相关申请的交叉引用Cross References to Related Applications
本申请要求于2014年11月24日提交的美国临时专利申请No.62/083311的优先权,该美国临时专利申请的全部内容合并在本文中。This application claims priority to US Provisional Patent Application No. 62/083311, filed November 24, 2014, which is incorporated herein in its entirety.
技术领域technical field
本公开内容总体上涉及3D打印机,更特别地,涉及用于3D打印机的改造系统。The present disclosure relates generally to 3D printers, and more particularly, to retrofit systems for 3D printers.
背景技术Background technique
参照图1和图2,它们示出了使用现有技术的3D打印机制造的产品的示例,其中,在打印过程中出现误差。Referring to FIGS. 1 and 2 , they illustrate examples of products manufactured using a related art 3D printer, in which errors occur during printing.
提供能够避免或消除至少一些打印误差的3D打印机会是有益的。It would be beneficial to provide a 3D printer that avoids or eliminates at least some printing errors.
发明内容Contents of the invention
一方面,提供了一种3D打印机,该3D打印机包括:打印头,其具有被布置成将丝材馈送到加热器的挤出机电机(即步进电机);打印头定位系统,其被配置成使打印头相对于打印表面移动;步进驱动器,其连接至挤出机电机并且能够操作以控制挤出机电机的操作;传感器模块,其包括被布置成检测丝材的馈送速率的馈送速率传感器;以及控制系统,其被编程为从传感器模块接收指示丝材的馈送速率的信号并且基于来自传感器模块的信号来控制步进驱动器的操作。In one aspect, there is provided a 3D printer comprising: a printhead having an extruder motor (ie, a stepper motor) arranged to feed a filament to a heater; a printhead positioning system configured to to move the print head relative to the printing surface; a stepper drive connected to the extruder motor and operable to control the operation of the extruder motor; a sensor module comprising a feed rate arranged to detect the feed rate of the filament a sensor; and a control system programmed to receive a signal from the sensor module indicative of the feed rate of the wire and to control operation of the stepper drive based on the signal from the sensor module.
另一方面,提供了一种用于3D打印机的改造系统,其中3D打印机包括:打印头,其具有被布置成将丝材馈送到加热器的挤出机电机,其中挤出机电机是步进电机;打印头定位系统,其被配置成使打印头相对于打印表面移动;步进驱动器,其连接至挤出机电机并且能够操作以控制挤出机电机的操作;以及主控制器,其被配置成经由步进驱动器来控制挤出机电机的操作。改造系统包括:传感器模块,其包括被布置成检测丝材的馈送速率的馈送速率传感器;以及拦截控制器,其从主控制器接收低级命令并且被编程为:In another aspect, there is provided a retrofit system for a 3D printer, wherein the 3D printer comprises: a print head having an extruder motor arranged to feed filament to a heater, wherein the extruder motor is a stepper a motor; a printhead positioning system configured to move the printhead relative to the printing surface; a stepper drive connected to the extruder motor and operable to control the operation of the extruder motor; and a main controller controlled by Configured to control the operation of the extruder motor via a stepper drive. The retrofit system comprises: a sensor module comprising a feed rate sensor arranged to detect the feed rate of the wire; and an intercept controller which receives low level commands from the master controller and is programmed to:
从传感器模块接收指示丝材的馈送速率的信号,并且receiving a signal indicative of the feed rate of the wire from the sensor module, and
基于来自传感器模块的信号来控制步进驱动器的操作。The operation of the stepper drive is controlled based on the signal from the sensor module.
另一方面,提供了一种3D打印机,该3D打印机包括:打印头,其具有被布置成将丝材馈送到加热器的挤出机电机,其中挤出机电机是步进电机;X和Y打印头定位系统,其被配置成使打印头沿平行于打印表面的两个正交方向移动,其中X和Y打印头定位系统包括X定位电机和Y定位电机,X定位电机和Y定位电机被配置成使打印头分别沿X方向和Y方向移动;步进驱动器,其连接至挤出机电机并且能够操作以控制挤出机电机的操作;X编码器和Y编码器,X编码器被布置成感测X定位电机的旋转,Y编码器被布置成感测Y定位电机的旋转;以及控制系统,其包括主控制器,该主控制器被编程为从命令馈送设备接收高级命令,其中高级命令指示打印头的目标位置,并且主控制器被编程为向X定位电机和Y定位电机发送低级命令以使打印头移动至目标位置;以及拦截控制器,其被编程为接收高级命令,从X编码器和Y编码器接收指示打印头的实际位置的信号,并且当通过拦截控制器检测到打印头的实际位置相比于目标位置的误差时,使打印头移动以消除误差。In another aspect, there is provided a 3D printer comprising: a print head having an extruder motor arranged to feed filament to a heater, wherein the extruder motor is a stepper motor; X and Y a print head positioning system configured to move the print head in two orthogonal directions parallel to the printing surface, wherein the X and Y print head positioning systems include an X positioning motor and a Y positioning motor, the X positioning motor and the Y positioning motor are configured to move the print head in the X direction and the Y direction, respectively; a stepper driver, which is connected to the extruder motor and operable to control the operation of the extruder motor; an X encoder and a Y encoder, the X encoder being arranged to sense rotation of the X positioning motor, a Y encoder arranged to sense rotation of the Y positioning motor; and a control system comprising a master controller programmed to receive advanced commands from a command feed device, wherein the advanced commands indicate the target position of the printhead, and the main controller is programmed to send low-level commands to the X positioning motor and Y positioning motor to move the printhead to the target position; and the intercept controller, which is programmed to receive high-level commands from the X The encoder and Y encoder receive signals indicative of the actual position of the print head and when an error in the actual position of the print head compared to the target position is detected by the intercept controller, the print head is moved to eliminate the error.
另一方面,一种用于3D打印机的改造系统,其中3D打印机包括:打印头,其具有被布置成将丝材馈送到加热器的挤出机电机,其中挤出机电机是步进电机;X和Y打印头定位系统,其被配置成使打印头沿平行于打印表面的两个正交方向移动,其中X和Y打印头定位系统包括X定位电机和Y定位电机,X定位电机和Y定位电机被配置成使打印头分别沿X方向和Y方向移动;步进驱动器,其连接至挤出机电机并且能够操作以控制挤出机电机的操作;以及主控制器,其被编程为从命令馈送设备接收高级命令,其中高级命令指示打印头的目标位置,并且主控制器被编程为向X定位电机和Y定位电机发送低级命令以使打印头移动至目标位置。改造系统包括:X编码器和Y编码器,X编码器被布置成感测X定位电机的旋转,Y编码器被布置成感测Y定位电机的旋转;以及拦截控制器,其被编程为接收高级命令,从X编码器和Y编码器接收指示打印头的实际位置的信号,并且当通过拦截控制器检测到打印头的实际位置相比于目标位置的误差时,使打印头移动以消除误差。In another aspect, a retrofit system for a 3D printer, wherein the 3D printer includes: a printhead having an extruder motor arranged to feed filament to a heater, wherein the extruder motor is a stepper motor; X and Y print head positioning system, which is configured to move the print head in two orthogonal directions parallel to the printing surface, wherein the X and Y print head positioning system includes an X positioning motor and a Y positioning motor, an X positioning motor and a Y positioning motor. a positioning motor configured to move the printhead in the X and Y directions, respectively; a stepper drive connected to the extruder motor and operable to control the operation of the extruder motor; and a master controller programmed to slave The command feed device receives high-level commands indicating the target position of the printhead, and the main controller is programmed to send low-level commands to the X and Y positioning motors to move the printhead to the target position. The retrofit system includes: an X encoder arranged to sense rotation of the X positioning motor and a Y encoder arranged to sense rotation of the Y positioning motor; and an intercept controller programmed to receive Advanced command to receive signals from the X and Y encoders indicating the actual position of the print head and when an error in the actual position of the print head compared to the target position is detected by the intercept controller, move the print head to remove the error .
附图说明Description of drawings
参照附图将更容易理解本公开内容的前述及其他方面,在附图中:The foregoing and other aspects of the present disclosure will be more readily understood with reference to the accompanying drawings, in which:
图1是具有侧移型误差的3D打印项目的透视图;Figure 1 is a perspective view of a 3D printed project with side-shift type errors;
图2是具有沉积了不足量丝材误差的3D打印项目的透视图;Figure 2 is a perspective view of a 3D printed project with an insufficient amount of filament deposited error;
图3是根据本公开内容的实施方式的3D打印机的透视图;3 is a perspective view of a 3D printer according to an embodiment of the present disclosure;
图4是来自图3中示出的3D打印机的传感器模块的一部分的放大透视图;Figure 4 is an enlarged perspective view of a portion of the sensor module from the 3D printer shown in Figure 3;
图4a是图4中示出的传感器模块的一部分的进一步放大的透视图;Figure 4a is a further enlarged perspective view of a portion of the sensor module shown in Figure 4;
图4b是图4中示出的传感器模块的一部分的更进一步放大的透视图;Figure 4b is a still further enlarged perspective view of a portion of the sensor module shown in Figure 4;
图5是图4中示出的传感器模块的变型的放大透视图;FIG. 5 is an enlarged perspective view of a variation of the sensor module shown in FIG. 4;
图6是图5中示出的传感器模块的变型的截面透视图;6 is a cross-sectional perspective view of a variation of the sensor module shown in FIG. 5;
图6a是图5中示出的传感器模块的变型的另一截面透视图;Figure 6a is another cross-sectional perspective view of a variation of the sensor module shown in Figure 5;
图7是图1中示出的打印机的示意性图示;Figure 7 is a schematic illustration of the printer shown in Figure 1;
图8a是来自图1中示出的打印机的控制器的透视图;Figure 8a is a perspective view of the controller from the printer shown in Figure 1;
图8b是图8a中示出的控制器的一部分的透视图;Figure 8b is a perspective view of a portion of the controller shown in Figure 8a;
图8c是对图8b中示出的控制器的一部分的修改的透视图;Figure 8c is a perspective view of a modification to a portion of the controller shown in Figure 8b;
图9是图1中示出的打印机的变型的示意性图示;Figure 9 is a schematic illustration of a variation of the printer shown in Figure 1;
图10是图1中示出的打印机的另一变型的示意性图示;Fig. 10 is a schematic illustration of another modification of the printer shown in Fig. 1;
图11是图10中示出的打印机的变型的另一示意性图示;Figure 11 is another schematic illustration of a variation of the printer shown in Figure 10;
图12是操作图10和图11中示出的打印机的方法的流程图;Figure 12 is a flowchart of a method of operating the printer shown in Figures 10 and 11;
图13是图10中示出的打印机的可选特征的示意性图示;Figure 13 is a schematic illustration of optional features of the printer shown in Figure 10;
图14是示出图13中示出的打印机的操作的流程图;FIG. 14 is a flowchart showing the operation of the printer shown in FIG. 13;
图15a是示出实际打印和表示在打印期间出现的误差的数据的视觉表示;以及Figure 15a is a visual representation showing actual printing and data representing errors that occurred during printing; and
图15b是示出在打印过程中没有进行修正的情况下图15a中的打印将会看起来如何的视觉表示。Figure 15b is a visual representation showing how the print in Figure 15a would have looked if no corrections had been made during printing.
具体实施方式detailed description
参照图3,其示出了可以使用的打印系统10,并且该打印系统10将降低在图1和图2中示出的至少一种类型的打印误差的可能性。Referring to FIG. 3 , there is shown a printing system 10 that may be used and will reduce the likelihood of at least one type of printing error shown in FIGS. 1 and 2 .
打印系统10包括:打印头16,其可操作以将丝材30沉积在打印表面P上;打印头定位系统11,其可以包括打印头X和Y定位系统13,该打印头X和Y定位系统13被配置成使打印头16沿X和Y方向(即平行于打印表面P的两个正交方向)移动;以及打印头高度定位系统(未示出)。The printing system 10 includes: a printhead 16 operable to deposit filament 30 on a printing surface P; a printhead positioning system 11 which may include a printhead X and Y positioning system 13 which 13 is configured to move the printhead 16 in X and Y directions (ie two orthogonal directions parallel to the printing surface P); and a printhead height positioning system (not shown).
第一打印头X和Y定位系统可以包括打印头X定位系统12和打印头Y定位系统14。X定位系统12可以包括:X定位系统驱动电机102,该X定位系统驱动电机102具有X定位系统驱动滑轮104;X定位系统同步齿型带106;X定位系统惰性滑轮108;以及沿X方向(即,沿两个正交方向中的第一方向)延伸的X定位系统导引结构110。同步齿型带106在驱动滑轮104与惰性滑轮108之间延伸。滑架112经由X定位系统带连接器114固定地连接至同步齿型带106。X定位系统驱动电机102可向前和向后驱动,以向前和向后驱动滑轮104的旋转,这转而向前和向后驱动同步齿型带106,从而使滑架112沿导引结构110在X方向上来回移动。导引结构可以包括沿X方向延伸的一个或更多个X定位系统导引杆116和118。在对同步齿型带106进行驱动期间,滑架112沿导引杆116和导引杆118在X方向上来回滑动。The first printhead X and Y positioning system may include a printhead X positioning system 12 and a printhead Y positioning system 14 . X positioning system 12 can comprise: X positioning system drive motor 102, and this X positioning system drive motor 102 has X positioning system driving pulley 104; X positioning system synchronous toothed belt 106; X positioning system idler pulley 108; That is, the X-positioning system guide structure 110 extends along a first of two orthogonal directions). Timing belt 106 extends between drive pulley 104 and idler pulley 108 . Carriage 112 is fixedly connected to timing toothed belt 106 via X positioning system belt connector 114 . The X positioning system drive motor 102 can be driven forward and backward to drive the rotation of the pulley 104 forward and backward, which in turn drives the timing belt 106 forward and backward, thereby causing the carriage 112 to move along the guide structure. 110 moves back and forth in the X direction. The guide structure may include one or more X positioning system guide rods 116 and 118 extending in the X direction. During driving of the timing belt 106 , the carriage 112 slides back and forth in the X direction along the guide rod 116 and the guide rod 118 .
Y定位系统14可以包括:Y定位系统驱动电机122,该Y定位系统驱动电机122具有Y定位系统驱动滑轮124;Y定位系统同步齿型带126、Y定位系统惰性滑轮128;以及沿Y方向(即,沿两个正交方向中的第二方向)延伸的Y定位系统导引结构130。同步齿型带126在驱动滑轮124与惰性滑轮128之间延伸。打印头16经由Y定位系统带连接器134固定地连接至同步齿型带126。Y定位系统驱动电机122可向前和向后驱动,以向前和向后驱动滑轮124的旋转,这转而向前和向后驱动同步齿型带126,从而使打印头16沿导引结构130在Y方向上来回移动。导引结构130可以包括沿Y方向延伸的一个或更多个Y定位系统导引杆136和138。在对同步齿型带126进行驱动期间,打印头16沿导引杆136和导引杆138在Y方向上来回滑动。Y positioning system 14 can comprise: Y positioning system driving motor 122, and this Y positioning system driving motor 122 has Y positioning system driving pulley 124; Y positioning system synchronous toothed belt 126, Y positioning system idle pulley 128; And along Y direction ( That is, the Y positioning system guide structure 130 extending along the second of two orthogonal directions). Timing belt 126 extends between drive pulley 124 and idler pulley 128 . Printhead 16 is fixedly connected to timing toothed belt 126 via Y positioning system belt connector 134 . The Y positioning system drive motor 122 can be driven forward and backward to drive the rotation of the pulley 124 forward and backward, which in turn drives the timing belt 126 forward and backward, thereby causing the print head 16 to move along the guide structure. 130 moves back and forth in the Y direction. The guide structure 130 may include one or more Y positioning system guide rods 136 and 138 extending in the Y direction. During driving of the timing belt 126 , the print head 16 slides back and forth in the Y direction along the guide rod 136 and the guide rod 138 .
仅为了方便起见,在图中未绘出同步齿型带106和同步齿型带126上的齿。For convenience only, the teeth on the timing belt 106 and the timing belt 126 are not depicted in the figure.
X方向和Y方向被示为与打印机10的各个部件的边缘例如打印表面P的侧边大致对齐。然而,将注意到的是,X方向和Y方向不需要与打印表面的侧边或者与打印机10的其他部件平行;X方向和Y方向可以沿与打印表面P平行的任何其他合适的正交方向延伸。The X and Y directions are shown generally aligned with the edges of various components of the printer 10 , such as the sides of the printing surface P. As shown in FIG. However, it will be noted that the X and Y directions need not be parallel to the sides of the printing surface or other components of the printer 10; the X and Y directions may be along any other suitable orthogonal direction parallel to the printing surface P extend.
X和Y打印头定位系统13不需要包括两个单独的X定位系统12和Y定位系统14,而是可以替代地具有本领域已知的任何其他配置——包括具有用于沿两个正交方向的移动的单个集成系统的配置。The X and Y printhead positioning system 13 need not comprise two separate X positioning systems 12 and Y positioning systems 14, but may instead have any other configuration known in the art - including having a The configuration of a single integrated system for the movement of direction.
打印头高度定位系统(未示出)被配置用于控制打印头16相对于打印表面P的高度,并且可以是本领域已知的任何合适的打印头高度定位系统。A printhead height positioning system (not shown) is configured to control the height of printhead 16 relative to printing surface P and may be any suitable printhead height positioning system known in the art.
打印头组件16包括挤出机,该挤出机包括具有输出齿轮28的挤出机电机26,输出齿轮28与打印材料的丝材30接合并且将丝材30向前驱动到加热单元32中。挤出机电机26可以是任何合适类型的电机,例如由步进驱动器68控制的步进电机。The printhead assembly 16 includes an extruder that includes an extruder motor 26 with an output gear 28 that engages and drives a filament 30 of printing material forward into a heating unit 32 . The extruder motor 26 may be any suitable type of motor, such as a stepper motor controlled by a stepper drive 68 .
夹送轮33设置在丝材30的另一侧,使得丝材被夹在输出齿轮28与夹送轮33之间,以在向前驱动丝材30时协助输出齿轮28夹紧丝材30。A pinch wheel 33 is disposed on the other side of the wire 30 such that the wire is clamped between the output gear 28 and the pinch wheel 33 to assist the output gear 28 in pinching the wire 30 as the wire 30 is driven forward.
加热单元32使丝材30融化,并且打印机输出构件34根据需要来沉积熔化的丝材30。The heating unit 32 melts the filament 30 and the printer output member 34 deposits the melted filament 30 as needed.
存在若干可以在打印机对丝材30的布置中引起误差的变量。例如,丝材30的温度的变化,挤出机电机输出齿轮28在丝材30上的牵引力的变化,打印头组件16中的公差叠加(特别地,当期望暂时停止熔化的丝材30的沉积并且随后再次开始沉积熔化的丝材30时,在挤出机电机26的方向改变期间的公差变化)——所有这些都会影响丝材30的定位精确度。There are several variables that can cause errors in the placement of the filament 30 by the printer. For example, variations in the temperature of the filament 30, variations in the traction force of the extruder motor output gear 28 on the filament 30, tolerance stack-ups in the printhead assembly 16 (particularly when it is desired to temporarily stop the deposition of molten filament 30 and subsequent start of depositing molten filament 30 again, tolerance changes during direction changes of extruder motor 26 )—all of which affect the positioning accuracy of filament 30 .
打印系统10(又可以称为打印机10)控制挤出机电机26以及打印头移动机构12和打印头移动机构14中的第一打印头定位电机和第二打印头定位电机的速度,以控制从输出构件34沉积的熔化丝材30的厚度。The printing system 10 (also referred to as the printer 10) controls the extruder motor 26 and the speeds of the first print head positioning motor and the second print head positioning motor in the print head moving mechanism 12 and the print head moving mechanism 14, so as to control from The thickness of the molten filament 30 deposited by the output member 34 .
图3示出了作为打印头16的一部分的传感器模块66。传感器模块(因此,打印头16)包括传感器模块丝材传送构件43、一个或更多个丝材尺寸检查传感器36以及丝材线性馈送速率传感器50。在所示示例中,传感器模块(因此,打印头16)包括四个丝材尺寸检查传感器36,这四个丝材尺寸检查传感器36在丝材30通过丝材传送构件43时从围绕丝材30的外周的四个不同角位置测量丝材30的厚度。FIG. 3 shows sensor module 66 as part of printhead 16 . The sensor module (and thus, the printhead 16 ) includes a sensor module filament delivery member 43 , one or more filament size check sensors 36 , and a filament linear feed rate sensor 50 . In the example shown, the sensor module (and thus, the printhead 16 ) includes four filament size check sensors 36 that move from and around the filament 30 as it passes through the wire delivery member 43 . The thickness of the wire 30 is measured at four different angular positions on the periphery of the .
尺寸检查传感器36可以包括霍尔效应传感器31,霍尔效应传感器31感测活塞42的移动,活塞42在其上具有(例如,通过活塞偏置构件44,其中,活塞偏置构件44被示为位于传感器模块壳体35内的袋(pocket)中的压缩弹簧并且活塞偏置构件44从传感器模块壳体35的内表面延伸)被朝向丝材30偏置的磁体53。传感器31可以检测到由经过活塞42的丝材30的厚度变化引起的活塞42的移动。因此,当丝材30的截面经过传感器36中的每一个时,从传感器36向传感器模块控制器40发送对应于丝材30在每个维度上的厚度的信号。传感器31本身可以位于中间电路板39上,其中,中间电路板39是C型的并且位于丝材传送构件43的槽41中。中间电路板39将来自传感器31的信号传输至传感器模块控制器40。在图4a和图4b以越来越高的放大率示出传感器36。Dimensional inspection sensors 36 may include Hall effect sensors 31 that sense movement of piston 42 having thereon (eg, via a piston biasing member 44, where piston biasing member 44 is shown as A compressed spring located in a pocket within the sensor module housing 35 with the piston biasing member 44 extending from the inner surface of the sensor module housing 35 is biased towards the wire 30 by the magnet 53 . The sensor 31 can detect movement of the piston 42 caused by changes in the thickness of the wire 30 passing the piston 42 . Thus, as a section of wire 30 passes each of sensors 36, a signal is sent from sensor 36 to sensor module controller 40 corresponding to the thickness of wire 30 in each dimension. The sensor 31 itself may be located on an intermediate circuit board 39 , which is C-shaped and located in the slot 41 of the wire transport member 43 . The intermediate circuit board 39 transmits the signals from the sensors 31 to the sensor module controller 40 . The sensor 36 is shown in increasing magnification in FIGS. 4 a and 4 b.
在图5、图6和图6a中示出的变型包括活塞偏置构件49,活塞偏置构件49是定位于壳体35(在图6a中以透明视图示出)中的弹性环并且与活塞42接合以促使活塞42与丝材30相接触。The variation shown in Figures 5, 6 and 6a includes a piston biasing member 49 which is a resilient ring positioned in housing 35 (shown in transparent view in Figure 6a) and connected to The piston 42 is engaged to urge the piston 42 into contact with the wire 30 .
传感器模块66(因此,打印头16)还可以包括线性馈送速率传感器50,该线性馈送速率传感器50在图4中被省略以不使控制器40不清楚,但是在图5、图6和图6a所示的变型中示出。线性馈送速率传感器50用于确定丝材30的线性馈送速率。该传感器50可以是任意合适类型的传感器,例如在一些先进的光学计算机鼠标上使用的激光传感器。特别地,可以在图6中的51处看到用于线性馈送速率传感器50的透镜。The sensor module 66 (and thus, the printhead 16) may also include a linear feed rate sensor 50, which is omitted in FIG. The variants shown are shown. Linear feed rate sensor 50 is used to determine the linear feed rate of wire 30 . The sensor 50 may be any suitable type of sensor, such as a laser sensor used on some advanced optical computer mice. In particular, the lens for the linear feed rate sensor 50 can be seen at 51 in FIG. 6 .
传感器36和传感器50可以一起为控制器40(或一些其他控制器)提供充足的信息来确定丝材30的体积馈送速率。可以将传感器36和50一起称作体积馈送速率传感器。Together, sensor 36 and sensor 50 may provide controller 40 (or some other controller) with sufficient information to determine the volumetric feed rate of wire 30 . Sensors 36 and 50 together may be referred to as a volumetric feed rate sensor.
控制器40接收来自传感器36和传感器50的信号并且确定是否调整电机26的操作以补偿丝材的实际馈送速率相比于丝材30的目标馈送速率的差异。可以由外部源基于要3D打印的项目的数学描述来向控制器40发送目标馈送速率。Controller 40 receives signals from sensor 36 and sensor 50 and determines whether to adjust operation of motor 26 to compensate for differences in the actual feed rate of the wire compared to the target feed rate of wire 30 . The target feed rate may be sent to controller 40 by an external source based on a mathematical description of the item to be 3D printed.
例如,如果丝材加热单元32的温度下降,则丝材可能稍微变硬,从而导致抵抗输出齿轮28对丝材30的向前驱动的增加的反压。如果该增加的阻力导致丝材30的较低的线性馈送速率,则这将被馈送速率传感器50检测到,使得控制器40可以确定实际体积馈送速率相比于目标馈送速率的差异。For example, if the temperature of the wire heating unit 32 drops, the wire may stiffen slightly, resulting in increased back pressure against the forward drive of the wire 30 by the output gear 28 . If this increased resistance results in a lower linear feed rate of the wire 30, this will be detected by the feed rate sensor 50 so that the controller 40 can determine the difference in the actual volumetric feed rate compared to the target feed rate.
在另一示例中,丝材30在其尺寸稳定性方面可能具有一些天然的变化性,并且因此可能沿其长度的一些段具有较薄的区域。由于一个或更多个活塞的移动,这些较薄的区域可以被尺寸传感器中的一个或更多个检测到。移动的量会被中继至控制器40,以便确定丝材30的尺寸相比于丝材30的期望尺寸的实际差异,使得可以相比于目标馈送速率来确定馈送速率的实际差异。In another example, the wire 30 may have some natural variability in its dimensional stability, and thus may have regions of thinner along some sections of its length. These thinner areas can be detected by one or more of the size sensors due to the movement of the one or more pistons. The amount of movement is relayed to the controller 40 in order to determine the actual difference in the size of the wire 30 compared to the desired size of the wire 30 so that the actual difference in the feed rate can be determined compared to the target feed rate.
为了控制电机26,控制器40可以向电机26发送一系列脉冲,其中每个脉冲包括两个要素:一个要素给出旋转方向信息,第二要素是“运行”命令。在典型的步进电机中,脉冲对应于选定量的角度移动(例如,1.8度)。发送至电机26的脉冲的数目取决于基于控制器的存储的关于要3D打印的项目的信息意在沉积多少丝材30。如果控制器40检测到丝材30的实际馈送速率相比于目标馈送速率的下降,则控制器40可以简单地向至电机26的脉冲序列添加一个或更多个脉冲,以至少部分地补偿降低的馈送速率。例如,如果控制器40确定正被3D打印的项目上的特定线段需要20个脉冲并且经由传感器36和传感器50确定丝材30的实际馈送速率比丝材30的目标馈送速率低33%,则控制器40将向序列添加合适数目的脉冲以实现期望的量的馈送材料。在该示例中,控制器40可以例如添加10个脉冲以实现期望的量的馈送材料。To control motor 26, controller 40 may send a series of pulses to motor 26, where each pulse includes two elements: one element giving rotation direction information, and the second element being a "run" command. In a typical stepper motor, the pulses correspond to a selected amount of angular movement (eg, 1.8 degrees). The number of pulses sent to the motor 26 depends on how much filament 30 is intended to be deposited based on the controller's stored information about the item to be 3D printed. If controller 40 detects a drop in the actual feed rate of wire 30 compared to the target feed rate, controller 40 may simply add one or more pulses to the pulse train to motor 26 to at least partially compensate for the drop. feed rate. For example, if controller 40 determines that a particular line segment on an item being 3D printed requires 20 pulses and via sensor 36 and sensor 50 determines that the actual feed rate of filament 30 is 33% lower than the target feed rate for filament 30, then control The detector 40 will add the appropriate number of pulses to the sequence to achieve the desired amount of feed material. In this example, the controller 40 may, for example, add 10 pulses to achieve the desired amount of feed material.
通过提供传感器36和50以及基于来自这些传统器36和50的信号调整馈送速率的编程,与在使用缺少传感器36和传感器50的3D打印机的情况下将出现的误差率相比,3D打印机10可以在打印期间实现较低的误差率。因此,通过提供打印机例如包括这些特征的打印机10,打印机的精确度可以高于其对等的打印机的精确度。By providing sensors 36 and 50 and programming to adjust feed rates based on the signals from these conventional sensors 36 and 50, 3D printer 10 can Achieve a lower error rate during printing. Thus, by providing a printer such as printer 10 that includes these features, the accuracy of the printer can be higher than that of its printer equivalent.
虽然可以由制造商直接向3D打印机10构建传感器36和传感器50以及合适的编程,但是替选地可以提供传感器36和传感器50以及编程(例如,在单独的控制器上)作为用于安装在预先存在的3D打印机上的售后市场改造系统。例如,参照图7,现有的打印机可以总体上以58示出,并且除了别的(例如,打印头移动机构)以外,打印机58还可以包括主控制器60和打印头62。可以通过添加拦截控制器64和传感器模块66来将打印机58转换成打印机10的实施方式。可以将拦截控制器64安装在打印机58上,使得:拦截控制器64拦截由主控制器60发出的命令(也可以被称作指令或步进脉冲)并且然后将命令重新传输至打印头步进电机驱动器68,该打印头步进电机驱动器68将命令传输至挤出机电机70(挤出机电机70是步进电机)。传感器36和传感器50将信号传输至拦截控制器64,该拦截控制器64基于这些信号确定是否向步进电机驱动器68增加额外的步进命令(脉冲)。While sensors 36 and 50 and appropriate programming could be built directly into 3D printer 10 by the manufacturer, sensors 36 and 50 and programming could alternatively be provided (e.g., on a separate controller) as Aftermarket retrofit systems on existing 3D printers. For example, referring to FIG. 7 , an existing printer may be shown generally at 58 , and printer 58 may include, among other things (eg, a printhead movement mechanism), a main controller 60 and a printhead 62 . Printer 58 may be converted to an implementation of printer 10 by adding intercept controller 64 and sensor module 66 . An intercept controller 64 may be mounted on the printer 58 such that: the intercept controller 64 intercepts commands (also referred to as commands or step pulses) issued by the main controller 60 and then retransmits the commands to the printhead stepper Motor driver 68, the printhead stepper motor driver 68 transmits commands to the extruder motor 70 (extruder motor 70 is a stepper motor). Sensor 36 and sensor 50 transmit signals to intercept controller 64 which, based on these signals, determines whether to add additional step commands (pulses) to stepper motor driver 68 .
拦截控制器64可以被预编程来执行上述动作,以便于拦截控制器64的安装和设置。Intercept controller 64 may be preprogrammed to perform the actions described above to facilitate installation and setup of intercept controller 64 .
在步进电机驱动器68与主控制器60分离的一些实施方式中,将拦截控制器64插入控制器60与电机驱动器68之间的位置是相对容易的。这样的实施方式在图8a、图8b和图8c中示出。In some embodiments where the stepper motor driver 68 is separate from the main controller 60 , it is relatively easy to insert the intercept controller 64 in a location between the controller 60 and the motor driver 68 . Such an embodiment is shown in Figures 8a, 8b and 8c.
替选地,拦截控制器64可以接收发送至步进驱动器68的信号,但是步进驱动器68可以保持连接至步进电机70以向挤出机电机70发送步进命令。然而,拦截控制器64可以控制也连接至电机70的补充步进驱动器。在这样的实施方式中,拦截控制器64可以仅将步进命令仅发送至补充驱动器并且进而至挤出机电机70,以补充由主控制器80发送的步进命令。Alternatively, intercept controller 64 may receive signals sent to stepper driver 68 , but stepper driver 68 may remain connected to stepper motor 70 to send stepper commands to extruder motor 70 . However, intercept controller 64 may control a supplementary stepper drive also connected to motor 70 . In such an embodiment, the intercept controller 64 may only send step commands to the supplemental drive and thus to the extruder motor 70 only to supplement the step commands sent by the main controller 80 .
参照图10和图11,发现为拦截控制器64提供若干额外的能力是有利的。一个额外能力是在拦截控制器64确定合适时拦截控制器64能够命令主控制器60停止打印作业。例如,如果正发送至拦截控制器64的信号指示已经基本上不存在丝材30的馈送达所选时间量以上,则拦截控制器64可以确定要将打印机10断电以防止加热器32过热并且防止增加发展成火灾的风险。如果做出这样的确定,则拦截控制器64可以指示主控制器60将打印机10断电以经由图10中以67示出的安全关断连接将加热器32断电。连接67可以是主控制器60上的输入/输出引脚与拦截控制器64之间的直接连接,或者其可以是经由USB的连接,或者例如其可以是与本身连接至主控制器60并且能够向主控制器60发出指令的单独的PC的连接。Referring to FIGS. 10 and 11 , it has been found advantageous to provide intercept controller 64 with several additional capabilities. An additional capability is the ability of intercept controller 64 to instruct master controller 60 to stop a print job when intercept controller 64 determines it is appropriate. For example, if the signal being sent to intercept controller 64 indicates that there has been substantially no feed of filament 30 for more than a selected amount of time, intercept controller 64 may determine that printer 10 is to be powered off to prevent heater 32 from overheating and Prevent from increasing the risk of developing a fire. If such a determination is made, intercept controller 64 may instruct master controller 60 to power down printer 10 to power down heater 32 via the safety off connection shown at 67 in FIG. 10 . The connection 67 may be a direct connection between an input/output pin on the host controller 60 and the intercept controller 64, or it may be a connection via USB, or it may be, for example, itself connected to the host controller 60 and capable of Connection of a separate PC that issues commands to the main controller 60 .
另一有利的能力是拦截控制器64指示激光传感器50感测丝材的移动(经由拦截控制器/传感器模块连接69),而不是被动地依赖从激光传感器接收信号。已经发现,通过发送由激光传感器50感测移动的指令,可以提高某些类型的激光传感器——例如用在一些计算机鼠标中的那样类型的传感器——的精确度。Another advantageous capability is the intercept controller 64 instructing the laser sensor 50 to sense movement of the wire (via the intercept controller/sensor module connection 69), rather than passively relying on receiving signals from the laser sensor. It has been found that the accuracy of certain types of laser sensors, such as those used in some computer mice, can be improved by sending instructions to sense movement by the laser sensor 50 .
从图11可以看出,实际上从拦截控制器64接收信号以发起激光传感器50对丝材30的移动的感测的可以是传感器模块控制器40。As can be seen from FIG. 11 , it may be the sensor module controller 40 that actually receives the signal from the intercept controller 64 to initiate the sensing of the movement of the wire 30 by the laser sensor 50 .
参照图12,其示出在图10和图11中示出的打印机10的操作的流程图。流程图表示操作打印机10的方法200。方法200从202开始,在步骤204处,由主控制器60给出步进脉冲(即,使丝材向前移动并且从打印头16沉积丝材的指令),该步进脉冲被拦截控制器64拦截。在步骤206处,由拦截控制器64向步进驱动器68重复步进脉冲。在步骤208处,拦截控制器64或传感器模块控制器61确定所感测到的由挤出机移动的体积是否为主控制器60所请求的量。如果确定由挤出机移动的体积是正确的量(即如果体积是足够的),则控制被发送回至步骤204。如果确定由挤出机移动的体积小于正确的量(即小于拦截控制器64所请求的量),则拦截控制器64在步骤210处关于以下来做出确定:基于火灾的风险或者基于其他标准关停打印机10是否是合适的。如果确定关停打印机10,则控制转至步骤212。如果确定不关停打印机10,则控制转至步骤206,其中,由拦截控制器64向步进驱动器68重复步进脉冲以试图使丝材30向前移动并且使打印头16沉积丝材30,从而补偿所沉积的体积量相比于所请求的体积的不足。换言之,如果感测的体积馈送速率足够低,则拦截控制器64被配置成重复步进脉冲(也可以被称作低级命令)。Referring to FIG. 12 , there is shown a flowchart of the operation of the printer 10 shown in FIGS. 10 and 11 . The flowchart represents a method 200 of operating the printer 10 . The method 200 begins at 202, at step 204 a stepping pulse (i.e., an instruction to move the filament forward and deposit the filament from the printhead 16) is given by the main controller 60, which is intercepted by the controller 64 interceptions. At step 206 , step pulses are repeated by intercept controller 64 to stepper driver 68 . At step 208 , intercept controller 64 or sensor module controller 61 determines whether the sensed volume moved by the extruder is the amount requested by master controller 60 . If it is determined that the volume moved by the extruder is the correct amount (ie, if the volume is sufficient), control is sent back to step 204 . If it is determined that the volume moved by the extruder is less than the correct amount (i.e., less than the amount requested by the intercept controller 64), the intercept controller 64 makes a determination at step 210 as to: based on the risk of fire or based on other criteria Whether it is appropriate to shut down the printer 10. If it is determined to shut down the printer 10, control passes to step 212. If it is determined not to shut down the printer 10, then control passes to step 206 where step pulses are repeated by the intercept controller 64 to the stepper driver 68 in an attempt to move the filament 30 forward and cause the printhead 16 to deposit the filament 30, Insufficiency of the deposited volume compared to the requested volume is thereby compensated. In other words, if the sensed volume feed rate is low enough, the intercept controller 64 is configured to repeat step pulses (which may also be referred to as low-level commands).
参照图13,其示出打印机10和用于打印机58的改造系统的另一可选特征。在图13所示的实施方式中,打印机10能够为用于打印头62的X和Y定位系统13提供便宜的闭环位置控制,而不需要专门的本地控制器来实现对于X定位电机102和Y定位电机122中的每一个的闭环位置控制。Referring to Figure 13, another optional feature of the printer 10 and retrofit system for the printer 58 is shown. In the embodiment shown in FIG. 13 , the printer 10 is able to provide inexpensive closed-loop position control for the X and Y positioning system 13 for the printhead 62 without the need for a dedicated local controller for the X positioning motor 102 and Y positioning motor 102 and Y position control. Closed loop position control of each of the positioning motors 122 .
在打印机10的操作期间,高级命令被批量发送至控制器60。每个命令指示打印头16的目标X位置和目标Y位置以及在达到目标X位置和目标Y位置时沉积多少丝材30。例如,可以向控制器60发送一批五个这样的高级命令,每个高级命令具有目标X位置和目标Y位置以及在移动至该目标位置期间要沉积的丝材30的目标量。在移动至目标X位置和目标Y位置期间,X定位电机102和Y定位电机122中之一或两者可能没有如预期那样操作,因此打印头16的位置可能发生定位误差。如果在打印操作期间不进行修正,则这样的定位误差可以导致打印中的部分的移位,特别地,导致类似于图1中示出打印的打印。为了克服该问题,提供了以140和142示出的编码器,用于确定分别在X方向和Y方向上发生的实际移动量。如果方便,可以将编码器140和编码器142分别安装在电机102和电机122上。替选地,可以将编码器140和编码器142安装在任何合适的地方。例如,可以设置编码器140和编码器142作为惰性滑轮108和惰性滑轮128(如图3所示)的一部分。编码器140和编码器142可以是任何合适类型的编码器。During operation of the printer 10, high-level commands are sent to the controller 60 in batches. Each command indicates a target X position and a target Y position of the printhead 16 and how much filament 30 to deposit when the target X position and target Y position are reached. For example, a batch of five such high-level commands may be sent to controller 60, each having a target X position and a target Y position and a target amount of wire 30 to deposit during movement to that target position. During the movement to the target X position and target Y position, one or both of the X positioning motor 102 and the Y positioning motor 122 may not be operating as expected, so a positioning error may occur in the position of the print head 16 . If not corrected during the printing operation, such positioning errors can lead to shifting of parts in the print, in particular to a print similar to the print shown in FIG. 1 . To overcome this problem, encoders shown at 140 and 142 are provided for determining the actual amount of movement occurring in the X and Y directions respectively. If convenient, the encoder 140 and the encoder 142 can be installed on the motor 102 and the motor 122 respectively. Alternatively, encoder 140 and encoder 142 may be installed in any suitable place. For example, encoder 140 and encoder 142 may be provided as part of idler pulley 108 and idler pulley 128 (shown in FIG. 3 ). Encoder 140 and encoder 142 may be any suitable type of encoder.
编码器140和编码器142各自将信号(例如正交信号)发送回拦截控制器64以指示打印头16的实际位置。拦截控制器64还接入到用于将低级命令(即一系列方向和步进信号)从主控制器60发送至步进驱动器68的以150(图13)示出的线中。每个高级命令可以例如由数百个低级命令组成。换言之,如果以高级命令指示打印头16在X方向上移动1英寸并且在Y方向移动0英寸,则这可以由主控制器60向X定位电机102发送数百个方向和步进命令来执行,其中,所述方向和步进命令中的每一个指示X定位电机移动一个脉冲长度所对应的行程(即,可以小于电机102的大约两度的旋转)。馈送批量的高级命令的命令馈送设备以152示出,并且命令馈送设备152可以例如是个人计算机。命令馈送设备152还可以经由命令馈送设备拦截控制器连接154(被示为有线连接)将批量的高级命令传输至拦截控制器64。可选地,连接154可以是如下面进一步描述的双向连接。Encoder 140 and encoder 142 each send a signal (eg, a quadrature signal) back to intercept controller 64 to indicate the actual position of printhead 16 . Intercept controller 64 also taps into the line shown at 150 ( FIG. 13 ) for sending low-level commands (ie, a series of direction and step signals) from master controller 60 to stepper driver 68 . Each high-level command may for example consist of hundreds of low-level commands. In other words, if the print head 16 is instructed to move 1 inch in the X direction and 0 inches in the Y direction in a high-level command, this can be performed by the master controller 60 sending hundreds of direction and step commands to the X positioning motor 102, Wherein, each of the direction and step commands instructs the X positioning motor to move a stroke corresponding to one pulse length (ie, may be less than about two degrees of rotation of the motor 102 ). A command feeding device that feeds a batch of high-level commands is shown at 152, and the command feeding device 152 may be, for example, a personal computer. Command feed device 152 may also transmit batches of high-level commands to intercept controller 64 via command feed device intercept controller connection 154 (shown as a wired connection). Alternatively, connection 154 may be a bi-directional connection as described further below.
因为拦截控制器64被提供有高级命令,所以其拥有打印头16在每个高级命令结束时的目标位置(目标位置设置在高级命令中)。此外,因为拦截控制器64被通知了来自主控制器60的方向和步进命令,因此拦截控制器64还可以确定打印头16何时应该达到目标位置。如上所述,拦截控制器64还拥有打印头16的实际X位置和实际Y位置。当拦截控制器64确定打印头16应该到达给定的目标位置时,拦截控制器64可以将打印头16的实际位置与打印头16的目标位置进行比较。如果拦截控制器64确定存在误差(即实际位置与目标位置不相符),则拦截控制器64可以将带有修正的附加命令插入到已经存储在主控制器60中的批量命令中。一旦执行修正命令,则消除了打印头16的位置误差。拦截控制器64可以被编程为仅当拦截控制器64确定在执行修正命令之前有充足的时间时才将修正指令插入到存储在主控制器60中的批量命令中,以保证打印头16的移动不被打断并且在修正命令的插入发生时保持空闲(sit idle)。Because the intercept controller 64 is provided with high-level commands, it has the target position of the print head 16 at the end of each high-level command (the target position is set in the high-level command). Additionally, because intercept controller 64 is notified of direction and step commands from master controller 60, intercept controller 64 can also determine when printhead 16 should reach a target position. Intercept controller 64 also possesses the actual X position and actual Y position of printhead 16, as described above. When intercept controller 64 determines that printhead 16 should reach a given target position, intercept controller 64 may compare the actual position of printhead 16 to the target position of printhead 16 . If the intercept controller 64 determines that there is an error (ie, the actual position does not match the target position), the intercept controller 64 may insert additional commands with corrections into the batch of commands already stored in the master controller 60 . Once the correction command is executed, the position error of the print head 16 is eliminated. Intercept controller 64 may be programmed to insert correction instructions into the batch of commands stored in master controller 60 only when intercept controller 64 determines that there is sufficient time before the correction command is executed to allow movement of printhead 16 Uninterrupted and sit idle while the insertion of a correction command occurs.
可以将以上所述示为图14中示出的方法300。该方法从302处开始。在步骤304处,主控制器60通过将多个低级命令发送至X定位电机102和Y定位电机122中的至少一个来执行单独的高级命令。在步骤306处,拦截控制器64从主控制器60接收低级命令,并且从命令馈送设备152接收高级命令(不一定同时)。在步骤308处,在执行单独的高级命令结束时(即当拦截控制器64已经确定打印头16应该已经到达目标位置时),拦截控制器64基于来自X编码器140和Y编码器142的信号将打印头16的目标位置与目标头16的实际位置进行比较。在步骤310处,拦截控制器64确定打印头16的位置是否存在误差,其中,所述误差是打印头16的目标位置与实际位置之间的差异。如果存在误差,则控制被发送至步骤312,在步骤312处拦截控制器64将高级修正命令插入到存储在主控制器60中的批量命令中,其中,高级修正命令被配置成调整打印头的实际位置以消除误差。在步骤314处,由主控制器60执行修正命令,并且误差被消除。将注意到的是,在执行修正命令之前,主控制器60可以执行若干其他高级命令。另一方面,如果确定打印头16的实际位置相比于目标位置不存在误差,则控制被发送回至步骤304,在步骤304处由主控制器60来执行接下来的高级命令。The above can be illustrated as method 300 shown in FIG. 14 . The method begins at 302 . At step 304 , master controller 60 executes individual high-level commands by sending multiple low-level commands to at least one of X-positioning motor 102 and Y-positioning motor 122 . At step 306 , intercept controller 64 receives low-level commands from master controller 60 and high-level commands from command feed device 152 (not necessarily simultaneously). At step 308, at the end of execution of the individual high-level command (i.e. when intercept controller 64 has determined that print head 16 should have reached the target position), intercept controller 64 based on the signals from X encoder 140 and Y encoder 142 The target position of the print head 16 is compared with the actual position of the target head 16 . At step 310 , the intercept controller 64 determines whether there is an error in the position of the print head 16 , where the error is the difference between the target position and the actual position of the print head 16 . If there is an error, control is sent to step 312 where intercept controller 64 inserts an advanced trim command into the batch of commands stored in master controller 60, wherein the advanced trim command is configured to adjust the actual position to eliminate errors. At step 314, the correction command is executed by the main controller 60 and the error is eliminated. It will be noted that the main controller 60 may execute several other high-level commands prior to executing the modification commands. On the other hand, if it is determined that there is no error in the actual position of the printhead 16 compared to the target position, then control is sent back to step 304 where the next high level command is executed by the main controller 60 .
拦截控制器64可以与实际移动存储设备400通信,其中,在命令馈送设备152例如是个人计算机的实施方式中实际移动存储设备400可以是命令馈送设备152的硬盘驱动器。拦截控制器64可以将打印头16的实际位置发送至存储设备400。存储设备400还可以从拦截控制器64接收打印头16的目标位置或者在存储设备400是命令馈送设备152上的硬盘驱动器的实施方式中从存储在存储设备400上的命令接收打印头16的目标位置。通过拥有打印头16的实际位置和目标位置,打印机10的用户能够确定形成了多少修正命令并且确定修正命令中的任何模式。Intercept controller 64 may communicate with actual removable storage device 400 , which may be a hard drive of command feeding device 152 in embodiments where command feeding device 152 is, for example, a personal computer. Intercept controller 64 may send the actual position of printhead 16 to storage device 400 . The storage device 400 may also receive the target position of the print head 16 from the intercept controller 64 or, in embodiments where the storage device 400 is a hard drive on the command feed device 152, receive the target position of the print head 16 from a command stored on the storage device 400. Location. By having the actual position and the target position of the printhead 16, the user of the printer 10 is able to determine how many correction orders were made and to determine any patterns in the correction orders.
图15a是针对特定打印项目所存储的目标位置数据和实际位置数据的视觉表示500的示例。图像中出现的不同阴影指示了打印中的检测到不同大小的误差的部分。图15b是另一视觉表示502,该视觉表示502示出了在打印机10没有发现误差并且没有插入用于由主控制器60执行的修正命令的情况下所得到的打印将看起来如何。在示出的示例中,可以看出,存在有在没有修正而继续打印的情况下将在打印中产生的显著的位置误差。Figure 15a is an example of a visual representation 500 of target location data and actual location data stored for a particular print item. The different shading that appears in the image indicates the portion of the print where errors of different sizes were detected. FIG. 15 b is another visual representation 502 showing how the resulting print would have looked if the printer 10 had found no errors and had not inserted correction commands for execution by the main controller 60 . In the example shown, it can be seen that there are significant positional errors that would have occurred in printing if printing had continued without correction.
提供该闭环回路位置控制这一特征可以由制造商10直接设置在原始打印机上,或者其可以被提供作为改造系统的一部分,作为关于图7描述的相同的改造系统的一部分或者作为用于打印机58的不同改造系统的一部分(图13)。在任一情况下,X编码器140和Y编码器142以及拦截控制器64、用于执行方法300的编程以及——如果需要并且尚不存在存储器400的话——存储器400,被提供作为改造套件的一部分。The feature that provides this closed loop position control can be provided directly on the original printer by the manufacturer 10, or it can be provided as part of a retrofit system, either as part of the same retrofit system described with respect to FIG. Part of a different retrofit system (Fig. 13). In either case, the X encoders 140 and Y encoders 142, as well as the intercept controller 64, the programming for performing the method 300, and—if desired and not already present—the memory 400, are provided as part of the retrofit kit. part.
虽然在打印头16或在传感器模块66中提供传感器36是有利的,但是提供本文所公开的上述实施方式的没有传感器36(即,仅具有传感器50和其他相关元件)的任何实施方式仍将是有利的。类似地,提供上述实施方式的没有传感器50(即,具有传感器36和其他相关元件)的任何实施方式将是有利的。While it is advantageous to provide the sensor 36 in the printhead 16 or in the sensor module 66, any embodiment that provides the above-described embodiments disclosed herein without the sensor 36 (i.e., with only the sensor 50 and other associated elements) would still be advantageous. Similarly, it would be advantageous to provide any of the embodiments described above without sensor 50 (ie, with sensor 36 and other associated elements).
在提供元件作为改造系统的一部分的实施方式中,将理解的是可以基于特定的应用来进一步联合或分开一个或更多个控制器(例如主控器60、拦截控制器64以及传感器模块控制器40)。因此,整个打印机10可以具有构成打印机10的控制系统的一个或更多个控制器。In embodiments where elements are provided as part of a retrofit system, it will be appreciated that one or more controllers (such as master controller 60, intercept controller 64, and sensor module controller) may be further combined or separated based on the particular application. 40). Therefore, the entire printer 10 may have one or more controllers constituting the control system of the printer 10 .
本领域的技术人员将理解,在不越出所附权利要求的范围的情况下,可以对本文描述的实施方式进行各种其他修改。Those skilled in the art will appreciate that various other modifications may be made to the embodiments described herein without departing from the scope of the appended claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911260561.4ACN111098492A (en) | 2014-11-24 | 2015-11-24 | 3D printer and retrofit system therefor |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462083311P | 2014-11-24 | 2014-11-24 | |
| US62/083,311 | 2014-11-24 | ||
| PCT/CA2015/051228WO2016082036A1 (en) | 2014-11-24 | 2015-11-24 | Method and system for 3d printer with improved performance and 3d printer employing same |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201911260561.4ADivisionCN111098492A (en) | 2014-11-24 | 2015-11-24 | 3D printer and retrofit system therefor |
| Publication Number | Publication Date |
|---|---|
| CN107206687Atrue CN107206687A (en) | 2017-09-26 |
| CN107206687B CN107206687B (en) | 2020-01-07 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201911260561.4APendingCN111098492A (en) | 2014-11-24 | 2015-11-24 | 3D printer and retrofit system therefor |
| CN201580074239.6AActiveCN107206687B (en) | 2014-11-24 | 2015-11-24 | Methods and systems for 3D printers with improved performance and 3D printers employing the same |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201911260561.4APendingCN111098492A (en) | 2014-11-24 | 2015-11-24 | 3D printer and retrofit system therefor |
| Country | Link |
|---|---|
| US (3) | US10773454B2 (en) |
| EP (2) | EP3593978A1 (en) |
| CN (2) | CN111098492A (en) |
| AU (2) | AU2015354352A1 (en) |
| WO (1) | WO2016082036A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108032516A (en)* | 2018-01-02 | 2018-05-15 | 焦作大学 | A kind of 3D printing operation nozzle aided positioning system |
| CN108290348A (en)* | 2015-12-21 | 2018-07-17 | 瓦克化学股份公司 | The method and apparatus for being used to produce object by using 3D printing equipment |
| CN109624516A (en)* | 2018-04-08 | 2019-04-16 | 长春理工大学 | The portable solid braille print system of radio-type |
| CN110625937A (en)* | 2019-09-29 | 2019-12-31 | 深圳市七号科技有限公司 | Dual-system 3D printing device and forming method |
| CN111152454A (en)* | 2020-01-10 | 2020-05-15 | 佛山中国空间技术研究院创新中心 | On-orbit 3D printer control method |
| CN113039491A (en)* | 2018-11-29 | 2021-06-25 | 伊斯曼柯达公司 | Electrophotographic-based 3D printing with improved layer registration |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3593978A1 (en)* | 2014-11-24 | 2020-01-15 | Ladanyi, Robert | 3d printer |
| US20180015655A1 (en)* | 2016-07-12 | 2018-01-18 | Microsoft Technology Licensing, Llc | Dimensional accuracy in generating 3d objects |
| US10889068B1 (en)* | 2016-10-06 | 2021-01-12 | Stratasys, Inc. | Rotational position error compensation of print heads in a 3D printer and methods thereof |
| DE102016121802A1 (en) | 2016-11-14 | 2018-05-17 | Cl Schutzrechtsverwaltungs Gmbh | Device for the additive production of three-dimensional objects |
| CN108081589B (en)* | 2016-11-21 | 2021-08-20 | 鸿富锦精密工业(深圳)有限公司 | Detection system and method of 3D printing spinneret |
| US11007719B2 (en)* | 2017-04-12 | 2021-05-18 | Wine Projects Ltd. | Automatically adjusting extruder for optimal viscosity in a three-dimensional (3D) printer |
| NL2018720B1 (en)* | 2017-04-14 | 2018-10-24 | Bond High Performance 3D Tech B V | Three-dimensional modeling method and system |
| WO2018199878A1 (en)* | 2017-04-24 | 2018-11-01 | Hewlett-Packard Development Company, L.P. | 3d printer |
| US20180333908A1 (en)* | 2017-05-19 | 2018-11-22 | Edward Earl Lewis | Machine for Detection of Filament Feed Error in 3D Printers |
| CN107097410B (en)* | 2017-07-06 | 2023-04-11 | 杭州捷诺飞生物科技股份有限公司 | 3D prints shower nozzle, 3D prints shower nozzle system and 3D printer |
| US11235528B2 (en) | 2017-09-02 | 2022-02-01 | R3 Printing, Inc. | Carriageless print head assembly for extrusion-based additive construction |
| IT201700099382A1 (en)* | 2017-09-06 | 2019-03-06 | Fazzini Gianfranco | METHOD AND APPARATUS FOR THE CONTROL AND MANAGEMENT OF THE MATERIAL TO EXTRUDE IN 3D PRINTERS |
| EP3691899B1 (en) | 2017-10-05 | 2021-02-17 | Signify Holding B.V. | Printer unit for a 3d-printing apparatus and method |
| CN108058374B (en)* | 2017-10-31 | 2019-12-17 | 上海工程技术大学 | A FDM rapid prototyping machine filamentary consumables transient conveying system and its control method |
| US11192308B2 (en) | 2018-03-16 | 2021-12-07 | International Business Machines Corporation | Printer filament feed monitoring |
| PL237290B1 (en)* | 2018-04-17 | 2021-04-06 | 3D Gence Spolka Z Ograniczona Odpowiedzialnoscia | Method and the system for measuring extrusion quality of the material of the spatial printing printer head |
| CN108673885A (en)* | 2018-05-21 | 2018-10-19 | 王玉芹 | A kind of intelligence 3D printing system |
| PL237495B1 (en)* | 2018-08-22 | 2021-04-19 | 3D Gence Spolka Z Ograniczona Odpowiedzialnoscia | Method for automatic clearing of the material extrusion system in a spatial printer |
| US10363705B1 (en)* | 2018-10-12 | 2019-07-30 | Capital One Services, Llc | Determining a printing anomaly related to a 3D printed object |
| CN109228328A (en)* | 2018-10-18 | 2019-01-18 | 西安理工大学 | A kind of 3D printer combines print system with four-freedom parallel mechanism |
| IL284203B2 (en)* | 2018-12-19 | 2024-10-01 | Jabil Inc | Glove for the discharge nozzle for 3D printing for improved tamping |
| US11027495B2 (en)* | 2019-06-26 | 2021-06-08 | International Business Machines Corporation | Object texturizer |
| US11370164B1 (en)* | 2019-06-27 | 2022-06-28 | Jacob J. Consalvi | High speed FDM 3D printer with closed loop motion system |
| WO2021034310A1 (en)* | 2019-08-19 | 2021-02-25 | Hewlett-Packard Development Company, L.P. | Carriage activated printing devices |
| CN111730988B (en)* | 2020-07-20 | 2021-08-24 | Tcl华星光电技术有限公司 | Ink jet printing apparatus and method |
| CN113246473B (en)* | 2021-05-10 | 2022-04-22 | 深圳拓竹科技有限公司 | Compensation method and compensation device for 3D printer, 3D printer and storage medium |
| CN115489109A (en)* | 2021-06-18 | 2022-12-20 | 上海轮廓科技有限公司 | Calibration method for 3D printer and 3D printer |
| CN113771357A (en)* | 2021-08-13 | 2021-12-10 | 深圳市维智梅克科技有限公司 | Prevent to print controlling means and 3D printer of dislocation |
| CN218489130U (en)* | 2021-10-22 | 2023-02-17 | 深圳拓竹科技有限公司 | Detection device for 3D printer and 3D printer |
| WO2023086859A1 (en)* | 2021-11-12 | 2023-05-19 | Essentium Ipco, Llc | Filament smart feed system |
| CN118418446A (en)* | 2021-12-27 | 2024-08-02 | 深圳拓竹科技有限公司 | 3D printer, method, detection device, medium, and program product for same |
| IT202200004442A1 (en)* | 2022-03-09 | 2023-09-09 | Gh Entpr S R L | METHOD FOR CONTROLING A STEPPING MOTOR AND ITS CONTROL DEVICE. |
| CN114778158B (en)* | 2022-04-13 | 2023-03-31 | 青岛博瑞科增材制造有限公司 | Self-checking system and method of 3D printing device |
| CN115366220A (en)* | 2022-08-23 | 2022-11-22 | 江苏乾度智造高科技有限公司 | Spacing detecting feeding system |
| CN116277952B (en)* | 2023-04-07 | 2023-11-17 | 苏州壹哲智能科技有限公司 | 3D printing equipment, method, device and medium |
| CN119329051A (en)* | 2024-12-06 | 2025-01-21 | 山东中科智能设备有限公司 | A multi-material microjet 3D printer |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6085957A (en)* | 1996-04-08 | 2000-07-11 | Stratasys, Inc. | Volumetric feed control for flexible filament |
| US20120092724A1 (en)* | 2010-08-18 | 2012-04-19 | Pettis Nathaniel B | Networked three-dimensional printing |
| CN203496156U (en)* | 2013-08-29 | 2014-03-26 | 上海骧远信息科技有限公司 | Feeding failure detection device of 3D (three-dimensional) printer |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030157196A1 (en) | 2002-02-19 | 2003-08-21 | Bartels Jennifer F. | Compositions and methods for creating an air release mechanism to maintain skin health |
| US7565576B2 (en)* | 2003-04-17 | 2009-07-21 | Seagate Technology Llc | Method and apparatus for obtaining trace data of a high speed embedded processor |
| US7897074B2 (en) | 2008-04-30 | 2011-03-01 | Stratasys, Inc. | Liquefier assembly for use in extrusion-based digital manufacturing systems |
| US9463598B2 (en)* | 2012-05-22 | 2016-10-11 | Makerbot Industries, Llc | In-filling for additive manufacturing |
| US11110648B2 (en)* | 2012-07-31 | 2021-09-07 | Makerbot Industries, Llc | Build material switching |
| WO2014039825A2 (en)* | 2012-09-07 | 2014-03-13 | Makerbot Industries, Llc | Color switching for three-dimensional printing |
| US9364995B2 (en)* | 2013-03-15 | 2016-06-14 | Matterrise, Inc. | Three-dimensional printing and scanning system and method |
| US9527240B2 (en)* | 2013-03-15 | 2016-12-27 | Stratasys, Inc. | Additive manufacturing system and method for printing three-dimensional parts using velocimetry |
| EP3048876A4 (en) | 2013-09-24 | 2017-05-17 | Fenner U.S., Inc. | Improved filament for fused deposit modeling |
| EP3593978A1 (en)* | 2014-11-24 | 2020-01-15 | Ladanyi, Robert | 3d printer |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6085957A (en)* | 1996-04-08 | 2000-07-11 | Stratasys, Inc. | Volumetric feed control for flexible filament |
| US20120092724A1 (en)* | 2010-08-18 | 2012-04-19 | Pettis Nathaniel B | Networked three-dimensional printing |
| CN203496156U (en)* | 2013-08-29 | 2014-03-26 | 上海骧远信息科技有限公司 | Feeding failure detection device of 3D (three-dimensional) printer |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108290348A (en)* | 2015-12-21 | 2018-07-17 | 瓦克化学股份公司 | The method and apparatus for being used to produce object by using 3D printing equipment |
| US10987856B2 (en) | 2015-12-21 | 2021-04-27 | Wacker Chemie Ag | Method and device for producing an object by using a 3D printing device |
| CN108032516A (en)* | 2018-01-02 | 2018-05-15 | 焦作大学 | A kind of 3D printing operation nozzle aided positioning system |
| CN108032516B (en)* | 2018-01-02 | 2020-03-13 | 焦作大学 | 3D print operation shower nozzle auxiliary positioning system |
| CN109624516A (en)* | 2018-04-08 | 2019-04-16 | 长春理工大学 | The portable solid braille print system of radio-type |
| CN113039491A (en)* | 2018-11-29 | 2021-06-25 | 伊斯曼柯达公司 | Electrophotographic-based 3D printing with improved layer registration |
| CN113039491B (en)* | 2018-11-29 | 2023-10-13 | 伊斯曼柯达公司 | 3D printing based on electrophotography with improved layer registration |
| CN110625937A (en)* | 2019-09-29 | 2019-12-31 | 深圳市七号科技有限公司 | Dual-system 3D printing device and forming method |
| CN111152454A (en)* | 2020-01-10 | 2020-05-15 | 佛山中国空间技术研究院创新中心 | On-orbit 3D printer control method |
| Publication number | Publication date |
|---|---|
| WO2016082036A1 (en) | 2016-06-02 |
| EP3224027A4 (en) | 2018-08-29 |
| EP3593978A1 (en) | 2020-01-15 |
| US20170312987A1 (en) | 2017-11-02 |
| US11491708B2 (en) | 2022-11-08 |
| EP3224027A1 (en) | 2017-10-04 |
| EP3224027B1 (en) | 2019-09-04 |
| AU2021202553B2 (en) | 2023-07-20 |
| AU2021202553A1 (en) | 2021-05-27 |
| US10773454B2 (en) | 2020-09-15 |
| CN107206687B (en) | 2020-01-07 |
| CN111098492A (en) | 2020-05-05 |
| AU2015354352A1 (en) | 2017-07-13 |
| US20180126656A1 (en) | 2018-05-10 |
| US20200353674A1 (en) | 2020-11-12 |
| US10639849B2 (en) | 2020-05-05 |
| Publication | Publication Date | Title |
|---|---|---|
| CN107206687B (en) | Methods and systems for 3D printers with improved performance and 3D printers employing the same | |
| US9126426B2 (en) | Transfer control method of continuous paper and printer | |
| KR101775205B1 (en) | Printing apparatus, control method, and program | |
| JP4366150B2 (en) | Recording device | |
| CN113423579A (en) | Printer, printer control method, and program | |
| US20220143923A1 (en) | Carriage position control | |
| US10259239B2 (en) | Printing apparatus, printing method and non-transitory recording medium storing printing program | |
| HK40028019A (en) | Three-dimensional printer and retrofit system for the same field | |
| HK1244468A1 (en) | Method and system for 3d printer with improved performance and 3d printer employing same | |
| HK1244468B (en) | Method and system for 3d printer with improved performance and 3d printer employing same | |
| US9120333B2 (en) | Printing apparatus and control method | |
| US7656112B2 (en) | Controller for driving motor, driving device for driven member, ink-jet printer, and method of driving driven member | |
| JP4781455B2 (en) | Recording device | |
| JP7722008B2 (en) | Conveying device and image recording device | |
| JP4823333B2 (en) | Recording device | |
| CN204354609U (en) | A kind of deviation correcting device | |
| US11014373B2 (en) | Printing system | |
| JP4377714B2 (en) | Media control device | |
| JP2014172674A (en) | Image recording apparatus | |
| JP2008044764A (en) | Printer, printer system, and printer control method | |
| US20150239269A1 (en) | Recording apparatus | |
| JP2008044299A (en) | Printer and printer control method | |
| JP2013052480A (en) | Image forming apparatus and image forming method |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| REG | Reference to a national code | Ref country code:HK Ref legal event code:DE Ref document number:1244468 Country of ref document:HK | |
| GR01 | Patent grant | ||
| GR01 | Patent grant |