Movatterモバイル変換


[0]ホーム

URL:


CN107294371A - A kind of single inductance based on IGBT module is without bridge APFC circuits - Google Patents

A kind of single inductance based on IGBT module is without bridge APFC circuits
Download PDF

Info

Publication number
CN107294371A
CN107294371ACN201710718326.1ACN201710718326ACN107294371ACN 107294371 ACN107294371 ACN 107294371ACN 201710718326 ACN201710718326 ACN 201710718326ACN 107294371 ACN107294371 ACN 107294371A
Authority
CN
China
Prior art keywords
voltage
module
power diode
igbt module
igbt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710718326.1A
Other languages
Chinese (zh)
Other versions
CN107294371B (en
Inventor
杨振睿
杨喜军
卢广震
徐剑
金琪
朱真
汪传毅
王斌
周鑫
何正宇
蔡斌
石英超
顾晓鸣
叶志刚
金皓纯
钟鸣
赵瑞
刘烨
曹芸
杨波
李文雯
戴岭
金伟
陈震
解蕾
徐刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Shanghai Electric Power Co Ltd
Original Assignee
State Grid Shanghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Shanghai Electric Power Co LtdfiledCriticalState Grid Shanghai Electric Power Co Ltd
Priority to CN201710718326.1ApriorityCriticalpatent/CN107294371B/en
Publication of CN107294371ApublicationCriticalpatent/CN107294371A/en
Application grantedgrantedCritical
Publication of CN107294371BpublicationCriticalpatent/CN107294371B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The invention discloses a kind of single inductance based on IGBT module without bridge APFC circuits, including ac filter electric capacity C1, the first IGBT module S1, the second IGBT module S2, inductance L, the first power diode D1, the second power diode D2, the 3rd power diode D3, the 4th power diode D4, DC filter capacitor E1, the first divider resistance R1, the second divider resistance R2;The colelctor electrode connection power firestreak of first power diode D1 positive pole, ac filter electric capacity C1 first end and the first IGBT module S1;The colelctor electrode connection zero-power line of 4th power diode D4 positive pole, ac filter electric capacity C1 the second end and the second IGBT module S2;First IGBT module S2 emitter stage, and inductance L first end and the second power diode D2 negative pole are connected;Second IGBT module S2 emitter stage, and inductance L the second end and the 3rd power diode D3 negative pole are connected.

Description

Translated fromChinese
一种基于IGBT模块的单电感无桥APFC电路A Single Inductor Bridgeless APFC Circuit Based on IGBT Module

技术领域technical field

本发明涉及单相功率因数校正领域的一种基于IGBT模块的单电感无桥APFC电路。The invention relates to a single-inductance bridgeless APFC circuit based on an IGBT module in the field of single-phase power factor correction.

背景技术Background technique

在单相电网中采用不控整流桥和电解电容作为前级电路的电力电子变换器,不论后级连接何种阻抗性质的负载,均属于非线性负载,对电网产生谐波电流污染,不能满足IEC 61000-3-2和IEC 61000-3-1中规定的谐波电流限值,而且网侧功率因数偏低,为此必须采用功率因数校正措施。In a single-phase power grid, an uncontrolled rectifier bridge and electrolytic capacitors are used as the power electronic converter of the front-stage circuit. No matter what kind of impedance load is connected to the rear stage, it is a nonlinear load, which will cause harmonic current pollution to the power grid and cannot meet the requirements. The harmonic current limit specified in IEC 61000-3-2 and IEC 61000-3-1, and the grid side power factor is low, so power factor correction measures must be adopted.

然而,传统无桥功率因数校正器必须使用两个电感,电流流向有不确定性,低频二极管和IGBT模块内二极管可能同时导通,增加了不稳定因素,且双电感拓扑成本高,所占体积较大。因此,需要找寻一种单电感无桥单相功率因数校正电路来解决这些问题。However, the traditional bridgeless power factor corrector must use two inductors, the current flow direction is uncertain, the low-frequency diode and the diode in the IGBT module may be turned on at the same time, which increases the instability factor, and the cost of the dual-inductor topology is high, and the volume occupied larger. Therefore, it is necessary to find a single-inductor bridgeless single-phase power factor correction circuit to solve these problems.

经过对无桥功率因数校正器的现有技术的检索,比如《电气应用》2015年第8期公开的文献《单相无桥功率因数校正器的分析与设计》提出一种无环流型单相无桥APFC采用单周期控制,但是该电路与传统无桥APFC一样,均为双电感电路,成本较高,所占空间较大,不满足现在功率因数校正器的发展方向。After searching the existing technology of bridgeless power factor correctors, for example, the document "Analysis and Design of Single-phase Bridgeless Power Factor Corrector" published in the 8th issue of "Electrical Applications" in 2015 proposes a single-phase non-circulating current type Bridgeless APFC adopts single-cycle control, but this circuit, like traditional bridgeless APFC, is a dual-inductance circuit with high cost and large space occupation, which does not meet the current development direction of power factor correctors.

综合以上,对无桥功率因数校正器现有技术的检索后发现,现有的电路均为双电感结构,无法满足现在实际应用的需求。Based on the above, after searching the prior art of the bridgeless power factor corrector, it is found that the existing circuits all have a double-inductor structure, which cannot meet the needs of current practical applications.

发明内容Contents of the invention

本发明的目的是为了克服现有技术的不足,提供一种基于IGBT模块的单电感无桥APFC电路相比传统无桥APFC电路,只采用一个电感,节省成本和在板空间,使得驱动电路设计更加方便。The purpose of the present invention is to overcome the deficiencies in the prior art, and provide a single-inductance bridgeless APFC circuit based on IGBT modules. More convenient.

实现上述目的的一种技术方案是:一种基于IGBT模块的单电感无桥APFC电路,包括交流滤波电容C1、第一IGBT模块S1、第二IGBT模块S2、电感L、第一功率二极管D1、第二功率二极管D2、第三功率二极管D3、第四功率二极管D4、直流滤波电容E1、第一分压电阻R1、第二分压电阻R2;A technical solution to achieve the above purpose is: a single-inductance bridgeless APFC circuit based on IGBT modules, including AC filter capacitor C1, first IGBT module S1, second IGBT module S2, inductor L, first power diode D1, The second power diode D2, the third power diode D3, the fourth power diode D4, the DC filter capacitor E1, the first voltage dividing resistor R1, and the second voltage dividing resistor R2;

第一功率二极管D1的正极、交流滤波电容C1的第一端部以及第一IGBT模块S1的集电极连接电源火线;The anode of the first power diode D1, the first end of the AC filter capacitor C1 and the collector of the first IGBT module S1 are connected to the live wire of the power supply;

第四功率二极管D4的正极、交流滤波电容C1的第二端部以及第二IGBT模块S2的集电极连接电源零线;The anode of the fourth power diode D4, the second end of the AC filter capacitor C1 and the collector of the second IGBT module S2 are connected to the neutral line of the power supply;

第一IGBT模块S2的发射极,和电感L的第一端部以及第二功率二极管D2的负极连接;The emitter of the first IGBT module S2 is connected to the first end of the inductor L and the cathode of the second power diode D2;

第二IGBT模块S2的发射极,和电感L的第二端部以及第三功率二极管D3的负极连接;The emitter of the second IGBT module S2 is connected to the second end of the inductor L and the cathode of the third power diode D3;

第二功率二极管D2的正极、第三功率二极管D3的正极、直流滤波电容E1的负极连接第二分压电阻R2的第一端部构成负输出端;The positive pole of the second power diode D2, the positive pole of the third power diode D3, and the negative pole of the DC filter capacitor E1 are connected to the first end of the second voltage dividing resistor R2 to form a negative output terminal;

第一功率二极管D1的负极和第四功率二极管D4的负极,连接直流滤波电容E1的正极以及第一分压电阻R1的第一端部;The negative pole of the first power diode D1 and the negative pole of the fourth power diode D4 are connected to the positive pole of the DC filter capacitor E1 and the first end of the first voltage dividing resistor R1;

第一分压电阻R1的第二端部与第二分压电阻R2的第二端部连接,构成直流侧采样端。The second end of the first voltage dividing resistor R1 is connected to the second end of the second voltage dividing resistor R2 to form a DC side sampling end.

进一步的,第一功率二极管D1的正极、交流滤波电容C1的第一端部以及第一IGBT模块S1的集电极连接电源火线,构成输入电压和输入电流采样端;第一功率二极管D1的负极、第四功率二极管D4的负极、直流滤波电容E1的正极连接第一分压电阻R1的第一端部构成正输出端。Further, the anode of the first power diode D1, the first end of the AC filter capacitor C1 and the collector of the first IGBT module S1 are connected to the live wire of the power supply to form an input voltage and input current sampling terminal; the cathode of the first power diode D1, The negative pole of the fourth power diode D4 and the positive pole of the DC filter capacitor E1 are connected to the first end of the first voltage dividing resistor R1 to form a positive output end.

再进一步的,所述基于IGBT模块的单电感无桥APFC电路其还包括驱动电路,所述驱动电路包括:Still further, the single-inductance bridgeless APFC circuit based on the IGBT module also includes a drive circuit, and the drive circuit includes:

在所述输入电压和输入电流采样端采集输入电压有效值UiRMS的有效值计算模块;An effective value calculation module that collects the input voltage effective value UiRMS at the input voltage and input current sampling end;

连接所述有效值计算模块,用以计算输入电压有效值平方倒数1/U2iRMS的有效值平方倒数计算模块;Connect the effective value calculation module to calculate the effective value square reciprocal calculation module of the input voltage effective value square reciprocal 1/U2iRMS ;

在所述直流侧采样端采集输出电压u0,并将输出电压u0和输出电压基准值ur进行比较,得到电压误差ev的第二乘法器;Collect the output voltage u0 at the sampling end of the DC side, and compare the output voltage u0 with the output voltage reference valueur to obtain a second multiplier for the voltage error ev;

对电压误差ev进行比例积分调节得到电压基准值uvc的电压环准PI调节模块;Proportional-integral adjustment is performed on the voltage error ev to obtain a voltage reference value uvc voltage loop quasi-PI adjustment module;

根据输入电压有效值平方倒数1/U2iRMS和电压基准值uvc得到基准电流ir的第一乘法器;Obtain the first multiplier of the reference current ir according to the reciprocal of the square of the effective value of the input voltage 1/U2iRMS and the voltage reference value uvc ;

在输入电压和输入电流采样端对输入电流iL进行采样,并将输入电流iL和基准电流ir进行比较,得到电流误差ei的第三乘法器;The input current iL is sampled at the input voltage and input current sampling terminals, and the input current iL is compared with the reference current ir to obtain the third multiplier of the current error ei ;

对电流误差ei进行比例积分调节,得到电源电压ucc的电流环准PI调节模块;Proportional-integral adjustment is performed on the current error ei to obtain the current loop quasi-PI adjustment module of the power supply voltage ucc ;

对电源电压ucc进行离散得到驱动电压ucd的信号离散模块;Discrete the power supply voltage ucc to obtain the signal discrete module of the driving voltage ucd ;

通过对驱动电压ucd进行斩波,得到用以驱动第一IGBT模块S1的PWM1脉冲信号的脉冲形成模块;A pulse forming module for driving the PWM1 pulse signal of the first IGBT module S1 is obtained by chopping the driving voltage ucd ;

连接所述脉冲形成模块,用以形成与所述PWM1脉冲信号互补的,用以驱动第二IGBT模块S2的PWM2脉冲信号的脉冲求补模块。The pulse forming module is connected to form a pulse complement module for the PWM2 pulse signal complementary to the PWM1 pulse signal and used to drive the second IGBT module S2.

进一步的,第一功率二极管D1的正极、交流滤波电容C1的第一端部以及第一IGBT模块S1的集电极通过双向开关BS1连接电源火线,双向开关BS1的第一端部连接电源火线,构成输入电压和输入电流采样端;双向开关BS1的第二端部连接第一功率二极管D1的正极、交流滤波电容C1的第一端部以及第一IGBT模块S1的集电极;Further, the anode of the first power diode D1, the first end of the AC filter capacitor C1 and the collector of the first IGBT module S1 are connected to the live wire of the power supply through the bidirectional switch BS1, and the first end of the bidirectional switch BS1 is connected to the live wire of the power supply, forming a Input voltage and input current sampling terminals; the second end of the bidirectional switch BS1 is connected to the anode of the first power diode D1, the first end of the AC filter capacitor C1 and the collector of the first IGBT module S1;

第一功率二极管D1的负极和第四功率二极管D4的负极,通过第三IGBT模块,连接直流滤波电容E1的正极以及第一分压电阻R1的第一端部;其中第一功率二极管D1的负极和第四功率二极管D4的负极连接第三IGBT模块的集电极,第三IGBT模块的发射极连接直流滤波电容E1的正极以及第一分压电阻R1的第一端部,构成正输出端。The negative pole of the first power diode D1 and the negative pole of the fourth power diode D4 are connected to the positive pole of the DC filter capacitor E1 and the first end of the first voltage dividing resistor R1 through the third IGBT module; wherein the negative pole of the first power diode D1 The cathode of the fourth power diode D4 is connected to the collector of the third IGBT module, and the emitter of the third IGBT module is connected to the anode of the DC filter capacitor E1 and the first end of the first voltage dividing resistor R1 to form a positive output terminal.

再进一步的,所述基于IGBT模块的单电感无桥APFC电路,其特征在于:其还包括驱动电路,所述驱动电路包括:Still further, the single-inductance bridgeless APFC circuit based on the IGBT module is characterized in that it also includes a drive circuit, and the drive circuit includes:

在所述输入电压和输入电流采样端采集输入电压有效值UiRMS的有效值计算模块;An effective value calculation module that collects the input voltage effective value UiRMS at the input voltage and input current sampling end;

连接所述有效值计算模块,用以计算输入电压有效值平方倒数1/U2iRMS的有效值平方倒数计算模块;Connect the effective value calculation module to calculate the effective value square reciprocal calculation module of the input voltage effective value square reciprocal 1/U2iRMS ;

在所述直流侧采样端采集输出电压u0,并将输出电压u0和输出电压基准值ur进行比较,得到电压误差ev的第二乘法器;Collect the output voltage u0 at the sampling end of the DC side, and compare the output voltage u0 with the output voltage reference valueur to obtain a second multiplier for the voltage error ev;

对电压误差ev进行比例积分调节得到电压基准值uvc的电压环准PI调节模块;Proportional-integral adjustment is performed on the voltage error ev to obtain a voltage reference value uvc voltage loop quasi-PI adjustment module;

根据输入电压有效值平方倒数1/U2iRMS和电压基准值uvc得到基准电流ir的第一乘法器;Obtain the first multiplier of the reference current ir according to the reciprocal of the square of the effective value of the input voltage 1/U2iRMS and the voltage reference value uvc ;

在输入电压和输入电流采样端对输入电流iL进行采样,并将输入电流iL和基准电流ir进行比较,得到电流误差ei的第三乘法器;The input current iL is sampled at the input voltage and input current sampling terminals, and the input current iL is compared with the reference current ir to obtain the third multiplier of the current error ei ;

对电流误差ei进行比例积分调节,得到电源电压ucc的电流环准PI调节模块;Proportional-integral adjustment is performed on the current error ei to obtain the current loop quasi-PI adjustment module of the power supply voltage ucc ;

对电源电压ucc进行离散得到驱动电压ucd的信号离散模块;Discrete the power supply voltage ucc to obtain the signal discrete module of the driving voltage ucd ;

通过对驱动电压ucd进行斩波,得到用以驱动第一IGBT模块S1和双向开关BS1的PWM1脉冲信号的脉冲形成模块;A pulse forming module for driving the PWM1 pulse signal of the first IGBT module S1 and the bidirectional switch BS1 is obtained by chopping the driving voltage ucd ;

连接所述脉冲形成模块,用以形成与所述PWM1脉冲信号互补的,用以驱动第二IGBT模块S2的PWM2脉冲信号的脉冲求补模块。The pulse forming module is connected to form a pulse complement module for the PWM2 pulse signal complementary to the PWM1 pulse signal and used to drive the second IGBT module S2.

更进一步的,第三IGBT模块的驱动信号可在PWM1信号和PWM2信号之间进行切换。Furthermore, the driving signal of the third IGBT module can be switched between PWM1 signal and PWM2 signal.

采用了本发明的一种基于IGBT模块的单电感无桥APFC电路的技术方案,包括交流滤波电容C1、第一IGBT模块S1、第二IGBT模块S2、电感L、第一功率二极管D1、第二功率二极管D2、第三功率二极管D3、第四功率二极管D4、直流滤波电容E1、第一分压电阻R1、第二分压电阻R2;第一功率二极管D1的正极、交流滤波电容C1的第一端部以及第一IGBT模块S1的集电极连接电源火线;第四功率二极管D4的正极、交流滤波电容C1的第二端部以及第二IGBT模块S2的集电极连接电源零线;第一IGBT模块S2的发射极,和电感L的第一端部以及第二功率二极管D2的负极连接;第二IGBT模块S2的发射极,和电感L的第二端部以及第三功率二极管D3的负极连接;第二功率二极管D2的正极、第三功率二极管D3的正极、直流滤波电容E1的负极连接第二分压电阻R2的第一端部构成负输出端;第一功率二极管D1的负极和第四功率二极管D4的负极,连接直流滤波电容E1的正极以及第一分压电阻R1的第一端部;第一分压电阻R1的第二端部与第二分压电阻R2的第二端部连接,构成直流侧采样端。其技术效果是:第一,相比传统无桥APFC电路,只采用一个电感,节省成本和在板空间。第二,第一IGBT模块S1和第二IGBT模块S2脉冲互补,使得驱动电路设计更加方便。A technical scheme of a single-inductance bridgeless APFC circuit based on IGBT modules of the present invention is adopted, including AC filter capacitor C1, first IGBT module S1, second IGBT module S2, inductor L, first power diode D1, second Power diode D2, third power diode D3, fourth power diode D4, DC filter capacitor E1, first voltage divider resistor R1, second voltage divider resistor R2; the positive pole of the first power diode D1, the first pole of the AC filter capacitor C1 The end and the collector of the first IGBT module S1 are connected to the live wire of the power supply; the anode of the fourth power diode D4, the second end of the AC filter capacitor C1 and the collector of the second IGBT module S2 are connected to the neutral wire of the power supply; the first IGBT module The emitter of S2 is connected to the first end of the inductor L and the cathode of the second power diode D2; the emitter of the second IGBT module S2 is connected to the second end of the inductor L and the cathode of the third power diode D3; The positive pole of the second power diode D2, the positive pole of the third power diode D3, and the negative pole of the DC filter capacitor E1 are connected to the first end of the second voltage dividing resistor R2 to form a negative output terminal; the negative pole of the first power diode D1 and the fourth power The negative pole of the diode D4 is connected to the positive pole of the DC filter capacitor E1 and the first end of the first voltage dividing resistor R1; the second end of the first voltage dividing resistor R1 is connected to the second end of the second voltage dividing resistor R2, It constitutes the sampling terminal of the DC side. The technical effects are as follows: First, compared with the traditional bridgeless APFC circuit, only one inductor is used, which saves cost and board space. Second, the pulses of the first IGBT module S1 and the second IGBT module S2 are complementary, which makes the design of the driving circuit more convenient.

附图说明Description of drawings

图1为本发明的一种基于IGBT模块的单电感无桥APFC电路的实施例1的结构示意图。FIG. 1 is a schematic structural diagram of Embodiment 1 of a single-inductance bridgeless APFC circuit based on an IGBT module of the present invention.

图2为本发明的一种基于IGBT模块的单电感无桥APFC电路的实施例2的结构示意图。FIG. 2 is a schematic structural diagram of Embodiment 2 of a single-inductance bridgeless APFC circuit based on an IGBT module of the present invention.

图3为本发明的一种基于IGBT模块的单电感无桥APFC电路的驱动电路的示意图。FIG. 3 is a schematic diagram of a driving circuit of a single-inductance bridgeless APFC circuit based on an IGBT module of the present invention.

具体实施方式detailed description

请参阅图1至图3,本发明的发明人为了能更好地对本发明的技术方案进行理解,下面通过具体地实施例,并结合附图进行详细地说明:Please refer to Fig. 1 to Fig. 3, in order to better understand the technical solution of the present invention, the inventor of the present invention will describe in detail below through specific embodiments in conjunction with the accompanying drawings:

实施例1Example 1

本发明的一种基于IGBT模块的单电感无桥APFC电路,包括交流滤波电容C1、第一IGBT模块S1、第二IGBT模块S2、电感L、第一功率二极管D1、第二功率二极管D2、第三功率二极管D3、第四功率二极管D4、直流滤波电容E1、第一分压电阻R1、第二分压电阻R2。A single-inductance bridgeless APFC circuit based on an IGBT module of the present invention includes an AC filter capacitor C1, a first IGBT module S1, a second IGBT module S2, an inductor L, a first power diode D1, a second power diode D2, a second The third power diode D3, the fourth power diode D4, the DC filter capacitor E1, the first voltage dividing resistor R1, and the second voltage dividing resistor R2.

第一功率二极管D1的正极、交流滤波电容C1的第一端部以及第一IGBT模块S1的集电极连接电源火线构成输入电压和输入电流采样端,可在该点采样输入电流iL和输入电压uiThe anode of the first power diode D1, the first end of the AC filter capacitor C1, and the collector of the first IGBT module S1 are connected to the live wire of the power supply to form an input voltage and input current sampling terminal, and the input current iL and input voltage can be sampled at this point ui .

第四功率二极管D4的正极、交流滤波电容C1的第二端部以及第二IGBT模块S2的集电极连接电源零线。The anode of the fourth power diode D4, the second end of the AC filter capacitor C1 and the collector of the second IGBT module S2 are connected to the neutral line of the power supply.

第一IGBT模块S2的发射极,和电感L的第一端部以及第二功率二极管D2的负极连接。The emitter of the first IGBT module S2 is connected to the first end of the inductor L and the cathode of the second power diode D2.

第二IGBT模块S2的发射极,和电感L的第二端部以及第三功率二极管D3的负极连接。The emitter of the second IGBT module S2 is connected to the second end of the inductor L and the cathode of the third power diode D3.

第二功率二极管D2的正极、第三功率二极管D3的正极、直流滤波电容E1的负极连接第二分压电阻R2的第一端部构成负输出端;第一功率二极管D1的负极、第四功率二极管D4的负极、直流滤波电容E1的正极连接第一分压电阻R1的第一端部,构成正输出端,第一分压电阻R1的第二端部与第二分压电阻R2的第二端部连接,构成直流侧采样端,可在该点采集直流的输出电压u0The positive pole of the second power diode D2, the positive pole of the third power diode D3, and the negative pole of the DC filter capacitor E1 are connected to the first end of the second voltage dividing resistor R2 to form a negative output terminal; the negative pole of the first power diode D1, the fourth power The negative pole of the diode D4 and the positive pole of the DC filter capacitor E1 are connected to the first end of the first voltage dividing resistor R1 to form a positive output terminal. The second end of the first voltage dividing resistor R1 is connected to the second end of the second voltage dividing resistor R2. The ends are connected to form a DC side sampling terminal at which the DC output voltage u0 can be collected.

其中第一IGBT模块S1、第二IGBT模块S2用以完成对电感L的充电;第一功率二极管D1、第二功率二极管D2、第三功率二极管D3、第四功率二极管D4提供放电回路;交流滤波电容C1和直流滤波电容E1用于减小电压与电流纹波;第一分压电阻R1和第二分压电阻R2用以对直流侧电压采样。Among them, the first IGBT module S1 and the second IGBT module S2 are used to complete the charging of the inductor L; the first power diode D1, the second power diode D2, the third power diode D3, and the fourth power diode D4 provide a discharge circuit; AC filtering The capacitor C1 and the DC filter capacitor E1 are used to reduce the voltage and current ripple; the first voltage dividing resistor R1 and the second voltage dividing resistor R2 are used to sample the DC side voltage.

本发明的一种单电感无桥APFC电路配备有驱动电路,包括有效值计算模块1、有效值平方倒数计算模块2、准PI调节模块、信号离散模块4、脉冲形成模块5和脉冲求补模块6。其中准PI调节模块分为电压环准PI调节模块31和电流环准PI调节模块32。A single-inductance bridgeless APFC circuit of the present invention is equipped with a drive circuit, including an effective value calculation module 1, an effective value square reciprocal calculation module 2, a quasi-PI adjustment module, a signal discrete module 4, a pulse forming module 5 and a pulse complement module 6. The quasi-PI regulation module is divided into a voltage-loop quasi-PI regulation module 31 and a current-loop quasi-PI regulation module 32 .

有效值计算模块1在输入电压和输入电流采样端采样输入电压ui的绝对值并进而得到输入电压有效值UiRMS,有效值平方倒数计算模块2计算得到输入电压有效值平方倒数1/U2iRMS,有效值平方倒数计算模块2将电压有效值平方倒数1/U2iRMS输出给第一乘法器71。The effective value calculation module 1 samples the absolute value of the input voltage ui at the input voltage and input current sampling terminals to obtain the effective value UiRMS of the input voltage, and the effective value square reciprocal calculation module 2 calculates the input voltage effective value square reciprocal 1/U2iRMS , the reciprocal RMS square calculation module 2 outputs the voltage RMS reciprocal square 1/U2iRMS to the first multiplier 71 .

第二乘法器72在直流侧采样端采样输出电压u0,并将输出电压u0与输出电压基准值ur进行比较,得到两者的差值,即电压误差ev,电压误差ev输入电压环准PI调节模块31,电压环准PI调节模块31对电压误差ev进行比例积分调节,电压环准PI调节模块31将对电压误差ev比例积分调节后得到的电压基准值uvc输出给第一乘法器71。The second multiplier 72 samples the output voltage u0 at the sampling end of the DC side, and compares the output voltage u0 with the output voltage reference value ur to obtain the difference between the two, that is, the voltage errorev , and the voltage errorev input The voltage ring standard PI adjustment module 31, the voltage ring standard PI adjustment module 31 performs proportional integral adjustment on the voltage errorev , and the voltage ring standard PI adjustment module 31 outputs the voltage reference value uvc obtained after adjusting the voltage error ev proportional integral to the first multiplier 71.

第一乘法器71根据输入电压有效值平方倒数1/U2iRMS和电压基准值uvc,得到基准电流ir,输出给第三乘法器73,第三乘法器73在输入电压和输入电流采样端对输入电流iL进行采样,并与基准电流ir比较后,得到电流误差ei,电流误差ei输入电流环准PI调节模块32,电流环准PI调节模块32对电流误差ei进行比例积分调节,得到电源电压ucc,电源电压ucc输入信号离散模块4进行离散得到驱动电压ucd,驱动电压ucd被送入脉冲形成模块5,脉冲形成模块5通过其内部生成的内三角波对驱动电压ucd进行斩波,形成PWM1脉冲信号,用以驱动第一IGBT模块S1,PWM1脉冲信号同时输出给脉冲求补模块6,脉冲求补模块6输出与PWM1脉冲信号互补的脉冲,即PWM2脉冲信号,用以驱动第二IGBT模块S2。The first multiplier 71 obtains the reference current ir according to the reciprocal 1/U2iRMS of the square of the effective value of the input voltage and the voltage reference value uvc , and outputs it to the third multiplier 73. The third multiplier 73 samples the input voltage and the input current The terminal samples the input current iL and compares it with the reference current ir to obtain the current error ei . The current error ei is input into the current loop quasi-PI adjustment module 32, and the current loop quasi-PI adjustment module 32 performs the current error ei Proportional-integral adjustment to obtain the power supply voltage ucc , the power supply voltage ucc input signal discrete module 4 is discretized to obtain the driving voltage ucd , the driving voltage ucd is sent to the pulse forming module 5 , and the pulse forming module 5 generates an inner triangle wave through its internal Chopping the drive voltage ucd to form a PWM1 pulse signal to drive the first IGBT module S1, the PWM1 pulse signal is simultaneously output to the pulse complement module 6, and the pulse complement module 6 outputs a pulse complementary to the PWM1 pulse signal, namely The PWM2 pulse signal is used to drive the second IGBT module S2.

本发明的一种单电感无桥APFC电路通过两路互补的PWM脉冲信号控制第一IGBT模块S1和第二IGBT模块S2的通断,利用第一功率二极管D1、第二功率二极管D2、第三功率二极管D3、第四功率二极管D4实现二极管型单电感无桥APFC的升压。A single-inductance bridgeless APFC circuit of the present invention controls the on-off of the first IGBT module S1 and the second IGBT module S2 through two complementary PWM pulse signals, and utilizes the first power diode D1, the second power diode D2, the third The power diode D3 and the fourth power diode D4 realize the voltage boost of the diode-type single-inductor bridgeless APFC.

与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:

第一,相比传统无桥APFC电路,只采用一个电感,节省成本和在板空间。First, compared with the traditional bridgeless APFC circuit, only one inductor is used, which saves cost and board space.

第二,第一IGBT模块S1和第二IGBT模块S2脉冲互补,使得驱动电路设计更加方便。Second, the pulses of the first IGBT module S1 and the second IGBT module S2 are complementary, which makes the design of the driving circuit more convenient.

第三,第一IGBT模块S1和第二IGBT模块S2通过互补的PWM脉冲进行驱动,减少成本和在板体积,且有原理清晰明了、控制信号发生简单。Third, the first IGBT module S1 and the second IGBT module S2 are driven by complementary PWM pulses, which reduces cost and board volume, and has a clear principle and simple control signal generation.

本实施例中:In this example:

交流输入电压宽范围,220V±15%,工频50Hz或60Hz,额定输出直流平均电压390V,输入功率为6kW。Wide range of AC input voltage, 220V±15%, power frequency 50Hz or 60Hz, rated output DC average voltage 390V, input power 6kW.

电感L的参数为2.2mH,40A。The parameter of inductance L is 2.2mH, 40A.

第一IGBT模块S1、第二IGBT模块S2的斩波频率的40kHz。The chopping frequency of the first IGBT module S1 and the second IGBT module S2 is 40kHz.

直流滤波电容E1的参数为450V,0.47uF。The parameter of DC filter capacitor E1 is 450V, 0.47uF.

第一分压电阻R1的参数为3MΩ,5W。The parameter of the first voltage dividing resistor R1 is 3MΩ, 5W.

第二分压电阻R1的参数为:16.8Ω,5W。The parameters of the second voltage dividing resistor R1 are: 16.8Ω, 5W.

第一功率二极管D1、第二功率二极管D2、第三功率二极管D3、第四功率二极管D4的参数为:600V,40A/100℃;The parameters of the first power diode D1, the second power diode D2, the third power diode D3, and the fourth power diode D4 are: 600V, 40A/100°C;

电感L充电过程,第一IGBT模块S1开通,第二IGBT模块S2关断;电感L放电过程,第一IGBT模块S1关断,第二IGBT模块S2开通;利用第一功率二极管D1、第二功率二极管D2、第三功率二极管D3、第四功率二极管D4构成充放电回路。During the charging process of the inductor L, the first IGBT module S1 is turned on, and the second IGBT module S2 is turned off; during the discharging process of the inductor L, the first IGBT module S1 is turned off, and the second IGBT module S2 is turned on; using the first power diode D1, the second power The diode D2, the third power diode D3, and the fourth power diode D4 form a charging and discharging circuit.

实施例2Example 2

本发明的一种基于IGBT模块的单电感无桥APFC电路,包括交流滤波电容C1、第一IGBT模块S1、第二IGBT模块S2、第三IGBT模块S3,电感L、第一功率二极管D1、第二功率二极管D2、第三功率二极管D3、第四功率二极管D4、直流滤波电容E1、第一分压电阻R1、第二分压电阻R2,以及双向开关BS1。A single-inductance bridgeless APFC circuit based on IGBT modules of the present invention includes an AC filter capacitor C1, a first IGBT module S1, a second IGBT module S2, a third IGBT module S3, an inductor L, a first power diode D1, and a second IGBT module. The second power diode D2, the third power diode D3, the fourth power diode D4, the DC filter capacitor E1, the first voltage dividing resistor R1, the second voltage dividing resistor R2, and the bidirectional switch BS1.

双向开关BS1的第一端部连接电源火线构成输入电压和输入电流采样端,在该点可采样输入电流iL和输入电压uiThe first end of the bidirectional switch BS1 is connected to the live wire of the power supply to form an input voltage and input current sampling end, at which point the input current iL and the input voltage ui can be sampled.

双向开关BS1的第二端部连接交流滤波电容C1的第一端部、第一IGBT模块S1的集电极以及第一功率二极管D1的正极。The second end of the bidirectional switch BS1 is connected to the first end of the AC filter capacitor C1 , the collector of the first IGBT module S1 and the anode of the first power diode D1 .

第四功率二极管D4的正极、交流滤波电容C1的第二端部以及第二IGBT模块S2的集电极连接电源零线。The anode of the fourth power diode D4, the second end of the AC filter capacitor C1 and the collector of the second IGBT module S2 are connected to the neutral line of the power supply.

第一IGBT模块S1的发射极、电感L的第一端部连接第二功率二极管D2的负极。The emitter of the first IGBT module S1 and the first end of the inductor L are connected to the cathode of the second power diode D2.

第二IGBT模块S2的发射极、电感L的第二端部连接第三功率二极管D3的负极。The emitter of the second IGBT module S2 and the second end of the inductor L are connected to the cathode of the third power diode D3.

第二功率二极管D2的正极、第三功率二极管D3的正极、直流滤波电容E1的负极连接第二分压电阻R2的第一端部,构成负输出端。The anode of the second power diode D2, the anode of the third power diode D3, and the cathode of the DC filter capacitor E1 are connected to the first end of the second voltage dividing resistor R2 to form a negative output end.

第一功率二极管D1的负极、第四功率二极管D4的负极连接第三IGBT模块S3的集电极,第三IGBT模块S3的发射极连接直流滤波电容E1的正极和第一分压电阻R1的第一端部,构成正输出端。The cathode of the first power diode D1 and the cathode of the fourth power diode D4 are connected to the collector of the third IGBT module S3, and the emitter of the third IGBT module S3 is connected to the anode of the DC filter capacitor E1 and the first voltage dividing resistor R1. end, forming the positive output.

第一分压电阻R1的第二端部与第二分压电阻R2的第二端部连接,构成直流侧采样端。The second end of the first voltage dividing resistor R1 is connected to the second end of the second voltage dividing resistor R2 to form a DC side sampling end.

本发明的一种单电感无桥APFC电路配备有驱动电路,包括有效值计算模块1、有效值平方倒数计算模块2、准PI调节模块、信号离散模块4、脉冲形成模块5和脉冲求补模块6。其中准PI调节模块分为电压环准PI调节模块31和电流环准PI调节模块32。A single-inductance bridgeless APFC circuit of the present invention is equipped with a drive circuit, including an effective value calculation module 1, an effective value square reciprocal calculation module 2, a quasi-PI adjustment module, a signal discrete module 4, a pulse forming module 5 and a pulse complement module 6. The quasi-PI regulation module is divided into a voltage-loop quasi-PI regulation module 31 and a current-loop quasi-PI regulation module 32 .

有效值计算模块1在输入电压和输入电流采样端采样输入电压ui的绝对值并进而得到输入电压有效值UiRMS,有效值平方倒数计算模块2计算得到输入电压有效值平方倒数1/U2iRMS,有效值平方倒数计算模块2将电压有效值平方倒数1/U2iRMS输出给第一乘法器71。The effective value calculation module 1 samples the absolute value of the input voltage ui at the input voltage and input current sampling terminals to obtain the effective value UiRMS of the input voltage, and the effective value square reciprocal calculation module 2 calculates the input voltage effective value square reciprocal 1/U2iRMS , the reciprocal RMS square calculation module 2 outputs the voltage RMS reciprocal square 1/U2iRMS to the first multiplier 71 .

第二乘法器72在直流侧采样端采样输出电压u0,并将输出电压u0与输出电压基准值ur进行比较,得到两者的差值,即电压误差ev,电压误差ev输入电压环准PI调节模块31,电压环准PI调节模块31对电压误差ev进行比例积分调节,电压环准PI调节模块31将对电压误差ev比例积分调节后得到的电压基准值uvc输出给第一乘法器71。The second multiplier 72 samples the output voltage u0 at the sampling end of the DC side, and compares the output voltage u0 with the output voltage reference value ur to obtain the difference between the two, that is, the voltage errorev , and the voltage errorev input The voltage ring standard PI adjustment module 31, the voltage ring standard PI adjustment module 31 performs proportional integral adjustment on the voltage errorev , and the voltage ring standard PI adjustment module 31 outputs the voltage reference value uvc obtained after adjusting the voltage error ev proportional integral to the first multiplier 71.

第一乘法器71根据输入电压有效值平方倒数1/U2iRMS和电压基准值uvc,得到基准电流ir,输出给第三乘法器73,第三乘法器73在输入电压和输入电流采样端对输入电流iL进行采样,并与基准电流ir比较后,得到电流误差ei,电流误差ei输入电流环准PI调节模块32,电流环准PI调节模块32对电流误差ei进行比例积分调节,得到电源电压ucc,电源电压ucc信号离散模块4进行离散得到驱动电压ucd,驱动电压ucd被送入脉冲形成模块5,通过其内部生成的内三角波对驱动电压ucd进行斩波,形成PWM1脉冲信号,用以驱动第一IGBT模块S1和双向开关BS1,PWM1脉冲信号同时输出给脉冲求补模块6,脉冲求补模块6输出与PWM1互补的脉冲,即PWM2脉冲信号,用以驱动第二IGBT模块S2。双向开关BS1通过脉冲形成模块5进行驱动,而第三IGBT模块3的驱动信号可在PWM1脉冲信号和PWM2脉冲信号之间进行切换。The first multiplier 71 obtains the reference current ir according to the reciprocal 1/U2iRMS of the square of the effective value of the input voltage and the voltage reference value uvc , and outputs it to the third multiplier 73. The third multiplier 73 samples the input voltage and the input current The terminal samples the input current iL and compares it with the reference current ir to obtain the current error ei . The current error ei is input into the current loop quasi-PI adjustment module 32, and the current loop quasi-PI adjustment module 32 performs the current error ei Proportional-integral adjustment to obtain the power supply voltage ucc , the power supply voltage ucc signal discrete module 4 is discrete to obtain the driving voltage ucd , the driving voltage ucd is sent to the pulse forming module 5 , and the driving voltage ucd is controlled by the inner triangle wave generated inside it Perform chopping to form a PWM1 pulse signal to drive the first IGBT module S1 and bidirectional switch BS1, the PWM1 pulse signal is simultaneously output to the pulse complement module 6, and the pulse complement module 6 outputs a pulse complementary to PWM1, that is, the PWM2 pulse signal , used to drive the second IGBT module S2. The bidirectional switch BS1 is driven by the pulse forming module 5, and the driving signal of the third IGBT module 3 can be switched between PWM1 pulse signal and PWM2 pulse signal.

与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:

采用单只电感L进行储能,节省成本和在板空间。A single inductor L is used for energy storage, saving cost and board space.

实现输出直流电压的升压和降压控制。Realize the step-up and step-down control of the output DC voltage.

第一IGBT模块S1和第二IGBT模块S2所需驱动脉冲互补,使得驱动电路设计更加方便。The driving pulses required by the first IGBT module S1 and the second IGBT module S2 are complementary, which makes the design of the driving circuit more convenient.

本发明的一种基于IGBT模块的单电感无桥APFC电路通过第一IGBT模块S1和第二IGBT模块S2所需驱动脉冲互补,控制双向开关BS1通断实现降压,且采用电感L,减少成本和体积,且有原理清晰明了、控制信号发生简单。A single-inductance bridgeless APFC circuit based on the IGBT module of the present invention uses complementary drive pulses required by the first IGBT module S1 and the second IGBT module S2 to control the on-off of the bidirectional switch BS1 to achieve step-down, and uses the inductance L to reduce costs And volume, and the principle is clear, and the control signal generation is simple.

该实施例中各个器件的参数为:The parameters of each device in this embodiment are:

交流输入电压宽范围,220V±15%,工频50Hz或60Hz,额定输出直流平均电压390V,输入功率为6kW。Wide range of AC input voltage, 220V±15%, power frequency 50Hz or 60Hz, rated output DC average voltage 390V, input power 6kW.

电感L的参数为2.2mH,40A。The parameter of inductance L is 2.2mH, 40A.

第一IGBT模块S1、第二IGBT模块S2和第三IGBT模块3的斩波频率的40kHz。The chopping frequency of the first IGBT module S1 , the second IGBT module S2 and the third IGBT module 3 is 40 kHz.

直流滤波电容E1的参数为450V,0.47uF。The parameter of DC filter capacitor E1 is 450V, 0.47uF.

第一分压电阻R1的参数为3MΩ,5W。The parameter of the first voltage dividing resistor R1 is 3MΩ, 5W.

第二分压电阻R1的参数为:16.8Ω,5W。The parameters of the second voltage dividing resistor R1 are: 16.8Ω, 5W.

第一功率二极管D1、第二功率二极管D2、第三功率二极管D3、第四功率二极管D4的参数为:600V,40A/100℃。The parameters of the first power diode D1, the second power diode D2, the third power diode D3 and the fourth power diode D4 are: 600V, 40A/100°C.

双向开关BS1与第一IGBT模块S1开通,第二IGBT模块S2与第三IGBT模块S3关断时,电感L充电;双向开关BS1与第一IGBT模块S1关断,第二IGBT模块S2与第三IGBT模块S3开通,电感L通过第三IGBT模块S3,以及第一功率二极管D1、第二功率二极管D2、第三功率二极管D3、第四功率二极管D4构成回路放电,且电源不给直流侧充电,完成降压过程。When the bidirectional switch BS1 and the first IGBT module S1 are turned on, and when the second IGBT module S2 and the third IGBT module S3 are turned off, the inductor L is charged; the bidirectional switch BS1 and the first IGBT module S1 are turned off, and the second IGBT module S2 and the third The IGBT module S3 is turned on, the inductance L passes through the third IGBT module S3, and the first power diode D1, the second power diode D2, the third power diode D3, and the fourth power diode D4 form a loop discharge, and the power supply does not charge the DC side. Complete the depressurization process.

当双向开关BS1与第三IGBT模块S3一直处于导通状态,可实现升压。When the bidirectional switch BS1 and the third IGBT module S3 are always in the conduction state, voltage boosting can be realized.

本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上所述实施例的变化、变型都将落在本发明的权利要求书范围内。Those of ordinary skill in the art should recognize that the above embodiments are only used to illustrate the present invention, rather than as a limitation to the present invention, as long as within the scope of the spirit of the present invention, the above-described embodiments Changes and modifications will fall within the scope of the claims of the present invention.

Claims (6)

Translated fromChinese
1.一种基于IGBT模块的单电感无桥APFC电路,包括交流滤波电容C1、第一IGBT模块S1、第二IGBT模块S2、电感L、第一功率二极管D1、第二功率二极管D2、第三功率二极管D3、第四功率二极管D4、直流滤波电容E1、第一分压电阻R1、第二分压电阻R2;其特征在于:1. A single-inductance bridgeless APFC circuit based on IGBT modules, including AC filter capacitor C1, first IGBT module S1, second IGBT module S2, inductor L, first power diode D1, second power diode D2, third Power diode D3, fourth power diode D4, DC filter capacitor E1, first voltage dividing resistor R1, second voltage dividing resistor R2; characterized in that:第一功率二极管D1的正极、交流滤波电容C1的第一端部以及第一IGBT模块S1的集电极连接电源火线;The anode of the first power diode D1, the first end of the AC filter capacitor C1 and the collector of the first IGBT module S1 are connected to the live wire of the power supply;第四功率二极管D4的正极、交流滤波电容C1的第二端部以及第二IGBT模块S2的集电极连接电源零线;The anode of the fourth power diode D4, the second end of the AC filter capacitor C1 and the collector of the second IGBT module S2 are connected to the neutral line of the power supply;第一IGBT模块S2的发射极,和电感L的第一端部以及第二功率二极管D2的负极连接;The emitter of the first IGBT module S2 is connected to the first end of the inductor L and the cathode of the second power diode D2;第二IGBT模块S2的发射极,和电感L的第二端部以及第三功率二极管D3的负极连接;The emitter of the second IGBT module S2 is connected to the second end of the inductor L and the cathode of the third power diode D3;第二功率二极管D2的正极、第三功率二极管D3的正极、直流滤波电容E1的负极连接第二分压电阻R2的第一端部构成负输出端;The positive pole of the second power diode D2, the positive pole of the third power diode D3, and the negative pole of the DC filter capacitor E1 are connected to the first end of the second voltage dividing resistor R2 to form a negative output terminal;第一功率二极管D1的负极和第四功率二极管D4的负极,连接直流滤波电容E1的正极以及第一分压电阻R1的第一端部;The negative pole of the first power diode D1 and the negative pole of the fourth power diode D4 are connected to the positive pole of the DC filter capacitor E1 and the first end of the first voltage dividing resistor R1;第一分压电阻R1的第二端部与第二分压电阻R2的第二端部连接,构成直流侧采样端。The second end of the first voltage dividing resistor R1 is connected to the second end of the second voltage dividing resistor R2 to form a DC side sampling end.2.根据权利要求1所述的一种基于IGBT模块的单电感无桥APFC电路,其特征在于:第一功率二极管D1的正极、交流滤波电容C1的第一端部以及第一IGBT模块S1的集电极连接电源火线,构成输入电压和输入电流采样端;第一功率二极管D1的负极、第四功率二极管D4的负极、直流滤波电容E1的正极连接第一分压电阻R1的第一端部构成正输出端。2. A single inductance bridgeless APFC circuit based on IGBT modules according to claim 1, characterized in that: the positive pole of the first power diode D1, the first end of the AC filter capacitor C1 and the first end of the first IGBT module S1 The collector is connected to the live wire of the power supply to form an input voltage and input current sampling terminal; the negative pole of the first power diode D1, the negative pole of the fourth power diode D4, and the positive pole of the DC filter capacitor E1 are connected to the first end of the first voltage dividing resistor R1 to form a positive output.3.根据权利要求1所述的一种基于IGBT模块的单电感无桥APFC电路,其特征在于:其还包括驱动电路,所述驱动电路包括:3. A kind of single inductance bridgeless APFC circuit based on IGBT module according to claim 1, is characterized in that: it also comprises drive circuit, and described drive circuit comprises:在所述输入电压和输入电流采样端采集输入电压有效值UiRMS的有效值计算模块;An effective value calculation module that collects the input voltage effective value UiRMS at the input voltage and input current sampling end;连接所述有效值计算模块,用以计算输入电压有效值平方倒数1/U2iRMS的有效值平方倒数计算模块;Connect the effective value calculation module to calculate the effective value square reciprocal calculation module of the input voltage effective value square reciprocal 1/U2iRMS ;在所述直流侧采样端采集输出电压u0,并将输出电压u0和输出电压基准值ur进行比较,得到电压误差ev的第二乘法器;Collect the output voltage u0 at the sampling end of the DC side, and compare the output voltage u0 with the output voltage reference valueur to obtain a second multiplier for the voltage error ev;对电压误差ev进行比例积分调节得到电压基准值uvc的电压环准PI调节模块;Proportional-integral adjustment is performed on the voltage error ev to obtain a voltage reference value uvc voltage loop quasi-PI adjustment module;根据输入电压有效值平方倒数1/U2iRMS和电压基准值uvc得到基准电流ir的第一乘法器;Obtain the first multiplier of the reference current ir according to the reciprocal of the square of the effective value of the input voltage 1/U2iRMS and the voltage reference value uvc ;在输入电压和输入电流采样端对输入电流iL进行采样,并将输入电流iL和基准电流ir进行比较,得到电流误差ei的第三乘法器;The input current iL is sampled at the input voltage and input current sampling terminals, and the input current iL is compared with the reference current ir to obtain the third multiplier of the current error ei ;对电流误差ei进行比例积分调节,得到电源电压ucc的电流环准PI调节模块;Proportional-integral adjustment is performed on the current error ei to obtain the current loop quasi-PI adjustment module of the power supply voltage ucc ;对电源电压ucc进行离散得到驱动电压ucd的信号离散模块;Discrete the power supply voltage ucc to obtain the signal discrete module of the driving voltage ucd ;通过对驱动电压ucd进行斩波,得到用以驱动第一IGBT模块S1的PWM1脉冲信号的脉冲形成模块;A pulse forming module for driving the PWM1 pulse signal of the first IGBT module S1 is obtained by chopping the driving voltage ucd ;连接所述脉冲形成模块,用以形成与所述PWM1脉冲信号互补的,用以驱动第二IGBT模块S2的PWM2脉冲信号的脉冲求补模块。The pulse forming module is connected to form a pulse complement module for the PWM2 pulse signal complementary to the PWM1 pulse signal and used to drive the second IGBT module S2.4.根据权利要求1所述的一种基于IGBT模块的单电感无桥APFC电路,其特征在于:第一功率二极管D1的正极、交流滤波电容C1的第一端部以及第一IGBT模块S1的集电极通过双向开关BS1连接电源火线,双向开关BS1的第一端部连接电源火线,构成输入电压和输入电流采样端;双向开关BS1的第二端部连接第一功率二极管D1的正极、交流滤波电容C1的第一端部以及第一IGBT模块S1的集电极;4. A single-inductance bridgeless APFC circuit based on IGBT modules according to claim 1, characterized in that: the anode of the first power diode D1, the first end of the AC filter capacitor C1 and the first end of the first IGBT module S1 The collector is connected to the live wire of the power supply through the bidirectional switch BS1, and the first end of the bidirectional switch BS1 is connected to the live wire of the power supply to form an input voltage and input current sampling terminal; the second end of the bidirectional switch BS1 is connected to the anode of the first power diode D1, AC filter a first end of the capacitor C1 and a collector of the first IGBT module S1;第一功率二极管D1的负极和第四功率二极管D4的负极,通过第三IGBT模块S3,连接直流滤波电容E1的正极以及第一分压电阻R1的第一端部;其中第一功率二极管D1的负极和第四功率二极管D4的负极连接第三IGBT模块S3的集电极,第三IGBT模块S3的发射极连接直流滤波电容E1的正极以及第一分压电阻R1的第一端部,构成正输出端。The negative pole of the first power diode D1 and the negative pole of the fourth power diode D4 are connected to the positive pole of the DC filter capacitor E1 and the first end of the first voltage dividing resistor R1 through the third IGBT module S3; wherein the first power diode D1 The cathode and the cathode of the fourth power diode D4 are connected to the collector of the third IGBT module S3, and the emitter of the third IGBT module S3 is connected to the anode of the DC filter capacitor E1 and the first end of the first voltage dividing resistor R1 to form a positive output end.5.根据权利要求4所述的一种基于IGBT模块的单电感无桥APFC电路,其特征在于:其还包括驱动电路,所述驱动电路包括:5. A kind of single inductance bridgeless APFC circuit based on IGBT module according to claim 4, it is characterized in that: it also comprises drive circuit, and described drive circuit comprises:在所述输入电压和输入电流采样端采集输入电压有效值UiRMS的有效值计算模块;An effective value calculation module that collects the input voltage effective value UiRMS at the input voltage and input current sampling end;连接所述有效值计算模块,用以计算输入电压有效值平方倒数1/U2iRMS的有效值平方倒数计算模块;Connect the effective value calculation module to calculate the effective value square reciprocal calculation module of the input voltage effective value square reciprocal 1/U2iRMS ;在所述直流侧采样端采集输出电压u0,并将输出电压u0和输出电压基准值ur进行比较,得到电压误差ev的第二乘法器;Collect the output voltage u0 at the sampling end of the DC side, and compare the output voltage u0 with the output voltage reference valueur to obtain a second multiplier for the voltage error ev;对电压误差ev进行比例积分调节得到电压基准值uvc的电压环准PI调节模块;Proportional-integral adjustment is performed on the voltage error ev to obtain a voltage reference value uvc voltage loop quasi-PI adjustment module;根据输入电压有效值平方倒数1/U2iRMS和电压基准值uvc得到基准电流ir的第一乘法器;Obtain the first multiplier of the reference current ir according to the reciprocal of the square of the effective value of the input voltage 1/U2iRMS and the voltage reference value uvc ;在输入电压和输入电流采样端对输入电流iL进行采样,并将输入电流iL和基准电流ir进行比较,得到电流误差ei的第三乘法器;The input current iL is sampled at the input voltage and input current sampling terminals, and the input current iL is compared with the reference current ir to obtain the third multiplier of the current error ei ;对电流误差ei进行比例积分调节,得到电源电压ucc的电流环准PI调节模块;Proportional-integral adjustment is performed on the current error ei to obtain the current loop quasi-PI adjustment module of the power supply voltage ucc ;对电源电压ucc进行离散得到驱动电压ucd的信号离散模块;Discrete the power supply voltage ucc to obtain the signal discrete module of the driving voltage ucd ;通过对驱动电压ucd进行斩波,得到用以驱动第一IGBT模块S1和双向开关BS1的PWM1脉冲信号的脉冲形成模块;A pulse forming module for driving the PWM1 pulse signal of the first IGBT module S1 and the bidirectional switch BS1 is obtained by chopping the driving voltage ucd ;连接所述脉冲形成模块,用以形成与所述PWM1脉冲信号互补的,用以驱动第二IGBT模块S2的PWM2脉冲信号的脉冲求补模块。The pulse forming module is connected to form a pulse complement module for the PWM2 pulse signal complementary to the PWM1 pulse signal and used to drive the second IGBT module S2.6.根据权利要求5所述的一种基于IGBT模块的单电感无桥APFC电路,其特征在于:第三IGBT模块S3的驱动信号可在PWM1信号和PWM2信号之间进行切换。6 . The single-inductance bridgeless APFC circuit based on IGBT modules according to claim 5 , wherein the driving signal of the third IGBT module S3 can be switched between the PWM1 signal and the PWM2 signal.
CN201710718326.1A2017-08-212017-08-21 A Single Inductor Bridgeless APFC Circuit Based on IGBT ModuleActiveCN107294371B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201710718326.1ACN107294371B (en)2017-08-212017-08-21 A Single Inductor Bridgeless APFC Circuit Based on IGBT Module

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201710718326.1ACN107294371B (en)2017-08-212017-08-21 A Single Inductor Bridgeless APFC Circuit Based on IGBT Module

Publications (2)

Publication NumberPublication Date
CN107294371Atrue CN107294371A (en)2017-10-24
CN107294371B CN107294371B (en)2023-07-25

Family

ID=60106844

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201710718326.1AActiveCN107294371B (en)2017-08-212017-08-21 A Single Inductor Bridgeless APFC Circuit Based on IGBT Module

Country Status (1)

CountryLink
CN (1)CN107294371B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN113382507A (en)*2020-03-102021-09-10霍尼韦尔国际公司Current converter circuit for airport ground lighting

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20100289461A1 (en)*2009-05-152010-11-18Chih-Liang WangBridgeless power factor corrector with logic control
CN103795237A (en)*2014-01-162014-05-14深圳市金宏威技术股份有限公司Bridge-free voltage reduction APFC circuit
CN103916002A (en)*2014-03-282014-07-09上海交通大学Common-anode half-bridge power factor correction circuit
CN104218825A (en)*2013-05-302014-12-17弗莱克斯电子有限责任公司Bridgeless pfc power converter with high efficiency

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20100289461A1 (en)*2009-05-152010-11-18Chih-Liang WangBridgeless power factor corrector with logic control
CN104218825A (en)*2013-05-302014-12-17弗莱克斯电子有限责任公司Bridgeless pfc power converter with high efficiency
CN103795237A (en)*2014-01-162014-05-14深圳市金宏威技术股份有限公司Bridge-free voltage reduction APFC circuit
CN103916002A (en)*2014-03-282014-07-09上海交通大学Common-anode half-bridge power factor correction circuit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNDA ZHANG ET AL.: "Research on a novel bridgeless boost PFC converter"*
陆治国 等: "一种改进的单相无桥功率因数校正器"*

Cited By (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN113382507A (en)*2020-03-102021-09-10霍尼韦尔国际公司Current converter circuit for airport ground lighting
EP3879935A1 (en)*2020-03-102021-09-15Honeywell International Inc.Current converter circuit for airfield ground lighting
US11395385B2 (en)2020-03-102022-07-19Honeywell International Inc.Current converter circuit for airfield ground lighting

Also Published As

Publication numberPublication date
CN107294371B (en)2023-07-25

Similar Documents

PublicationPublication DateTitle
CN105471238A (en)Direct current bus voltage ripple compensating method and photovoltaic inverter
CN103606956B (en) Power decoupling circuit for photovoltaic grid-connected inverter
CN106533152B (en)A kind of device and method improving Boost three-level converter PF
CN103490632B (en) Buck-boost output voltage balance circuit
CN103532420B (en) Dual three-level online topology switchable inverter
CN106849708B (en) A PFC rectifier
CN113489308A (en)Step-down power factor correction converter without input current dead zone and control method
CN107834886A (en)A kind of single-stage boost inverter and its control method
CN113037120A (en)Single-phase inverter capable of inhibiting secondary ripples and improving power density and control method
CN106655803A (en)Intelligent half-bridge sine wave voltage conversion circuit based on Vienna PFC
CN102780409B (en)Unity-power-factor buck-boost circuit
CN116961399A (en) Bridgeless step-down PFC converter based on output reverse flyback and buck unit
CN107332438B (en) Power Factor Correction Method Based on Dual Inductor Dual Voltage DC Output Circuit
CN107482930A (en) A dual-inductance dual-voltage DC output circuit
CN102769394B (en)Single-phase controllable rectification circuit
CN107294371B (en) A Single Inductor Bridgeless APFC Circuit Based on IGBT Module
CN209497396U (en) A kind of AC-DC circuit in front of power switch
CN207039449U (en) A Single Inductor Bridgeless APFC Circuit
CN209072370U (en)A kind of single phase bidirectional AC-DC charge-discharge circuit
CN206908527U (en)One kind is without bridge liftable die mould DC power supply circuit
CN206180891U (en)High -efficient light stores up self -supporting formula energy storage converter of uniting
CN207039450U (en) A Single Inductor Bridgeless APFC Circuit Based on IGBT Module
CN213783159U (en)Non-isolated single-inductor current type grid-connected inverter without overlapping time
CN107332437B (en)Single-inductor bridgeless APFC circuit
CN208723784U (en) A PFC Converter with Constant Current Output

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp