Movatterモバイル変換


[0]ホーム

URL:


CN107317532B - Predictive current control method and system for permanent magnet synchronous motor based on sliding mode - Google Patents

Predictive current control method and system for permanent magnet synchronous motor based on sliding mode
Download PDF

Info

Publication number
CN107317532B
CN107317532BCN201710497296.6ACN201710497296ACN107317532BCN 107317532 BCN107317532 BCN 107317532BCN 201710497296 ACN201710497296 ACN 201710497296ACN 107317532 BCN107317532 BCN 107317532B
Authority
CN
China
Prior art keywords
current
permanent magnet
axis
magnet synchronous
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710497296.6A
Other languages
Chinese (zh)
Other versions
CN107317532A (en
Inventor
徐伟
蒋亚杰
穆朝絮
叶才勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and TechnologyfiledCriticalHuazhong University of Science and Technology
Priority to CN201710497296.6ApriorityCriticalpatent/CN107317532B/en
Publication of CN107317532ApublicationCriticalpatent/CN107317532A/en
Application grantedgrantedCritical
Publication of CN107317532BpublicationCriticalpatent/CN107317532B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开了一种基于滑模的永磁同步电机预测电流控制方法和系统,其中方法的实现包括:根据不考虑参数变化的永磁同步电机模型,将当前时刻dq轴坐标系下的等效电流、下一时刻的d轴参考电流和下一时刻的q轴参考电流输入无差拍预测电流控制器,预测出当前时刻dq轴坐标系下的电压;将等效电流、电机转速和上一时刻dq轴坐标系下的电压输入高阶滑模微分器,得到参数变化导致的dq轴电流干扰;将参数变化导致的dq轴电流干扰补偿给无差拍预测电流控制器,得到dq轴坐标系下电机的驱动电压,利用驱动电得到三相输入电压,驱动永磁同步电机运行。本发明动态响应速度快,稳态控制精度高,提高了永磁同步电机的控制精度及其运行的可靠性。

The invention discloses a sliding mode-based permanent magnet synchronous motor predictive current control method and system, wherein the implementation of the method includes: according to a permanent magnet synchronous motor model that does not consider parameter changes, equivalent The current, the d-axis reference current at the next moment, and the q-axis reference current at the next moment are input to the deadbeat predictive current controller to predict the voltage in the dq-axis coordinate system at the current moment; The voltage in the dq-axis coordinate system at time is input to the high-order sliding mode differentiator, and the dq-axis current disturbance caused by the parameter change is obtained; the dq-axis current disturbance caused by the parameter change is compensated to the deadbeat predictive current controller, and the dq-axis coordinate system is obtained. Lower the driving voltage of the motor, use the driving power to obtain the three-phase input voltage, and drive the permanent magnet synchronous motor to run. The invention has fast dynamic response speed and high steady-state control precision, thereby improving the control precision and operation reliability of the permanent magnet synchronous motor.

Description

Translated fromChinese
基于滑模的永磁同步电机预测电流控制方法和系统Predictive current control method and system for permanent magnet synchronous motor based on sliding mode

技术领域technical field

本发明涉及永磁同步电机技术领域,更具体地,涉及一种基于滑模的永磁同步电机预测电流控制方法和系统。The present invention relates to the technical field of permanent magnet synchronous motors, and more particularly, to a method and system for predicting current control of permanent magnet synchronous motors based on sliding mode.

背景技术Background technique

近几年,随着稀土永磁材料和电力功率器件的发展,永磁同步电机(PermanentMagnet Synchronous Motor,PMSM)以其高性能、高转矩惯量比和高能量密度得到了广泛的关注,特别是永磁材料价格的下降及磁性能的提高,极大地推动了永磁同步电机的发展和应用。近年来,在高精度、宽调速范围的伺服系统中,永磁同步电机系统正发挥着越来越重要的作用。永磁同步电机是一个多变量、强耦合的非线性系统,它的应用环境一般较为复杂且常常存在各种干扰,同时存在着参数不匹配等不确定性。In recent years, with the development of rare earth permanent magnet materials and electric power devices, permanent magnet synchronous motor (PMSM) has received extensive attention due to its high performance, high torque-to-inertia ratio and high energy density, especially The decline in the price of permanent magnet materials and the improvement of magnetic properties have greatly promoted the development and application of permanent magnet synchronous motors. In recent years, the permanent magnet synchronous motor system is playing an increasingly important role in the servo system with high precision and wide speed regulation range. Permanent magnet synchronous motor is a multi-variable, strongly coupled nonlinear system. Its application environment is generally complex and there are often various disturbances, and there are uncertainties such as parameter mismatch.

现有的永磁同步电机控制技术中,矢量控制应用最为广泛包括速度外环和电流内环的双闭环结构。电流环的控制需要先将三相电流经过dq变换,然后分别进行比例积分(Proportional-integral,PI)调节,将PI调节的结果作为PWM的控制量,经PWM算法输出控制信号,完成对电机的控制。电流环的设计决定了电机控制系统的动态响应能力和稳态控制精度。近年来随着现代控制理论和电力电子技术的进一步发展,许多关于永磁同步电机电流环的控制方法被提出,现有技术存在运行中的电机参数变化时无法有效地调节永磁同步电机的电流环输出,动态响应速度慢,鲁棒性低,永磁同步电机的控制精度低及其运行的可靠性差的技术问题。Among the existing permanent magnet synchronous motor control technologies, vector control is the most widely used, including the double closed-loop structure of the outer speed loop and the inner current loop. The control of the current loop needs to transform the three-phase current through dq, and then adjust the proportional-integral (PI) respectively. The result of the PI adjustment is used as the control quantity of the PWM, and the control signal is output through the PWM algorithm to complete the control of the motor. control. The design of the current loop determines the dynamic response capability and steady-state control accuracy of the motor control system. In recent years, with the further development of modern control theory and power electronics technology, many control methods for the current loop of permanent magnet synchronous motor have been proposed. The existing technology cannot effectively adjust the current of the permanent magnet synchronous motor when the motor parameters change during operation. The technical problems of loop output, slow dynamic response, low robustness, low control precision of permanent magnet synchronous motor and poor reliability of operation.

发明内容SUMMARY OF THE INVENTION

针对现有技术的以上缺陷或改进需求,本发明提供了一种基于滑模的永磁同步电机预测电流控制方法和系统,由此解决了现有技术存在运行中的电机参数变化时无法有效地调节永磁同步电机的电流环输出,动态响应速度慢,鲁棒性低,永磁同步电机的控制精度低及其运行的可靠性差的技术问题。In view of the above defects or improvement requirements of the prior art, the present invention provides a sliding mode-based permanent magnet synchronous motor predictive current control method and system, thereby solving the problem that the prior art cannot effectively control the motor parameters in operation when the motor parameters change. Adjusting the current loop output of the permanent magnet synchronous motor has the technical problems of slow dynamic response speed, low robustness, low control accuracy of the permanent magnet synchronous motor and poor reliability of its operation.

为实现上述目的,按照本发明的一个方面,提供了一种基于滑模的永磁同步电机预测电流控制方法,包括如下步骤:In order to achieve the above object, according to one aspect of the present invention, a sliding mode-based permanent magnet synchronous motor predictive current control method is provided, comprising the following steps:

(1)采集当前时刻的永磁同步电机的转子位置、电机转速和三相电流,经过坐标变换得到永磁同步电机在当前时刻dq轴坐标系下的等效电流;(1) Collect the rotor position, motor speed and three-phase current of the permanent magnet synchronous motor at the current moment, and obtain the equivalent current of the permanent magnet synchronous motor in the dq axis coordinate system at the current moment through coordinate transformation;

(2)根据设定的永磁同步电机下一时刻的参考转子电角速度和下一时刻的d轴参考电流,采集永磁同步电机下一时刻的q轴参考电流;(2) According to the set reference rotor electrical angular velocity of the permanent magnet synchronous motor at the next moment and the d-axis reference current at the next moment, collect the q-axis reference current of the permanent magnet synchronous motor at the next moment;

(3)根据不考虑参数变化的永磁同步电机模型,将当前时刻dq轴坐标系下的等效电流、下一时刻的d轴参考电流和下一时刻的q轴参考电流输入无差拍预测电流控制器,预测出当前时刻dq轴坐标系下的电压;(3) According to the permanent magnet synchronous motor model that does not consider parameter changes, input the equivalent current in the dq-axis coordinate system at the current moment, the d-axis reference current at the next moment, and the q-axis reference current at the next moment into the deadbeat prediction The current controller predicts the voltage in the dq-axis coordinate system at the current moment;

(4)将永磁同步电机在dq轴坐标系下的等效电流、电机转速和上一时刻利用无差拍预测电流控制器得到的上一时刻dq轴坐标系下的电压输入高阶滑模微分器,得到参数变化导致的dq轴电流干扰;(4) Input the equivalent current of the permanent magnet synchronous motor in the dq axis coordinate system, the motor speed and the voltage in the dq axis coordinate system at the previous moment obtained by the deadbeat predictive current controller at the previous moment into the high-order sliding mode Differentiator to obtain the dq-axis current interference caused by parameter changes;

(5)将参数变化导致的dq轴电流干扰补偿给无差拍预测电流控制器,消除无差拍预测电流控制器的参数依赖性的缺陷,得到dq轴坐标系下电机的驱动电压,将驱动电压经过坐标变换以及正弦脉冲宽度调制得到永磁同步电机的三相输入电压,驱动永磁同步电机运行。(5) Compensate the dq-axis current disturbance caused by parameter changes to the deadbeat predictive current controller, eliminate the defect of parameter dependence of the deadbeat predictive current controller, obtain the driving voltage of the motor in the dq-axis coordinate system, and drive the The voltage obtains the three-phase input voltage of the permanent magnet synchronous motor through coordinate transformation and sinusoidal pulse width modulation, and drives the permanent magnet synchronous motor to run.

进一步的,无差拍预测电流控制器为:Further, the deadbeat predictive current controller is:

其中,Ts为采样周期,u(k)为当前时刻dq轴坐标系下的电压,i*(k+1)为下一时刻dq轴坐标系下的参考电流,i(k)为当前时刻dq轴坐标系下的等效电流,Rs0为已知理想定子电阻,L0为已知理想定子电感,ψf0为已知理想永磁体磁链,ωe(k)为当前时刻电机转速。Among them, Ts is the sampling period, u(k) is the voltage in the dq-axis coordinate system at the current moment, i* (k+1) is the reference current in the dq-axis coordinate system at the next moment, and i(k) is the current moment The equivalent current in the dq-axis coordinate system, Rs0 is the known ideal stator resistance, L0 is the known ideal stator inductance, ψf0 is the known ideal permanent magnet flux linkage, and ωe (k) is the motor speed at the current moment.

进一步的,高阶滑模微分器为:Further, the higher-order sliding mode differentiator is:

其中,为当前时刻的dq轴电流干扰,为上一时刻的dq轴电流干扰,u(k-1)为上一时刻dq轴坐标系下的电压,为估计下一时刻的dq轴电流,为估计当前时刻的dq轴电流,zi(k-1)为上一时刻dq轴电流干扰的导数,zi(k-2)为上上一时刻dq轴电流干扰的导数,vi0(k)为当前时刻的中间变量,vi0(k-1)为上一时刻的中间变量,vi1(k)为当前时刻干扰产生的中间变量,vi1(k-1)为上一时刻干扰产生的中间变量,vi1(k-2)为上上一时刻干扰产生的中间变量,η0、η1、η2和K为高阶滑模微分器参数。in, is the dq-axis current disturbance at the current moment, is the dq-axis current disturbance at the last moment, u(k-1) is the voltage in the dq-axis coordinate system at the last moment, To estimate the dq-axis current at the next moment, In order to estimate the dq-axis current at the current moment,zi (k-1) is the derivative of the dq-axis current disturbance at the previous moment,zi (k-2) is the derivative of the dq-axis current disturbance at the previous moment, vi0 (k ) is the intermediate variable at the current moment, vi0 (k-1) is the intermediate variable at the previous moment, vi1 (k) is the intermediate variable generated by the interference at the current moment, and vi1 (k-1) is the interference generated at the previous moment The intermediate variables of , vi1 (k-2) are the intermediate variables generated by the disturbance at the previous moment, and η0 , η1 , η2 and K are the parameters of the high-order sliding mode differentiator.

进一步的,驱动电压u*(k)为:Further, the driving voltage u* (k) is:

按照本发明的另一方面,提供了一种基于滑模的永磁同步电机预测电流控制系统,包括坐标变换模块、速度比例积分控制器、无差拍预测电流控制器、高阶滑模微分器和驱动模块,According to another aspect of the present invention, a sliding mode-based permanent magnet synchronous motor predictive current control system is provided, including a coordinate transformation module, a speed proportional-integral controller, a deadbeat predictive current controller, and a high-order sliding-mode differentiator. and driver module,

所述坐标变换模块,用于将采集到的当前时刻的永磁同步电机的转子位置、电机转速和三相电流,经过坐标变换得到永磁同步电机在dq轴坐标系下的等效电流,输入无差拍预测电流控制器;The coordinate transformation module is used to convert the rotor position, motor speed and three-phase current of the permanent magnet synchronous motor collected at the current moment to obtain the equivalent current of the permanent magnet synchronous motor in the dq axis coordinate system through coordinate transformation, and input the Deadbeat predictive current controller;

所述速度比例积分控制器,用于根据设定的永磁同步电机下一时刻的参考转子电角速度和下一时刻的d轴参考电流采集永磁同步电机下一时刻的q轴参考电流输入无差拍预测电流控制器;The speed proportional-integral controller is used to set the reference rotor electrical angular velocity at the next moment of the permanent magnet synchronous motor and the d-axis reference current at the next moment Collect the q-axis reference current of the permanent magnet synchronous motor at the next moment Input deadbeat predictive current controller;

所述无差拍预测电流控制器,用于根据不考虑参数变化的永磁同步电机模型,将当前时刻dq轴坐标系下的等效电流、下一时刻的d轴参考电流和下一时刻的q轴参考电流,预测出当前时刻dq轴坐标系下的电压;The deadbeat predictive current controller is used to calculate the equivalent current in the dq-axis coordinate system at the current moment, the d-axis reference current at the next moment, and the The q-axis reference current predicts the voltage in the dq-axis coordinate system at the current moment;

所述高阶滑模微分器,用于对永磁同步电机在dq轴坐标系下的等效电流、电机转速和上一时刻利用无差拍预测电流控制器得到的上一时刻dq轴坐标系下的电压进行微分处理,得到参数变化导致的dq轴电流干扰,输入无差拍预测电流控制器;The high-order sliding mode differentiator is used to compare the equivalent current of the permanent magnet synchronous motor in the dq-axis coordinate system, the motor speed and the dq-axis coordinate system at the previous moment obtained by using the deadbeat predictive current controller at the previous moment. Differential processing is performed on the lower voltage to obtain the dq-axis current interference caused by parameter changes, and input the deadbeat predictive current controller;

所述驱动模块,用于将参数变化导致的dq轴电流干扰补偿给无差拍预测电流控制器,消除无差拍预测电流控制器的参数依赖性的缺陷,得到dq轴坐标系下电机的驱动电压,将驱动电压经过坐标变换以及正弦脉冲宽度调制得到永磁同步电机的三相输入电压,驱动永磁同步电机运行。The drive module is used for compensating the dq-axis current interference caused by parameter changes to the deadbeat predictive current controller, eliminating the defect of the parameter dependence of the deadbeat predictive current controller, and obtaining the drive of the motor in the dq-axis coordinate system. The three-phase input voltage of the permanent magnet synchronous motor is obtained by the coordinate transformation and sinusoidal pulse width modulation of the driving voltage, and the permanent magnet synchronous motor is driven to run.

进一步的,坐标变换模块包括Clark变换模块和Park变换模块,将采集到的当前时刻的永磁同步电机的转子位置、电机转速和三相电流,依次利用Clark变换模块进行Clark变换和Park变换模块进行Park变换得到永磁同步电机在dq轴坐标系下的等效电流,输入无差拍预测电流控制器。Further, the coordinate transformation module includes a Clark transformation module and a Park transformation module, and the collected rotor position, motor speed and three-phase current of the permanent magnet synchronous motor at the current moment are sequentially used to perform the Clark transformation and the Park transformation module. The equivalent current of the permanent magnet synchronous motor in the dq-axis coordinate system is obtained by Park transformation, and the deadbeat predictive current controller is input.

进一步的,驱动模块包括Park逆变换模块、脉冲宽度调制模块和逆变器,将参数变化导致的dq轴电流干扰补偿给无差拍预测电流控制器,消除无差拍预测电流控制器的参数依赖性的缺陷,得到dq轴坐标系下电机的驱动电压,将驱动电压依次利用Park逆变换模块进行Park逆变换,脉冲宽度调制模块进行正弦脉冲宽度调制以及逆变器进行逆变得到永磁同步电机的三相输入电压,驱动永磁同步电机运行。Further, the drive module includes a Park inverse transformation module, a pulse width modulation module and an inverter, which compensates the dq-axis current interference caused by parameter changes to the deadbeat predictive current controller, and eliminates the parameter dependence of the deadbeat predictive current controller. The driving voltage of the motor in the dq axis coordinate system is obtained, and the driving voltage is sequentially used to perform Park inverse transformation with the Park inverse transformation module, the pulse width modulation module performs sinusoidal pulse width modulation and the inverter performs inversion to obtain a permanent magnet synchronous motor. The three-phase input voltage drives the permanent magnet synchronous motor to run.

总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:In general, compared with the prior art, the above technical solutions conceived by the present invention have the following beneficial effects:

(1)本发明采用无差拍预测电流控制器,增强了永磁同步电机控制动态响应能力,提高了电流和转矩稳态控制精度。(1) The present invention adopts a deadbeat predictive current controller, which enhances the control dynamic response capability of the permanent magnet synchronous motor and improves the current and torque steady-state control accuracy.

(2)本发明采用的高阶滑模微分器,考虑了电机电流方程中的干扰,具有优秀的电流跟随性能和鲁棒性,可以有效跟随电流并观测出电流环存在的干扰,使各个中间物理量更加平滑、准确。(2) The high-order sliding mode differentiator adopted in the present invention takes into account the interference in the motor current equation, has excellent current following performance and robustness, can effectively follow the current and observe the interference existing in the current loop, so that each intermediate Physical quantities are smoother and more accurate.

(3)本发明高阶滑模微分器与无差拍预测电流控制器的结合,解决了预测电流控制依赖于模型参数的问题,使得在永磁同步电机的电流环在参数变化等实际工况下仍然能够保持较快的动态响应速度,高的稳态控制精度,且参数鲁棒性好,提高了永磁同步电机的控制精度及其运行的可靠性。(3) The combination of the high-order sliding mode differentiator of the present invention and the deadbeat predictive current controller solves the problem that the predictive current control depends on the model parameters, so that the current loop of the permanent magnet synchronous motor is in actual working conditions such as parameter changes. It can still maintain a fast dynamic response speed, high steady-state control accuracy, and good parameter robustness, which improves the control accuracy of the permanent magnet synchronous motor and the reliability of its operation.

附图说明Description of drawings

图1是本发明实施例提供的一种基于滑模的永磁同步电机预测电流控制方法的流程图;1 is a flowchart of a sliding mode-based permanent magnet synchronous motor predictive current control method provided by an embodiment of the present invention;

图2是本发明实施例提供的一种基于滑模的永磁同步电机预测电流控制系统结构示意图;2 is a schematic structural diagram of a sliding mode-based permanent magnet synchronous motor predictive current control system provided by an embodiment of the present invention;

图3是本发明实施例提供的高阶滑模微分器结合无差拍预测电流控制器原理图;3 is a schematic diagram of a high-order sliding mode differentiator combined with a deadbeat predictive current controller provided by an embodiment of the present invention;

图4是本发明实施例提供的永磁同步电机电流环控制流程图;4 is a flow chart of the current loop control of a permanent magnet synchronous motor provided by an embodiment of the present invention;

图5是本发明实施例提供的实验验证中参数变化过程图;Fig. 5 is the parameter change process diagram in the experimental verification provided by the embodiment of the present invention;

图6是本发明实施例1提供的传统无差拍预测电流控制实验波形图;6 is a waveform diagram of a traditional deadbeat predictive current control experiment provided in Embodiment 1 of the present invention;

图7是本发明实施例1提供的电流实验波形图;FIG. 7 is a current experimental waveform diagram provided by Embodiment 1 of the present invention;

图8是本发明实施例1提供的高阶滑模微分器观测到的干扰波形图。FIG. 8 is an interference waveform diagram observed by the high-order sliding mode differentiator provided in Embodiment 1 of the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not conflict with each other.

如图1所示,一种基于滑模的永磁同步电机预测电流控制方法,包括如下步骤:As shown in Figure 1, a sliding mode-based permanent magnet synchronous motor predictive current control method includes the following steps:

(1)采集当前时刻(k时刻)的永磁同步电机的转子位置θ(k)、电机转速ωe(k)和三相电流ia(k)、ib(k)和ic(k),对永磁同步电机的三相电流ia(k)、ib(k)和ic(k)进行Clark变换和Park变换,得到永磁同步电机在dq轴坐标系下的等效电流id(k)和iq(k);(1) Collect the rotor position θ(k), motor speed ωe (k) and three-phase currents ia (k), ib (k) andic (k) of the permanent magnet synchronous motor at the current moment (k moment) ), perform Clark transformation and Park transformation on the three-phase currents ia (k), ib (k) andic (k) of the permanent magnet synchronous motor to obtain the equivalent current of the permanent magnet synchronous motor in the dq axis coordinate system id (k) and iq (k);

根据矢量控制理论,永磁同步电机的三相电流需要经过坐标变换,最终在两相旋转坐标系(dq轴坐标系)下进行控制。According to the vector control theory, the three-phase current of the permanent magnet synchronous motor needs to undergo coordinate transformation, and finally control it in the two-phase rotating coordinate system (dq-axis coordinate system).

Clark变换:Clark transform:

其中,iα(k)和iβ(k)表示两相定子坐标下的电流。Among them, iα (k) and iβ (k) represent the current in two-phase stator coordinates.

Park变换:Park transformation:

(2)设定永磁同步电机下一时刻(k+1时刻)的需要达到的参考转速和d轴参考电流其中参考转速可以为常数,也可以随时间变化,将与采集的当前时刻电机转速ωe(k)作差后输入转速调节器,采集转速调节器的输出获得下一时刻q轴参考电流(2) Set the reference speed that the permanent magnet synchronous motor needs to reach at the next moment (k+1 moment) and d-axis reference current in reference speed can be constant or change with time, the The difference with the motor speed ωe (k) at the current moment collected is input to the speed regulator, and the output of the speed regulator is collected to obtain the q-axis reference current at the next moment

(3)根据已知不考虑参数变化的永磁电机模型,采用无差拍预测电流控制器,预测出当前时刻dq轴坐标系下的电压(3) According to the known permanent magnet motor model that does not consider parameter changes, the dead-beat predictive current controller is used to predict the voltage in the dq-axis coordinate system at the current moment

其中Ts为采样周期,u(k)=[ud(k) uq(k)]TRs0为已知理想定子电阻,L0为已知理想定子电感,ψf0为已知理想永磁体磁链。where Ts is the sampling period, u(k)=[ud (k) uq (k)]T , Rs0 is the known ideal stator resistance, L0 is the known ideal stator inductance, and ψf0 is the known ideal permanent magnet flux linkage.

无差拍预测电流控制器具体推导过程如下:The specific derivation process of the deadbeat predictive current controller is as follows:

已知不考虑参数变化的永磁电机模型为已知理想参数如电阻、电感和永磁磁链下的永磁电机模型:It is known that the permanent magnet motor model that does not consider parameter changes is the permanent magnet motor model with known ideal parameters such as resistance, inductance and permanent magnet flux linkage:

其中,id表示不考虑时刻的d轴等效电流,iq表示不考虑时刻的q轴等效电流,ud表示不考虑时刻的d轴电压,uq表示不考虑时刻的q轴电压,采用一阶欧拉法将上式离散化:Among them, id represents thed -axis equivalent current regardless of time, iq represents the q-axis equivalent current regardless of time, ud represents thed -axis voltage regardless of time, uq represents the q-axis voltage regardless of time, The first-order Euler method is used to discretize the above equation:

i(k+1)=(I+A0Ts)·i(k)+B0Ts·u(k)+C0Ts其中理想的控制目标为下一时刻的电流达到了给定值,即i(k+1)=i*(k+1),可得无差拍预测电流控制器:i(k+1)=(I+A0 Ts )·i(k)+B0 Ts ·u(k)+C0 Ts where The ideal control target is that the current at the next moment reaches the given value, that is, i(k+1)=i* (k+1), and the deadbeat predictive current controller can be obtained:

(4)将id(k)、iq(k)、ωe(k)和上一时刻电机的d轴电压ud(k-1)、q轴电压uq(k-1)输入离散化的高阶滑模微分器,得到由于参数变化导致的dq轴坐标下的电流干扰:(4) Input id (k), iq (k), ωe (k) and thed -axis voltageud (k-1) and q-axis voltage uq (k-1) of the motor at the previous moment into discrete The modified high-order sliding mode differentiator can obtain the current disturbance in the dq-axis coordinates due to parameter changes:

其中,为高阶滑模微分器观测到当前时刻的dq轴电流干扰,为高阶滑模微分器观测到上一时刻的dq轴电流干扰,u(k-1)为上一时刻dq轴坐标系下的电压,为高阶滑模微分器估计下一时刻的dq轴电流,为高阶滑模微分器估计当前时刻的dq轴电流,zi(k-1)=[zid(k-1) ziq(k-1)]T为观测出的上一时刻dq轴电流干扰的导数,zi(k-2)=[zid(k-2)ziq(k-2)]T为观测出的上上一时刻dq轴电流干扰的导数,vi0(k)=[vid0(k)viq0(k)]T为当前时刻电流观测产生的中间变量,vi0(k-1)=[vid0(k-1) viq0(k-1)]T为上一时刻电流观测产生的中间变量,vi1(k)=[vid1(k) viq1(k)]T为当前时刻干扰观测产生的中间变量,vi1(k-1)=[vid1(k-1) viq1(k-1)]T为上一时刻干扰观测产生的中间变量,vi1(k-2)=[vid1(k-2) viq1(k-2)]T为上上一时刻干扰产生的中间变量,η0、η1、η2和K为微分器参数。in, Observe the dq-axis current disturbance at the current moment for the high-order sliding mode differentiator, is the dq-axis current disturbance observed by the high-order sliding mode differentiator at the previous moment, u(k-1) is the voltage in the dq-axis coordinate system at the previous moment, Estimate the dq-axis current at the next moment for the higher-order sliding mode differentiator, Estimate the dq-axis current at the current moment for the high-order sliding mode differentiator,zi (k-1)=[zid (k-1) ziq (k-1)]T is the observed dq-axis current at the previous moment Derivative of disturbance,zi (k-2)=[zid (k-2)ziq (k-2)]T is the derivative of dq-axis current disturbance observed at the last moment, vi0 (k)= [vid0 (k)viq0 (k)]T is the intermediate variable generated by the current observation at the current moment, vi0 (k-1)=[vid0 (k-1) viq0 (k-1)]T is the upper The intermediate variable generated by the current observation at one moment, vi1 (k)=[vid1 (k) viq1 (k)]T is the intermediate variable generated by the disturbance observation at the current moment, vi1 (k-1)=[vid1 ( k-1) viq1 (k-1)]T is the intermediate variable generated by the disturbance observation at the previous moment, vi1 (k-2)=[vid1 (k-2) viq1 (k-2)]T is The intermediate variables generated by the disturbance at the last moment, η0 , η1 , η2 and K are the differentiator parameters.

根据调试经验,高阶滑模微分器参数取值范围为:K取值数量级为104~108之间,η0=3.0、η1=1.5、η2=1.1。According to the debugging experience, the value range of the parameters of the high-order sliding mode differentiator is: the magnitude of K is between 104 and 108 , η0 =3.0, η1 =1.5, η2 =1.1.

高阶滑模微分器估计参数变化导致的干扰的具体过程如下:The specific process of the high-order sliding mode differentiator to estimate the disturbance caused by parameter changes is as follows:

考虑永磁同步电机参数弯化,永磁同步电机模型重写为:Considering the bending of PMSM parameters, the PMSM model is rewritten as:

其中,ΔRs、ΔL及Δψf为电机运行过程中电阻、电感和永磁磁链的参数变化量,即永磁同步电机参数实际值为理想值加上变化值:Rs=Rs0+ΔRs,L=L0+ΔL,ψf=ψf0+Δψfin, ΔRs , ΔL and Δψf are the parameter changes of resistance, inductance and permanent magnet flux linkage during the operation of the motor, that is, the actual value of the permanent magnet synchronous motor parameter is the ideal value plus the change value: Rs =Rs0 +ΔRs , L=L0 +ΔL, ψff0 +Δψf .

采用一阶欧拉法,对进行离散化:Using the first-order Euler method, To discretize:

i(k+1)=(I+A0Ts)·i(k)+B0Ts·u(k)+C0Ts+Tsddq(k)i(k+1)=(I+A0 Ts )·i(k)+B0 Ts ·u(k)+C0 Ts +Ts ddq (k)

将前述预测电流控制获得的dq轴坐标系下的电压带入:The voltage in the dq-axis coordinate system obtained by the aforementioned predictive current control is brought into:

i(k+1)=i*(k+1)+Tsddq(k)i(k+1)=i* (k+1)+Ts ddq (k)

很明显,由于干扰的存在,实际电流无法准确跟随给定值,需要进行干扰补偿。本发明采用高阶滑模微分器进行干扰观测补偿:Obviously, due to the existence of interference, the actual current cannot accurately follow the given value, and interference compensation is required. The present invention adopts a high-order sliding mode differentiator to perform interference observation compensation:

采用一阶欧拉法,对上式离散化得:Using the first-order Euler method, the above equation is discretized to get:

这样就可以把当前时刻参数变化造成的电流干扰观测出In this way, the current interference caused by the parameter change at the current moment can be observed.

(5)将观测到的dq轴电流干扰补偿给无差拍预测电流控制器,消除无差拍预测电流控制器的参数依赖性的缺陷,得到dq轴坐标系下的电机驱动电压:(5) Compensate the observed dq-axis current disturbance to the deadbeat predictive current controller to eliminate the parameter dependence of the deadbeat predictive current controller, and obtain the motor drive voltage in the dq-axis coordinate system:

无差拍预测电流控制参数依赖性消除证明:The deadbeat predictive current control parameter dependence elimination proves:

带入考虑参数变化的永磁同步电机离散化电流方程i(k+1)=i*(k+1)+Tsddq(k),即得:Will Bring into the permanent magnet synchronous motor discretized current equation i(k+1)=i* (k+1)+Ts ddq (k) considering parameter changes, that is:

i(k+1)=i*(k+1)i(k+1)=i* (k+1)

这样由于参数不匹配造成的电流控制误差被高阶滑模微分器观测的干扰补偿,从而消除了无差拍预测电流控制器的参数依赖性的缺陷。In this way, the current control error due to parameter mismatch is compensated by the disturbance observed by the high-order sliding mode differentiator, thereby eliminating the defect of the parameter dependence of the deadbeat predictive current controller.

对永磁同步电机在dq轴坐标系下的输入电压ud和uq进行Park逆变换,得到永磁同步电机在αβ轴坐标系下的输入电压uα和uβ,将uα和uβ作为载波信号,通过正弦脉冲宽度调制(Sinusoidal Pulse Width Modulation,SPWM)得到逆变器开关管的控制信号,输入至三相逆变器控制电路,控制逆变器中绝缘栅双极型晶体管(Insulated Gate BipolarTransistor,IGBT)的导通和关断,进而输出永磁同步电机的三相输入电压,驱动永磁同步电机按参考转子角速度运行。Perform inverse Park transformation on the input voltagesud and uq of the permanent magnet synchronous motor in the dq axis coordinate system, and obtain the input voltages uα and uβ of the permanent magnet synchronous motor in theαβ axis coordinate system. As the carrier signal, the control signal of the inverter switch tube is obtained by sinusoidal pulse width modulation (Sinusoidal Pulse Width Modulation, SPWM), which is input to the three-phase inverter control circuit to control the insulated gate bipolar transistor (Insulated gate bipolar transistor) Gate Bipolar Transistor, IGBT) turns on and off, and then outputs the three-phase input voltage of the permanent magnet synchronous motor, and drives the permanent magnet synchronous motor according to the reference rotor angular speed run.

本发明的目的是克服永磁同步电机无差拍预测电流控制方法在复杂工况下面临的电机参数变化干扰,导致其控制动态响应恶化、稳态控制精度差的缺陷,提供了一种动态响应速度快、稳态控制精度高、抗参数不匹配干扰能力强的永磁同步电机控制方法。该方法不仅能够实现永磁同步电机的精确控制,而且能够在变速、变载时实现永磁同步电机的快速响应。The purpose of the present invention is to overcome the defects of the motor parameter change interference faced by the deadbeat predictive current control method of the permanent magnet synchronous motor under complex working conditions, which leads to the deterioration of the control dynamic response and the poor steady-state control accuracy, and provides a dynamic response Permanent magnet synchronous motor control method with fast speed, high steady-state control accuracy, and strong anti-parameter mismatch interference ability. The method can not only realize the precise control of the permanent magnet synchronous motor, but also realize the fast response of the permanent magnet synchronous motor when changing speed and load.

按照本发明的另一个方面,提供了一种基于滑模的永磁同步电机预测电流控制系统,如图2所示,包括坐标变换模块、速度比例积分控制器、无差拍预测电流控制器、高阶滑模微分器和驱动模块,According to another aspect of the present invention, a sliding mode-based permanent magnet synchronous motor predictive current control system is provided, as shown in FIG. 2 , including a coordinate transformation module, a speed proportional-integral controller, a deadbeat predictive current controller, Advanced Sliding Mode Differentiators and Driver Modules,

坐标变换模块包括Clark变换模块和Park变换模块,驱动模块包括Park逆变换模块、脉冲宽度调制模块和逆变器;一种基于滑模的永磁同步电机预测电流控制系统还包括旋转变压器和速度比较器;The coordinate transformation module includes a Clark transformation module and a Park transformation module, and the drive module includes a Park inverse transformation module, a pulse width modulation module and an inverter; a sliding mode-based permanent magnet synchronous motor predictive current control system also includes a resolver and a speed comparison. device;

其中,旋转变压器的输入端连接永磁同步电机的转子参数输出端,旋转变压器的转子位置输出端连接Park变换模块的转子位置输入端;旋转变压器的转子角速度输出端还连接速度比较器输入端,速度比较器输出端接速度比例积分控制器;速度比例积分控制器输出端接无差拍预测电流控制器输入端;旋转变压器的转子角速度输出端连接高阶滑模微分器的输入端,高阶滑模微分器的输出端连接无差拍预测电流控制器的输入端;The input end of the resolver is connected to the rotor parameter output end of the permanent magnet synchronous motor, the rotor position output end of the resolver is connected to the rotor position input end of the Park transformation module; the rotor angular velocity output end of the resolver is also connected to the speed comparator input end, The output end of the speed comparator is connected to the speed proportional integral controller; the output end of the speed proportional integral controller is connected to the input end of the deadbeat prediction current controller; the rotor angular velocity output end of the resolver is connected to the input end of the high-order sliding mode differentiator. The output end of the sliding mode differentiator is connected to the input end of the deadbeat predictive current controller;

Clark变换模块的输入端连接永磁同步电机的电流输出端,Clark变换模块的输出端连接Park变换模块的输入端;The input end of the Clark transformation module is connected to the current output end of the permanent magnet synchronous motor, and the output end of the Clark transformation module is connected to the input end of the Park transformation module;

Park变换模块的dq轴电流输出端连接高阶滑模微分器输入端;The dq-axis current output terminal of the Park transform module is connected to the input terminal of the high-order sliding mode differentiator;

无差拍预测电流控制器的dq轴电压输出端接Park逆变换模块的输入端和高阶滑模微分器的输入端;The dq-axis voltage output end of the deadbeat predictive current controller is connected to the input end of the Park inverse transformation module and the input end of the high-order sliding mode differentiator;

Park逆变换模块的输出端连接脉冲宽度调制模块的输入端,脉冲宽度调制模块的输出端连接逆变器的输入端,逆变器的输出端连接永磁同步电机的控制端。The output end of the Park inverter module is connected to the input end of the pulse width modulation module, the output end of the pulse width modulation module is connected to the input end of the inverter, and the output end of the inverter is connected to the control end of the permanent magnet synchronous motor.

系统的工作过程为:The working process of the system is:

采集永磁同步电机的转子位置θ、转子角速度ωm和三相电流ia、ib和ic,Clark变换和Park变换模块对永磁同步电机的三相电流ia、ib和ic进行Clark变换和Park变换,得到永磁同步电机在dq轴坐标系下的等效电流id和iqCollect the rotor position θ, rotor angular velocityωm and three-phase currentsia ,ib andic of the permanent magnet synchronous motor. Carry out Clark transformation and Park transformation to obtain the equivalent currents id and iq of the permanent magnet synchronous motor in thedq -axis coordinate system;

给定转速与实际转速ωm比较作差之后,经过速度比例积分控制器输出q轴参考电流与给定的d轴参考电流一起送入无差拍预测电流控制器;given speed After comparing with the actual speed ωm , the q-axis reference current is output through the speed proportional-integral controller. with a given d-axis reference current into the deadbeat predictive current controller together;

高阶滑模微分器用已知的永磁同步电机dq轴电压ud和uq、dq轴电流id和iq以及转子电角速度ωe作为输入,输出电机dq轴电流环干扰dd和dqThe high-order sliding mode differentiator uses the known permanent magnet synchronous motor dq shaft voltagesud and uq ,dq shaft currents id and iq and rotor electrical angular velocity ωe as inputs, and outputs the motor dq shaft current loop disturbances dd and dq ;

利用观测到的干扰对无差拍预测电流控制器的dq轴控制输出进行补偿,进而得到永磁同步电机在dq轴坐标系下的输入电压ud和uq;Park逆变换模块对ud和uq进行Park逆变换后依次输出给脉冲宽度调制模块、逆变器,得到永磁同步电机的三相输入电压,驱动永磁同步电机运行。Compensate the dq axis control output of the deadbeat predictive current controller by using the observed disturbance, and then obtain the input voltagesud and uq of the permanent magnet synchronous motor in the dq axis coordinate system; After uq performs Park inverse transformation, it is output to the pulse width modulation module and the inverter in turn, and the three-phase input voltage of the permanent magnet synchronous motor is obtained to drive the permanent magnet synchronous motor to run.

图3为基于高阶滑模微分器的无差拍预测电流控制器离散化原理图,图3中省略了转速控制环,左边阴影部分为无差拍预测电流控制器,给定下一时刻电流i*(k+1)与采集的当前时刻电流i(k)输出u(k);采集的当前时刻转速ωe(k)、电流i(k)、上一时刻输入电压u*(k-1)输入高阶滑模微分器,得到当前时刻参数变化造成的电流干扰最后干扰补偿给无差拍电流控制器,u*(k)驱动永磁电机运行。图4为永磁同步电机电流环控制流程图,执行过程与图3相同。图5为实验过程中永磁同步电机的参数:电感L和永磁磁链ψf同时变化过程示意图,图中电机参数变化过程为0.5倍理想值→100%理想值→2倍理想值。Figure 3 is a schematic diagram of the discretization of the deadbeat predictive current controller based on the high-order sliding mode differentiator. The speed control loop is omitted in Figure 3, and the shaded part on the left is the deadbeat predictive current controller. Given the current at the next moment i* (k+1) and the collected current i(k) output u(k); the collected current speed ωe (k), current i(k), last input voltage u* (k- 1) Input the high-order sliding mode differentiator to obtain the current disturbance caused by the parameter change at the current moment Finally, the disturbance compensation is given to the deadbeat current controller, and u* (k) drives the permanent magnet motor to run. FIG. 4 is a flow chart of the current loop control of the permanent magnet synchronous motor, and the execution process is the same as that of FIG. 3 . Figure 5 is a schematic diagram of the parameters of the permanent magnet synchronous motor during the experiment: the simultaneous change process of the inductance L and the permanent magnet flux linkage ψf . The change process of the motor parameters in the figure is 0.5 times the ideal value → 100% ideal value → 2 times the ideal value.

实施例1Example 1

本发明实施例1基于一个3kW的永磁同步电机驱动平台,将上述永磁同步电机的控制方法与基于传统无差拍预测电流控制方法进行比较。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。Embodiment 1 of the present invention is based on a 3kW permanent magnet synchronous motor drive platform, and compares the above control method of the permanent magnet synchronous motor with the traditional deadbeat predictive current control method. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.

采用的永磁同步电机的参数如下:极对数np=3,额定功率P=3kW,额定电流IN=6.8A,定子电阻Rs=0.8Ω,交轴电感与直轴电感相等:L=Lq=Ld=0.005H,阻尼系数B=7.403×10-5N·m·s/rad,转矩惯量J=3.78×10-4kg·m2,转子磁链ψf=0.35wb。实验中电机速度为1000rpm,负载转矩10Nm。图4为实验过程中永磁同步电机的参数:电感L和永磁磁链ψf同时变化过程示意图,图6为传统DPCC控制下永磁同步电机控制系统的dq电流参考值和实际值波形图,其中,纵坐标为Id(A)时,表示传统DPCC控制下永磁同步电机控制系统的d轴电流参考值和实际值波形图,纵坐标为Iq(A)时,表示传统DPCC控制下永磁同步电机控制系统的q轴电流参考值和实际值波形图。图7为本发明提出方法的dq轴电流跟随结果示意图,其中,纵坐标为Id(A)时,表示本发明的永磁同步电机控制系统的d轴电流参考值和实际值波形图,纵坐标为Iq(A)时,表示本发明的永磁同步电机控制系统的q轴电流参考值和实际值波形图。图8为提出的高阶滑模微分器观测到的dq轴干扰。图6和7中,黑实线表示dq轴参考电流,灰线表示电机实际的dq轴电流,图8中,黑实线表示观测到的d轴干扰,灰线表示观测到的q轴干扰。The parameters of the permanent magnet synchronous motor used are as follows: the number of pole pairs np = 3, the rated power P = 3kW, the rated current IN= 6.8A, the stator resistance Rs = 0.8Ω, the quadrature axis inductance is equal to the direct axis inductance: L =Lq =Ld =0.005H, damping coefficient B=7.403×10-5 N·m·s/rad, moment of inertia J=3.78×10-4 kg·m2 , rotor flux linkage ψf =0.35wb . In the experiment, the motor speed is 1000rpm and the load torque is 10Nm. Figure 4 is a schematic diagram of the parameters of the permanent magnet synchronous motor during the experiment: the simultaneous change process of the inductance L and the permanent magnet flux linkage ψf , and Figure 6 is the waveform diagram of the dq current reference value and the actual value of the permanent magnet synchronous motor control system under the traditional DPCC control , when the ordinate is Id(A), it represents the d-axis current reference value and actual value waveform diagram of the permanent magnet synchronous motor control system under traditional DPCC control, and when the ordinate is Iq(A), it represents the permanent magnet synchronous motor under traditional DPCC control. The q-axis current reference value and actual value waveform diagram of the magnetic synchronous motor control system. 7 is a schematic diagram of the dq-axis current following results of the method proposed by the present invention, wherein, when the ordinate is Id(A), it represents the waveform diagram of the d-axis current reference value and the actual value of the permanent magnet synchronous motor control system of the present invention, and the ordinate is When it is Iq(A), it represents the waveform diagram of the q-axis current reference value and the actual value of the permanent magnet synchronous motor control system of the present invention. Figure 8 shows the dq-axis disturbance observed by the proposed high-order sliding mode differentiator. In Figures 6 and 7, the black solid line represents the dq-axis reference current, the gray line represents the actual dq-axis current of the motor, and in Figure 8, the black solid line represents the observed d-axis disturbance, and the gray line represents the observed q-axis disturbance.

从实验结果可以看出,在0.0~1.5s和3.5~5.0s突然加入参数变化时,传统的无差拍预测电流控制中电流明显存在控制误差,不能使永磁同步电机的dq轴电流准确的跟随给定值;采用本发明提出的高阶滑模微分器结合无差拍预测电流控制的方法可以在较大的参数变化情况下保持电机输出的dq轴电流准确的跟随,克服了传统的预测电流控制参数依赖性的问题,并且调节过程很短,在0.1s以内。图8为参数变化过程中高阶滑模微分器观测到的dq轴干扰,可以看出高阶滑模微分器可以快速准确的观测出实际干扰值,并能进行干扰补偿。因此,本发明的控制方法不仅继承了无差拍预测电流控制的精确稳态控制能力,而且克服了其参数依赖性的问题。It can be seen from the experimental results that when the parameter changes are suddenly added at 0.0~1.5s and 3.5~5.0s, the traditional deadbeat prediction current control has obvious control errors, which cannot make the dq-axis current of the permanent magnet synchronous motor accurate. Follow the given value; the high-order sliding mode differentiator combined with the deadbeat predictive current control method proposed by the present invention can keep the dq-axis current output by the motor accurately follow under the condition of large parameter changes, which overcomes the traditional prediction The problem of current control parameter dependence, and the adjustment process is very short, within 0.1s. Figure 8 shows the dq-axis interference observed by the high-order sliding mode differentiator during the parameter change process. It can be seen that the high-order sliding mode differentiator can quickly and accurately observe the actual interference value, and can perform interference compensation. Therefore, the control method of the present invention not only inherits the precise steady-state control capability of deadbeat predictive current control, but also overcomes the problem of its parameter dependence.

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.

Claims (5)

wherein,for the dq-axis current disturbance at the present time,for the dq axis current disturbance at the previous time, u (k-1) is the voltage in the dq axis coordinate system at the previous time,to estimate the dq-axis current at the next time instant,to estimate the dq-axis current at the present time, zi(k-1) is the derivative of the dq-axis current disturbance at the previous time, zi(k-2) is the derivative of the dq-axis current disturbance at the last instant, vi0(k) Is an intermediate variable, v, at the current momenti0(k-1) is an intermediate variable of the previous time, vi1(k) Intermediate variable, v, generated for the disturbance at the current momenti1(k-1) is an intermediate variable of the interference generation at the previous time, vi1(k-2) is an intermediate variable of the interference generation at the previous time, η0、η1、η2And K is a high order sliding mode differentiator parameter.
wherein,for the dq-axis current disturbance at the present time,for the dq axis current disturbance at the previous time, u (k-1) is the voltage in the dq axis coordinate system at the previous time,to estimate the dq-axis current at the next time instant,to estimate the dq-axis current at the present time, zi(k-1) is the derivative of the dq-axis current disturbance at the previous time, zi(k-2) is the derivative of the dq-axis current disturbance at the last instant, vi0(k) Is an intermediate variable, v, at the current momenti0(k-1) is an intermediate variable of the previous time, vi1(k) Is composed ofIntermediate variable, v, of interference generation at the present momentil(k-1) is an intermediate variable of the interference generation at the previous time, vi1(k-2) is an intermediate variable of the interference generation at the previous time, η0、η1、η2And K is a high order sliding mode differentiator parameter.
5. The sliding-mode-based prediction current control system of the permanent magnet synchronous motor according to claim 3, wherein the driving module comprises a Park inverse transformation module, a pulse width modulation module and an inverter, dq-axis current interference caused by parameter change is compensated to the dead-beat prediction current controller, the defect of parameter dependency of the dead-beat prediction current controller is eliminated, the driving voltage of the motor under a dq-axis coordinate system is obtained, the Park inverse transformation module is sequentially used for carrying out Park inverse transformation on the driving voltage, the pulse width modulation module carries out sine pulse width modulation and the inverter is subjected to inversion to obtain three-phase input voltage of the permanent magnet synchronous motor, and the permanent magnet synchronous motor is driven to operate.
CN201710497296.6A2017-06-262017-06-26 Predictive current control method and system for permanent magnet synchronous motor based on sliding modeActiveCN107317532B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201710497296.6ACN107317532B (en)2017-06-262017-06-26 Predictive current control method and system for permanent magnet synchronous motor based on sliding mode

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201710497296.6ACN107317532B (en)2017-06-262017-06-26 Predictive current control method and system for permanent magnet synchronous motor based on sliding mode

Publications (2)

Publication NumberPublication Date
CN107317532A CN107317532A (en)2017-11-03
CN107317532Btrue CN107317532B (en)2019-07-05

Family

ID=60179517

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201710497296.6AActiveCN107317532B (en)2017-06-262017-06-26 Predictive current control method and system for permanent magnet synchronous motor based on sliding mode

Country Status (1)

CountryLink
CN (1)CN107317532B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN108696221B (en)*2018-05-302019-06-25深圳市道通智能航空技术有限公司A kind of electric motor starting method, apparatus, electron speed regulator and unmanned vehicle
CN108768233B (en)*2018-06-282021-08-06中车株洲电力机车有限公司 Dead-beat control system and method for PMSM based on discrete-domain complex vector modeling
CN109560736B (en)*2018-12-182020-03-31东南大学 Permanent magnet synchronous motor control method based on second-order terminal sliding mode
CN109713970B (en)*2018-12-212023-04-11南京工程学院Permanent magnet synchronous motor control method for electric vehicle based on predictive control
CN110165951B (en)*2019-04-222020-12-01浙江工业大学 A Double-loop Deadbeat Predictive Control Method for Permanent Magnet Synchronous Motor Based on Disturbance Estimation and Compensation
CN110190795B (en)*2019-06-112020-11-03东北大学Permanent magnet synchronous motor cascade type robust prediction current control method
CN110323988B (en)*2019-07-302023-05-26中国矿业大学 Low-to-carrier-ratio deadbeat control system and method for permanent magnet synchronous motor
CN110492817B (en)*2019-08-052021-08-03北方工业大学 A direct speed prediction control method and device for permanent magnet synchronous motor
CN110445448B (en)*2019-08-082021-07-16中国科学院长春光学精密机械与物理研究所 Predictive control model correction method, device and telescope control system
CN112394312B (en)*2019-08-142022-10-14上海汽车变速器有限公司Fault diagnosis method for current sensor of three-phase motor driving system
CN110460280A (en)*2019-08-292019-11-15西安理工大学 A Control Method of Permanent Magnet Synchronous Motor Based on Sliding Mode Load Torque Observer
CN111711392B (en)*2020-06-022022-02-11北京理工大学 Single current sensor predictive control and parameter disturbance suppression method for permanent magnet synchronous motor
CN111865151B (en)*2020-08-212022-02-15华中科技大学Parameter-free prediction current control method for independent brushless doubly-fed induction generator
CN112398358B (en)*2020-11-062021-10-22国网吉林省电力有限公司电力科学研究院 A Grid-connected Inverter Control Method Based on Iterative Structure Parameters
CN113987821B (en)*2021-11-042024-08-23上海远宽能源科技有限公司Real-time simulation method and system for multi-type motor based on FPGA

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP1708349A1 (en)*2005-03-312006-10-04SEG Schaltanlagen-Elektronik-Geräte GmbH & Co. KGCurrent regulation of mains connected voltage converter
CN102790575A (en)*2012-06-252012-11-21华中科技大学Control method and system for permanent magnet synchronous motor based on current prediction
CN103606936A (en)*2013-12-032014-02-26哈尔滨工业大学H-bridge cascading STATCOM dead-beat control method based on discrete state observer and discrete sliding-mode observer
CN105897097A (en)*2016-04-182016-08-24北方工业大学Current prediction control method and apparatus for permanent magnet synchronous motor (PMSM)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP1708349A1 (en)*2005-03-312006-10-04SEG Schaltanlagen-Elektronik-Geräte GmbH & Co. KGCurrent regulation of mains connected voltage converter
CN102790575A (en)*2012-06-252012-11-21华中科技大学Control method and system for permanent magnet synchronous motor based on current prediction
CN103606936A (en)*2013-12-032014-02-26哈尔滨工业大学H-bridge cascading STATCOM dead-beat control method based on discrete state observer and discrete sliding-mode observer
CN105897097A (en)*2016-04-182016-08-24北方工业大学Current prediction control method and apparatus for permanent magnet synchronous motor (PMSM)

Also Published As

Publication numberPublication date
CN107317532A (en)2017-11-03

Similar Documents

PublicationPublication DateTitle
CN107317532B (en) Predictive current control method and system for permanent magnet synchronous motor based on sliding mode
CN109660170B (en) A high-reliability current predictive control method and system for a permanent magnet synchronous motor
CN209844868U (en)Dead beat current prediction control system of permanent magnet synchronous motor
CN110022105A (en)Permanent magnet synchronous motor predictive-current control method and system based on FOSMC
CN103401503B (en)A kind of method and device in harmonic wave plane on-line identification double three-phase machine parameter
CN106788045B (en)A kind of permanent magnet synchronous motor model prediction PI changeable weight concurrency control method
CN105915135B (en)Motor control method based on dead beat optimization with double vector model predictions
CN105827168A (en)PMSM control method and system based on sliding mode observation
CN111478636A (en) A Single Current Sensor Predictive Control Method for Permanent Magnet Synchronous Motors
CN107612446A (en)A kind of internal permanent magnet synchronous motor model prediction method for controlling torque
CN108448982A (en) A Direct Torque Control Method Based on Space Voltage Vector Prediction
CN106385216B (en)A kind of permanent magnet synchronous motor predictive current control steady-state error removing method and system
CN117375476A (en)Three-level model-free prediction current control method for permanent magnet synchronous motor
Kakodia et al.A comparative study of DFOC and IFOC for IM drive
CN114793080B (en) A motor parameter identification and control method based on improved recursive least squares method
US9154070B2 (en)Controller for AC motor
CN113659901B (en) A computational delay compensation method for predictive current control of permanent magnet synchronous motors
CN113258837B (en)Robust model prediction current control method and device for permanent magnet synchronous motor
CN108418491B (en)Three-phase Four-switch converter permanent magnet synchronous motor system flux linkage control method based on simplified model prediction
CN112737453B (en)Dead-zone effect compensation method for power component of converter
CN106712629B (en)A kind of current control method of permanent magnet synchronous motor
Trounce et al.Comparison by simulation of three-level induction motor torque control schemes for electric vehicle applications
CN113346798A (en)Sensorless speed control method for permanent magnet synchronous motor
Li et al.Analysis and robustness improvement of finite-control-set model predictive current control for IPMSM with model parameter mismatches
CN115051608A (en)Three-phase current reconstruction method based on bus current new axial positioning coordinate transformation

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp