技术领域technical field
本发明是关于一种立体显示装置。The invention relates to a stereoscopic display device.
背景技术Background technique
随着电子技术的发展,平面显示装置已经难以满足人们的需求,应运而生的便是立体显示装置。立体显示装置提供身临其境的感受。立体显示装置又分为眼镜式和裸眼式两大种类。其中,裸眼式立体显示技术由于不需要在观看时佩戴相应的装置,观看者能够较为轻松的进行观看,因而,裸眼式立体显示技术的受欢迎程度要高于眼镜式显示技术。With the development of electronic technology, flat-panel display devices have been difficult to meet people's needs, and stereoscopic display devices have emerged as the times require. The stereoscopic display device provides an immersive experience. Stereoscopic display devices are further divided into two types: glasses-type and naked-eye-type. Among them, the naked-eye stereoscopic display technology does not need to wear a corresponding device when watching, and the viewer can watch it relatively easily. Therefore, the naked-eye stereoscopic display technology is more popular than the glasses-based display technology.
发明内容Contents of the invention
本发明的多个实施方式提供一种立体显示装置,藉由设置内凹轴棱镜阵列(axicon lens array),以将影像投影至多个视域。针对这些视域,内凹轴棱镜阵列可在水平方向上提供透镜光学能力(lens power)且在垂直方向上提供扩散效果。Several embodiments of the present invention provide a stereoscopic display device, by setting an axicon lens array to project images to multiple viewing areas. For these fields of view, a concave axicon array can provide lens power in the horizontal direction and a diffuse effect in the vertical direction.
本发明的一态样提供一种立体显示装置,包含多个投影机、透镜阵列以及内凹轴棱镜阵列。投影机分别将影像投影至位于像侧的多个视域。透镜阵列设置于投影机与像侧之间。内凹轴棱镜阵列设置于透镜阵列与像侧之间。An aspect of the present invention provides a stereoscopic display device including a plurality of projectors, a lens array and a concave axicon array. The projector projects images to multiple fields of view located on the image side. The lens array is arranged between the projector and the image side. The concave axicon array is arranged between the lens array and the image side.
于本发明的部分实施方式中,立体显示装置包含基板,设置于透镜阵列与内凹轴棱镜阵列之间,其中透镜阵列与内凹轴棱镜阵列分别直接设置于基板的相对二表面。In some embodiments of the present invention, the stereoscopic display device includes a substrate disposed between the lens array and the concave axicon array, wherein the lens array and the concave axicon array are respectively directly disposed on two opposite surfaces of the substrate.
于本发明的部分实施方式中,透镜阵列包含多个透镜,内凹轴棱镜阵列包含多个轴棱镜,每一轴棱镜与每一透镜的中心大致对齐。In some embodiments of the present invention, the lens array includes a plurality of lenses, the concave axicon array includes a plurality of axicons, and each axicon is substantially aligned with the center of each lens.
于本发明的部分实施方式中,每一轴棱镜包含平面以及锥形凹面。平面邻近于透镜阵列设置。锥形凹面相对该平面设置。In some embodiments of the present invention, each axicon includes a flat surface and a conical concave surface. A plane is disposed adjacent to the lens array. The conical concave surface is disposed relative to the plane.
于本发明的部分实施方式中,透镜阵列包含第一柱状透镜以及第二柱状透镜,其中该第一柱状透镜的延伸方向与该第二柱状透镜的延伸方向互相垂直。In some embodiments of the present invention, the lens array includes a first lenticular lens and a second lenticular lens, wherein the extension direction of the first lenticular lens is perpendicular to the extension direction of the second lenticular lens.
于本发明的部分实施方式中,立体显示装置更包含基板,设置于第一柱状透镜与内凹轴棱镜阵列之间,其中第一柱状透镜与内凹轴棱镜阵列分别直接设置于基板的相对二表面。In some embodiments of the present invention, the stereoscopic display device further includes a substrate disposed between the first lenticular lens and the concave axicon array, wherein the first lenticular lens and the concave axicon array are respectively directly disposed on opposite sides of the substrate. surface.
于本发明的部分实施方式中,第一柱状透镜的投影与第二柱状透镜的投影于内凹轴棱镜阵列所在的一平面上形成多个交错位置,内凹轴棱镜阵列包含多个轴棱镜,每一轴棱镜与每一交错位置的中心大致对齐。In some embodiments of the present invention, the projection of the first lenticular lens and the projection of the second lenticular lens form multiple alternate positions on a plane where the concave axicon array is located, and the concave axicon array includes a plurality of axicons, Each axicon is substantially aligned with the center of each staggered position.
于本发明的部分实施方式中,立体显示装置更包含基板,设置于透镜阵列与内凹轴棱镜阵列之间,其中内凹轴棱镜阵列包含多个轴棱镜,轴棱镜均匀地设置于基板上。In some embodiments of the present invention, the stereoscopic display device further includes a substrate disposed between the lens array and the concave axicon array, wherein the concave axicon array includes a plurality of axicons, and the axicons are uniformly disposed on the substrate.
于本发明的部分实施方式中,透镜阵列与内凹轴棱镜阵列共焦。In some embodiments of the present invention, the lens array is confocal with the concave axicon array.
于本发明的部分实施方式中,透镜阵列包含至少一透镜,内凹轴棱镜阵列包含至少一轴棱镜,透镜的焦点位于轴棱镜的焦线。In some embodiments of the present invention, the lens array includes at least one lens, the concave axicon array includes at least one axicon, and the focus of the lens is located on the focal line of the axicon.
于本发明的部分实施方式中,透镜的焦距大于轴棱镜的焦距。In some embodiments of the present invention, the focal length of the lens is greater than the focal length of the axicon.
于本发明的部分实施方式中,立体显示装置更包含第一菲涅尔透镜,设置于投影机与透镜阵列之间。In some embodiments of the present invention, the stereoscopic display device further includes a first Fresnel lens disposed between the projector and the lens array.
于本发明的部分实施方式中,立体显示装置更包含第二菲涅尔透镜,设置于内凹轴棱镜阵列相对透镜阵列的一侧。In some embodiments of the present invention, the stereoscopic display device further includes a second Fresnel lens disposed on a side of the concave axicon array opposite to the lens array.
于本发明的部分实施方式中,投影机排列于第一平面上,透镜阵列设置于第二平面上,第一平面平行于第二平面。In some embodiments of the present invention, the projectors are arranged on the first plane, the lens array is arranged on the second plane, and the first plane is parallel to the second plane.
于本发明的部分实施方式中,立体显示装置包含桌体,投影机、透镜阵列以及内凹轴棱镜阵列装设于桌体的内,投影机分别将影像该桌体的桌面投影至多个视域。In some embodiments of the present invention, the stereoscopic display device includes a table body, a projector, a lens array, and a concave axicon prism array are installed in the table body, and the projector projects the image of the desktop of the table body to multiple viewing areas. .
附图说明Description of drawings
图1为本发明的一实施方式的立体显示装置的立体图。FIG. 1 is a perspective view of a stereoscopic display device according to an embodiment of the present invention.
图2为图1的立体显示装置的侧视图。FIG. 2 is a side view of the stereoscopic display device in FIG. 1 .
图3为图1的立体显示装置的上视图。FIG. 3 is a top view of the stereoscopic display device in FIG. 1 .
图4为图1的立体显示装置的透镜堆栈的部分元件的侧视图。FIG. 4 is a side view of some components of the lens stack of the stereoscopic display device in FIG. 1 .
图5为图4的轴棱镜的立体示意图。FIG. 5 is a schematic perspective view of the axicon shown in FIG. 4 .
图6为图3的立体显示装置于轴向方向的光路示意图。FIG. 6 is a schematic diagram of the optical path of the stereoscopic display device in FIG. 3 in the axial direction.
图7为图3的立体显示装置于辐射方向的光路示意图。FIG. 7 is a schematic diagram of the optical path of the stereoscopic display device in FIG. 3 in the radiation direction.
图8为本发明的另一实施方式的立体显示装置的透镜堆栈的部分元件的侧视图。FIG. 8 is a side view of some elements of a lens stack of a stereoscopic display device according to another embodiment of the present invention.
其中,附图标记:Among them, reference signs:
100:立体显示装置100: Stereoscopic display device
110:投影机110: Projector
112:微型面板112: micro panel
120、120’:透镜阵列120, 120': lens array
122:透镜122: lens
122a:第一表面122a: first surface
122b:第二表面122b: second surface
122c:焦点122c: focus
124:第一柱状透镜124: first lenticular lens
126:第二柱状透镜126: second lenticular lens
130:内凹轴棱镜阵列130: concave axicon array
132:轴棱镜132: Axicon
132a:表面132a: surface
132b:锥形凹面132b: conical concave
132c:焦线132c: focal line
140:基板140: Substrate
150:第一菲涅尔透镜150: First Fresnel lens
160:第二菲涅尔透镜160: Second Fresnel lens
C:光轴C: optical axis
X:交错位置X: staggered position
R:视域R: Viewshed
f1:焦距f1: focal length
f2:焦距f2: focal length
P1:第一平面P1: first plane
P2:第二平面P2: second plane
ST:透镜堆栈ST: lens stack
RD:辐射方向RD: Radiation direction
RD1:辐射方向RD1: Radiation direction
TD:切线方向TD: Tangent direction
TD1:切线方向TD1: Tangent direction
TD2:切线方向TD2: Tangent direction
IM:像侧IM: image side
OM:影像OM: Image
TAB:桌体TAB: table body
具体实施方式detailed description
以下将以图式揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明部分实施方式中,这些实务上的细节是非必要的。此外,为简化图式起见,一些现有技术惯用的结构与元件在图式中将以简单示意的方式为之。A number of embodiments of the present invention will be disclosed in the following figures. For the sake of clarity, many practical details will be described together in the following description. It should be understood, however, that these practical details should not be used to limit the invention. That is, in some embodiments of the present invention, these practical details are unnecessary. In addition, for the sake of simplifying the drawings, some conventional structures and elements in the prior art will be shown in a simple schematic way in the drawings.
图1为本发明的一实施方式的立体显示装置100的立体图。图2为图1的立体显示装置100的侧视图。图3为图1的立体显示装置100的上视图。立体显示装置100包含多个投影机110以及透镜堆栈ST。于此,立体显示装置100可以是桌面型显示器,以供使用者从各个角度观赏立体影像。换句话说,立体显示装置100可以包含桌体TAB,投影机110以及透镜堆栈ST可以装设于桌体TAB之内中,以从桌面投射影像OM至桌体TAB之外的视域R。在此仅以虚线表示桌体TAB可能的配置,实际应用上桌体TAB的形状并不以图中所绘为限,且为方便绘示起见,图1仅绘示单一个投影机110,而省略其它的投影机。FIG. 1 is a perspective view of a stereoscopic display device 100 according to an embodiment of the present invention. FIG. 2 is a side view of the stereoscopic display device 100 in FIG. 1 . FIG. 3 is a top view of the stereoscopic display device 100 in FIG. 1 . The stereoscopic display device 100 includes a plurality of projectors 110 and a lens stack ST. Here, the stereoscopic display device 100 may be a desktop display for users to view stereoscopic images from various angles. In other words, the stereoscopic display device 100 may include a table TAB, and the projector 110 and the lens stack ST may be installed inside the table TAB to project an image OM from the table to a viewing area R outside the table TAB. Here, the possible configuration of the table TAB is only indicated by dotted lines, and the shape of the table TAB is not limited to that shown in the figure in actual application, and for the sake of convenience of drawing, FIG. Omit other projectors.
于本发明的多个实施方式中,多个投影机110分别将多个不同的影像OM投影至位于像侧IM的多个视域R,且每一投影机110对应一视域R设置。于此,视域R系为影像OM投影至像侧IM的空间,使用者在不同的视域R将观察到不同的影像。于部分实施方式中,多个视域R可以环绕桌体TAB的桌面的方式分布,而让使用者可以环绕桌体TAB并朝向桌体TAB的桌面中心进行观察。如图所示,投影机110以环状排列于第一平面P1上,视域R以环状排列于第二平面P2,第一平面P1以及第二平面P2彼此大致平行。藉此,可以将环型排列的影像OM投影至第二平面P2,而形成环型排列的视域R。In multiple implementations of the present invention, multiple projectors 110 respectively project multiple different images OM to multiple viewing regions R located on the image side IM, and each projector 110 is set corresponding to one viewing region R. Here, the viewing area R is the space where the image OM is projected onto the image side IM, and the user will observe different images in different viewing areas R. In some embodiments, a plurality of viewing regions R may be distributed around the desktop of the table TAB, so that the user can observe around the table TAB and toward the center of the desktop of the table TAB. As shown in the figure, the projectors 110 are arranged in a ring on the first plane P1 , and the viewing zones R are arranged in a ring on the second plane P2 , and the first plane P1 and the second plane P2 are substantially parallel to each other. In this way, the circularly arranged images OM can be projected onto the second plane P2 to form the circularly arranged viewing area R.
透镜堆栈ST包含透镜阵列(lens array)120以及内凹轴棱镜阵列(axicon lensarray)130。透镜阵列120设置于投影机110与像侧IM之间。内凹轴棱镜阵列130设置于透镜阵列120与像侧IM之间。透镜堆栈ST所在的平面大致与第一平面P1以及第二平面P2平行。藉以提升入射透镜堆栈ST的光线(例如环型排列的影像OM)的均匀性。The lens stack ST includes a lens array (lens array) 120 and an axicon lens array (axicon lens array) 130 . The lens array 120 is disposed between the projector 110 and the image side IM. The concave axicon array 130 is disposed between the lens array 120 and the image side IM. The plane where the lens stack ST is located is approximately parallel to the first plane P1 and the second plane P2. In order to improve the uniformity of light incident on the lens stack ST (for example, the images OM arranged in a ring shape).
图2为图1的立体显示装置100的侧视图。同时参照图1与图2,光线从投影机110入射透镜堆栈ST的角度范围大约为α,光线从透镜堆栈ST传送至视域R的角度范围大约为β,并以Φ表示视域R的影像水平宽度,B表示视域R的影像垂直高度,θ表示影像OM的切线宽(即与投影机110排列成的环型线相切的长),A表示影像OM的影像的辐射宽度即对于投影机110排列的环型线于辐射方向上的长)。其中角度放大率β/α、影像的水平放大率Φ/θ以及影像的垂直放大率B/A与透镜堆栈ST的透镜阵列120以及内凹轴棱镜阵列130的特性相关,将于后续介绍透镜阵列120以及内凹轴棱镜阵列130的光学特性中详细说明。FIG. 2 is a side view of the stereoscopic display device 100 in FIG. 1 . Referring to FIG. 1 and FIG. 2 at the same time, the angle range of the light rays entering the lens stack ST from the projector 110 is about α, and the angle range of the light rays transmitted from the lens stack ST to the viewing area R is about β, and the image of the viewing area R is represented by Φ Horizontal width, B represents the vertical height of the image in the field of view R, θ represents the tangent width of the image OM (that is, the length tangent to the annular line formed by the projectors 110 ), A represents the radiation width of the image of the image OM That is, the length of the annular line arranged by the projector 110 in the radiation direction ). Among them, the angular magnification β/α, the horizontal magnification Φ/θ of the image, and the vertical magnification B/A of the image are related to the characteristics of the lens array 120 and the concave axicon prism array 130 of the lens stack ST, and the lens array will be introduced later 120 and the optical properties of the concave axicon array 130 are described in detail.
图3为图1的立体显示装置100的上视图。同时参照图1与图3,理想上,视域R所环绕的范围面积可大于投影机110所环绕的范围面积,而让使用者可以坐落或站立于桌体TAB周围时,使用者的眼睛可以位于视域R中。为方便绘示起见,图3中以虚线表示透镜堆栈ST。图3另标有切线方向TD以及辐射方向RD,用以于后续辅助说明透镜阵列120以及内凹轴棱镜阵列130的光学特性。FIG. 3 is a top view of the stereoscopic display device 100 in FIG. 1 . Referring to FIG. 1 and FIG. 3 at the same time, ideally, the range area surrounded by the viewing area R can be larger than the range area surrounded by the projector 110, so that when the user can sit or stand around the table body TAB, the user's eyes can in the viewshed R. For the convenience of illustration, the lens stack ST is indicated by a dotted line in FIG. 3 . FIG. 3 is also marked with a tangential direction TD and a radiation direction RD, which are used to assist in explaining the optical characteristics of the lens array 120 and the concave axicon array 130 later.
图4为图1的立体显示装置100的透镜堆栈ST的部分元件的侧视图。于此,图4绘示立体显示装置100的透镜堆栈ST的透镜阵列120与内凹轴棱镜阵列130。透镜阵列120包含至少一透镜122,内凹轴棱镜阵列130包含至少一轴棱镜(axicon lens)132。于本发明的部份实施方式中,每一轴棱镜132与每一透镜122的中心大致对齐,而使每一轴棱镜132与每一透镜122可位于同一光轴C上。藉此,经过透镜122的光线大致经过轴棱镜132,而使光线能同时受到透镜122与轴棱镜132的作用。于部分其他实施方式中,轴棱镜132与透镜122可以不互相对齐,或者,轴棱镜132与透镜122不必一对一地对齐。FIG. 4 is a side view of some elements of the lens stack ST of the stereoscopic display device 100 of FIG. 1 . Here, FIG. 4 shows the lens array 120 and the concave axicon array 130 of the lens stack ST of the stereoscopic display device 100 . The lens array 120 includes at least one lens 122 , and the concave axicon array 130 includes at least one axicon lens 132 . In some embodiments of the present invention, each axicon 132 is approximately aligned with the center of each lens 122 , so that each axicon 132 and each lens 122 can be located on the same optical axis C. In this way, the light passing through the lens 122 roughly passes through the axicon 132 , so that the light can be affected by the lens 122 and the axicon 132 at the same time. In some other embodiments, the axicon 132 and the lens 122 may not be aligned with each other, or the axicon 132 and the lens 122 need not be aligned one-to-one.
于本发明的多个实施方式中,透镜122具有相对设置的第一表面122a与第二表面122b。于此,第一表面122a可为平面,第二表面122b在与光轴C垂直的二维方向上具有曲率。当然不应以此限制本发明的范围,透镜122可以具有任何结构,其适用于在二维方向上提供均匀的透镜光学能力(lens power)。In various embodiments of the present invention, the lens 122 has a first surface 122a and a second surface 122b oppositely disposed. Here, the first surface 122a may be a plane, and the second surface 122b has curvature in a two-dimensional direction perpendicular to the optical axis C. Referring to FIG. Of course, this should not limit the scope of the present invention, and the lens 122 can have any structure suitable for providing uniform lens power in two dimensions.
同时参照图4与图5。图5为图4的轴棱镜132的立体示意图。轴棱镜132包含表面132a以及锥形凹面132b。表面132a邻近于透镜阵列120且可为平面。锥形凹面132b相对表面132a设置。参照图5,藉由锥形凹面132b,轴棱镜132适用于在切线方向(tangential direction)TD1、TD2上提供透镜光学能力(lens power),但在辐射方向(radial direction)RD1方向上提供类似菱镜的往外偏折效果。在此,以光轴C为轴向方向,辐射方向RD1以光轴C为中心向外发散,切线方向TD1则与辐射方向RD1垂直。每个轴棱镜132在不同的高度上有不同的切线方向,例如切线方向TD1、TD2,多个切线方向上的轴棱镜132具有不同的透镜光学能力。具体而言,因应多个切线方向,每个轴棱镜132具有焦线132c(参照图4),其由多个轴棱镜132的焦点所组成。于本发明的多个实施方式中,透镜122的焦点122c至少位于对应的轴棱镜132的焦线132c上。藉此,可以将透镜122与轴棱镜132的透镜光学能力组合,而达到放大影像(亦即投影光源分布))的功效。Refer to FIG. 4 and FIG. 5 at the same time. FIG. 5 is a schematic perspective view of the axicon 132 in FIG. 4 . The axicon 132 includes a surface 132a and a tapered concave surface 132b. The surface 132a is adjacent to the lens array 120 and may be a plane. The conical concave surface 132b is disposed opposite to the surface 132a. Referring to Fig. 5, by means of the tapered concave surface 132b, the axicon 132 is suitable for providing lens power in the tangential direction (tangential direction) TD1, TD2, but providing similar rhombic power in the direction of the radiation direction (radial direction) RD1. The outward deflection effect of the mirror. Here, the optical axis C is taken as the axial direction, the radiation direction RD1 diverges outward from the center of the optical axis C, and the tangential direction TD1 is perpendicular to the radiation direction RD1 . Each axicon 132 has different tangent directions at different heights, such as tangent directions TD1 and TD2, and the axicons 132 in multiple tangent directions have different lens optical powers. Specifically, each axicon 132 has a focal line 132c (refer to FIG. 4 ) corresponding to a plurality of tangential directions, which is composed of focal points of a plurality of axicons 132 . In various embodiments of the present invention, the focal point 122c of the lens 122 is at least located on the focal line 132c of the corresponding axicon prism 132 . In this way, the optical capabilities of the lens 122 and the axicon 132 can be combined to achieve the effect of magnifying the image (that is, projecting the distribution of the light source).
应了解到,轴棱镜132的结构并不以图中所示的2的结构为限,实际上,轴棱镜132可以是能够达到上述特性的任何结构,例如表面132a可以为锥形凹面、锥形凸面或曲面等。于本发明的部分实施方式中,锥形凹面132b与光轴C夹一角度E,角度E的范围大约为50o到80o之间。It should be understood that the structure of the axicon 132 is not limited to the structure of 2 shown in the figure, in fact, the axicon 132 can be any structure that can achieve the above-mentioned characteristics, for example, the surface 132a can be a tapered concave surface, a tapered Convex or curved surfaces etc. In some embodiments of the present invention, the tapered concave surface 132b forms an angle E with the optical axis C, and the range of the angle E is about 50° to 80°.
以下详细说明透镜阵列120以及内凹轴棱镜阵列130的光学特性。同时参照图3、图6与图7。图6与为图3的立体显示装置100于切线方向TD的光路示意图。图7为图3的立体显示装置100于辐射方向RD的光路示意图。于本发明的多个实施方式中,若将光线拆解为辐射方向RD以及多个切线方向TD分布的光线,则可以多个切线方向TD以及辐射方向RD来考虑透镜阵列120以及内凹轴棱镜阵列130的光学能力。图3中,以第一平面P1的垂直中心线为轴向方向,辐射方向RD以轴向方向为中心向外发散,切线方向TD则与辐射方向RD垂直。如同前述,轴棱镜132适用于在切线方向上提供透镜光学能力,在辐射方向上提供类似菱镜的往外偏折效果。同时参照图3、图6与图7,透镜阵列120在多个切线方向TD与辐射方向RD上表现一致,而内凹轴棱镜阵列130在多个切线方向TD或辐射方向RD上表现不同。The optical characteristics of the lens array 120 and the concave axicon array 130 will be described in detail below. Refer to FIG. 3 , FIG. 6 and FIG. 7 at the same time. FIG. 6 is a schematic diagram of the optical path of the stereoscopic display device 100 in FIG. 3 in the tangential direction TD. FIG. 7 is a schematic diagram of the optical path of the stereoscopic display device 100 in FIG. 3 in the radiation direction RD. In multiple embodiments of the present invention, if the light is decomposed into rays distributed in the radiation direction RD and multiple tangential directions TD, the lens array 120 and the concave axicon prism can be considered in multiple tangential directions TD and radiation directions RD The optical power of the array 130. In FIG. 3 , the vertical centerline of the first plane P1 is taken as the axial direction, the radiation direction RD is centered on the axial direction and diverges outward, and the tangent direction TD is perpendicular to the radiation direction RD. As mentioned above, the axicon 132 is suitable for providing lens optical power in the tangential direction, and providing an outward deflection effect similar to a prism in the radiation direction. Referring to FIG. 3 , FIG. 6 and FIG. 7 , the lens array 120 behaves the same in multiple tangential directions TD and radiation directions RD, while the concave axicon array 130 behaves differently in multiple tangential directions TD or radiation directions RD.
参照图3、图4与图6,针对在某一切线方向TD上经过轴棱镜132的光束,每个轴棱镜132可以视为凹透镜,其可对该光束提供一定的透镜光学能力(lens power)。于部分实施方式中,可以设计在此凹透镜与透镜122共焦,以达到清晰地放大影像(投影光源分布)的效果。于本发明的部分实施方式中,透镜122的焦距fa大于此凹透镜(轴棱镜132)的焦距fba,其影像(投影光源分布)的水平放大倍率Φ/θ(参照图2)大致为(fa/fba)。此轴棱镜132的透镜光学能力能够校正视域R中水平方向的影像。应了解到,实际上轴棱镜132具有焦线132c,以对应多个不同的切线方向TD,于其他实施方式中,针对其他切线方向TD而言,此凹透镜(轴棱镜132)可不与透镜122共焦。Referring to Fig. 3, Fig. 4 and Fig. 6, for a light beam passing through the axicon 132 in a certain tangential direction TD, each axicon 132 can be regarded as a concave lens, which can provide a certain lens power to the light beam . In some implementations, the concave lens and the lens 122 can be designed to be confocal, so as to achieve the effect of clearly magnifying the image (projection light source distribution). In some embodiments of the present invention, the focal length fa of the lens 122 is greater than the focal length fba of the concave lens (axicon 132), and the horizontal magnification Φ/θ (refer to FIG. 2 ) of its image (projection light source distribution) is approximately (fa/ fba). The optical capability of the lens of the axicon 132 can correct the image in the horizontal direction in the field of view R. It should be understood that, in fact, the axicon 132 has a focal line 132c to correspond to a plurality of different tangential directions TD. coke.
另一方面,参照图3、图4与图7,针对在辐射方向RD上的光束,可以将内凹轴棱镜阵列130的轴棱镜132视为菱镜,其可以在辐射方向RD上提供偏折效果。有鉴于菱镜的焦距fbr接近无限大,在垂直方向没有其影像(投影光源分布)放大的效果。参照图2,其中B表示视域R的影像高度,A表示影像OM的辐射宽度,对于视域R而言,轴棱镜132的菱镜偏折效果提供了对桌面俯视的仰角,而透镜120的焦距fa能够扩散视域R中垂直方向的影像(投影光源分布)。On the other hand, referring to FIG. 3 , FIG. 4 and FIG. 7 , for the light beam in the radiation direction RD, the axicon 132 of the concave axicon array 130 can be regarded as a prism, which can provide deflection in the radiation direction RD. Effect. In view of the fact that the focal length fbr of the prism is close to infinity, there is no effect of magnifying its image (projected light source distribution) in the vertical direction. With reference to Fig. 2, wherein B represents the image height of viewing area R, and A represents the radiation width of image OM, for viewing area R, the rhomboid deflection effect of axicon 132 has provided the elevation angle of looking down on the desktop, and the angle of view of lens 120 The focal length fa can diffuse the image in the vertical direction in the field of view R (projection light source distribution).
由以上叙述可知,于部分实施方式中,内凹轴棱镜阵列130可在水平方向上提供透镜光学能力(lens power)在垂直方向上提供扩散效果。It can be known from the above description that in some embodiments, the concave axicon array 130 can provide lens power in the horizontal direction and provide a diffusion effect in the vertical direction.
于部分实施方式中,可参照图1与图4,立体显示装置100的透镜堆栈ST可进一步包含基板140。基板140设置于透镜阵列120与内凹轴棱镜阵列130之间。于部份实施方式中,透镜阵列120或内凹轴棱镜阵列130可以透过压印并固化基板140上的胶体而形成,使得透镜阵列120或内凹轴棱镜阵列130可直接设置于基板140的表面142或144上。更甚者,于部份实施方式中,透镜阵列120与凹轴棱镜阵列130可分别直接设置于基板140的相对二表面142与144。In some implementations, referring to FIG. 1 and FIG. 4 , the lens stack ST of the stereoscopic display device 100 may further include a substrate 140 . The substrate 140 is disposed between the lens array 120 and the concave axicon array 130 . In some embodiments, the lens array 120 or the concave axicon array 130 can be formed by embossing and curing the glue on the substrate 140, so that the lens array 120 or the concave axicon array 130 can be directly disposed on the substrate 140. surface 142 or 144. What's more, in some embodiments, the lens array 120 and the concave axicon prism array 130 can be directly disposed on the two opposite surfaces 142 and 144 of the substrate 140 respectively.
于部分实施方式中,透镜122均匀地设置于基板140的表面142上,轴棱镜132均匀地设置于基板140的表面144上,而使来自投影机110的大部份的光线可穿过透镜122与轴棱镜132而输送至视域R。In some embodiments, the lens 122 is uniformly disposed on the surface 142 of the substrate 140, and the axicon 132 is uniformly disposed on the surface 144 of the substrate 140, so that most of the light from the projector 110 can pass through the lens 122. and the axicon 132 to deliver to the field of view R.
于部分实施方式中,基板140可以作为桌面屏幕使用,而使内凹轴棱镜阵列130系设置于桌面屏幕上,使用者可以直接观察到内凹轴棱镜阵列130。应了解到,基板140并非必要的配置,于部份实施方式中,可以省略基板140的配置,而将透镜阵列120与内凹轴棱镜阵列130作为独立的结构,例如,多个透镜或多个内凹轴设置于其他薄膜上。于其他实施方式中,立体显示装置100可以包含其他的透光盖板(未绘示)作为桌体TAB的桌面,以保护内凹轴棱镜阵列130与透镜阵列120,用户可透过透光盖板观察到内凹轴棱镜阵列130。举例来说,透光盖板可为玻璃。In some embodiments, the substrate 140 can be used as a desktop screen, and the concave axicon array 130 is disposed on the desktop screen, and the user can directly observe the concave axicon array 130 . It should be understood that the substrate 140 is not an essential configuration. In some embodiments, the configuration of the substrate 140 can be omitted, and the lens array 120 and the concave axicon array 130 are used as independent structures, for example, multiple lenses or multiple The concave shaft is arranged on other films. In other embodiments, the stereoscopic display device 100 may include other light-transmitting cover plates (not shown) as the table top of the table body TAB to protect the concave axicon prism array 130 and the lens array 120, and the user can see through the light-transmitting cover The panel observes the concave axicon array 130 . For example, the transparent cover can be glass.
于部分实施方式中,可参照图1,立体显示装置100的透镜堆栈ST可进一步包含第一菲涅尔透镜150以及第二菲涅尔透镜160。第一菲涅尔透镜150设置于投影机110与透镜阵列120之间。第一菲涅尔透镜150用以将来自各个投影机110的光线转换为大致正向入射的光线,进而传送至透镜阵列120与内凹轴棱镜阵列130。第二菲涅尔透镜160设置于内凹轴棱镜阵列130相对透镜阵列120的一侧,用以协助将来自内凹轴棱镜阵列130的光线传送至视域R。应了解到,第一菲涅尔透镜150与第二菲涅尔透镜160并非必要的设置,于部份实施方式中,可以省略第一菲涅尔透镜150、第二菲涅尔透镜160或两者。In some implementations, referring to FIG. 1 , the lens stack ST of the stereoscopic display device 100 may further include a first Fresnel lens 150 and a second Fresnel lens 160 . The first Fresnel lens 150 is disposed between the projector 110 and the lens array 120 . The first Fresnel lens 150 is used to convert the light from each projector 110 into substantially normal incident light, and then transmit to the lens array 120 and the concave axicon array 130 . The second Fresnel lens 160 is disposed on a side of the concave axicon array 130 opposite to the lens array 120 to assist in transmitting the light from the concave axicon array 130 to the viewing region R. It should be understood that the first Fresnel lens 150 and the second Fresnel lens 160 are not necessarily provided. In some embodiments, the first Fresnel lens 150, the second Fresnel lens 160 or both can be omitted. By.
图8为本发明的另一实施方式的立体显示装置的部分元件的侧视图。本实施方式与图2的实施方式相似,差别在于:于本实施方式中,透镜阵列120’包含第一柱状透镜(Lenticular Lens)124以及第二柱状透镜126。柱状透镜于一方向上的透镜光学能力优于另一方向的透镜光学能力。举例而言,柱状透镜为仅于一方向上具有透镜光学能力,而在延伸方向上不具有透镜光学能力。延伸方向与具有透镜光学能力的方向大致垂直。于此,第一柱状透镜124的延伸方向与第二柱状透镜126的延伸方向互相垂直。藉由第一柱状透镜124以及第二柱状透镜126可以组合成在二维方向上具有皆具有透镜光学能力的结构。FIG. 8 is a side view of some components of a stereoscopic display device according to another embodiment of the present invention. This embodiment is similar to the embodiment of FIG. 2 , the difference is that: in this embodiment, the lens array 120 ′ includes a first lenticular lens (Lenticular Lens) 124 and a second lenticular lens 126 . The optical power of the lenticular lens in one direction is better than that of the lens in the other direction. For example, a lenticular lens has lens power only in one direction, but does not have lens power in the extending direction. The extending direction is substantially perpendicular to the direction having the optical power of the lens. Here, the extending direction of the first lenticular lens 124 and the extending direction of the second lenticular lens 126 are perpendicular to each other. The first lenticular lens 124 and the second lenticular lens 126 can be combined into a structure having lens optical power in two-dimensional directions.
于本发明的部分实施方式中,第一柱状透镜124与第二柱状透镜126于内凹轴棱镜阵列130所在的平面(即基板140的表面144)上的投影形成多个交错位置X,内凹轴棱镜阵列130包含多个轴棱镜132,每一轴棱镜132与每一交错位置X的中心大致对齐。藉此,经过交错位置X的光线大致经过轴棱镜132,而使光线能同时受到第一柱状透镜124、第二柱状透镜126与轴棱镜132的光学透镜能力作用。In some embodiments of the present invention, the projections of the first lenticular lens 124 and the second lenticular lens 126 on the plane where the concave axicon array 130 is located (that is, the surface 144 of the substrate 140) form a plurality of staggered positions X, concave The axicon array 130 includes a plurality of axicons 132 , and each axicon 132 is substantially aligned with the center of each staggered position X. As shown in FIG. In this way, the light passing through the staggered position X roughly passes through the axicon 132 , so that the light can be simultaneously affected by the optical lens capabilities of the first lenticular lens 124 , the second lenticular lens 126 , and the axicon 132 .
于此,基板140设置于第一柱状透镜124与内凹轴棱镜阵列130之间。于部分实施方式中,第一柱状透镜124与内凹轴棱镜阵列130分别直接设置于基板140的相对二表面142与144。藉以增加结构强度,并整合第一柱状透镜124与内凹轴棱镜阵列130与制程步骤。或者,于其他实施方式中,可以设置额外的基板,以供第一柱状透镜124与第二柱状透镜126设置于该额外的基板的相对两表面上。Here, the substrate 140 is disposed between the first lenticular lens 124 and the concave axicon array 130 . In some embodiments, the first lenticular lens 124 and the concave axicon array 130 are directly disposed on two opposite surfaces 142 and 144 of the substrate 140 , respectively. In order to increase the structural strength, and integrate the first lenticular lens 124 and the concave axicon array 130 with the process steps. Alternatively, in other embodiments, an additional substrate may be provided, so that the first lenticular lens 124 and the second lenticular lens 126 are disposed on opposite surfaces of the additional substrate.
本发明的多个实施方式提供一种立体显示装置,藉由设置内凹轴棱镜阵列,以将影像投影至多个视域。针对视域,内凹轴棱镜阵列可在水平方向上提供透镜光学能力且在垂直方向上提供扩散效果。Several embodiments of the present invention provide a stereoscopic display device, by setting a concave axicon array to project images to multiple viewing areas. For the field of view, the concave axicon array provides lens power in the horizontal direction and a diffuse effect in the vertical direction.
虽然本发明已以多种实施方式揭露如上,然其并非用以限定本发明,任何熟悉本领域的相关技术人员,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,但这些更动与润饰均应包含于本发明所附权利要求的保护范围。Although the present invention has been disclosed above in various embodiments, it is not intended to limit the present invention. Any person familiar with the relevant art in the field may make various changes and modifications without departing from the spirit and scope of the present invention. modification, but these changes and modifications should be included in the scope of protection of the appended claims of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610195037.3ACN107290863B (en) | 2016-03-31 | 2016-03-31 | Stereoscopic display device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610195037.3ACN107290863B (en) | 2016-03-31 | 2016-03-31 | Stereoscopic display device |
| Publication Number | Publication Date |
|---|---|
| CN107290863Atrue CN107290863A (en) | 2017-10-24 |
| CN107290863B CN107290863B (en) | 2019-08-16 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610195037.3AActiveCN107290863B (en) | 2016-03-31 | 2016-03-31 | Stereoscopic display device |
| Country | Link |
|---|---|
| CN (1) | CN107290863B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102168828A (en)* | 2010-12-31 | 2011-08-31 | 友达光电股份有限公司 | Three-dimensional display device and backlight module thereof |
| CN102169282A (en)* | 2011-04-19 | 2011-08-31 | 浙江大学 | Multi-view desktop type three-dimensional display device |
| CN102279465A (en)* | 2011-07-22 | 2011-12-14 | 上海丽恒光微电子科技有限公司 | Display device, projection device and near sight display device and forming method thereof |
| US20130176538A1 (en)* | 2012-01-11 | 2013-07-11 | Delta Electronics, Inc. | Multi-view autostereoscopic display |
| CN104714306A (en)* | 2014-12-02 | 2015-06-17 | 上海理鑫光学科技有限公司 | Suspension type naked-eye multi-view 3D display unit |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102168828A (en)* | 2010-12-31 | 2011-08-31 | 友达光电股份有限公司 | Three-dimensional display device and backlight module thereof |
| CN102169282A (en)* | 2011-04-19 | 2011-08-31 | 浙江大学 | Multi-view desktop type three-dimensional display device |
| CN102279465A (en)* | 2011-07-22 | 2011-12-14 | 上海丽恒光微电子科技有限公司 | Display device, projection device and near sight display device and forming method thereof |
| US20130176538A1 (en)* | 2012-01-11 | 2013-07-11 | Delta Electronics, Inc. | Multi-view autostereoscopic display |
| CN104714306A (en)* | 2014-12-02 | 2015-06-17 | 上海理鑫光学科技有限公司 | Suspension type naked-eye multi-view 3D display unit |
| Publication number | Publication date |
|---|---|
| CN107290863B (en) | 2019-08-16 |
| Publication | Publication Date | Title |
|---|---|---|
| US10663626B2 (en) | Advanced refractive optics for immersive virtual reality | |
| CN109557666B (en) | Near-eye optical imaging system, near-eye display device and head-mounted display device | |
| US8040617B2 (en) | Real image display device with wide viewing angle | |
| WO2017041308A1 (en) | Optical module, optical apparatus and wearable display apparatus | |
| CN102445762A (en) | Naked eye 3D (three-dimensional) projection screen and naked eye 3D projection system | |
| CN109874302B (en) | Optical system, image magnifying device, virtual reality glasses and augmented reality glasses | |
| KR20190057199A (en) | Headwear display device | |
| CN108132528A (en) | Eyepiece optical system | |
| Song et al. | Design and assessment of a wide FOV and high-resolution optical tiled head-mounted display | |
| US20230247187A1 (en) | Ocular optical system | |
| US10634823B2 (en) | Lens for extended light source and design methods thereof | |
| WO2016037434A1 (en) | Stereoscopic display device | |
| TW201901217A (en) | Eyepiece optical system | |
| TWI591385B (en) | Stereo Display Device | |
| TWI752649B (en) | Near-eye light field display device | |
| CN107290863B (en) | Stereoscopic display device | |
| TW201344244A (en) | Naked-eye 3-D rear projection display device | |
| US10261332B1 (en) | Eyepiece lens with protected Fresnel and diffractive surfaces | |
| TWI571656B (en) | Illumination module and displaying device | |
| US11237308B2 (en) | Display apparatus | |
| WO2019095215A1 (en) | Near-eye display device | |
| US20240177637A1 (en) | Illumination redistributor for display panel | |
| TWI692654B (en) | Ocular optical system | |
| JP2009025672A (en) | Video appreciation device | |
| CN105549207B (en) | Multi-view angle stereo display device and angle amplifying screen thereof |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |