技术领域technical field
本发明属于惯性导航系统的软件技术领域,具体涉及一种旋转装置的控制方法。The invention belongs to the technical field of software of an inertial navigation system, and in particular relates to a control method of a rotating device.
背景技术Background technique
采用误差自补偿技术来提高惯性导航系统的定位精度,是惯性技术发展的一个主要方向。Using error self-compensation technology to improve the positioning accuracy of inertial navigation system is a main direction of inertial technology development.
单轴旋转的惯性测量组件在旋转机构的控制下绕方位轴进行交替往复运动,导航软件在交替往复运动和载体实际运动同时作用下完成导航解算。The single-axis rotating inertial measurement component performs alternate reciprocating motion around the azimuth axis under the control of the rotating mechanism, and the navigation software completes the navigation calculation under the simultaneous action of the alternating reciprocating motion and the actual motion of the carrier.
旋转装置的控制策略通过旋转控制软件设计来实现。目前的单轴旋转机构存在着旋转精度低,控制工序复杂等问题,因此亟需针对惯导系统研发一种旋转装置的控制方法解决这些问题。The control strategy of the rotating device is realized through the design of the rotating control software. The current single-axis rotation mechanism has problems such as low rotation accuracy and complicated control process. Therefore, it is urgent to develop a control method for the rotation device for the inertial navigation system to solve these problems.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种旋转装置的控制方法,从而利用低成本的旋转机构控制装置实现旋转机构的角度位移精确控制。The technical problem to be solved by the present invention is to provide a control method for a rotating device, so as to realize precise control of the angular displacement of the rotating device by using a low-cost rotating device control device.
为了实现这一目的,本发明采取的技术方案是:In order to realize this object, the technical scheme that the present invention takes is:
一种旋转装置控制方法,应用于惯性导航系统单轴旋转的惯性测量组件控制,包括如下步骤:A method for controlling a rotating device, applied to the control of an inertial measurement component of a single-axis rotation of an inertial navigation system, comprising the following steps:
(1)对旋转装置的中央处理器各寄存器和变量初始化,依次进行如下设置:(1) Initialize the registers and variables of the central processing unit of the rotating device, and perform the following settings in turn:
关闭看门狗、I/O端口初始化、与测试机通讯初始化、转换模块初始化、与计算机通讯初始化、与光码盘通讯初始化、定时器初始化;Turn off the watchdog, initialize the I/O port, initialize the communication with the testing machine, initialize the conversion module, initialize the communication with the computer, initialize the communication with the optical code disc, and initialize the timer;
(2)对中央处理器的各寄存器进行设置,总中断使能;(2) each register of the central processing unit is set, and the total interrupt is enabled;
(3)对旋转装置进行自检寻零;(3) Carry out self-inspection and homing of the rotating device;
(4)解读导航命令,并执行相应动作;(4) Interpret navigation commands and execute corresponding actions;
(4.0)解读导航命令,导航命令包括:命令复位、命令往复旋转控制、命令绝对位置控制、命令速度控制、命令相对位置控制;(4.0) Interpretation of navigation commands, navigation commands include: command reset, command reciprocating rotation control, command absolute position control, command speed control, command relative position control;
(4.1)导航命令为命令复位时,依次执行如下动作:对复位寄存器赋予复位状态字;启动看门狗;延时后,软件复位重启;(4.1) When the navigation command is a command reset, the following actions are performed in sequence: the reset status word is given to the reset register; the watchdog is started; after a delay, the software resets and restarts;
(4.2)导航命令为命令往复旋转控制时,依次执行如下动作:往复旋转控制启动中;指定速度解算;控制电机实现往复旋转一次;依次启动,运动,制动,启动,运动,制动;返回(4.0);(4.2) When the navigation command is command reciprocating rotation control, the following actions are executed in sequence: the reciprocating rotation control is starting; the specified speed is calculated; the motor is controlled to realize reciprocating rotation once; start, move, brake, start, move, brake in sequence; return(4.0);
(4.3)导航命令为命令绝对位置控制时,依次执行如下动作:绝对位置控制启动中;绝对位置解算;以固定速度,控制电机执行到指定位置;绝对位置控制完成;返回(4.0);(4.3) When the navigation command is absolute position control, the following actions are executed in sequence: absolute position control is starting; absolute position calculation; at a fixed speed, control the motor to execute to the specified position; absolute position control is completed; return (4.0);
(4.4)导航命令为命令速度控制时,依次执行如下动作:速度控制启动中;指定速度解算;控制电机实现指定速度旋转;速度控制完成;返回(4.0);(4.4) When the navigation command is command speed control, the following actions are executed in sequence: speed control is starting; specified speed calculation; control motor to achieve specified speed rotation; speed control is completed; return (4.0);
(4.5)导航命令为命令相对位置控制时,依次执行如下动作:相对位置控制启动中;指定速度和位置解算;控制电机实现相对位置往复旋转一次;返回(4.0);(4.5) When the navigation command is command relative position control, the following actions are executed in sequence: relative position control is starting; specified speed and position calculation; control motor to achieve relative position reciprocating rotation once; return (4.0);
利用步骤(1)~(4),在惯性导航系统上电自检和工作过程中进行巡检,解读外部计算机发送的运动控制命令,对电机进行控制。Using steps (1) to (4), the inertial navigation system conducts inspections during power-on self-inspection and working process, interprets the motion control commands sent by the external computer, and controls the motor.
进一步的,如上所述的一种旋转装置控制方法,在上述步骤(4)的过程中任何时刻,响应不同的中断源并执行相应命令:Further, in the method for controlling a rotating device as described above, at any time during the above step (4), respond to different interrupt sources and execute corresponding commands:
(a.1)设置不同中断源的优先级:按优先级从最高到最低排列,依次为复位中断、外部信号中断、定时器中断、串口中断;(a.1) Set the priority of different interrupt sources: arrange according to the priority from highest to lowest, followed by reset interrupt, external signal interrupt, timer interrupt, serial port interrupt;
(a.2)复位中断时,依次执行如下动作:引脚通电复位;看门狗复位;JTAG复位;返回;(a.2) When the reset is interrupted, the following actions are performed in sequence: pin power-on reset; watchdog reset; JTAG reset; return;
(a.3)外部信号中断时,依次执行如下动作:进入外部同步信号触发中断源;采样角位置;处理角位置数据;串口向导航机发送数据和状态;返回;(a.3) When the external signal is interrupted, perform the following actions in sequence: enter the external synchronization signal to trigger the interrupt source; sample the angular position; process the angular position data; send data and status to the navigation machine through the serial port; return;
(a.4)定时器中断时,依次执行如下动作:重新赋值;光码盘通讯初始化;采样角位置;处理角位置数据;处理角速度数据;串口向导航机发送数据和状态;返回;(a.4) When the timer is interrupted, the following actions are performed in sequence: re-assignment; optical code disc communication initialization; sampling angular position; processing angular position data; processing angular velocity data; serial port sends data and status to the navigation machine; returns;
(a.5)串口中断时,依次执行如下动作:准备接收导航机命令;接收并判断第1帧头;接收并判断第2帧头;接收其后的数据;接收最后1帧数据并判断校验和;返回。(a.5) When the serial port is interrupted, perform the following actions in sequence: prepare to receive the navigation machine command; receive and judge the first frame header; receive and judge the second frame header; receive subsequent data; receive the last frame data and judge the calibration checksum; return.
应用本发明技术方案的旋转装置采用中央处理器CPU为核心的数字控制系统,因此旋转机构的控制策略通过旋转控制方法设计来实现。旋转控制装置的硬件包括壳体,旋转组件和控制电路组件;旋转控制方法的工作内容包括:实现中央处理器各寄存器和变量的初始化;与外部计算机通信,接受计算机运动控制命令,并向外部计算机反馈旋转装置的状态;产生测角装置同步信号,并接收测角装置输出角度信号;对电机进行控制,实现外部计算机要求的运动控制命令;另外控制旋转装置具备相应的自检和保护功能。The rotating device applying the technical solution of the present invention adopts a digital control system with a CPU as the core, so the control strategy of the rotating mechanism is realized through the design of the rotating control method. The hardware of the rotation control device includes a housing, a rotation assembly and a control circuit assembly; the work content of the rotation control method includes: realizing the initialization of each register and variable of the central processing unit; communicating with an external computer, receiving computer motion control commands, and sending the external computer Feedback the state of the rotating device; generate the synchronous signal of the angle measuring device, and receive the output angle signal of the angle measuring device; control the motor to realize the motion control command required by the external computer; in addition, the control rotating device has corresponding self-test and protection functions.
使用发明的有益效果是:可以实现对旋转装置的旋转速度控制功能,克服了速度稳定性差、控制响应不及时等问题,对旋转装置的运动特性和外部通讯功能有明显改善。The beneficial effect of using the invention is: it can realize the function of controlling the rotation speed of the rotation device, overcome the problems of poor speed stability and untimely control response, and significantly improve the motion characteristics and external communication function of the rotation device.
附图说明Description of drawings
图1为旋转装置控制方法的流程图;Fig. 1 is the flow chart of rotating device control method;
图2为中断方式的流程图。Figure 2 is a flow chart of the interrupt mode.
具体实施方式detailed description
下面结合附图和具体实施方式对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,本发明一种旋转装置控制方法,应用于惯性导航系统单轴旋转的惯性测量组件控制,包括如下步骤:As shown in Fig. 1, a rotating device control method of the present invention is applied to the inertial measurement component control of single-axis rotation of an inertial navigation system, including the following steps:
(1)对旋转装置的中央处理器各寄存器和变量初始化,依次进行如下设置:(1) Initialize the registers and variables of the central processing unit of the rotating device, and perform the following settings in turn:
关闭看门狗、I/O端口初始化、与测试机通讯初始化、转换模块初始化、与计算机通讯初始化、与光码盘通讯初始化、定时器初始化;Turn off the watchdog, initialize the I/O port, initialize the communication with the testing machine, initialize the conversion module, initialize the communication with the computer, initialize the communication with the optical code disc, and initialize the timer;
(2)对中央处理器的各寄存器进行设置,总中断使能;(2) each register of the central processing unit is set, and the total interrupt is enabled;
(3)对旋转装置进行自检寻零;(3) Carry out self-inspection and homing of the rotating device;
(4)解读导航命令,并执行相应动作;(4) Interpret navigation commands and execute corresponding actions;
(4.0)解读导航命令,导航命令包括:命令复位、命令往复旋转控制、命令绝对位置控制、命令速度控制、命令相对位置控制;(4.0) Interpretation of navigation commands, navigation commands include: command reset, command reciprocating rotation control, command absolute position control, command speed control, command relative position control;
(4.1)导航命令为命令复位时,依次执行如下动作:对复位寄存器赋予复位状态字;启动看门狗;延时后,软件复位重启;(4.1) When the navigation command is a command reset, the following actions are performed in sequence: the reset status word is given to the reset register; the watchdog is started; after a delay, the software resets and restarts;
(4.2)导航命令为命令往复旋转控制时,依次执行如下动作:往复旋转控制启动中;指定速度解算;控制电机实现往复旋转一次;依次启动,运动,制动,启动,运动,制动;返回(4.0);(4.2) When the navigation command is command reciprocating rotation control, the following actions are executed in sequence: the reciprocating rotation control is starting; the specified speed is calculated; the motor is controlled to realize reciprocating rotation once; start, move, brake, start, move, brake in sequence; return(4.0);
(4.3)导航命令为命令绝对位置控制时,依次执行如下动作:绝对位置控制启动中;绝对位置解算;以固定速度,控制电机执行到指定位置;绝对位置控制完成;返回(4.0);(4.3) When the navigation command is absolute position control, the following actions are executed in sequence: absolute position control is starting; absolute position calculation; at a fixed speed, control the motor to execute to the specified position; absolute position control is completed; return (4.0);
(4.4)导航命令为命令速度控制时,依次执行如下动作:速度控制启动中;指定速度解算;控制电机实现指定速度旋转;速度控制完成;返回(4.0);(4.4) When the navigation command is command speed control, the following actions are executed in sequence: speed control is starting; specified speed calculation; control motor to achieve specified speed rotation; speed control is completed; return (4.0);
(4.5)导航命令为命令相对位置控制时,依次执行如下动作:相对位置控制启动中;指定速度和位置解算;控制电机实现相对位置往复旋转一次;返回(4.0);(4.5) When the navigation command is command relative position control, the following actions are executed in sequence: relative position control is starting; specified speed and position calculation; control motor to achieve relative position reciprocating rotation once; return (4.0);
利用步骤(1)~(4),在惯性导航系统上电自检和工作过程中进行巡检,解读外部计算机发送的运动控制命令,对电机进行控制。Using steps (1) to (4), the inertial navigation system conducts inspections during power-on self-inspection and working process, interprets the motion control commands sent by the external computer, and controls the motor.
如图2所示,本发明中在上述步骤(4)的过程中任何时刻,响应不同的中断源并执行相应命令:As shown in Figure 2, at any moment in the process of the above-mentioned steps (4) in the present invention, respond to different interrupt sources and execute corresponding commands:
(a.1)设置不同中断源的优先级:按优先级从最高到最低排列,依次为复位中断、外部信号中断、定时器中断、串口中断;(a.1) Set the priority of different interrupt sources: arrange according to the priority from highest to lowest, followed by reset interrupt, external signal interrupt, timer interrupt, serial port interrupt;
(a.2)复位中断时,依次执行如下动作:引脚通电复位;看门狗复位;JTAG复位;返回;(a.2) When the reset is interrupted, the following actions are performed in sequence: pin power-on reset; watchdog reset; JTAG reset; return;
(a.3)外部信号中断时,依次执行如下动作:进入外部同步信号触发中断源;采样角位置;处理角位置数据;串口向导航机发送数据和状态;返回;(a.3) When the external signal is interrupted, perform the following actions in sequence: enter the external synchronization signal to trigger the interrupt source; sample the angular position; process the angular position data; send data and status to the navigation machine through the serial port; return;
(a.4)定时器中断时,依次执行如下动作:重新赋值;光码盘通讯初始化;采样角位置;处理角位置数据;处理角速度数据;串口向导航机发送数据和状态;返回;(a.4) When the timer is interrupted, the following actions are performed in sequence: re-assignment; optical code disc communication initialization; sampling angular position; processing angular position data; processing angular velocity data; serial port sends data and status to the navigation machine; returns;
(a.5)串口中断时,依次执行如下动作:准备接收导航机命令;接收并判断第1帧头;接收并判断第2帧头;接收其后的数据;接收最后1帧数据并判断校验和;返回。(a.5) When the serial port is interrupted, perform the following actions in sequence: prepare to receive the navigation machine command; receive and judge the first frame header; receive and judge the second frame header; receive subsequent data; receive the last frame data and judge the calibration checksum; return.
通过上述技术方案,可以控制惯导系统中旋转装置解读外部计算机发送的运动控制命令,对电机进行控制;能够接收外部计算机发送的速率指令,控制旋转装置以设定的速率和旋转方式进行旋转;能够接收外部计算机发送的位置指令,控制旋转装置以固定的速率转到要求位置,并在该位置稳定;能够执行上电自检和工作过程中进行巡检的功能,并将检测结果通过状态字发送给外部计算机。Through the above technical solution, the rotating device in the inertial navigation system can be controlled to interpret the motion control command sent by the external computer, and control the motor; it can receive the speed command sent by the external computer, and control the rotating device to rotate at the set speed and rotation mode; It can receive the position command sent by the external computer, control the rotating device to go to the required position at a fixed speed, and stabilize at this position; it can perform the function of power-on self-inspection and inspection during the working process, and pass the detection result through the status word sent to an external computer.
该发明的工作原理是:一种旋转装置控制方法实现了中央处理器各寄存器和变量的初始化;与外部计算机通信,接受计算机运动控制命令,并向外部计算机反馈旋转装置的状态;产生测角装置同步信号,并接收测角装置输出角度信号;对电机进行控制,实现外部计算机要求的运动控制命令;另外控制旋转装置具备相应的自检和保护功能。The working principle of the invention is: a rotating device control method realizes the initialization of the registers and variables of the central processing unit; communicates with an external computer, receives computer motion control commands, and feeds back the state of the rotating device to the external computer; generates an angle measuring device Synchronize the signal, and receive the angle signal output by the angle measuring device; control the motor to realize the motion control command required by the external computer; in addition, the control rotation device has corresponding self-test and protection functions.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510983144.8ACN106919192B (en) | 2015-12-24 | 2015-12-24 | A method of controlling a rotating device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510983144.8ACN106919192B (en) | 2015-12-24 | 2015-12-24 | A method of controlling a rotating device |
| Publication Number | Publication Date |
|---|---|
| CN106919192Atrue CN106919192A (en) | 2017-07-04 |
| CN106919192B CN106919192B (en) | 2019-11-15 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510983144.8AActiveCN106919192B (en) | 2015-12-24 | 2015-12-24 | A method of controlling a rotating device |
| Country | Link |
|---|---|
| CN (1) | CN106919192B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001035253A1 (en)* | 1999-11-08 | 2001-05-17 | Usertrust, Inc. | Legal-based or fiduciary-based data management process |
| CN1834980A (en)* | 2006-03-29 | 2006-09-20 | 北京航空航天大学 | SINS/CNS/GPS Combined navigation semi-entity copying system |
| CN101900559A (en)* | 2009-11-06 | 2010-12-01 | 北京自动化控制设备研究所 | A Dual-Axis Rotation Modulation Method for Strapdown Inertial Navigation System |
| CN102221364A (en)* | 2011-03-10 | 2011-10-19 | 北京理工大学 | Single-axis rotation type strapdown inertial navigation system transposition method |
| CN102628691A (en)* | 2012-04-09 | 2012-08-08 | 北京自动化控制设备研究所 | Completely independent relative inertial navigation method |
| CN103090866A (en)* | 2012-11-02 | 2013-05-08 | 哈尔滨工程大学 | Method for restraining speed errors of single-shaft rotation optical fiber gyro strapdown inertial navigation system |
| CN103363989A (en)* | 2012-04-09 | 2013-10-23 | 北京自动化控制设备研究所 | Estimation and error compensation method for inner lever arm of strapdown inertial navigation system |
| CN104061945A (en)* | 2014-06-30 | 2014-09-24 | 中国人民解放军国防科学技术大学 | Plumb line deviation dynamic measurement device and method based on combination of INS and GPS |
| CN104482941A (en)* | 2014-12-08 | 2015-04-01 | 河北汉光重工有限责任公司 | Systematic compensation method of fixed-precision navigation of ship optical inertial navigation system when in long voyage |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001035253A1 (en)* | 1999-11-08 | 2001-05-17 | Usertrust, Inc. | Legal-based or fiduciary-based data management process |
| CN1834980A (en)* | 2006-03-29 | 2006-09-20 | 北京航空航天大学 | SINS/CNS/GPS Combined navigation semi-entity copying system |
| CN101900559A (en)* | 2009-11-06 | 2010-12-01 | 北京自动化控制设备研究所 | A Dual-Axis Rotation Modulation Method for Strapdown Inertial Navigation System |
| CN102221364A (en)* | 2011-03-10 | 2011-10-19 | 北京理工大学 | Single-axis rotation type strapdown inertial navigation system transposition method |
| CN102628691A (en)* | 2012-04-09 | 2012-08-08 | 北京自动化控制设备研究所 | Completely independent relative inertial navigation method |
| CN103363989A (en)* | 2012-04-09 | 2013-10-23 | 北京自动化控制设备研究所 | Estimation and error compensation method for inner lever arm of strapdown inertial navigation system |
| CN103090866A (en)* | 2012-11-02 | 2013-05-08 | 哈尔滨工程大学 | Method for restraining speed errors of single-shaft rotation optical fiber gyro strapdown inertial navigation system |
| CN104061945A (en)* | 2014-06-30 | 2014-09-24 | 中国人民解放军国防科学技术大学 | Plumb line deviation dynamic measurement device and method based on combination of INS and GPS |
| CN104482941A (en)* | 2014-12-08 | 2015-04-01 | 河北汉光重工有限责任公司 | Systematic compensation method of fixed-precision navigation of ship optical inertial navigation system when in long voyage |
| Title |
|---|
| 何永前,等: "基于ARM平台的陀螺寻北方位仪的软硬件研究", 《舰船电子工程》* |
| 周章华,等: "一种单轴旋转捷联惯导系统抗晃动快速自对准方法", 《中国惯性技术学报》* |
| Publication number | Publication date |
|---|---|
| CN106919192B (en) | 2019-11-15 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102945024B (en) | Wind Tunnel Continuous Variable Angle Movement Force Measurement Data Acquisition System and Acquisition Method | |
| CN103323008A (en) | Fiber-optic gyroscope strapdown inertial navigation computer based on DSP (Digital Signal Processor) and navigation calculating method thereof | |
| CN105446933A (en) | debugging system and debugging method of multi-core processor | |
| CN103259089A (en) | Control method and control device of X-waveband weather radar antenna | |
| CN107544466A (en) | A kind of single-gimbal control momentum gyro low speed framework method for diagnosing faults | |
| CN104949691A (en) | MEMS inertial component rotation-modulation testing system based on ultrasonic motor | |
| CN105891839A (en) | Omnidirectional laser radar device with colorized point cloud obtaining capability | |
| CN104101363A (en) | Gyroscope dynamic calibration method for measuring rotary carrier transversal posture | |
| CN104697549A (en) | Calibration system and method for MEMS-MIMU (Micro-Electromechanical System-Miniature Inertial Measurement Unit) | |
| CN102122177B (en) | A kind of device realizing the passback of The Cloud Terrace angle | |
| CN104135214A (en) | Embedded type motor modularization servo controller of flight simulation rotary table | |
| CN104270568A (en) | A camera synchronous shooting control device | |
| CN204036852U (en) | A kind of 3D printer controller | |
| CN106878944B (en) | Method for calibrating coordinate system of positioning base station and positioning calibration device | |
| CN209541769U (en) | A kind of Gyro Test System and device | |
| CN109282812B (en) | A positioning and orientation device for MIMU/rotating Beidou short baseline dual antenna | |
| CN106919192B (en) | A method of controlling a rotating device | |
| CN103324212A (en) | Flight track instrument plotting speed control card based on FPGA | |
| CN107294430A (en) | A kind of New-type electric machine control system | |
| CN105136168B (en) | The inexpensive speed closed loop transposition control method and control device of strap down inertial navigation equipment | |
| WO2021024591A1 (en) | Motor control device, moving body, motor control method, and program | |
| CN103631152B (en) | Engine controller hardware-in-loop simulation moment of torsion/rotating speed composite signal analogy method | |
| CN110940352B (en) | Automatic calibration system of micro-electro-mechanical system inertia measurement unit and calibration verification method thereof | |
| Seok et al. | A highly parallelized control system platform architecture using multicore CPU and FPGA for multi-DoF robots | |
| CN115599112A (en) | A real-time simulation test system and method for micro-nano satellite attitude and orbit control |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |