A kind of spinal fusion device and preparation method thereofTechnical field
The present invention relates to medical instruments field.Relate more specifically to a kind of spinal fusion device and preparation method thereof andPurposes.
Background technology
Spinal fusion is one of clinically the most frequently used modus operandi at present, be treatment tuberculosis of spine, infection,The effective means of the spine disorderses such as deformity, retrogression pathological changes and intervertebral disk injury.It is mainly by intervertebralGap is implanted into Invasive lumbar fusion device, while be implanted into substantial amounts of autologous bone or homogeneous allogenic bone, so as to realize centrum between meltClose, reach the purpose of stabilization backbone.
The material of current fusion device is mainly nondegradable metal Ti6Al4V materials and macromolecular material polyethersTwo kinds of ether ketone (PEEK), the former has preferable histocompatbility, is capable of achieving Bony union, but postoperative goldCategory is retained in vivo all the life, the puzzlement of permanent retention and the possibility of second operation is increased, due to springformThe conference of amount difference produces a certain degree of stress shielding, and fusion bone strength and quality are had a certain impact, andA certain degree of sedimentation can be produced, so as to easily form the disadvantage that interspinous support is highly lost.PEEK fusion devicesIt is the focus of research in recent years, its good biocompatibility is small to X-ray and CT Imagings, but boneForeign matter is regarded as during remodeling process, and is isolated with fibr tissue capsule, such fibr tissue resistanceOnly direct bone apposition (apposition) and the attachment to implant, implant will not be completely coupled in boneAnd soft tissue will not be attached on implant, cause bone-material interface bond strength not enough, be susceptible toLoosen.The surface of PEEK fusion devices is modified (such as in surface spraying titanium valve, hydroxyapatite (HA), to be utilizedThe micropore spline structure induction bone tissue of coating grows into) although solving bone-material interface knot to a certain extentThe not enough problem of intensity is closed, but face coat is in the case where physiological environment is plus load effect, still may be by bodyAbsorb or due to stress concentration, cracked with the interface of ground along porous vesicular surface, cause and come off.ThereforeThere is the deficiency of itself in PEEK fusion devices.
Due to the deficiency that non-degradable material is present, also there is fusion device of the research on some degradation materials to produceProduct, including ceramic material TCP fusion devices and macromolecule PDLLA fusion devices.Fusion prepared by ceramic materialThe fusion device of the device such as preparation such as calcium phosphate, hydroxyapatite allows direct bone apposition, but they are in intensityIt is restricted with toughness, it is easily chipping.PDLLA fusion devices have the elastic modelling quantity close with sclerotin,Degradable is the product that can be absorbed by the body, so that gradually absorbed and substituted by bone tissue, with goodGood bioactivity, in the absence of bone-material interface problem, but its mechanical strength is relatively low, in operation techniqueIt is easy to fragmentation;And its early stage macromolecules degradation product can cause surrounding materials proliferation of fibrous tissue, certain journeyDegree has delayed early stage skeletonization.
Spinal fusion device conventional at present implantation intervertenral space mainly plays a supportive role in addition, it is impossible to induced osteogenesis,Therefore generally require to be implanted into autologous bone or homogeneous allogenic bone in fusion device, to reach the purpose of Bony union,Autologous bone needs to be taken out from the body of patient, often brings very big pain to patient's body and mind, and of the same raceAllograph bone is not only expensive, and syncretizing effect is also undesirable, Post lumbar surgery pseudarthrosis often occurs and is formedDeng the situation that lumbar vertebrae is not merged.
Therefore this area in the urgent need to provide one kind can degradation in vivo completely, it is strong with preferable mechanicsDegree, elastic modelling quantity is approached with body bone tissue, while having self-bone grafting function, it is possible to achieve even without plantBone or minimal amount of bone grafting can just reach the fusion device of good bone fusion effect.
The content of the invention
The present invention is intended to provide one kind can degradation in vivo completely, with preferable mechanical strength, springformAmount is approached with body bone tissue, while there is the fusion device of self-bone grafting function and its production and use.
In order to realize foregoing invention purpose, the present invention provides a kind of spinal fusion device, and the spinal fusion device includes oneSupporter, the supporter forms a receiving space, and the receiving space partially or fully fills a hole shape structure.
Further, the supporter is made up with the hole shape structure of same material.The supporter and the holeShape structure is made up of magnesium alloy.The hole shape structure is multiple through holes.The height of the hole shape structure is the supporterThe 50% to 100% of height.The supporter includes an inner surface and an outer surface, and it is empty that the inner surface forms the receivingBetween, the hole shape structure is connected with the inner surface, and the inner surface is 1.5mm to 4.5mm with the thickness of outer surface.With the total volume meter of the fusion device, the volume percentage of the hole shape structure is 30-80%.The hole shape knotThe shape of cross section of the macropore in structure is one kind or the combination of following shapes:Circle, arc, it is square, oval,Triangle, regular hexagon.
In another preference, some through holes are also included on the supporter, the through hole runs through the outer of the supporterSurface and inner surface.
In another preference, the supporter includes a small aperture layer, the small aperture layer with the surface of the hole shape structureBore dia be 1-50 μm.Include a bioactivity coatings in the small aperture layer.
Present invention simultaneously discloses a kind of preparation method of spinal fusion device, the method comprising the steps of:(1) will all one's lifeThing compatible material block is processed into a preset shape, and some holes are prepared the biocompatible material block center is close to,The biocompatible material block is set to form a supporter and a hole shape structure.
The method is further included:(2) a small aperture layer is formed on the surface of the supporter and the hole shape structure.The method is further included:(3) bioactivity coatings are formed in the small aperture layer.
In another preference, the step (1) is further included:Some through holes are prepared on the supporter, shouldThe through hole insertion supporter and/or the hole shape structure.
Compared with prior art, the spinal fusion device that the present invention is provided can be reduced or avoid human body from plantingBone, greatly reduces the operation risk and pain of patient.The spinal fusion device that the present invention is provided is due to using lifeThe good degradable magnesium alloy material of thing compatibility, the low effective reduction stress-shielding effect of elastic modelling quantity.The present inventionThe spinal fusion device of offer is high-strength porous, and its static compress rigidity meets up to 20kN/mm-30kN/mmClinically it is more than the use requirement of 18kN/mm.The internal macropore of spinal fusion device use of present invention offer,The pore structure that surface aperture is combined with each other, surface fine pore structure causes that cell tissue is easily adhered growth,Macroporous structure is conducive to creeping and connecting for cell, as the degraded bone tissue of fusion device constantly grows into, finallyRealize complete Bony union.
Brief description of the drawings
Fig. 1 is the structural representation of the spinal fusion device 100 that one embodiment of the invention is related to;
Fig. 2 is the structural representation of the spinal fusion device 200 that one embodiment of the invention is related to;
Fig. 3 is the structural representation of the spinal fusion device 300 that one embodiment of the invention is related to;
Fig. 4 is the structural representation of the spinal fusion device 400 that one embodiment of the invention is related to;
Fig. 5 is the structural representation of the spinal fusion device 500 that one embodiment of the invention is related to;
Fig. 6 is the macropore pore appearance figure under the spinal fusion device ESEM that the present invention is provided;
Fig. 7 is the surface small structure shape appearance figure under the spinal fusion device ESEM that the present invention is provided;
Fig. 8 is to before and after the spinal fusion device surface plasma oxidation processes that provide in one embodiment of the inventionDynamic potential polarization curve;
Fig. 9 is that having for one embodiment of the invention offer is big under the spinal fusion device ESEM of circular macroporeHole;
Figure 10 is the structure and morphology figure of the surface aperture of the circular macropore shown in Fig. 9.
Figure 11 is that having for one embodiment of the invention offer is big under the spinal fusion device ESEM of square macroporePore structure SEM shape appearance figures.
Figure 12 is the table under the spinal fusion device ESEM of the square macropore of tool that one embodiment of the invention is providedFace small structure SEM shape appearance figures.
Mainly illustrate
100th, 200,300,400,500-spinal fusion device
101st, 201,301,401,501-upper surface (the first face)
102nd, 202,302-lower surface (relative with the first face)
103rd, 203,303,403,503-macroporous structure
304-small 305-mounting hole of groove, 306-corrugated teeth
507a-outer surface 507b-508-macropore of inner surface
Specific embodiment
Inventor prepares and can be used for the Invasive lumbar fusion device of spinal fusion by in-depth study extensively,And if it was found that make fusion device middle part have a series of macropore, can aid in creeping and connecting for cell, andThe aperture on fusion device surface can make cell tissue be easily adhered growth, this mutually to be tied with large and small pore structureThe fusion device of conjunction can degradation in vivo completely, with preferable mechanical strength, elastic modelling quantity and human body bone groupKnit close, while having self-bone grafting function, it is possible to achieve can just reach even without bone grafting or minimal amount of bone graftingTo the fusion device of good bone fusion effect.On this basis, the present invention is completed.
Spinal fusion device
Vertebral fusion device of the invention can have any suitable shape, and including any suitable biofaciesCapacity materials.Suitable shape is for example including substantially cylindrical in shape, annular, dish type, rectangle, U-shaped, boomerang shape etc.Shape, it is dimensioned to be used for neck, chest or waist.Suitable biocompatible material includes metal, modelingMaterial, resorbable polymers, polymer composites, bone grafting material etc. can be reabsorbed.
The present invention provides a kind of spinal fusion device for being implanted between two adjacent vertebraes, the institute in a kind of modeFusion device is stated for one similar to cylinder spinal fusion device 100, its inside has to be led to and its phase from the first face 101To the second face 102 loose structure 103, pore structure here is macropore.Loose structure provided by the present inventionIn addition to being the macropore for leading to the second face 102 corresponding thereto from the first face 101, can also be other singleDead-end pore, such as tree root shape hole, sponge-type porosity.
In the present invention, " macropore ", " through hole ", " macroporous structure " or " hole shape structure " refer toPore structure of the aperture at 100-500 μm in the spinal fusion device that the present invention is provided, preferably aperture are 200-500 μm。
Fig. 2 is square spinal fusion device 200 provided by the present invention.Fig. 3 is class provided by the present inventionIt is similar to a trapezoidal spinal fusion device 300.The spinal fusion device 300 includes the supporter positioned at outside, shouldSupporter includes upper surface 301 and lower surface 302 corresponding thereto.Supporter is made up of compact texture, usesIn the mechanical strength that clinical requirement is met to provide, by taking magnesium, manganese or magnesium, zinc series alloy as an example, the supportThe static compress rigidity that body can be provided is more than 18kN/mm.In the middle of supporter is macroporous structure 303,The macroporous structure can be effectively promoted newborn Bone Ingrowth, improve its adhesion with surrounding tissue, so as to avoidThe loose shift of implant, and can greatly improve the exchange of body fluid inside and outside implant.
Corrugated teeth 306 is provided with the upper surface 301 of supporter and lower surface 302, for improving implantThe stability with vertebra support itself.In order to further improve fixed effect, can also be on corrugated teeth 306Small groove 304 is set.
In this embodiment, the upper surface of macroporous structure 303 is almost located at same with the upper surface 301 of supporterOne plane, and the lower surface of macroporous structure 303 is almost generally aligned in the same plane with the lower surface 302 of supporter.Advantage of this is that the mechanical strength of the spinal fusion device is increased, and can be when using on human bodyUnsuitable bone grafting.
In another embodiment, spinal fusion device 400 as shown in Figure 4, the entirety of macroporous structure 403Highly less than the whole height of supporter, the centre of supporter is may be located at or near upper surface 401 or following tableFace 402.The advantage of the embodiment is that can accelerate bone uptake speed by appropriate, a small amount of bone grafting.
The height of macroporous structure mesopore is first face (upper surface described in the spinal fusion device that the present invention is providedOr lower surface) 50-100% of air line distance and the second face (lower surface or upper surface) corresponding thereto between;WithThe total volume meter of the fusion device, the volume percentage of the macroporous structure is 30-80%.
Percent by volume in the spinal fusion device that the present invention is provided shared by macroporous structure is too small or does not conform to mostly excessivelyIt is suitable, it is too small to play the effect for making enough bone tissues constantly grow into of the present invention, therefore at least 30%;The excessive intensity then to fusion device is unfavorable, so most 80%;It is preferred that 40-70%, more preferably 50-60%.
Hole shape in the spinal fusion device that the present invention is provided in macroporous structure for example but can not limited with variousIn circle, arc, triangle, square, oval, honeycombed etc. are also not necessarily limited to above-mentioned geometric figure institute groupInto figure, such as the sector that arc and triangle are formed.
Macropore and aperture pore appearance figure under fusion device ESEM can respectively referring to accompanying drawing 6-12.
In one embodiment of the invention, the macroporous structure is not only in the inside of fusion device, it is also possible at itSurface.Spinal fusion device 500 as shown in Figure 5, macroporous structure 508 can be arranged on the part of the supporterOr whole sides.In one embodiment, have some between the outer surface 507a to inner surface 507b of supporterEqually distributed macropore 508, in actually preparing, the macropore 508 can be even placed through in the middle of supporterMacroporous structure 503.
In a preferred embodiment of the invention, the outer surface 507a of supporter is to inner surface 507b thickness1.5mm to 4.5mm.It has been investigated that, the spinal fusion device in the thickness range can realize clinical requirementMechanical strength and can to greatest extent promote new bone growth.
The spinal fusion device that the present invention is provided is respectively provided with some apertures on the surface of supporter and macroporous structure, orA small aperture layer is formed, bioactivity coatings are coated in small aperture layer also can effectively induce ostosis.
In another embodiment of the invention, fusion device surface is except carrying out being conducive to inducing ostosisBioactivity coatings, can also coat makes the enhanced material of surface corrosion resistance to reduce degradation rate.
In the present invention, " aperture ", " small structure " or " surface aperture " refers to be provided in the present inventionThe hole on spinal fusion device surface, general aperture is 1-50 μm.The side of such aperture is formed on fusion device surfaceFormula is included but is not limited to, plasma oxidation technology, and voltage is that 400-500V prepares surface small structure.
The constituent material of the spinal fusion device that the present invention is provided is magnesium alloy, and chemical composition is mainly with biofaciesThe element of capacitive, such as but not limited to, magnesium, manganese or magnesium, zinc series alloy, its static compress rigidity is up to 20KN/mm-30kN/mm, mechanical strength meets clinical demand.
Preparation method
The preparation method of the spinal fusion device that the present invention is provided includes step:
Step one:The macroporous structure that footpath is for 100-500 μm is prepared at the middle part of the fusion device;
Step 2:The aperture that aperture is for 1-50 μm is prepared on the fusion device.
Specifically, the preparation method of the spinal fusion device includes split-type structural and integrally formed structure.With splitAs a example by preparation method, a supporter can be first made, the support body material can be any suitable bio-compatible materialMaterial.A macroporous structure is made, and the macroporous structure is positioned in the supporter, the mode of placement can be interferenceCooperation, screw thread, spline etc..
The preparation method of integrally formed structure includes:According to the preset shape of the spinal fusion device (such as circular, sideShape, dish type etc.) machining one magnesium alloy block or other biological compatible material.Used on the magnesium alloy block for processing and swashedLight prepares some through holes, the magnesium alloy block is formed the supporter and a loose through-hole structure of a densification.If neededIncrease through hole is carried out on supporter, can continue to prepare through hole with laser technology.Using plasma oxidation technology,Voltage is 400-500 volts forms the aperture that aperture is for 1-50 μm on surface.The sample for finally preparing carries out tableFace activity treatment, the bioactivity coatings for preparing different-thickness on surface can induce bone growth while controlling degradedSpeed.
Purposes
The spinal fusion device that the present invention is provided can be used as intervertebral implant or further adding for Related productWork.
The features described above that the present invention is mentioned, or the feature that embodiment is mentioned can be in any combination.This case specification instituteThe all features for disclosing can be used in combination with any combinations thing form, and each feature disclosed in specification can be with anyThe alternative characteristics substitution of identical, impartial or similar purpose can be provided.Therefore removing has special instruction, disclosed spyLevy the general example of only impartial or similar features.
Main advantages of the present invention are:
1st, the present invention provide spinal fusion device due to using good biocompatibility degradable magnesium alloy material,The low effective reduction stress-shielding effect of elastic modelling quantity.
2nd, the spinal fusion device that the present invention is provided is high-strength porous, and its static compress rigidity is reachable20kN/mm-30kN/mm, meets the use requirement clinically more than 18kN/mm.
3rd, the hole knot that the spinal fusion device that the present invention is provided is combined with each other using internal macropore, surface apertureStructure, surface fine pore structure causes that cell tissue is easily adhered growth, and macropore gauge structure is conducive to climbing for cellRow and connection, as the degraded bone tissue of fusion device constantly grows into, finally realize complete Bony union.
With reference to specific embodiment, the present invention is expanded on further.It should be understood that these embodiments are only used forThe bright present invention rather than limitation the scope of the present invention.The experiment side of unreceipted actual conditions in the following exampleMethod, generally according to normal condition or according to the condition proposed by manufacturer.Unless otherwise indicated, otherwise instituteSome percentage, ratio, ratio or number are by weight.
The unit in percent weight in volume in the present invention be it is well-known to those skilled in the art, e.g.Refer to the weight of the solute in 100 milliliters of solution.
Unless otherwise defined, all specialties used in text are ripe with one skilled in the art institute with scientific wordsThe meaning known is identical.Additionally, any method similar to described content or impartial and material all can be applied toIn the inventive method.Preferable implementation described in text only presents a demonstration with material and is used.
Embodiment 1
Spinal fusion device 200
As shown in Fig. 2 middle 400 microns of 210 aperture of macropore loose structure of fusion device 200, hole is circleShape, small-bore is 1-40 microns, and hole depth is consistent with fusion device depth.
Fusion device material uses M1C magnesium alloys, is integrally machined shaping, and prepare macropore using laser technologyStructure.Plasma oxidation technology is finally used, voltage is that 450V prepares surface small structure.
Shown in the visible accompanying drawing 8 of macropore and aperture pore appearance of the fusion device under ESEM.
Shown in the visible accompanying drawing 9 of dynamic potential polarization curve before and after fusion device surface treated, as a result display surfaceAfter treatment, coating corrosion resistance enhancing, degradation rate reduction.
Embodiment 2
Spinal fusion device 400
As shown in figure 4, middle 500 microns of 410 aperture of macropore loose structure of fusion device 400, hole is circleShape, small-bore is 1-50 microns, and pattern is consistent with Fig. 2, and hole depth is the 2/3 of fusion device depth.
Fusion device material uses ZK60 magnesium alloys, is integrally machined shaping, and prepare macropore using laser technologyStructure.Plasma oxidation technology is finally used, voltage is that 500V prepares surface small structure.
Embodiment 3
Spinal fusion device 500
As shown in figure 5, in the middle of fusion device 500 and 450 microns of periphery loose structure aperture, bone tissue can be withGrowing into from all directions, hole is circle, and middle hole depth is the 1/2 of fusion device depth.Small-bore is 1-40Micron
Fusion device material uses MIC magnesium alloys, is integrally machined shaping, and prepare macropore knot using laser technologyStructure.Plasma oxidation technology is finally used, voltage is that 475V prepares surface small structure.
Presently preferred embodiments of the present invention is the foregoing is only, substantial technological of the invention is not limited toContext, substantial technological content of the invention is broadly to be defined in the right of application, is appointedWhat other people technology entities that complete or method, if with phase completely defined in the right of applicationTogether, also or a kind of equivalent change, will be considered as being covered by among the right.