模块1.5上,用于在静态牵引过程中固定小臂2的角度位置的静态锁 定模块机构1.6;The boom 1 includes a boom telescoping mechanism 1.1 for adjusting the length of the boom 1 along the human arm, a boom holding device 1.2 fixed on the boom telescoping mechanism 1.1 for binding the human boom and the upper limb rehabilitation exoskeleton mechanism, Installed on the lower end of the boom telescoping mechanism 1.1, used to install the motor frame 1.3 of the rotating drive device 1.4, the rotating drive device 1.4 used to drive the forearm 2, and fixed at the end of the rotating drive device 1.4, used to limit the forearm 2 in motion The limit module 1.5 whose movement range is within the safety range of the human body is installed on the limit module 1.5, and is used to fix the static locking module mechanism 1.6 of the angular position of the forearm 2 during the static traction process;

大臂伸缩机构1.1包括,用于固定电机架1.3与大臂固持装置1.2的大臂固定块1.1.1、与 大臂固定块1.1.1套接,且能够相对滑动大臂滑块1.1.2以及第一凸轮手柄1.1.3,第一凸轮手 柄1.1.3固定在大臂固定块1.1.1上且能够压紧大臂滑块1.1.2与大臂固定块1.1.1,通过摩擦 力将大臂滑块1.1.2固定在所需位置。The boom telescoping mechanism 1.1 includes a boom fixing block 1.1.1 for fixing the motor frame 1.3 and the boom holding device 1.2, which is socketed with the boom fixing block 1.1.1, and can relatively slide the boom slider 1.1.2 And the first cam handle 1.1.3, the first cam handle 1.1.3 is fixed on the big arm fixed block 1.1.1 and can press the big arm slider 1.1.2 and the big arm fixed block 1.1.1. The boom slider 1.1.2 is fixed in the desired position.

大臂固持装置1.2包括固定在大臂滑块1.1.2的大臂固定架1.2.1和固定在大臂固持装置 架上的一组大臂固定叶片1.2.2,大臂固持装置1.2固定于大臂滑块1.1.2上,能够绑定人体大 臂;The boom holding device 1.2 includes a boom fixing frame 1.2.1 fixed on the boom slider 1.1.2 and a group of boom fixing blades 1.2.2 fixed on the boom holding device frame, and the boom holding device 1.2 is fixed on On the arm slider 1.1.2, it can bind the human arm;

转动驱动装置1.4包括固定于电机架1.3上的驱动电机1.4.1、锥齿轮组1.4.2、同步带轮 组1.4.3、谐波减速器1.4.4,还包括与所述的谐波减速器1.4.4配合的肘关节执行器1.4.5、与 所述的肘关节执行器1.4.5并联的阻尼模块1.4.6、第一角度传感器1.4.7、第二角度传感器1.4.8, 锥齿轮组1.4.2与锥齿轮组1.4.2配合,同步带轮组1.4.3与锥齿轮组1.4.2配合,谐波减速器 1.4.4与同步带轮组1.4.3配合;The rotary driving device 1.4 includes a drive motor 1.4.1 fixed on the motor frame 1.3, a bevel gear set 1.4.2, a synchronous pulley set 1.4.3, a harmonic reducer 1.4.4, and also includes a Elbow joint actuator 1.4.5 matched with device 1.4.4, damping module 1.4.6 connected in parallel with said elbow joint actuator 1.4.5, first angle sensor 1.4.7, second angle sensor 1.4.8, cone The gear set 1.4.2 cooperates with the bevel gear set 1.4.2, the synchronous pulley set 1.4.3 cooperates with the bevel gear set 1.4.2, and the harmonic reducer 1.4.4 cooperates with the synchronous pulley set 1.4.3;

肘关节执行器1.4.5为单独的弹性元件如图8,其包括同心并能相对转动的内环1.4.5.2 与外环1.4.5.1,以及内环外环之间的弹性结构;内环1.4.5.2与谐波减速器1.4.4固定,外环 1.4.5.1与小臂输出法兰2.1固定;第一角度传感器1.4.7,其与肘关节执行器1.4.5的内环1.4.5.2 固定连接;第二角度传感器1.4.8,其与所述的肘关节执行器1.4.5的外环1.4.5.1固定连接。 该结构能够实现运动的柔顺性,配合并联的阻尼元件能够实现质量弹簧阻尼系统的构建,能 够在保证运动的柔顺性同时通过阻尼避免运动产生震动,保证了运动的柔顺性以及位置的精 度。Elbow joint actuator 1.4.5 is a separate elastic element as shown in Figure 8, which includes concentric and relatively rotatable inner ring 1.4.5.2 and outer ring 1.4.5.1, and an elastic structure between the inner and outer rings; the inner ring 1.4 .5.2 is fixed with the harmonic reducer 1.4.4, the outer ring 1.4.5.1 is fixed with the forearm output flange 2.1; the first angle sensor 1.4.7 is fixed with the inner ring 1.4.5.2 of the elbow joint actuator 1.4.5 Connection; the second angle sensor 1.4.8 is fixedly connected with the outer ring 1.4.5.1 of the elbow joint actuator 1.4.5. This structure can realize the flexibility of movement, and the parallel damping element can realize the construction of mass spring damping system, which can ensure the flexibility of movement and avoid vibration caused by movement through damping, ensuring the flexibility of movement and the accuracy of position.

本申请的驱动电机1.4.1启动后,通过锥齿轮组1.4.2、同步带轮组1.4.3与谐波减速器1.4.4 带动内环1.4.5.2相对于外环1.4.5.1旋转,外环1.4.5.1与小臂2固定,并带动小臂2运动实 现转动过程。After the driving motor 1.4.1 of the present application is started, the inner ring 1.4.5.2 is driven to rotate relative to the outer ring 1.4.5.1 through the bevel gear set 1.4.2, the synchronous pulley set 1.4.3 and the harmonic reducer 1.4.4, and the outer ring 1.4.5.1 The ring 1.4.5.1 is fixed to the forearm 2, and drives the forearm 2 to move to realize the rotation process.

小臂包括小臂输出法兰2.1、小臂伸缩模块2.2、小臂固持装置2.3,小臂输出法兰2.1一 端与转动驱动装置1.4铰接、另一端与小臂伸缩模块2.2固定连接,小臂固持装置2.3,固定 在小臂伸缩模块2.2上,用于固定人体小臂;The forearm includes forearm output flange 2.1, forearm telescopic module 2.2, and forearm holding device 2.3. One end of the forearm output flange 2.1 is hinged with the rotation drive device 1.4, and the other end is fixedly connected with the forearm telescopic module 2.2. The forearm is held The device 2.3 is fixed on the forearm telescopic module 2.2, and is used for fixing the forearm of the human body;

小臂伸缩模块2.2又包括小臂固定块2.2.1、小臂滑块2.2.2和第二凸轮手柄2.2.3,小臂 固定块2.2.1固定在小臂输出法兰2.1上,小臂滑块2.2.2与小臂固定块2.2.1套接,且能相对 滑动;第二凸轮手柄2.2.3固定在小臂固定块2.2.1上,通过摩擦力将小臂滑块2.2.2固定在所 需位置;The forearm telescopic module 2.2 includes the forearm fixed block 2.2.1, the forearm slider 2.2.2 and the second cam handle 2.2.3, the forearm fixed block 2.2.1 is fixed on the forearm output flange 2.1, and the forearm The slider 2.2.2 is socketed with the forearm fixing block 2.2.1 and can slide relatively; the second cam handle 2.2.3 is fixed on the forearm fixing block 2.2.1, and the forearm slider 2.2.2 is fixed by frictional force. fixed in the desired position;

小臂固持装置2.3包括第一小臂固持装置2.3.1和第二小臂固持装置2.3.2,第一小臂固持 装置2.3.1包括固定在小臂固定块2.2.1上的第一小臂固定架2.3.1.1和固定在第一小臂固定架 2.3.1.1上的第一组小臂固定叶片2.3.1.2;The arm holding device 2.3 includes a first arm holding device 2.3.1 and a second arm holding device 2.3.2, and the first arm holding device 2.3.1 includes a first small arm fixed on the arm fixing block 2.2.1. Arm fixing frame 2.3.1.1 and the first group of small arm fixing blades 2.3.1.2 fixed on the first small arm fixing frame 2.3.1.1;

第二小臂固持装置2.3.2包括固定在小臂滑块2.2.2上的第二小臂固定架2.3.2.1和固定在 第二小臂固定架2.3.2.1上的第二组小臂固定叶片2.3.2.2。The second small arm holding device 2.3.2 comprises the second small arm fixed frame 2.3.2.1 fixed on the small arm slider 2.2.2 and the second group of small arm fixed frame fixed on the second small arm fixed frame 2.3.2.1. Blades 2.3.2.2.

如图3所示,手部3包括固定在小臂滑块2.2.2下端的手腕侧旋关节机构3.1,固定在手 腕侧旋关节机构3.1下端的手部屈伸关节机构3.2,固定在小臂屈伸关节机构13下端的手柄 机构3.3;As shown in Figure 3, the hand 3 includes a wrist lateral rotation joint mechanism 3.1 fixed on the lower end of the forearm slider 2.2. The handle mechanism 3.3 at the lower end of the joint mechanism 13;

手腕侧旋关节机构3.1能够实现两个角度的位置固定,手部屈伸关节机构3.2能够调整角 度适应不同人手部的长度与厚度,并能够通过旋钮锁定位置,手柄机构3.3用于人手握持。The wrist lateral rotation joint mechanism 3.1 can realize the position fixation of two angles, the hand flexion and extension joint mechanism 3.2 can adjust the angle to adapt to the length and thickness of different human hands, and can lock the position through the knob, and the handle mechanism 3.3 is used for human hand holding.

本发明工作原理,通过对大臂滑块1.1.2与大臂固定块1.1.1相对滑动确定所需大臂长度 并通过第一凸轮手柄1.1.3进行位置固定,通过对小臂固定块2.2.1与小臂滑块2.2.2相对滑动 确定所需的小臂长度并通过第二凸轮手柄2.2.3进行位置固定。并通过大臂固持装置1.2、第 一、第二小臂固持装置2.3.1、2.3.2,将外骨骼机构绑定人体手臂,通过调整手腕侧旋关节机 构3.1与手部屈伸关节机构3.2达到合适的手部厚度与长度,并通过手柄机构3.3进行握持。The working principle of the present invention is to determine the required length of the boom through the relative sliding of the boom slider 1.1.2 and the boom fixing block 1.1.1 and fix the position through the first cam handle 1.1.3, and through the forearm fixing block 2.2 .1 Relatively slide with the forearm slider 2.2.2 to determine the required forearm length and fix the position through the second cam handle 2.2.3. And through the big arm holding device 1.2, the first and second forearm holding devices 2.3.1, 2.3.2, the exoskeleton mechanism is bound to the human arm, and the wrist lateral rotation joint mechanism 3.1 and the hand flexion and extension joint mechanism 3.2 are adjusted to achieve Appropriate hand thickness and length, and grip through the handle mechanism 3.3.

本发明有两种工作模式,动态模式与静态牵引模式。动态模式中,当驱动电机1.4.1开始 工作时,通过锥形齿轮组1.4.2传动至同步带轮组1.4.3,同步带轮组1.4.3传动至谐波减速器 1.4.4,通过谐波加速器1.4.4带动肘关节执行器1.4.5内环1.4.5.2,内环外环之间的弹性结构 压缩并带动外环1.4.5.1及与外环1.4.5.1固定的小臂2及手部3转动,实现动态康复模式运动, 通过肘关节执行器1.4.5的弹性消除了运动过程中发生的刚性冲击,避免了刚性冲击对结构带 来的磨损与对人体带来的危害。弹性结构产生的震动通过阻尼模块1.4.6抑制,保证了运动的 位置精度。第一角度传感器1.4.7与谐波减速器1.4.4输出轴及肘关节执行器1.4.5内环1.4.5.2 固定,测定肘关节执行器1.4.5内环1.4.5.2的转动角度,第二角度传感器1.4.8与肘关节执行 器1.4.5外环1.4.5.1固定,测定小臂2及手部3的转动角度,两角度传感器测定数值之差为 肘关节执行器内外环转动角度差即弹性结构压缩角度,通过与弹性结构弹性系数相乘得到运 动过程中负载承受力矩,实现整体机构的力矩控制。运动过程中通过限位模块1.5保证运动 范围处于人体安全范围内。The present invention has two working modes, dynamic mode and static traction mode. In the dynamic mode, when the drive motor 1.4.1 starts to work, it is transmitted to the synchronous pulley group 1.4.3 through the bevel gear set 1.4.2, and the synchronous pulley set 1.4.3 is transmitted to the harmonic reducer 1.4.4. The harmonic accelerator 1.4.4 drives the elbow joint actuator 1.4.5 inner ring 1.4.5.2, the elastic structure between the inner ring and the outer ring compresses and drives the outer ring 1.4.5.1 and the forearm 2 fixed with the outer ring 1.4.5.1 and The hand 3 rotates to realize the movement in the dynamic rehabilitation mode. The rigid impact during the movement is eliminated through the elasticity of the elbow joint actuator 1.4.5, and the wear and tear on the structure and the harm to the human body caused by the rigid impact are avoided. The vibration generated by the elastic structure is suppressed by the damping module 1.4.6, which ensures the positional accuracy of the movement. The first angle sensor 1.4.7 is fixed with the output shaft of the harmonic reducer 1.4.4 and the inner ring 1.4.5.2 of the elbow joint actuator 1.4.5 to measure the rotation angle of the inner ring 1.4.5.2 of the elbow joint actuator 1.4.5. The second angle sensor 1.4.8 is fixed to the outer ring 1.4.5.1 of the elbow joint actuator 1.4.5 to measure the rotation angle of the forearm 2 and the hand 3, and the difference between the values measured by the two angle sensors is the difference in rotation angle between the inner and outer rings of the elbow joint actuator That is, the compression angle of the elastic structure is multiplied by the elastic coefficient of the elastic structure to obtain the load bearing moment during the movement, so as to realize the moment control of the whole mechanism. During the movement, the limit module 1.5 is used to ensure that the movement range is within the safety range of the human body.

静态牵引模式中,当静态锁定模块机构1.6锁定小臂输出法兰2.1,小臂2与大臂1位置 锁定,并能保持位置,用于静态牵引手臂肌肉。In the static traction mode, when the static locking module mechanism 1.6 locks the output flange 2.1 of the forearm, the positions of the forearm 2 and the large arm 1 are locked and can maintain the position for static traction of arm muscles.

Claims (9)

CN201710518866.5A2017-06-292017-06-29 An upper limb supple rehabilitation exoskeletonActiveCN107320910B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201710518866.5ACN107320910B (en)2017-06-292017-06-29 An upper limb supple rehabilitation exoskeleton

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201710518866.5ACN107320910B (en)2017-06-292017-06-29 An upper limb supple rehabilitation exoskeleton

Publications (2)

Publication NumberPublication Date
CN107320910Atrue CN107320910A (en)2017-11-07
CN107320910B CN107320910B (en)2019-02-22

Family

ID=60199135

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201710518866.5AActiveCN107320910B (en)2017-06-292017-06-29 An upper limb supple rehabilitation exoskeleton

Country Status (1)

CountryLink
CN (1)CN107320910B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN107928990A (en)*2017-12-222018-04-20洛阳理工学院A kind of recovery training robot for upper limb
CN108079490A (en)*2018-02-242018-05-29安阳市翔宇医疗设备有限责任公司A kind of healing and training shoulder joint and apparatus for evaluating
CN108524192A (en)*2018-04-202018-09-14重庆邮电大学Wearable forearm initiative rehabilitation with myoelectricity perception trains exoskeleton device
CN108852747A (en)*2018-05-172018-11-23河北工业大学A kind of driving ectoskeleton upper limb rehabilitation robot indirectly
CN109172002A (en)*2018-10-102019-01-11孙瑞悒A kind of external positioning device of intelligent switch joint and application method
CN109464265A (en)*2018-12-202019-03-15燕山大学 An upper limb rehabilitation robot based on rigid-flexible coupling system
CN109620648A (en)*2019-02-012019-04-16上海理工大学A kind of right-hand man's interchange mechanism for rope driving upper-limb recovery training device
CN109730890A (en)*2019-01-252019-05-10电子科技大学 An upper limb exoskeleton motion compensation handle slider mechanism
CN110101546A (en)*2019-06-062019-08-09长春工业大学A kind of wearable Portable flexible rope drive upper-limbs rehabilitation training robot
CN110302503A (en)*2019-07-042019-10-08聂志慧A kind of hospital's physiotherapy and rehabilitation elbow joint motion device
RU194028U1 (en)*2018-10-172019-11-25Андрей Владимирович Синегуб Device for passive therapeutic exercises using a nitinol drive
CN110539287A (en)*2018-05-282019-12-06株式会社捷太格特auxiliary device
CN111098293A (en)*2020-02-192020-05-05孟子权 Human exoskeleton, method of use and application in bed, highway and equipment maintenance
JP2020089663A (en)*2018-12-072020-06-11株式会社安川電機 Motor function recovery training device
CN111920638A (en)*2020-07-072020-11-13燕山大学 A kind of elbow joint flexion and extension rehabilitation training device
CN112426703A (en)*2020-11-102021-03-02刘官妮Upper limb rehabilitation exoskeleton based on space gravity balance
CN112549001A (en)*2020-12-222021-03-26上海航天控制技术研究所Exoskeleton joint force position composite compliance control method and system based on elastic element
CN113018793A (en)*2019-12-092021-06-25北京智融康成科技有限公司Upper limb rehabilitation exercise assisting system
CN114081778A (en)*2021-11-112022-02-25福建工程学院Series-parallel adaptive sliding mode variable structure motion mirror type upper limb rehabilitation training robot and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN204618765U (en)*2015-03-272015-09-09厦门理工学院Exercising apparatus for recovery of upper limb
CN105640739A (en)*2016-03-212016-06-08哈尔滨工业大学Upper limb rehabilitation exoskeleton based on space gravity balance
CN105662783A (en)*2016-03-212016-06-15上海卓道医疗科技有限公司Exoskeletal rehabilitation robot for upper limbs
KR20160071661A (en)*2014-12-122016-06-22대한민국(국립재활원장)Upper limb exoskeleton robot for movement improvement and gravity compensation
CN106730642A (en)*2017-01-172017-05-31上海交通大学医学院附属第九人民医院A kind of upper limbs exoskeleton rehabilitation arm
CN106863268A (en)*2017-02-172017-06-20哈尔滨工业大学A kind of loaded self-adaptive passive equilibrium upper limbs ectoskeleton

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR20160071661A (en)*2014-12-122016-06-22대한민국(국립재활원장)Upper limb exoskeleton robot for movement improvement and gravity compensation
CN204618765U (en)*2015-03-272015-09-09厦门理工学院Exercising apparatus for recovery of upper limb
CN105640739A (en)*2016-03-212016-06-08哈尔滨工业大学Upper limb rehabilitation exoskeleton based on space gravity balance
CN105662783A (en)*2016-03-212016-06-15上海卓道医疗科技有限公司Exoskeletal rehabilitation robot for upper limbs
CN106730642A (en)*2017-01-172017-05-31上海交通大学医学院附属第九人民医院A kind of upper limbs exoskeleton rehabilitation arm
CN106863268A (en)*2017-02-172017-06-20哈尔滨工业大学A kind of loaded self-adaptive passive equilibrium upper limbs ectoskeleton

Cited By (27)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN107928990A (en)*2017-12-222018-04-20洛阳理工学院A kind of recovery training robot for upper limb
CN107928990B (en)*2017-12-222024-01-19洛阳理工学院Rehabilitation training robot for upper limbs
CN108079490A (en)*2018-02-242018-05-29安阳市翔宇医疗设备有限责任公司A kind of healing and training shoulder joint and apparatus for evaluating
CN108524192A (en)*2018-04-202018-09-14重庆邮电大学Wearable forearm initiative rehabilitation with myoelectricity perception trains exoskeleton device
CN108852747A (en)*2018-05-172018-11-23河北工业大学A kind of driving ectoskeleton upper limb rehabilitation robot indirectly
CN110539287A (en)*2018-05-282019-12-06株式会社捷太格特auxiliary device
CN109172002A (en)*2018-10-102019-01-11孙瑞悒A kind of external positioning device of intelligent switch joint and application method
RU194028U1 (en)*2018-10-172019-11-25Андрей Владимирович Синегуб Device for passive therapeutic exercises using a nitinol drive
JP2020089663A (en)*2018-12-072020-06-11株式会社安川電機 Motor function recovery training device
CN109464265A (en)*2018-12-202019-03-15燕山大学 An upper limb rehabilitation robot based on rigid-flexible coupling system
CN109464265B (en)*2018-12-202019-11-01燕山大学A kind of upper limb rehabilitation robot based on Coupling System of Flexible Structures And Rigid Body
CN109730890A (en)*2019-01-252019-05-10电子科技大学 An upper limb exoskeleton motion compensation handle slider mechanism
CN109730890B (en)*2019-01-252021-02-02电子科技大学Upper limb exoskeleton motion compensation handle slide block mechanism
CN109620648A (en)*2019-02-012019-04-16上海理工大学A kind of right-hand man's interchange mechanism for rope driving upper-limb recovery training device
CN109620648B (en)*2019-02-012021-05-14苏州好博医疗器械有限公司Left and right hand interchanging mechanism for rope-driven upper limb rehabilitation trainer
CN110101546B (en)*2019-06-062024-04-09长春工业大学Wearable portable flexible rope drives upper limbs rehabilitation training robot
CN110101546A (en)*2019-06-062019-08-09长春工业大学A kind of wearable Portable flexible rope drive upper-limbs rehabilitation training robot
CN110302503A (en)*2019-07-042019-10-08聂志慧A kind of hospital's physiotherapy and rehabilitation elbow joint motion device
CN113018793A (en)*2019-12-092021-06-25北京智融康成科技有限公司Upper limb rehabilitation exercise assisting system
CN111098293B (en)*2020-02-192023-03-24孟子权Human exoskeleton, use method and application in bed, expressway and equipment maintenance
CN111098293A (en)*2020-02-192020-05-05孟子权 Human exoskeleton, method of use and application in bed, highway and equipment maintenance
CN111920638A (en)*2020-07-072020-11-13燕山大学 A kind of elbow joint flexion and extension rehabilitation training device
CN112426703A (en)*2020-11-102021-03-02刘官妮Upper limb rehabilitation exoskeleton based on space gravity balance
CN112549001A (en)*2020-12-222021-03-26上海航天控制技术研究所Exoskeleton joint force position composite compliance control method and system based on elastic element
CN112549001B (en)*2020-12-222022-06-10上海航天控制技术研究所Exoskeleton joint force position composite compliance control method and system based on elastic element
CN114081778A (en)*2021-11-112022-02-25福建工程学院Series-parallel adaptive sliding mode variable structure motion mirror type upper limb rehabilitation training robot and control method thereof
CN114081778B (en)*2021-11-112023-05-23福建工程学院Series-parallel self-adaptive sliding mode variable structure movement mirror type upper limb rehabilitation training robot and control method thereof

Also Published As

Publication numberPublication date
CN107320910B (en)2019-02-22

Similar Documents

PublicationPublication DateTitle
CN107320910A (en)A kind of submissive rehabilitation ectoskeleton of upper limbs
CN102499857B (en)Exoskeleton wearable upper limb rehabilitation robot
CN111281394B (en)Wrist joint movement function evaluating and rehabilitation robot
CN102113949B (en)Exoskeleton-wearable rehabilitation robot
CN102119902B (en)Wearable 7-degree-of-freedom upper limb movement rehabilitation training exoskeleton
CN107224385B (en) Active and passive dual-arm upper limb rehabilitation robot
Mihelj et al.ARMin II-7 DoF rehabilitation robot: mechanics and kinematics
CN105520820B (en)A kind of Three Degree Of Freedom wrist functional rehabilitation robot
CN202027877U (en)Wearable upper limb motion rehabilitation training exoskeleton with seven degrees of freedom
CN204562790U (en)The upper limb rehabilitation robot that pneumatic muscles drives
CN109009875A (en)Personalized upper-limbs rehabilitation training robot
CN110897830B (en)Pneumatic muscle driven modular exoskeleton elbow and wrist rehabilitation robot
CN110960395B (en)Exoskeleton type upper limb rehabilitation robot
CN103006414A (en)Upper limb rehabilitation robot
CN108836732B (en)Upper limb rehabilitation training exoskeleton mechanism with human-machine motion compatibility and passive gravity balance characteristics
CN107307974A (en)A kind of Wearable healing and training elbow joint and life assistant apparatus
CN107736983A (en)A kind of flexible shoulder rehabilitation exoskeleton mechanism
CN113827445B (en)Seven-degree-of-freedom serial-parallel upper limb exoskeleton rehabilitation robot
CN115670855A (en)Wrist joint rehabilitation device
CN111281739B (en) A rehabilitation exoskeleton robot
CN209301637U (en) Personalized upper limb rehabilitation training robot
CN104546379B (en)Limb rehabilitation training machine
CN111281742B (en)Upper limb reconfigurable mechanical rehabilitation device for shoulder, elbow, wrist and finger joints
CN115778750B (en) A left-right hand exchange mechanism and upper limb exoskeleton rehabilitation robot
CN115154193B (en)Flexibly-driven serial-parallel wrist and elbow exoskeleton rehabilitation robot

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp