技术领域technical field
本发明涉及网络资源技术领域,特别是涉及CDN网络资源技术领域,具体为一种CDN网络带宽资源的错峰调度方法、系统以及服务器。The present invention relates to the technical field of network resources, in particular to the technical field of CDN network resources, and specifically relates to a peak-shift scheduling method, system and server for CDN network bandwidth resources.
背景技术Background technique
随着CDN技术的越来越普及,CDN的业务越来越复杂和庞大,用户对于质量的要求越来越高,研发成本也越来越高,并且随着行业内的竞争压力越来越大,CDN的价格逐步降低从而导致CDN的利润越来越低;而当前CDN成本除了研发投入外很大一部分是基础设施:带宽以及服务其这些资源的成本,如果能够通过一定的调度方式将这些资源进行充分的利用,则CDN的成本将会下降从而将更多的资金投入到研发中,进一步提升用户质量以及产品的竞争力。With the increasing popularity of CDN technology, the business of CDN is becoming more and more complex and large, users have higher and higher requirements for quality, and the cost of research and development is also getting higher and higher. With the increasing pressure of competition in the industry , the price of CDN is gradually reduced, which leads to lower and lower profits of CDN; besides R&D investment, a large part of the current CDN cost is infrastructure: bandwidth and the cost of serving these resources. If these resources can be allocated through a certain scheduling method If fully utilized, the cost of CDN will decrease so that more funds will be invested in research and development, further improving the quality of users and the competitiveness of products.
当前CDN节点资源带宽基本都是向运营商进行购买,购买的带宽资源都有其对应上限、单价以及对应的计费方式(例如峰值计费、95计费、保底计费等)。在进行调度的时候基本都是考虑其上限,当达到该阈值的时候才进行调度,较为缺少计费方式的考虑,充分的最大化的利用带宽资源。The current CDN node resource bandwidth is basically purchased from the operator, and the purchased bandwidth resources have their corresponding upper limit, unit price, and corresponding billing method (such as peak billing, 95 billing, and guaranteed billing, etc.). When scheduling, the upper limit is basically considered. When the threshold is reached, the scheduling is performed. There is relatively little consideration of the billing method, and the bandwidth resources are fully and maximized.
CDN调度平台缺少考虑时刻,不同的时刻的访问群体其作息的时间有差异,因此其导致的带宽的高峰值出现的时间点也不同,但调度的时候缺乏对于该数据的使用。如果一个节点服务不同的CDN加速用户,而不同的CDN加速用户由于其业务特性不同会存在不同的峰值,如果该峰值没有进行削峰则该值将有可能为该节点的计费带宽,从而导致成本上去。The CDN scheduling platform lacks consideration time, and the time of work and rest of the visitor groups at different times is different, so the peak time of the resulting bandwidth peak is also different, but the scheduling lacks the use of this data. If a node serves different CDN acceleration users, and different CDN acceleration users will have different peak values due to their different business characteristics, if the peak value is not clipped, the value may be the billing bandwidth of the node, resulting in Costs go up.
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种CDN网络带宽资源的错峰调度方法、系统以及服务器,用于解决现有技术中不能有效的利用CDN带宽资源的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a method, system and server for peak-shift scheduling of CDN network bandwidth resources, so as to solve the problem that CDN bandwidth resources cannot be effectively utilized in the prior art.
为实现上述目的及其他相关目的,本发明提供一种CDN网络带宽资源的错峰调度方法,所述CDN网络带宽资源的错峰调度方法包括:获取CDN网络中的网络资源数据;根据所述网络资源数据获取各CDN节点服务器的计费特性和带宽峰值数据;根据各所述CDN节点服务器的计费特性和带宽峰值数据获取各所述CDN节点服务器的带宽资源数据;根据所述带宽资源数据和所述网络资源数据生成一带宽牵引配置数据。In order to achieve the above object and other related objects, the present invention provides a peak shift scheduling method of CDN network bandwidth resources, the peak shift scheduling method of CDN network bandwidth resources includes: acquiring network resource data in the CDN network; according to the network The resource data obtains the charging characteristics and bandwidth peak data of each CDN node server; obtains the bandwidth resource data of each described CDN node server according to the charging characteristics and bandwidth peak data of each described CDN node server; according to the described bandwidth resource data and The network resource data generates a bandwidth pulling configuration data.
于本发明的一实施例中,所述获取CDN网络中的网络资源数据具体包括:获取CDN网络中各CDN节点服务器、各带宽资源使用用户的配置数据、实时带宽数据和实时带宽质量数据。In an embodiment of the present invention, the acquisition of network resource data in the CDN network specifically includes: acquisition of configuration data, real-time bandwidth data, and real-time bandwidth quality data of each CDN node server and each bandwidth resource user in the CDN network.
于本发明的一实施例中,所述根据所述网络资源数据获取各CDN节点服务器的计费特性和带宽峰值数据具体包括:分别获取各所述CDN节点服务器和各所述带宽资源使用用户的带宽峰值和形成带宽峰值的分布时间。In an embodiment of the present invention, the acquiring the billing characteristics and bandwidth peak data of each CDN node server according to the network resource data specifically includes: respectively acquiring the data of each of the CDN node servers and each of the bandwidth resource users Bandwidth peaks and distribution times for forming bandwidth peaks.
于本发明的一实施例中,所述CDN网络带宽资源的错峰调度方法还包括:根据所述配置数据获取各所述CDN节点服务器的计费特性;根据各所述CDN节点服务器的计费特性和各所述CDN节点服务器的实时带宽数据获取各所述CDN节点服务器的剩余免费带宽峰值时间。In an embodiment of the present invention, the peak shift scheduling method of the CDN network bandwidth resources further includes: obtaining the charging characteristics of each of the CDN node servers according to the configuration data; according to the charging characteristics of each of the CDN node servers The characteristics and the real-time bandwidth data of each of the CDN node servers obtain the remaining free bandwidth peak time of each of the CDN node servers.
于本发明的一实施例中,所述获取各所述CDN节点服务器的带宽资源数据具体包括:根据各所述CDN节点服务器和各所述带宽资源使用用户的带宽峰值和形成带宽高峰的分布时间、各所述CDN节点服务器的剩余免费带宽峰值时间获取各所述CDN节点服务器的可调度的带宽资源使用用户和带宽资源数据。In an embodiment of the present invention, the acquiring the bandwidth resource data of each of the CDN node servers specifically includes: according to each of the CDN node servers and each of the bandwidth resource users' bandwidth peaks and the distribution time for forming the bandwidth peaks . Obtain schedulable bandwidth resource users and bandwidth resource data of each of the CDN node servers at the remaining free bandwidth peak time of each of the CDN node servers.
于本发明的一实施例中,所述根据所述带宽资源数据和所述网络资源数据生成一带宽牵引配置数据具体包括:根据所述可调度的带宽资源使用用户和带宽资源数据、所述实时带宽质量数据以及各CDN节点服务器、各带宽资源使用用户的所述配置数据生成一带宽牵引配置数据。In an embodiment of the present invention, the generating a bandwidth pulling configuration data according to the bandwidth resource data and the network resource data specifically includes: according to the schedulable bandwidth resource user and bandwidth resource data, the real-time The bandwidth quality data and the configuration data of each CDN node server and each bandwidth resource user generate a bandwidth pulling configuration data.
于本发明的一实施例中,获取各所述CDN节点服务器的带宽峰值和形成带宽峰值的分布时间具体包括:对各所述CDN节点服务器各个时刻的带宽值、预设时间段内的历史带宽值进行分析统计,获取各所述CDN节点服务器在预设时间段内的带宽峰值和形成带宽峰值的分布时间。In an embodiment of the present invention, obtaining the peak bandwidth of each of the CDN node servers and the distribution time of forming the peak bandwidth specifically includes: the bandwidth value of each of the CDN node servers at each moment, the historical bandwidth within a preset time period The value is analyzed and counted to obtain the peak bandwidth of each CDN node server within a preset time period and the distribution time of forming the peak bandwidth.
于本发明的一实施例中,获取各所述带宽资源使用用户的带宽峰值和形成带宽峰值的分布时间具体包括:对所述各所述带宽资源使用用户各个时刻的带宽值、预设时间段内的历史带宽值进行分析统计,获取所述各所述带宽资源使用用户在预设时间段内的带宽峰值和形成带宽峰值的分布时间。In an embodiment of the present invention, obtaining the bandwidth peak value of each bandwidth resource user user and the distribution time of forming the bandwidth peak value specifically includes: the bandwidth value of each bandwidth resource user user at each moment, the preset time period Analyze and count the historical bandwidth values in the system to obtain the peak bandwidth of each bandwidth resource user within a preset time period and the distribution time of forming the peak bandwidth.
为实现上述目的,本发明还提供一种CDN网络带宽资源的错峰调度系统,所述CDN网络带宽资源的错峰调度系统包括:网络资源数据获取模块,用于获取CDN网络中的网络资源数据;资源分析处理模块,用于根据所述网络资源数据获取各CDN节点服务器的计费特性和带宽峰值数据并根据各所述CDN节点服务器的计费特性和带宽峰值数据获取各所述CDN节点服务器的带宽资源数据;调度配置数据生成模块,用于根据所述带宽资源数据和所述网络资源数据生成一带宽牵引配置数据。In order to achieve the above object, the present invention also provides a peak shift scheduling system of CDN network bandwidth resources, the peak shift scheduling system of CDN network bandwidth resources includes: a network resource data acquisition module, used to acquire network resource data in the CDN network The resource analysis processing module is used to obtain the charging characteristics and bandwidth peak data of each CDN node server according to the network resource data and obtain each of the CDN node servers according to the charging characteristics and bandwidth peak data of each of the CDN node servers bandwidth resource data; a scheduling configuration data generating module, configured to generate bandwidth pulling configuration data according to the bandwidth resource data and the network resource data.
于本发明的一实施例中,所述网络资源数据获取模块具体用于获取CDN网络中各CDN节点服务器、各带宽资源使用用户的配置数据、实时带宽数据和实时带宽质量数据;所述资源分析处理模块包括:第一分析处理单元,用于根据所述网络资源数据获取各CDN节点服务器的计费特性和带宽峰值数据;所述第一分析处理单元包括:第一获取单元,分别获取各所述CDN节点服务器和各所述带宽资源使用用户的带宽峰值和形成带宽峰值的分布时间;第二获取单元,根据所述配置数据获取各所述CDN节点服务器的计费特性;第三获取单元,根据各所述CDN节点服务器的计费特性和各所述CDN节点服务器的实时带宽数据获取各所述CDN节点服务器的剩余免费带宽峰值时间;第二分析处理单元,根据各所述CDN节点服务器的计费特性和带宽峰值数据获取各所述CDN节点服务器的带宽资源数据。In an embodiment of the present invention, the network resource data acquisition module is specifically used to acquire the configuration data, real-time bandwidth data and real-time bandwidth quality data of each CDN node server and each bandwidth resource user in the CDN network; the resource analysis The processing module includes: a first analysis and processing unit, which is used to obtain the billing characteristics and bandwidth peak data of each CDN node server according to the network resource data; the first analysis and processing unit includes: a first acquisition unit, which respectively obtains The bandwidth peaks of the CDN node server and each of the bandwidth resource users and the distribution time of forming the bandwidth peak; the second acquisition unit acquires the charging characteristics of each of the CDN node servers according to the configuration data; the third acquisition unit, Acquire the remaining free bandwidth peak time of each of the CDN node servers according to the billing characteristics of each of the CDN node servers and the real-time bandwidth data of each of the CDN node servers; the second analysis and processing unit, according to each of the CDN node servers The billing characteristics and bandwidth peak data obtain the bandwidth resource data of each CDN node server.
于本发明的一实施例中,所述第二分析处理单元根据各所述CDN节点服务器和各所述带宽资源使用用户的带宽峰值和形成带宽高峰的分布时间、各所述CDN节点服务器的剩余免费带宽峰值时间获取各所述CDN节点服务器的可调度的带宽资源使用用户和带宽资源数据。In an embodiment of the present invention, the second analysis and processing unit is based on the bandwidth peak of each of the CDN node servers and each of the bandwidth resource users, the distribution time of forming the bandwidth peak, and the remaining time of each of the CDN node servers. Obtain the schedulable bandwidth resource users and bandwidth resource data of each CDN node server at the free bandwidth peak time.
于本发明的一实施例中,所述调度配置数据生成模块根据所述可调度的带宽资源使用用户和带宽资源数据,所述实时带宽质量数据以及各CDN节点服务器、各带宽资源使用用户的所述配置数据生成一带宽牵引配置数据。In an embodiment of the present invention, the scheduling configuration data generating module is based on the schedulable bandwidth resource user and bandwidth resource data, the real-time bandwidth quality data and all CDN node servers and bandwidth resource user data The configuration data is used to generate bandwidth pulling configuration data.
于本发明的一实施例中,所述第一获取单元包括:节点数据获取单元,用于对各所述CDN节点服务器各个时刻的带宽值、预设时间段内的历史带宽值进行分析统计,获取各所述CDN节点服务器在预设时间段内的带宽峰值和形成带宽峰值的分布时间;用户数据获取单元,用于对所述各所述带宽资源使用用户各个时刻的带宽值、预设时间段内的历史带宽值进行分析统计,获取所述各所述带宽资源使用用户在预设时间段内的带宽峰值和形成带宽峰值的分布时间。In an embodiment of the present invention, the first acquisition unit includes: a node data acquisition unit, configured to analyze and count the bandwidth value of each CDN node server at each moment and the historical bandwidth value within a preset time period, Obtain the peak bandwidth of each of the CDN node servers within a preset time period and the distribution time of forming the peak bandwidth; the user data acquisition unit is used to use the bandwidth value and preset time of the user at each moment for each of the bandwidth resources Analyze and count historical bandwidth values within a segment to obtain the peak bandwidth of each bandwidth resource user within a preset time period and the distribution time for forming the peak bandwidth.
为实现上述目的,本发明还提供一种服务器,所述服务器包括如上所述的CDN网络带宽资源的错峰调度系统。In order to achieve the above object, the present invention also provides a server, which includes the above-mentioned system for peak-shift scheduling of CDN network bandwidth resources.
如上所述,本发明的一种CDN网络带宽资源的错峰调度方法、系统以及服务器,具有以下有益效果:As mentioned above, a peak shift scheduling method, system and server of CDN network bandwidth resources according to the present invention have the following beneficial effects:
1、本发明在CDN网络带宽资源的调度时,考虑了各CDN节点服务器的计费特性和各带宽资源使用用户的带宽峰值和形成带宽峰值的分布时间,将不同的带宽峰值通过调度进行流量的牵引从而错开,最大化利用带宽资源并最大化的提高峰值的带宽利用率。1. The present invention considers the billing characteristics of each CDN node server and the bandwidth peak value of each bandwidth resource user and the distribution time of forming the bandwidth peak value when scheduling CDN network bandwidth resources, and performs flow scheduling for different bandwidth peak values through scheduling Traction is thus staggered, maximizing the use of bandwidth resources and maximizing peak bandwidth utilization.
2、本发明可以有效降低CDN网络带宽资源的使用成本,提供产品的竞争力,具有广泛的应用前景。2. The present invention can effectively reduce the use cost of CDN network bandwidth resources, improve the competitiveness of products, and has wide application prospects.
附图说明Description of drawings
图1显示为本发明的一种CDN网络带宽资源的错峰调度方法的数据处理简化流程示意图。FIG. 1 is a schematic diagram of a simplified flow chart of data processing in a peak shift scheduling method for CDN network bandwidth resources according to the present invention.
图2显示为本发明的一种CDN网络带宽资源的错峰调度方法的流程示意图。FIG. 2 is a schematic flowchart of a peak-shift scheduling method for CDN network bandwidth resources according to the present invention.
图3显示为本发明的一种CDN网络带宽资源的错峰调度方法的数据处理具体流程示意图。FIG. 3 is a schematic diagram of a specific data processing flow of a peak-shift scheduling method for CDN network bandwidth resources according to the present invention.
图4显示为本发明的一种CDN网络带宽资源的错峰调度方法在一实施例中的流程示意图。FIG. 4 is a schematic flow chart of an embodiment of a method for peak-shift scheduling of CDN network bandwidth resources according to the present invention.
图5显示为本发明的一种CDN网络带宽资源的错峰调度方法的中获取可调度的带宽资源使用用户和带宽资源数据的流程示意图。FIG. 5 is a schematic flowchart of obtaining schedulable bandwidth resource users and bandwidth resource data in a peak-shift scheduling method of CDN network bandwidth resources according to the present invention.
图6显示为本发明的一种CDN网络带宽资源的错峰调度方法的中获取带宽牵引配置数据的流程示意图。FIG. 6 is a schematic flow chart of obtaining bandwidth pulling configuration data in a peak-shift scheduling method of CDN network bandwidth resources according to the present invention.
图7显示为本发明的一种CDN网络带宽资源的错峰调度系统的原理框图。FIG. 7 is a functional block diagram of a peak shift scheduling system for CDN network bandwidth resources according to the present invention.
图8显示为本发明的一种CDN网络带宽资源的错峰调度系统在一实施例中的原理框图。FIG. 8 is a functional block diagram of a peak shift scheduling system for CDN network bandwidth resources in an embodiment of the present invention.
元件标号说明Component designation description
100 CDN网络带宽资源的错峰调度系统100 CDN network bandwidth resource shift peak scheduling system
110 网络资源数据获取模块110 Network resource data acquisition module
120 资源分析处理模块120 resource analysis and processing module
121 第一分析处理单元121 The first analysis and processing unit
121a 第一获取单元121a first acquisition unit
121b 第二获取单元121b second acquisition unit
121c 第三获取单元121c The third acquisition unit
122 第二分析处理单元122 Second analysis and processing unit
130 调度配置数据生成模块130 Scheduling configuration data generation module
200 CDN配置平台200 CDN configuration platform
300 CDN网络资源数据平台300 CDN network resource data platform
400 带宽牵引服务器400 bandwidth pull server
S1~S4 步骤S1~S4 steps
S201~S203 步骤Steps from S201 to S203
具体实施方式detailed description
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
本实施例的目的在于提供一种CDN网络带宽资源的错峰调度方法、系统以及服务器,用于解决现有技术中不能有效的利用CDN带宽资源的问题。以下将详细阐述本发明的一种CDN网络带宽资源的错峰调度方法、系统以及服务器的原理及实施方式,使本领域技术人员不需要创造性劳动即可理解本发明的一种CDN网络带宽资源的错峰调度方法、系统以及服务器。The purpose of this embodiment is to provide a peak shift scheduling method, system and server for CDN network bandwidth resources, so as to solve the problem that CDN bandwidth resources cannot be effectively utilized in the prior art. The principle and implementation of a peak-shift scheduling method, system and server of a CDN network bandwidth resource of the present invention will be described in detail below, so that those skilled in the art can understand a kind of CDN network bandwidth resource of the present invention without creative work. A peak shift scheduling method, system and server.
CDN的全称是Content Delivery Network,即内容分发网络,CDN是构建在网络之上的内容分发网络,依靠部署在各地的边缘服务器,通过中心平台的负载均衡、内容分发、调度等功能模块,使用户就近获取所需内容,降低网络拥塞,提高用户访问响应速度和命中率。CDN的关键技术主要有内容存储和分发技术。其目的是使用户可就近取得所需内容,解决Internet网络拥挤的状况,提高用户访问网站的响应速度。CDN通过在网络各处放置节点服务器所构成的在现有的互联网基础之上的一层智能虚拟网络,CDN能够实时地根据网络流量和各节点的连接、负载状况以及到用户的距离和响应时间等综合信息将用户的请求重新导向离用户最近的服务节点上。The full name of CDN is Content Delivery Network, that is, content distribution network. CDN is a content distribution network built on top of the network, relying on edge servers deployed in various places, through the load balancing, content distribution, scheduling and other functional modules of the central platform, so that users Obtain the desired content nearby, reduce network congestion, and improve user access response speed and hit rate. The key technology of CDN mainly includes content storage and distribution technology. Its purpose is to enable users to obtain the required content nearby, solve the congestion situation of the Internet network, and improve the response speed of users' access to websites. CDN is a layer of intelligent virtual network based on the existing Internet by placing node servers all over the network. CDN can real-time according to the network traffic and the connection of each node, the load status, the distance to the user and the response time and other comprehensive information to redirect the user's request to the service node closest to the user.
本实施例提供的CDN网络带宽资源的错峰调度方法、系统以及服务器,应用于包含有提供CDN网络中各CDN节点服务器、各带宽资源使用用户的配置数据的CDN配置平台,包含有CDN网络中各CDN节点服务器、各带宽资源使用用户实时带宽数据和实时带宽质量数据的CDN网络资源数据平台以及用于实现CDN带宽数据最终迁移的带宽牵引服务器构成的CDN网络环境中。The peak stagger scheduling method, system and server of CDN network bandwidth resources provided by this embodiment are applied to a CDN configuration platform that provides configuration data of each CDN node server and each bandwidth resource user in the CDN network, including CDN network In the CDN network environment composed of each CDN node server, each bandwidth resource user's real-time bandwidth data and real-time bandwidth quality data CDN network resource data platform, and the bandwidth pulling server used to realize the final migration of CDN bandwidth data.
本实施例中的CDN网络带宽资源的错峰调度方法、系统以及服务器可以分析不同CDN服务器节点的计费特性,结合其特性进行调度,最大化利用带宽资源,可以对于不同时刻的用户行为进行分析,针对其行为差异导致的峰值差异进行调度,最大化利用带宽资源;还可以针对CDN服务器节点内不同加速用户的访问特性,分布峰值在不同时间的用户在该节点,最大化的提高峰值的带宽利用率。The peak shift scheduling method, system and server of CDN network bandwidth resources in this embodiment can analyze the billing characteristics of different CDN server nodes, perform scheduling in combination with their characteristics, maximize the use of bandwidth resources, and analyze user behavior at different times , according to the peak difference caused by their behavior differences, to maximize the use of bandwidth resources; also according to the access characteristics of different accelerated users in the CDN server node, users with peak distributions at different times are on the node, and the peak bandwidth can be maximized utilization rate.
以下对本实施例中的CDN网络带宽资源的错峰调度方法、系统以及服务器进行具体说明。The method, system and server for off-peak scheduling of CDN network bandwidth resources in this embodiment will be specifically described below.
本实施例提供一种CDN网络带宽资源的错峰调度方法,如图1所示,本实施例中的CDN网络带宽资源的错峰调度方法是通过对配置数据和实时带宽数据进行统计分析,获取预调度数据,通过调度决策对预调度数据和实时质量数据进行分析,获得最终的牵引带宽数据。This embodiment provides a peak shift scheduling method for CDN network bandwidth resources, as shown in Figure 1, the peak shift scheduling method for CDN network bandwidth resources in this embodiment is to obtain Pre-scheduling data, through scheduling decisions to analyze the pre-scheduling data and real-time quality data, to obtain the final traction bandwidth data.
具体地,如图2所示,所述CDN网络带宽资源的错峰调度方法包括以下步骤:Specifically, as shown in Figure 2, the peak-staggered scheduling method of the CDN network bandwidth resources includes the following steps:
步骤S1,获取CDN网络中的网络资源数据。Step S1, acquiring network resource data in the CDN network.
步骤S2,根据所述网络资源数据获取各CDN节点服务器的计费特性和带宽峰值数据。Step S2, acquiring charging characteristics and bandwidth peak data of each CDN node server according to the network resource data.
步骤S3,根据各所述CDN节点服务器的计费特性和带宽峰值数据获取各所述CDN节点服务器的带宽资源数据。Step S3, acquiring the bandwidth resource data of each of the CDN node servers according to the charging characteristics and bandwidth peak data of each of the CDN node servers.
S4,根据所述带宽资源数据和所述网络资源数据生成一带宽牵引配置数据。S4. Generate bandwidth pulling configuration data according to the bandwidth resource data and the network resource data.
以下对步骤S1至步骤S4进行详细说明。Steps S1 to S4 will be described in detail below.
步骤S1,获取CDN网络中的网络资源数据。Step S1, acquiring network resource data in the CDN network.
于本实施例中,所述获取CDN网络中的网络资源数据具体包括:获取CDN网络中各CDN节点服务器、各带宽资源使用用户的配置数据、实时带宽数据和实时带宽质量数据。In this embodiment, the acquisition of network resource data in the CDN network specifically includes: acquisition of configuration data, real-time bandwidth data, and real-time bandwidth quality data of each CDN node server and each bandwidth resource user in the CDN network.
即所述步骤S1从数据平台拉取CDN节点、用户的配置数据,并且实时的从数据平台获取各个CDN节点的带宽和质量数据以及用户的带宽和质量数据,以供统计分析和调度决策。That is, the step S1 pulls configuration data of CDN nodes and users from the data platform, and obtains bandwidth and quality data of each CDN node and user bandwidth and quality data from the data platform in real time for statistical analysis and scheduling decisions.
于本实施例中,具体地,如图3所示,从包含有提供CDN网络中各CDN节点服务器、各带宽资源使用用户的配置数据的CDN配置平台获取CDN网络中各CDN节点服务器、各带宽资源使用用户的配置数据。更进一步地,从所述CDN配置平台提供的API接口获取各CDN节点服务器、各带宽资源使用用户的相关配置数据,其中,所述配置数据例如为用户的等级、用户的服务资源要求、用户的访问特性等。In this embodiment, specifically, as shown in FIG. 3 , each CDN node server and each bandwidth resource in the CDN network are acquired from a CDN configuration platform that includes configuration data that provides each CDN node server and each bandwidth resource user in the CDN network. The resource uses the user's configuration data. Furthermore, the relevant configuration data of each CDN node server and each bandwidth resource user is obtained from the API interface provided by the CDN configuration platform, wherein the configuration data is, for example, the user's level, the user's service resource requirements, the user's access features, etc.
于本实施例中,具体地,如图3所示,从包含有CDN网络中各CDN节点服务器、各带宽资源使用用户实时带宽数据和实时带宽质量数据的CDN网络资源数据平台获取各CDN节点服务器、各带宽资源使用用户的实时带宽数据和实时带宽质量数据。其中,所述CDN网络资源数据平台实时采集全网的CDN资源数据:节点和用户带宽带宽、节点质量、用户带宽以及用户质量等数据。所述CDN网络资源数据平台对实时带宽数据进行去噪后预处理,对实时质量数据进行去噪后预处理,然后通过云传输通道,将经过预处理后的带宽数据以及质量数据实时的输出到请求的服务器中。In this embodiment, specifically, as shown in FIG. 3 , each CDN node server is obtained from the CDN network resource data platform that includes each CDN node server in the CDN network, each bandwidth resource user's real-time bandwidth data and real-time bandwidth quality data. , Each bandwidth resource uses the user's real-time bandwidth data and real-time bandwidth quality data. Wherein, the CDN network resource data platform collects CDN resource data of the entire network in real time: data such as node and user bandwidth bandwidth, node quality, user bandwidth, and user quality. The CDN network resource data platform preprocesses the real-time bandwidth data after denoising, performs preprocessing on the real-time quality data after denoising, and then outputs the preprocessed bandwidth data and quality data to the in the requested server.
步骤S2,根据所述网络资源数据获取各CDN节点服务器的计费特性和带宽峰值数据。Step S2, acquiring charging characteristics and bandwidth peak data of each CDN node server according to the network resource data.
具体地,如图4所示,根据所述网络资源数据获取各CDN节点服务器的计费特性和带宽峰值数据具体包括:Specifically, as shown in FIG. 4, obtaining the billing characteristics and bandwidth peak data of each CDN node server according to the network resource data specifically includes:
步骤S201,分别获取各所述CDN节点服务器和各所述带宽资源使用用户的带宽峰值和形成带宽峰值的分布时间。Step S201, respectively acquiring the bandwidth peak value and the distribution time of forming the bandwidth peak value of each of the CDN node servers and each of the bandwidth resource users.
所述CDN网络带宽资源的错峰调度方法还可以包括:The peak shift scheduling method of the CDN network bandwidth resources may also include:
步骤S202,根据所述配置数据获取各所述CDN节点服务器的计费特性。Step S202, acquiring charging characteristics of each of the CDN node servers according to the configuration data.
步骤S203,根据各所述CDN节点服务器的计费特性和各所述CDN节点服务器的实时带宽数据获取各所述CDN节点服务器的剩余免费带宽峰值时间。Step S203, obtaining the remaining free bandwidth peak time of each of the CDN node servers according to the charging characteristics of each of the CDN node servers and the real-time bandwidth data of each of the CDN node servers.
于所述步骤S2中,如图3所示,对于获取到的实时带宽数据进行预先分析转换,并且进行存储,存储为历史数据,然后结合配置数据以及实时带宽数据和历史分析后的实时数据进行统计分析,输出需要预调度的数据以供调度决策。In the step S2, as shown in FIG. 3 , the obtained real-time bandwidth data is pre-analyzed and converted, and stored as historical data, and then combined with configuration data, real-time bandwidth data and historically analyzed real-time data. Statistical analysis, output data that needs to be pre-scheduled for scheduling decisions.
具体地,于本实施例中,获取各所述CDN节点服务器的带宽峰值和形成带宽峰值的分布时间具体包括:对各所述CDN节点服务器各个时刻(即每个时间点,也就是如果是5min钟采集一个点则具体指每个5min钟点的值)的带宽值、预设时间段内的历史带宽值进行分析统计,获取各所述CDN节点服务器在预设时间段内的带宽峰值和形成带宽峰值的分布时间。Specifically, in this embodiment, obtaining the peak bandwidth of each of the CDN node servers and the distribution time for forming the peak bandwidth specifically includes: One point collected by the clock specifically refers to the bandwidth value of each 5min hour), the historical bandwidth value in the preset time period for analysis and statistics, and obtains the bandwidth peak value and formed bandwidth of each of the CDN node servers in the preset time period The distribution time of peaks.
于本实施例中,如图5所示,获取各所述带宽资源使用用户的带宽峰值和形成带宽峰值的分布时间具体包括:对所述各所述带宽资源使用用户各个时刻(即每个时间点,也就是如果是5min钟采集一个点则具体指每个5min钟点的值)的带宽值、预设时间段内的历史带宽值进行分析统计,获取所述各所述带宽资源使用用户在预设时间段内的带宽峰值和形成带宽峰值的分布时间。In this embodiment, as shown in FIG. 5 , obtaining the bandwidth peak value of each bandwidth resource user and the distribution time of forming the bandwidth peak value specifically includes: each time of each bandwidth resource user user (that is, each time point, that is, if a point is collected every 5 minutes, it specifically refers to the bandwidth value of each 5-minute hour) and the historical bandwidth value in the preset time period for analysis and statistics, and obtains the bandwidth resources used by the user in the preset time period. Set the bandwidth peak value in the time period and the distribution time of forming the bandwidth peak value.
其中,所述预设时间段以天或周为时间设置单位。例如当天或当周。Wherein, the preset time period takes days or weeks as the time setting unit. For example the current day or the current week.
例如:将用户各个时刻的峰值带宽和当天或者当周的历史带宽进行分析,统计出用户在当天或者在当周发生高峰的时间分布比以及对应的各个时刻高峰的带宽值。将CDN服务器节点各个时刻的峰值带宽和当天或者当周的历史带宽进行分析,统计出CDN服务器节点在当天或者在当周发生高峰的时间分布比,以及对应的各个时刻高峰的带宽值。For example: analyze the peak bandwidth of the user at each moment and the historical bandwidth of the day or week, and calculate the time distribution ratio of the peak occurrence of the user on the day or week and the corresponding bandwidth value of the peak at each moment. Analyze the peak bandwidth of the CDN server node at each moment and the historical bandwidth of the day or week, and calculate the distribution ratio of the peak time of the CDN server node on the day or week, and the corresponding bandwidth value of the peak at each moment.
步骤S3,根据各所述CDN节点服务器的计费特性和带宽峰值数据获取各所述CDN节点服务器的带宽资源数据。Step S3, acquiring the bandwidth resource data of each of the CDN node servers according to the charging characteristics and bandwidth peak data of each of the CDN node servers.
所述获取各所述CDN节点服务器的带宽资源数据具体包括:根据各所述CDN节点服务器和各所述带宽资源使用用户的带宽峰值和形成带宽高峰的分布时间、各所述CDN节点服务器的剩余免费带宽峰值时间获取各所述CDN节点服务器的可调度的带宽资源使用用户和带宽资源数据。The acquisition of the bandwidth resource data of each of the CDN node servers specifically includes: according to each of the CDN node servers and each of the bandwidth resource users' bandwidth peaks and the distribution time for forming bandwidth peaks, and the remaining bandwidth of each of the CDN node servers. Obtain the schedulable bandwidth resource users and bandwidth resource data of each CDN node server at the free bandwidth peak time.
通过分析统计不同加速用户其高峰的分布,对于一个CDN服务器节点进行调度分配其服务用户的时候尽量将这些用户的峰值进行错开,最大化的提高带宽利用率。By analyzing and counting the peak distribution of different acceleration users, when scheduling and assigning service users to a CDN server node, try to stagger the peak values of these users to maximize bandwidth utilization.
然后根据所述配置数据获取各所述CDN节点服务器的计费特性,并根据各所述CDN节点服务器的计费特性和各所述CDN节点服务器的实时带宽数据获取各所述CDN节点服务器的剩余免费带宽峰值时间。Then obtain the billing characteristics of each of the CDN node servers according to the configuration data, and obtain the remaining bandwidth of each of the CDN node servers according to the billing characteristics of each of the CDN node servers and the real-time bandwidth data of each of the CDN node servers. Free bandwidth peak hours.
例如,将CDN节点服务器实时的带宽数据输入到节点剩余免费带宽计算环节,将配置数据输出到节点剩余免费带宽计算环节,结合CDN节点服务器实时的带宽以及各个CDN节点服务器的计费特性,计算出每个CDN节点服务器还剩余的免费峰值时间。For example, input the real-time bandwidth data of the CDN node server into the node remaining free bandwidth calculation link, output the configuration data to the node remaining free bandwidth calculation link, and combine the real-time bandwidth of the CDN node server and the billing characteristics of each CDN node server to calculate The remaining free peak time of each CDN node server.
具体过程如图5所示:根据各所述CDN节点服务器的带宽峰值和形成带宽高峰的分布时间、各所述带宽资源使用用户的带宽峰值和形成带宽高峰的分布时间以及各所述CDN节点服务器的剩余免费带宽峰值时间获取各所述CDN节点服务器的可调度的带宽资源使用用户和带宽资源数据。The specific process is as shown in Figure 5: according to the bandwidth peak value of each described CDN node server and the distribution time of forming the bandwidth peak value, the bandwidth peak value of each described bandwidth resource user and the distribution time of forming the bandwidth peak value, and the distribution time of each described CDN node server Obtain the schedulable bandwidth resource users and bandwidth resource data of each of the CDN node servers according to the remaining free bandwidth peak time.
具体地,根据用户各个时刻带宽值,用户历史峰值带宽分布时间,节点各个时刻带宽值、节点历史峰值带宽分布时间以及及节点剩余免费峰值时间获得节点可调度的用户和带宽,节点可引入的用户和带宽。Specifically, according to the user's bandwidth value at each moment, the user's historical peak bandwidth distribution time, the node's bandwidth value at each moment, the node's historical peak bandwidth distribution time, and the remaining free peak time of the node to obtain the schedulable users and bandwidth of the node, the user that the node can introduce and bandwidth.
通过统计分析计算出预处理用户带宽,即统计分析各个CDN节点服务器引入和引出的用户带宽数据,通过该数据实现CDN节点服务器带宽峰值的错位填充。Calculate the pre-processing user bandwidth through statistical analysis, that is, statistically analyze the user bandwidth data imported and exported by each CDN node server, and use this data to realize the dislocation filling of the peak bandwidth of the CDN node server.
下面举例说明获取各所述CDN节点服务器的可调度的带宽资源使用用户和带宽资源数据的过程。The following example illustrates the process of obtaining schedulable bandwidth resource users and bandwidth resource data of each of the CDN node servers.
前提:节点A上面只跑了客户a的带宽;节点B上面只跑客户b的带宽;Premise: Only the bandwidth of client a runs on node A; only the bandwidth of client b runs on node B;
数据情况:节点A在早上7点、8点、9点对应的值是90M、100M、90M,高峰值点在8点100M;该节点带宽值也就是客户a的带宽值;节点B在早上8点、9点、10点对应的值是90M、100M、90M,高峰值点在9点100M;该节点带宽值也就是客户b的带宽值。Data situation: Node A corresponds to 90M, 100M, and 90M at 7:00, 8:00, and 9:00 in the morning, and the peak value is 100M at 8:00; the bandwidth value of this node is also the bandwidth value of customer a; Points, 9 points, and 10 points correspond to 90M, 100M, 90M, and the peak point is 100M at 9 points; the bandwidth value of this node is also the bandwidth value of customer b.
正常计费数据:节点A和节点B的高峰值都是100M;Normal billing data: the peak value of both node A and node B is 100M;
错峰调度过程:但是如果在8点的时刻能够将节点A上a客户带宽5M牵引到B节点,然后在9点时刻能够将节点B上b客户带宽5M牵引到A节点;后面统计节点计费的时候:Off-peak scheduling process: But if at 8:00 o'clock, the bandwidth of customer a on node A can be drawn to node B with 5M, and then at the time of 9:00 o'clock, the bandwidth of customer b on node B can be drawn to node A with 5M bandwidth; the node billing will be counted later when:
调度后计费数据:节点A和节点B峰值带宽都是95M,和原本100M相比成本下降5%。Billing data after scheduling: The peak bandwidth of node A and node B is both 95M, and the cost is reduced by 5% compared with the original 100M.
于所述步骤S3中,在生成所述可调度的带宽资源使用用户和带宽资源数据时,结合CDN节点服务器的计费特性,通过不同计费的特征将节点的最终结账计费峰值控制到最低,从而提高带宽的利用率。例如:如果是超保底计费,则带宽至少要跑到保底的值,并且在全平台带宽还有剩余的情况下就尽量最多只能压在保底线上跑,尽量不要超过提高计费的成本。In the step S3, when generating the schedulable bandwidth resource user and bandwidth resource data, combined with the charging characteristics of the CDN node server, the final billing peak value of the node is controlled to the minimum through different charging characteristics , thereby improving bandwidth utilization. For example: if it is over-guaranteed billing, the bandwidth must at least run to the guaranteed value, and if the bandwidth of the entire platform is still remaining, try to run on the guaranteed bottom line at most, and try not to exceed the cost of increasing billing .
在生成所述可调度的带宽资源使用用户和带宽资源数据时,对于不同时刻的加速用户的带宽进行统计,从而形成全网各个节点上各个时刻用户的带宽峰值,将不同的峰值通过调度进行流量的牵引从而错开,并且结合上述考虑的及节点计费特性降低计费带宽提高利用率。When generating the schedulable bandwidth resource users and bandwidth resource data, statistics are made on the bandwidth of accelerated users at different times, so as to form the bandwidth peaks of users at each time on each node of the entire network, and different peaks are processed through scheduling The traction is thus staggered, and combined with the above considerations and node charging characteristics, the billing bandwidth is reduced and the utilization rate is improved.
步骤S4,根据所述带宽资源数据和所述网络资源数据生成一带宽牵引配置数据。Step S4, generating bandwidth pulling configuration data according to the bandwidth resource data and the network resource data.
于本实施例中,所述根据所述带宽资源数据和所述网络资源数据生成一带宽牵引配置数据具体包括:根据所述可调度的带宽资源使用用户和带宽资源数据、所述实时带宽质量数据以及各CDN节点服务器、各带宽资源使用用户的所述配置数据生成一带宽牵引配置数据。In this embodiment, the generating a bandwidth pulling configuration data according to the bandwidth resource data and the network resource data specifically includes: according to the schedulable bandwidth resource user and bandwidth resource data, the real-time bandwidth quality data And the configuration data of each CDN node server and each bandwidth resource user generates a bandwidth pulling configuration data.
如图3和图6所示,统计分析后的节点预处理方案中获取的可调度的带宽资源使用用户和带宽资源数据实时的进行调度决策,从CDN配置平台获取相应的业务流程的配置,从CDN网络资源数据平台获取质量数据,结合以上的数据通过CDN调度决策处理环节后生成最终部署的带宽牵引配置数据。As shown in Figure 3 and Figure 6, the schedulable bandwidth resources obtained in the node preprocessing scheme after the statistical analysis use the user and bandwidth resource data to make scheduling decisions in real time, obtain the configuration of the corresponding business process from the CDN configuration platform, and obtain the configuration of the corresponding business process from the The CDN network resource data platform obtains the quality data, and combines the above data to generate the final deployed bandwidth traction configuration data through the CDN scheduling decision-making process.
其中,于本实施例中,所述带宽牵引配置数据包含将带宽峰值高的所述CDN节点服务器的带宽资源使用用户和带宽资源数据牵引至带宽峰值低的所述CDN节点服务器中所需的配置数据。Wherein, in this embodiment, the bandwidth pulling configuration data includes the configuration required to pull the bandwidth resource users and bandwidth resource data of the CDN node server with a high peak bandwidth to the CDN node server with a low peak bandwidth data.
于本实施例中,将带宽牵引配置数据部署到带宽牵引服务器,带宽牵引服务器根据最终的配置,对于节点的当前服务用户进行引入和引出,实现对于带宽的最终迁移,从而将节点峰值高的带宽转移到峰值低的节点,从而最大化的提高节点的利用率降低成本。In this embodiment, the bandwidth pulling configuration data is deployed to the bandwidth pulling server, and the bandwidth pulling server imports and exports the current service users of the node according to the final configuration, so as to realize the final migration of the bandwidth, so that the bandwidth of the node with high peak value Transfer to the node with low peak value, so as to maximize the utilization rate of the node and reduce the cost.
所以本实施例中的CDN网络带宽资源的错峰调度方法通过CDN节点服务器的特性、服务的用户的特性进行峰值的错开调度,最大化的提高CDN带宽和服务其资源的利用率;从而降低CDN的成本,提供产品的竞争力。Therefore, the staggered peak scheduling method of CDN network bandwidth resources in this embodiment performs peak staggered scheduling through the characteristics of CDN node servers and service users, so as to maximize the utilization rate of CDN bandwidth and service resources; thereby reducing CDN cost and provide product competitiveness.
为实现上述CDN网络带宽资源的错峰调度方法,如图7所示,本实施例还对应提供一种CDN网络带宽资源的错峰调度系统100,所述CDN网络带宽资源的错峰调度系统100包括:网络资源数据获取模块110,资源分析处理模块120以及调度配置数据生成模块130。In order to realize the above-mentioned method for peak-shift scheduling of CDN network bandwidth resources, as shown in FIG. 7 , this embodiment also provides a corresponding peak-shift scheduling system 100 for CDN network bandwidth resources. It includes: a network resource data acquisition module 110 , a resource analysis and processing module 120 and a scheduling configuration data generation module 130 .
于本实施例中,所述网络资源数据获取模块110用于获取CDN网络中的网络资源数据。具体地,所述网络资源数据获取模块110用于获取CDN网络中各CDN节点服务器、各带宽资源使用用户的配置数据、实时带宽数据和实时带宽质量数据。In this embodiment, the network resource data acquisition module 110 is used to acquire network resource data in the CDN network. Specifically, the network resource data acquisition module 110 is configured to acquire configuration data, real-time bandwidth data, and real-time bandwidth quality data of each CDN node server and each bandwidth resource user in the CDN network.
所述网络资源数据获取模块110从数据平台拉取CDN节点、用户的配置数据,并且实时的从数据平台获取各个CDN节点的带宽和质量数据以及用户的带宽和质量数据,以供统计分析和调度决策。The network resource data acquisition module 110 pulls configuration data of CDN nodes and users from the data platform, and obtains the bandwidth and quality data of each CDN node and the bandwidth and quality data of users from the data platform in real time for statistical analysis and scheduling decision making.
其中,所述网络资源数据获取模块110包括配置数模获取单元和实时数据获取单元。Wherein, the network resource data acquisition module 110 includes a configuration digital-analog acquisition unit and a real-time data acquisition unit.
于本实施例中,具体地,如图3所示,所述配置数模获取单元从包含有提供CDN网络中各CDN节点服务器、各带宽资源使用用户的配置数据的CDN配置平台200获取CDN网络中各CDN节点服务器、各带宽资源使用用户的配置数据。In this embodiment, specifically, as shown in FIG. 3 , the configuration digital-analog acquisition unit obtains the CDN network configuration platform 200 from the CDN configuration platform 200 that includes the configuration data of each CDN node server and each bandwidth resource user in the CDN network. Each CDN node server and each bandwidth resource use the user's configuration data.
更进一步地,从所述CDN配置平台200提供的API接口获取各CDN节点服务器、各带宽资源使用用户的相关配置数据,其中,所述配置数据包括用户的等级、用户的服务资源要求、用户的访问特性等。Furthermore, from the API interface provided by the CDN configuration platform 200, the relevant configuration data of each CDN node server and each bandwidth resource user is obtained, wherein the configuration data includes the user's level, the user's service resource requirements, and the user's access features, etc.
于本实施例中,具体地,如图3所示,所述实时数据获取单元从包含有CDN网络中各CDN节点服务器、各带宽资源使用用户实时带宽数据和实时带宽质量数据的CDN网络资源数据平台300获取各CDN节点服务器、各带宽资源使用用户的实时带宽数据和实时带宽质量数据。In this embodiment, specifically, as shown in FIG. 3 , the real-time data acquisition unit obtains from the CDN network resource data including real-time bandwidth data and real-time bandwidth quality data of each CDN node server and each bandwidth resource user user in the CDN network The platform 300 acquires real-time bandwidth data and real-time bandwidth quality data of each CDN node server and each bandwidth resource user.
其中,所述CDN网络资源数据平台300实时采集全网的CDN资源数据:节点和用户带宽带宽、节点质量、用户带宽以及用户质量等数据。所述CDN网络资源数据平台300对实时带宽数据进行去噪后预处理,对实时质量数据进行去噪后预处理,然后通过云传输通道,将经过预处理后的带宽数据以及质量数据实时的输出到请求的服务器中。Wherein, the CDN network resource data platform 300 collects CDN resource data of the entire network in real time: data such as node and user bandwidth bandwidth, node quality, user bandwidth, and user quality. The CDN network resource data platform 300 preprocesses the real-time bandwidth data after denoising, performs preprocessing on the real-time quality data after denoising, and then outputs the preprocessed bandwidth data and quality data in real time through the cloud transmission channel to the requested server.
所述资源分析处理模块120用于根据所述网络资源数据获取各CDN节点服务器的计费特性和带宽峰值数据并根据各所述CDN节点服务器的计费特性和带宽峰值数据获取各所述CDN节点服务器的带宽资源数据。The resource analysis processing module 120 is used to obtain the charging characteristics and bandwidth peak data of each CDN node server according to the network resource data, and obtain the charging characteristics and bandwidth peak data of each CDN node server according to the CDN node server. The bandwidth resource data of the server.
于本实施例中,具体地,如图8所示,所述资源分析处理模块120包括:第一分析处理单元121和第二分析处理单元122。In this embodiment, specifically, as shown in FIG. 8 , the resource analysis and processing module 120 includes: a first analysis and processing unit 121 and a second analysis and processing unit 122 .
所述第一分析处理单元121用于根据所述网络资源数据获取各CDN节点服务器的计费特性和带宽峰值数据,所述第一分析处理单元121包括:第一获取单元121a,第二获取单元121b,第三获取单元121c。The first analysis and processing unit 121 is used to obtain charging characteristics and bandwidth peak data of each CDN node server according to the network resource data, and the first analysis and processing unit 121 includes: a first obtaining unit 121a, a second obtaining unit 121b, the third acquiring unit 121c.
所述资源分析处理模块120还包括存储单元,对于对获取到的实时数据进行存储,即对实时带宽数据和实时质量数据进行存储,存储为历史数据。The resource analysis and processing module 120 also includes a storage unit for storing the acquired real-time data, that is, storing real-time bandwidth data and real-time quality data as historical data.
于本实施例中,所述第一获取单元121a分别获取各所述CDN节点服务器和各所述带宽资源使用用户的带宽峰值和形成带宽峰值的分布时间。In this embodiment, the first obtaining unit 121a respectively obtains the bandwidth peak value and the distribution time of forming the bandwidth peak value of each of the CDN node servers and each of the bandwidth resource users.
于所述第一获取单元121a中,如图3所示,对于获取到的实时带宽数据进行预先分析转换,然后结合配置数据以及实时带宽数据和历史分析后的实时数据进行统计分析,输出需要预调度的数据以供调度决策。In the first acquisition unit 121a, as shown in FIG. 3 , the acquired real-time bandwidth data is pre-analyzed and converted, and then statistically analyzed in combination with configuration data, real-time bandwidth data and historically analyzed real-time data, and the output needs to be pre-analyzed. Scheduling data for scheduling decisions.
于本实施例中,具体地,所述第一获取单元121a包括节点数据获取单元,用于对各所述CDN节点服务器各个时刻的带宽值、预设时间段内的历史带宽值进行分析统计,获取各所述CDN节点服务器在预设时间段内的带宽峰值和形成带宽峰值的分布时间。In this embodiment, specifically, the first acquisition unit 121a includes a node data acquisition unit, configured to analyze and count the bandwidth values of each CDN node server at each moment and the historical bandwidth values within a preset time period, Obtain the peak bandwidth of each CDN node server within a preset time period and the distribution time for forming the peak bandwidth.
于本实施例中,所述第一获取单元121a还包括用户数据获取单元,用于对所述各所述带宽资源使用用户各个时刻的带宽值、预设时间段内的历史带宽值进行分析统计,获取所述各所述带宽资源使用用户在预设时间段内的带宽峰值和形成带宽峰值的分布时间。In this embodiment, the first acquisition unit 121a further includes a user data acquisition unit, which is used to analyze and count the bandwidth value of each bandwidth resource user at each moment and the historical bandwidth value within a preset time period. and acquiring the peak bandwidth of each bandwidth resource user within a preset time period and the distribution time for forming the peak bandwidth.
其中,所述预设时间段以天或周为时间设置单位。例如当天或当周。Wherein, the preset time period takes days or weeks as the time setting unit. For example the current day or the current week.
例如:将用户各个时刻的峰值带宽和当天或者当周的历史带宽进行分析,统计出用户在当天或者在当周发生高峰的时间分布比以及对应的各个时刻高峰的带宽值。将CDN服务器节点各个时刻的峰值带宽和当天或者当周的历史带宽进行分析,统计出CDN服务器节点在当天或者在当周发生高峰的时间分布比,以及对应的各个时刻高峰的带宽值。For example: analyze the peak bandwidth of the user at each moment and the historical bandwidth of the day or week, and calculate the time distribution ratio of the peak occurrence of the user on the day or week and the corresponding bandwidth value of the peak at each moment. Analyze the peak bandwidth of the CDN server node at each moment and the historical bandwidth of the day or week, and calculate the distribution ratio of the peak time of the CDN server node on the day or week, and the corresponding bandwidth value of the peak at each moment.
通过分析统计不同加速用户其高峰的分布,对于一个CDN服务器节点进行调度分配其服务用户的时候尽量将这些用户的峰值进行错开,最大化的提高带宽利用率。By analyzing and counting the peak distribution of different acceleration users, when scheduling and assigning service users to a CDN server node, try to stagger the peak values of these users to maximize bandwidth utilization.
于本实施例中,所述第二获取单元121b根据所述配置数据获取各所述CDN节点服务器的计费特性。In this embodiment, the second acquiring unit 121b acquires the charging characteristics of each of the CDN node servers according to the configuration data.
于本实施例中,所述第三获取单元121c根据各所述CDN节点服务器的计费特性和各所述CDN节点服务器的实时带宽数据获取各所述CDN节点服务器的剩余免费带宽峰值时间。In this embodiment, the third acquiring unit 121c acquires the remaining free bandwidth peak time of each of the CDN node servers according to the charging characteristics of each of the CDN node servers and the real-time bandwidth data of each of the CDN node servers.
例如,将CDN节点服务器实时的带宽数据输入到节点剩余免费带宽计算环节,将配置数据输出到节点剩余免费带宽计算环节,结合CDN节点服务器实时的带宽以及各个CDN节点服务器的计费特性,计算出每个CDN节点服务器还剩余的免费峰值时间。For example, input the real-time bandwidth data of the CDN node server into the node remaining free bandwidth calculation link, output the configuration data to the node remaining free bandwidth calculation link, and combine the real-time bandwidth of the CDN node server and the billing characteristics of each CDN node server to calculate The remaining free peak time of each CDN node server.
于本实施例中,所述第二分析处理单元122根据各所述CDN节点服务器的带宽峰值和形成带宽高峰的分布时间、各所述带宽资源使用用户的带宽峰值和形成带宽高峰的分布时间以及各所述CDN节点服务器的剩余免费带宽峰值时间获取各所述CDN节点服务器的可调度的带宽资源使用用户和带宽资源数据。In this embodiment, the second analysis and processing unit 122 is based on the peak bandwidth of each of the CDN node servers and the distribution time of the peak bandwidth, the peak bandwidth of each bandwidth resource user and the distribution time of the peak bandwidth, and The remaining free bandwidth peak time of each CDN node server acquires schedulable bandwidth resource users and bandwidth resource data of each CDN node server.
具体地,如图5所示,所述第二分析处理单元122根据用户各个时刻带宽值,用户历史峰值带宽分布时间,节点各个时刻带宽值、节点历史峰值带宽分布时间以及及诶单剩余免费峰值时间获得节点可调度的用户和带宽,节点可引入的用户和带宽。通过统计分析计算出预处理用户带宽,即统计分析各个CDN节点服务器引入和引出的用户带宽数据,通过该数据实现CDN节点服务器带宽峰值的错位填充。Specifically, as shown in FIG. 5 , the second analysis and processing unit 122 is based on the bandwidth value at each moment of the user, the historical peak bandwidth distribution time of the user, the bandwidth value at each moment of the node, the historical peak bandwidth distribution time of the node, and the remaining free peak value of the order. Time obtains the users and bandwidth that the node can schedule, and the users and bandwidth that the node can introduce. Calculate the pre-processing user bandwidth through statistical analysis, that is, statistically analyze the user bandwidth data imported and exported by each CDN node server, and use this data to realize the dislocation filling of the peak bandwidth of the CDN node server.
其中,所述资源分析处理模块120在生成所述可调度的带宽资源使用用户和带宽资源数据时,结合CDN节点服务器的计费特性,通过不同计费的特征将节点的最终结账计费峰值控制到最低,从而提高带宽的利用率。Wherein, when the resource analysis and processing module 120 generates the schedulable bandwidth resource users and bandwidth resource data, it combines the charging characteristics of the CDN node server, and controls the peak value of the final billing of the node through different charging characteristics. To the minimum, thereby improving the utilization of bandwidth.
例如:如果是超保底计费,则带宽至少要跑到保底的值,并且在全平台带宽还有剩余的情况下就尽量最多只能压在保底线上跑,尽量不要超过提高计费的成本。For example: if it is over-guaranteed billing, the bandwidth must at least run to the guaranteed value, and if the bandwidth of the entire platform is still remaining, try to run on the guaranteed bottom line at most, and try not to exceed the cost of increasing billing .
在生成所述可调度的带宽资源使用用户和带宽资源数据时,对于不同时刻的加速用户的带宽进行统计,从而形成全网各个节点上各个时刻用户的带宽峰值,将不同的峰值通过调度进行流量的牵引从而错开,并且结合上述考虑的及节点计费特性降低计费带宽提高利用率。When generating the schedulable bandwidth resource users and bandwidth resource data, statistics are made on the bandwidth of accelerated users at different times, so as to form the bandwidth peaks of users at each time on each node of the entire network, and different peaks are processed through scheduling The traction is thus staggered, and combined with the above considerations and node charging characteristics, the billing bandwidth is reduced and the utilization rate is improved.
所述调度配置数据生成模块130用于根据所述带宽资源数据和所述网络资源数据生成一带宽牵引配置数据。The scheduling configuration data generating module 130 is configured to generate bandwidth pulling configuration data according to the bandwidth resource data and the network resource data.
具体地,于本实施例中,所述调度配置数据生成模块130用于根据所述可调度的带宽资源使用用户和带宽资源数据,所述实时带宽质量数据以及各CDN节点服务器、各带宽资源使用用户的所述配置数据生成一带宽牵引配置数据。Specifically, in this embodiment, the scheduling configuration data generating module 130 is configured to use user and bandwidth resource data according to the schedulable bandwidth resource, the real-time bandwidth quality data, each CDN node server, each bandwidth resource usage The configuration data of the user generates a bandwidth pulling configuration data.
如图3和图6所示,统计分析后的节点预处理方案中获取的可调度的带宽资源使用用户和带宽资源数据实时的进行调度决策,从CDN配置平台200获取相应的业务流程的配置,从CDN网络资源数据平台300获取质量数据,结合以上的数据通过CDN调度决策处理环节后生成最终部署的带宽牵引配置数据。As shown in Figures 3 and 6, the schedulable bandwidth resources obtained in the node preprocessing scheme after the statistical analysis use the user and bandwidth resource data to make scheduling decisions in real time, and obtain the configuration of the corresponding business process from the CDN configuration platform 200, The quality data is obtained from the CDN network resource data platform 300 , and the final deployed bandwidth pulling configuration data is generated after combining the above data through the CDN scheduling decision-making process.
于本实施例中,所述带宽牵引配置数据包含将带宽峰值高的所述CDN节点服务器的带宽资源使用用户和带宽资源数据牵引至带宽峰值低的所述CDN节点服务器中所需的配置数据。In this embodiment, the bandwidth pulling configuration data includes the configuration data required to pull bandwidth resource users and bandwidth resource data of the CDN node server with a high peak bandwidth to the CDN node server with a low peak bandwidth.
于本实施例中,将带宽牵引配置数据部署到带宽牵引服务器400,带宽牵引服务器400根据最终的配置,对于节点的当前服务用户进行引入和引出,实现对于带宽的最终迁移,从而将节点峰值高的带宽转移到峰值低的节点,从而最大化的提高节点的利用率降低成本。In this embodiment, the bandwidth pulling configuration data is deployed to the bandwidth pulling server 400, and the bandwidth pulling server 400 imports and exports the current service users of the node according to the final configuration to realize the final migration of the bandwidth, thereby increasing the peak value of the node The bandwidth is transferred to the node with low peak value, so as to maximize the utilization rate of the node and reduce the cost.
所以本实施例中的CDN网络带宽资源的错峰调度方法通过CDN节点服务器的特性、服务的用户的特性进行峰值的错开调度,最大化的提高CDN带宽和服务其资源的利用率;从而降低CDN的成本,提供产品的竞争力。Therefore, the staggered peak scheduling method of CDN network bandwidth resources in this embodiment performs peak staggered scheduling through the characteristics of CDN node servers and service users, so as to maximize the utilization rate of CDN bandwidth and service resources; thereby reducing CDN cost and provide product competitiveness.
最后本实施例还提供一种服务器,所述服务器与CDN网络中的上述CDN配置平台200,CDN网络资源数据平台300以及带宽牵引服务器400相连,所述服务器包括如上所述的CDN网络带宽资源的错峰调度系统100。上述已经对所述CDN网络带宽资源的错峰调度系统100进行了详细说明,在此不再赘述。Finally, this embodiment also provides a server, the server is connected to the above-mentioned CDN configuration platform 200 in the CDN network, the CDN network resource data platform 300 and the bandwidth pulling server 400, and the server includes the above-mentioned CDN network bandwidth resources. Peak shift scheduling system 100. The peak-shift scheduling system 100 of the CDN network bandwidth resources has been described in detail above, and will not be repeated here.
综上所述,本发明在CDN网络带宽资源的调度时,考虑了各CDN节点服务器的计费特性和各带宽资源使用用户的带宽峰值和形成带宽峰值的分布时间,将不同的带宽峰值通过调度进行流量的牵引从而错开,最大化利用带宽资源并最大化的提高峰值的带宽利用率;本发明可以有效降低CDN网络带宽资源的使用成本,提供产品的竞争力,具有广泛的应用前景。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。In summary, the present invention considers the billing characteristics of each CDN node server and the bandwidth peak value of each bandwidth resource user and the distribution time of forming the bandwidth peak value when scheduling the CDN network bandwidth resources, and passes different bandwidth peak values through scheduling Traction is carried out so as to stagger, maximize the use of bandwidth resources and maximize peak bandwidth utilization; the invention can effectively reduce the cost of using CDN network bandwidth resources, provide product competitiveness, and has broad application prospects. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710186778.XACN107124375B (en) | 2017-03-27 | 2017-03-27 | Method, system and server for off-peak scheduling of CDN network bandwidth resources |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710186778.XACN107124375B (en) | 2017-03-27 | 2017-03-27 | Method, system and server for off-peak scheduling of CDN network bandwidth resources |
| Publication Number | Publication Date |
|---|---|
| CN107124375Atrue CN107124375A (en) | 2017-09-01 |
| CN107124375B CN107124375B (en) | 2020-02-18 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710186778.XAActiveCN107124375B (en) | 2017-03-27 | 2017-03-27 | Method, system and server for off-peak scheduling of CDN network bandwidth resources |
| Country | Link |
|---|---|
| CN (1) | CN107124375B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107846614A (en)* | 2017-10-19 | 2018-03-27 | 北京奇艺世纪科技有限公司 | A kind of video flow dispatching method, device, electronic equipment and storage medium |
| CN107888388A (en)* | 2017-10-29 | 2018-04-06 | 网宿科技股份有限公司 | A kind of charging method and system of network acceleration service |
| CN108900314A (en)* | 2018-07-19 | 2018-11-27 | 网宿科技股份有限公司 | A kind of the number of request charging method and device of network acceleration service |
| CN109729186A (en)* | 2018-12-29 | 2019-05-07 | 北京金山云网络技术有限公司 | A method and device for determining a distribution strategy |
| CN109802926A (en)* | 2017-11-16 | 2019-05-24 | 乐蜜有限公司 | Recommended models method for building up, live broadcasting method and the device of content distributing network |
| CN110198344A (en)* | 2019-05-05 | 2019-09-03 | 网宿科技股份有限公司 | A kind of resource regulating method and system |
| CN110209949A (en)* | 2019-06-11 | 2019-09-06 | 湖南快乐阳光互动娱乐传媒有限公司 | resource pushing method and device |
| CN110381170A (en)* | 2018-02-27 | 2019-10-25 | 贵州白山云科技股份有限公司 | The method and system of the business of scheduling node server in a kind of CDN network |
| CN110519104A (en)* | 2019-09-18 | 2019-11-29 | 深圳市梦网百科信息技术有限公司 | A kind of bandwidth reuse method and system based on degree of avoiding the peak hour |
| CN110519105A (en)* | 2019-09-18 | 2019-11-29 | 深圳市梦网百科信息技术有限公司 | A kind of bandwidth reuse method and system based on degree of avoiding the peak hour |
| CN110971640A (en)* | 2018-09-30 | 2020-04-07 | 北京国双科技有限公司 | CDN acceleration service distribution method and device |
| CN111314234A (en)* | 2020-03-31 | 2020-06-19 | 北京创世云科技有限公司 | Flow distribution method and device, storage medium and electronic equipment |
| CN111355609A (en)* | 2020-02-18 | 2020-06-30 | 山西知脉信息技术有限公司 | Method for adjusting bandwidth resource redundancy of internet data center |
| CN111464323A (en)* | 2019-01-18 | 2020-07-28 | 北京沃东天骏信息技术有限公司 | Node bandwidth scheduling method and scheduling device |
| CN111901131A (en)* | 2020-09-29 | 2020-11-06 | 杭州优云科技有限公司 | Flow charging scheduling method, storage medium and computer |
| CN111970132A (en)* | 2020-06-29 | 2020-11-20 | 百度在线网络技术(北京)有限公司 | OTA data packet issuing flow control method, device and server |
| CN112073445A (en)* | 2020-11-16 | 2020-12-11 | 浙江山迅网络科技有限公司 | Hybrid port traffic scheduling method, device, readable storage medium and electronic device |
| CN113839795A (en)* | 2020-06-23 | 2021-12-24 | 北京金山云网络技术有限公司 | Peak eliminating processing method and device for CDN node, electronic equipment and storage medium |
| CN114006821A (en)* | 2021-11-02 | 2022-02-01 | 北京金山云网络技术有限公司 | Service range adjusting method and device, electronic equipment and storage medium |
| CN114095443A (en)* | 2020-08-24 | 2022-02-25 | 百度在线网络技术(北京)有限公司 | Method and device for managing and controlling flow, electronic equipment and readable storage medium |
| CN114430374A (en)* | 2021-12-22 | 2022-05-03 | 天翼云科技有限公司 | A kind of network resource allocation method, device and computer equipment |
| CN114615097A (en)* | 2022-03-02 | 2022-06-10 | 北京云享智胜科技有限公司 | Method and device for determining customer paid bandwidth ratio and storage medium |
| CN114640592A (en)* | 2020-12-16 | 2022-06-17 | 北京金山云网络技术有限公司 | CDN node bandwidth planning method, device, system and storage medium |
| CN114697224A (en)* | 2020-12-28 | 2022-07-01 | 北京金山云网络技术有限公司 | Data processing method and device, electronic equipment and storage medium |
| CN114826926A (en)* | 2022-04-01 | 2022-07-29 | 网宿科技股份有限公司 | CDN resource configuration adjustment method and device, electronic equipment and storage medium |
| CN114915559A (en)* | 2021-02-08 | 2022-08-16 | 北京金山云网络技术有限公司 | CDN node bandwidth planning method, device and storage medium |
| CN115333982A (en)* | 2021-05-11 | 2022-11-11 | 北京金山云网络技术有限公司 | Flow monitoring method, device, equipment and computer readable storage medium |
| CN115396244A (en)* | 2021-05-08 | 2022-11-25 | 北京金山云网络技术有限公司 | Bandwidth scheduling management method and device, electronic equipment and storage medium |
| CN115941367A (en)* | 2021-09-29 | 2023-04-07 | 北京金山云网络技术有限公司 | Resource planning method and device, electronic equipment and storage medium |
| CN116634023A (en)* | 2023-05-29 | 2023-08-22 | 北京百度网讯科技有限公司 | Service dispatching method, device, electronic device and storage medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103684870A (en)* | 2013-12-25 | 2014-03-26 | 乐视网信息技术(北京)股份有限公司 | Method and system for obtaining bandwidth flow of CDN (Content Delivery Network) |
| CN103746852A (en)* | 2014-01-21 | 2014-04-23 | 华为技术有限公司 | Service routing configuration method and network management equipment |
| US9192859B2 (en)* | 2002-12-10 | 2015-11-24 | Sony Computer Entertainment America Llc | System and method for compressing video based on latency measurements and other feedback |
| US20160044118A1 (en)* | 2013-04-23 | 2016-02-11 | Huawei Technologies Co., Ltd. | Method, device and system for carrying out service in network |
| CN105471759A (en)* | 2016-01-11 | 2016-04-06 | 北京百度网讯科技有限公司 | Network traffic scheduling method and apparatus for data centers |
| CN105634992A (en)* | 2015-12-29 | 2016-06-01 | 网宿科技股份有限公司 | CDN platform self-adaptive bandwidth control method and system |
| CN106254261A (en)* | 2016-08-09 | 2016-12-21 | 杭州华三通信技术有限公司 | The method and apparatus of flow detection |
| CN106412628A (en)* | 2015-07-30 | 2017-02-15 | 华为技术有限公司 | Bandwidth adjusting method and related equipment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9192859B2 (en)* | 2002-12-10 | 2015-11-24 | Sony Computer Entertainment America Llc | System and method for compressing video based on latency measurements and other feedback |
| US20160044118A1 (en)* | 2013-04-23 | 2016-02-11 | Huawei Technologies Co., Ltd. | Method, device and system for carrying out service in network |
| CN103684870A (en)* | 2013-12-25 | 2014-03-26 | 乐视网信息技术(北京)股份有限公司 | Method and system for obtaining bandwidth flow of CDN (Content Delivery Network) |
| CN103746852A (en)* | 2014-01-21 | 2014-04-23 | 华为技术有限公司 | Service routing configuration method and network management equipment |
| CN106412628A (en)* | 2015-07-30 | 2017-02-15 | 华为技术有限公司 | Bandwidth adjusting method and related equipment |
| CN105634992A (en)* | 2015-12-29 | 2016-06-01 | 网宿科技股份有限公司 | CDN platform self-adaptive bandwidth control method and system |
| CN105471759A (en)* | 2016-01-11 | 2016-04-06 | 北京百度网讯科技有限公司 | Network traffic scheduling method and apparatus for data centers |
| CN106254261A (en)* | 2016-08-09 | 2016-12-21 | 杭州华三通信技术有限公司 | The method and apparatus of flow detection |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107846614A (en)* | 2017-10-19 | 2018-03-27 | 北京奇艺世纪科技有限公司 | A kind of video flow dispatching method, device, electronic equipment and storage medium |
| CN107846614B (en)* | 2017-10-19 | 2020-09-11 | 北京奇艺世纪科技有限公司 | Video traffic scheduling method and device and electronic equipment |
| CN107888388A (en)* | 2017-10-29 | 2018-04-06 | 网宿科技股份有限公司 | A kind of charging method and system of network acceleration service |
| CN107888388B (en)* | 2017-10-29 | 2021-08-10 | 网宿科技股份有限公司 | Charging method and system for network acceleration service |
| CN109802926A (en)* | 2017-11-16 | 2019-05-24 | 乐蜜有限公司 | Recommended models method for building up, live broadcasting method and the device of content distributing network |
| CN110381170A (en)* | 2018-02-27 | 2019-10-25 | 贵州白山云科技股份有限公司 | The method and system of the business of scheduling node server in a kind of CDN network |
| CN108900314A (en)* | 2018-07-19 | 2018-11-27 | 网宿科技股份有限公司 | A kind of the number of request charging method and device of network acceleration service |
| CN110971640B (en)* | 2018-09-30 | 2022-10-11 | 北京国双科技有限公司 | CDN acceleration service distribution method and device |
| CN110971640A (en)* | 2018-09-30 | 2020-04-07 | 北京国双科技有限公司 | CDN acceleration service distribution method and device |
| CN109729186A (en)* | 2018-12-29 | 2019-05-07 | 北京金山云网络技术有限公司 | A method and device for determining a distribution strategy |
| CN111464323A (en)* | 2019-01-18 | 2020-07-28 | 北京沃东天骏信息技术有限公司 | Node bandwidth scheduling method and scheduling device |
| CN110198344A (en)* | 2019-05-05 | 2019-09-03 | 网宿科技股份有限公司 | A kind of resource regulating method and system |
| US11153370B2 (en) | 2019-05-05 | 2021-10-19 | Wangsu Science & Technology Co., Ltd. | Resource scheduling method and system |
| CN110209949A (en)* | 2019-06-11 | 2019-09-06 | 湖南快乐阳光互动娱乐传媒有限公司 | resource pushing method and device |
| CN110519105A (en)* | 2019-09-18 | 2019-11-29 | 深圳市梦网百科信息技术有限公司 | A kind of bandwidth reuse method and system based on degree of avoiding the peak hour |
| CN110519104A (en)* | 2019-09-18 | 2019-11-29 | 深圳市梦网百科信息技术有限公司 | A kind of bandwidth reuse method and system based on degree of avoiding the peak hour |
| CN110519105B (en)* | 2019-09-18 | 2022-05-03 | 深圳市梦网视讯有限公司 | Bandwidth multiplexing method and system based on peak error degree |
| CN111355609A (en)* | 2020-02-18 | 2020-06-30 | 山西知脉信息技术有限公司 | Method for adjusting bandwidth resource redundancy of internet data center |
| CN111314234A (en)* | 2020-03-31 | 2020-06-19 | 北京创世云科技有限公司 | Flow distribution method and device, storage medium and electronic equipment |
| CN111314234B (en)* | 2020-03-31 | 2021-04-27 | 北京创世云科技股份有限公司 | Flow distribution method and device, storage medium and electronic equipment |
| CN113839795B (en)* | 2020-06-23 | 2023-01-20 | 北京金山云网络技术有限公司 | Peak eliminating processing method and device for CDN node, electronic equipment and storage medium |
| CN113839795A (en)* | 2020-06-23 | 2021-12-24 | 北京金山云网络技术有限公司 | Peak eliminating processing method and device for CDN node, electronic equipment and storage medium |
| CN111970132A (en)* | 2020-06-29 | 2020-11-20 | 百度在线网络技术(北京)有限公司 | OTA data packet issuing flow control method, device and server |
| CN114095443A (en)* | 2020-08-24 | 2022-02-25 | 百度在线网络技术(北京)有限公司 | Method and device for managing and controlling flow, electronic equipment and readable storage medium |
| CN114095443B (en)* | 2020-08-24 | 2023-11-03 | 百度在线网络技术(北京)有限公司 | Method, device, electronic equipment and readable storage medium for controlling flow |
| CN111901131A (en)* | 2020-09-29 | 2020-11-06 | 杭州优云科技有限公司 | Flow charging scheduling method, storage medium and computer |
| CN111901131B (en)* | 2020-09-29 | 2021-01-01 | 杭州优云科技有限公司 | Flow charging scheduling method, storage medium and computer |
| CN112073445A (en)* | 2020-11-16 | 2020-12-11 | 浙江山迅网络科技有限公司 | Hybrid port traffic scheduling method, device, readable storage medium and electronic device |
| CN114640592B (en)* | 2020-12-16 | 2024-04-19 | 北京金山云网络技术有限公司 | CDN node bandwidth planning method, device, system and storage medium |
| CN114640592A (en)* | 2020-12-16 | 2022-06-17 | 北京金山云网络技术有限公司 | CDN node bandwidth planning method, device, system and storage medium |
| CN114697224B (en)* | 2020-12-28 | 2024-04-26 | 北京金山云网络技术有限公司 | Data processing method and device, electronic equipment and storage medium |
| CN114697224A (en)* | 2020-12-28 | 2022-07-01 | 北京金山云网络技术有限公司 | Data processing method and device, electronic equipment and storage medium |
| CN114915559A (en)* | 2021-02-08 | 2022-08-16 | 北京金山云网络技术有限公司 | CDN node bandwidth planning method, device and storage medium |
| CN114915559B (en)* | 2021-02-08 | 2024-01-23 | 北京金山云网络技术有限公司 | CDN node bandwidth planning method, CDN node bandwidth planning device and storage medium |
| CN115396244B (en)* | 2021-05-08 | 2024-02-20 | 北京金山云网络技术有限公司 | Bandwidth scheduling management method, device, electronic equipment and storage medium |
| CN115396244A (en)* | 2021-05-08 | 2022-11-25 | 北京金山云网络技术有限公司 | Bandwidth scheduling management method and device, electronic equipment and storage medium |
| CN115333982B (en)* | 2021-05-11 | 2024-02-09 | 北京金山云网络技术有限公司 | Flow monitoring method, device, equipment and computer readable storage medium |
| CN115333982A (en)* | 2021-05-11 | 2022-11-11 | 北京金山云网络技术有限公司 | Flow monitoring method, device, equipment and computer readable storage medium |
| CN115941367A (en)* | 2021-09-29 | 2023-04-07 | 北京金山云网络技术有限公司 | Resource planning method and device, electronic equipment and storage medium |
| CN115941367B (en)* | 2021-09-29 | 2024-11-19 | 北京金山云网络技术有限公司 | Resource planning method, device, electronic equipment and storage medium |
| CN114006821A (en)* | 2021-11-02 | 2022-02-01 | 北京金山云网络技术有限公司 | Service range adjusting method and device, electronic equipment and storage medium |
| CN114006821B (en)* | 2021-11-02 | 2024-04-02 | 北京金山云网络技术有限公司 | Service range adjusting method and device, electronic equipment and storage medium |
| CN114430374A (en)* | 2021-12-22 | 2022-05-03 | 天翼云科技有限公司 | A kind of network resource allocation method, device and computer equipment |
| CN114430374B (en)* | 2021-12-22 | 2024-09-27 | 天翼云科技有限公司 | Network resource allocation method and device and computer equipment |
| CN114615097B (en)* | 2022-03-02 | 2023-09-19 | 北京云享智胜科技有限公司 | Method and device for determining client paid bandwidth ratio and storage medium |
| CN114615097A (en)* | 2022-03-02 | 2022-06-10 | 北京云享智胜科技有限公司 | Method and device for determining customer paid bandwidth ratio and storage medium |
| CN114826926A (en)* | 2022-04-01 | 2022-07-29 | 网宿科技股份有限公司 | CDN resource configuration adjustment method and device, electronic equipment and storage medium |
| CN116634023A (en)* | 2023-05-29 | 2023-08-22 | 北京百度网讯科技有限公司 | Service dispatching method, device, electronic device and storage medium |
| Publication number | Publication date |
|---|---|
| CN107124375B (en) | 2020-02-18 |
| Publication | Publication Date | Title |
|---|---|---|
| CN107124375B (en) | Method, system and server for off-peak scheduling of CDN network bandwidth resources | |
| CN105912397A (en) | Resources management method and device | |
| Li et al. | Adaptive resource allocation based on the billing granularity in edge-cloud architecture | |
| CN105046327B (en) | A kind of intelligent grid information system and method based on machine learning techniques | |
| CN105471759A (en) | Network traffic scheduling method and apparatus for data centers | |
| CN107094145A (en) | Data processing method, server and system based on block chain | |
| Zhang et al. | Mitigating power grid impact from proactive data center workload shifts: A coordinated scheduling strategy integrating synergistic traffic-data-power networks | |
| CN110111214B (en) | User energy management method and system based on priority | |
| CN110519783A (en) | 5G network based on enhancing study is sliced resource allocation methods | |
| CN108021447B (en) | Method and system for determining optimal resource strategy based on distributed data | |
| CN113612635A (en) | Network slice instance resource allocation method based on horizontal/vertical expansion and contraction combination | |
| CN112332404A (en) | Heating service intelligent management system and method | |
| CN101431745B (en) | Account resource reservation and distribution method used for IMS multi-service on-line charging | |
| CN107908459B (en) | Cloud computing scheduling system | |
| CN115412558A (en) | Cloud platform virtual resource high-speed scheduling system and method | |
| CN110852650A (en) | Modeling Method of Integrated Passenger Hub Group Network Based on Dynamic Graph Hybrid Automata | |
| CN116647052B (en) | Intelligent substation automatic control and dispatching method and system based on multilateral cloud collaboration | |
| CN106357800A (en) | Cloud computing service architecture based on QoE | |
| CN106027420A (en) | Resource model establishment method and device | |
| CN111723978A (en) | An Index Evaluation Method Based on Virtual Mapping to Adapt to Different Demands of Various Power Services | |
| CN114153612B (en) | A CPU resource dynamic allocation method to improve the overall system throughput | |
| CN116737387A (en) | A cloud computing resource prediction system and method based on power grid digital business | |
| CN105653583A (en) | Distributed data scheduling report generation platform and method for power systems | |
| CN111539863B (en) | Intelligent city operation method and system based on multi-source task line | |
| Zhang et al. | A virtual network embedding algorithm based on RBF neural network |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |