技术领域technical field
本发明涉及纳米光子学和光电材料等领域,具体涉及一种基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器。The invention relates to the fields of nanophotonics and optoelectronic materials, and in particular to a multi-band light perfect absorber based on a metal film layer-semiconductor resonant cavity composite structure.
背景技术Background technique
表面等离激元的概念是金属自由电子在外加光波照射下引起的集体振荡,导致电磁场局域在金属表面并产生电场增强效应,从而形成表面等离激元(Surface plasmons)。基于SPR的金属结构可以作为能源、光电探测、生物、医学等领域的核心元器件。The concept of surface plasmons is the collective oscillation caused by metal free electrons under the irradiation of external light waves, which leads to the localization of electromagnetic fields on the metal surface and produces an electric field enhancement effect, thus forming surface plasmons (Surface plasmons). SPR-based metal structures can be used as core components in the fields of energy, photodetection, biology, and medicine.
光完美吸收器是实现高效光谱吸收与光电探测的一个必备元件,它可以实现在特定波段或多个波段光谱范围内的光波能量的吸收,其原理一般是等离激元共振、介质导波模式和光谱相位耦合或相干等现象引起光波的共振吸收或捕获现象。The optical perfect absorber is an essential component to realize high-efficiency spectral absorption and photoelectric detection. It can realize the absorption of light wave energy in a specific band or multiple band spectral ranges. The principle is generally plasmon resonance and dielectric guided wave. Phenomena such as mode and spectral phase coupling or coherence cause resonant absorption or trapping of light waves.
自2008年,电磁波完美吸收器(《Physical Review Letters》,第100卷,第207402页)或光完美吸收器(《Nature Photonics》,第2卷,第299页)的研究获得了国内外研究者的大量关注。尤其是基于金属-介质(或绝缘材料)-金属的三层电磁共振结构体系或超材料体系实现了从微波频段到可见光波段的完美吸收响应(《Laser Photonics Reviews》,第8卷,第495页)。然而在这些三层结构光完美吸收器体系中,由于上层金属结构基本都是非连续金属结构比如金属块(《Advanced Materials》,第24卷,第OP98页),因此导致结构在电学特性上无法实现良好的导电响应,进而也无法有效拓展到电控或光电子功能器件平台。Since 2008, the research on electromagnetic wave perfect absorber ("Physical Review Letters", Vol. 100, p. 207402) or optical perfect absorber ("Nature Photonics", Vol. 2, p. 299) has gained many domestic and foreign researchers a lot of attention. In particular, the three-layer electromagnetic resonance structure system or metamaterial system based on metal-dielectric (or insulating material)-metal realizes the perfect absorption response from the microwave frequency band to the visible light band ("Laser Photonics Reviews", Vol. 8, p. 495 ). However, in these three-layer structured light perfect absorber systems, since the upper metal structure is basically a discontinuous metal structure such as a metal block ("Advanced Materials", Volume 24, Page OP98), the structure cannot be realized in terms of electrical characteristics. Good conductive response, and thus cannot be effectively extended to electronic control or optoelectronic functional device platforms.
传统的基于等离激元共振的光完美吸收器是利用特定结构尺寸的金属-介质(或绝缘材料)-金属的三层材料结构实现在单一工作波长的光完美吸收,此类体系基于的是金属纳米结构与底层金属膜层之间的电磁共振与金属纳米结构本身的电共振模式之间的叠加耦合,从而获得在同一波长处的光波能量中的电场与磁场能量的吸收进而实现此波长处的共振光完美吸收[200910243544.X;200580016934.3]。由于此类结构是基于电共振与磁共振模式的耦合,因而体系只能在一个特定波长实现光完美吸收(《Physical ReviewLetters》,第100卷,第207402页)。今年来,为了获得多频段的光完美吸收器,此类结构体系通过构建多个亚共振单元在同一个结构单胞内从而有效获得基于各个亚共振单元提供的共振吸收在光谱上的叠加形成的多频段光完美吸收效应(《IEEE Photonics TechnologyLetters》,第28卷,第307页)。然而,此类体系所需的高精度结构设计和尺寸要求导致其制备技术往往过于复杂且同样面临无法实现良好电导响应的局限。The traditional perfect light absorber based on plasmon resonance is to use a metal-dielectric (or insulating material)-metal three-layer material structure with a specific structural size to achieve perfect light absorption at a single working wavelength. This type of system is based on The superposition coupling between the electromagnetic resonance between the metal nanostructure and the underlying metal film layer and the electric resonance mode of the metal nanostructure itself, so as to obtain the absorption of the electric field and magnetic field energy in the light wave energy at the same wavelength, and then realize the absorption of the energy at this wavelength. Perfect absorption of resonant light [200910243544.X; 200580016934.3]. Since this type of structure is based on the coupling of electric resonance and magnetic resonance modes, the system can only achieve perfect absorption of light at a specific wavelength ("Physical Review Letters", Vol. 100, p. 207402). In recent years, in order to obtain a multi-band optical perfect absorber, this kind of structural system effectively obtains the superposition of the resonant absorption provided by each sub-resonant unit on the spectrum by constructing multiple sub-resonant units in the same structural unit cell. Perfect absorption effect of multi-band light ("IEEE Photonics Technology Letters", Vol. 28, p. 307). However, the high-precision structural design and size requirements required by such systems make their preparation techniques often too complex and also face the limitation of not being able to achieve good conductance response.
通过在金属膜层上构建金属共振微纳米结构,利用结构产生的电磁共振效应,可以有效实现与入射光的相互作用,特别是实现光完美吸收。2013年中国南京大学熊翔等人通过利用激光刻蚀技术实现了立体的金属柱状阵列结构,实现了红外波段的光完美吸收(《Advanced Materials》,第25卷,第3994页)。2014年Aydin课题组通过利用阵列结构提供的表面晶格共振效应实现了基于全金属材料的光吸收器(《ACS Nano》,第8卷,第8242页)。虽然基于全金属材料的光完美吸收在红外波段也得以实现,但由于缺乏作为光电功能材料的半导体材料,导致这些光吸收器无法在新兴的光电功能器件等领域无法获得应用和推广。By constructing a metal resonant micro-nano structure on the metal film layer, using the electromagnetic resonance effect generated by the structure, the interaction with the incident light can be effectively realized, especially the perfect absorption of light can be realized. In 2013, Xiong Xiang and others from Nanjing University in China realized a three-dimensional metal columnar array structure by using laser etching technology, and realized perfect absorption of light in the infrared band ("Advanced Materials", Vol. 25, p. 3994). In 2014, Aydin's research group realized a light absorber based on all-metal materials by using the surface lattice resonance effect provided by the array structure ("ACS Nano", Vol. 8, p. 8242). Although the perfect absorption of light based on all-metal materials can also be achieved in the infrared band, due to the lack of semiconductor materials as optoelectronic functional materials, these optical absorbers cannot be applied and promoted in emerging optoelectronic functional devices and other fields.
除了目前广为研究的金属纳米结构能产生强的电磁共振效应外,最近在基于半导体材料包括硅和二氧化钛等材料构成的微纳米尺度的共振单元中也发现了很强的电和磁共振效应,并且在非线性光学和光电器件包括光电检测等方面呈现了引入注目的性能效果(《Science》,第354卷,第aag2472页)。比如,利用硅(《Nature Communication》,第3卷,第664页)和二氧化钛材料(《Optics Letters》,第41卷,第3391页)构建球形或柱形共振单元,也实现了较强的光吸收。对于这些基于全介质材料的光完美吸收器,由于缺乏导电材料或元件包括电极,因而难以实现此类半导体光吸收器在光电功能材料与器件领域的应用和开发。In addition to the widely studied metal nanostructures that can produce strong electromagnetic resonance effects, strong electric and magnetic resonance effects have also been found in micro-nano scale resonance units based on semiconductor materials including silicon and titanium dioxide. And in nonlinear optics and optoelectronic devices, including photoelectric detection, etc., it has presented remarkable performance effects ("Science", volume 354, page aag2472). For example, using silicon ("Nature Communication", Vol. 3, p. 664) and titanium dioxide materials ("Optics Letters", Vol. 41, p. 3391) to construct spherical or cylindrical resonant units has also achieved strong light absorb. For these optical perfect absorbers based on all-dielectric materials, due to the lack of conductive materials or components including electrodes, it is difficult to realize the application and development of such semiconductor optical absorbers in the field of optoelectronic functional materials and devices.
综上所述,如何突破已有研究体系的局限和如何实现金属-半导体共振结构的设计及其内在共振光吸收特性始终是当前科学技术领域的一个难题。因此,设计并实现基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器对于解决现有研究体系和发明结构无法同时具备光完美吸收和完美电导响应的难题将具有非常重要的现实意义和应用价值。To sum up, how to break through the limitations of existing research systems and how to realize the design of metal-semiconductor resonance structures and their inherent resonant light absorption properties is always a difficult problem in the field of science and technology. Therefore, the design and realization of a multi-band optical perfect absorber based on the metal film layer-semiconductor resonator composite structure will have very important practical significance for solving the problem that existing research systems and invented structures cannot simultaneously have perfect optical absorption and perfect conductance response. and application value.
发明内容Contents of the invention
本发明的目的是为了提供一种基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器。The purpose of the present invention is to provide a multi-band optical perfect absorber based on the metal film layer-semiconductor resonant cavity composite structure.
本发明的一种基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器,它包括衬底、金属反光层、半导体共振腔层和金属膜层,自下而上依次设置衬底、金属反光层、半导体共振腔层与金属膜层,并且至少所述金属反光层和金属膜层的连接交错区域是直接物理接触,所述金属膜层与半导体共振腔层的顶部和侧面是直接物理接触,所述金属反光层与半导体共振腔层底部是直接物理接触,所述金属膜层与半导体腔及金属反光层配合形成具有多频段光完美吸收特性的结构。A multi-band light perfect absorber based on the metal film layer-semiconductor resonant cavity composite structure of the present invention comprises a substrate, a metal reflective layer, a semiconductor resonant cavity layer and a metal film layer, and the substrate, The metal reflective layer, the semiconductor resonant cavity layer and the metal film layer, and at least the connecting interlaced area of the metal reflective layer and the metal film layer are in direct physical contact, and the top and side surfaces of the metal film layer and the semiconductor resonant cavity layer are in direct physical contact. In contact, the metal reflective layer is in direct physical contact with the bottom of the semiconductor resonant cavity layer, and the metal film layer cooperates with the semiconductor cavity and the metal reflective layer to form a structure with perfect absorption characteristics of multi-band light.
进一步地,所述的金属反光层的厚度为不小于50nm。Further, the thickness of the metal reflective layer is not less than 50nm.
进一步地,所述金属反光层的厚度为50-200nm。Further, the thickness of the metal reflective layer is 50-200nm.
进一步地,所述的金属反光层和金属膜层的材料为铜、铝、银或金材料。Further, the material of the metal reflective layer and the metal film layer is copper, aluminum, silver or gold.
进一步地,所述的半导体共振腔层的材料采用高折射率的半导体材料。Further, the material of the semiconductor resonant cavity layer is a semiconductor material with a high refractive index.
进一步地,所述半导体共振腔层的材料为单晶硅、多晶硅、纳米晶硅、砷化镓、磷化铟、二氧化钛、砷化铟或锗。Further, the material of the semiconductor cavity layer is single crystal silicon, polycrystalline silicon, nanocrystalline silicon, gallium arsenide, indium phosphide, titanium dioxide, indium arsenide or germanium.
进一步地,所述的半导体共振腔层的腔结构为圆柱形、立方体形或长方体形。Further, the cavity structure of the semiconductor resonant cavity layer is cylindrical, cubic or cuboid.
进一步地,所述的半导体共振腔层为圆柱形、立方体形或长方体形腔结构的周期性阵列结构。Further, the semiconductor resonant cavity layer is a periodic array structure of cylindrical, cubic or cuboid cavity structures.
进一步地,所述的金属膜层厚度处于10-30nm范围。Further, the thickness of the metal film layer is in the range of 10-30nm.
进一步地,所述金属膜层的厚度应满足良好的光透射和电子振荡传输响应,尤其优选为10-20nm。Further, the thickness of the metal film layer should satisfy good light transmission and electron oscillation transmission response, especially preferably 10-20 nm.
与现有技术相比,本发明的优点至少在于:Compared with the prior art, the advantages of the present invention are at least:
1、通过将半导体材料集成在具有光完美吸收特性的结构中,从而为实现利用半导体材料共振腔结构的电磁共振特性在光吸收领域的运用提供了一条有效的途径。1. By integrating the semiconductor material in a structure with perfect light absorption characteristics, it provides an effective way to realize the application of the electromagnetic resonance characteristics of the resonant cavity structure of the semiconductor material in the field of light absorption.
2、通过将半导体共振腔与金属膜层结构进行集成,突破了现有技术无法同时实现基于金属共振体系与介质体系尤其是半导体共振体系的光完美吸收器。2. By integrating the semiconductor resonant cavity and the metal film layer structure, it breaks through the inability of the existing technology to simultaneously realize the optical perfect absorber based on the metal resonant system and the dielectric system, especially the semiconductor resonant system.
3、通过运用连续金属膜层对半导体共振腔阵列的100%覆盖,彻底克服了以往基于金属-介质-金属三层结构技术实现的光完美吸收器无法进行外界电源或电流信号控制的缺陷。通过保持好连续金属的物理结构特性进而保留金属膜层与生俱来的优异电导特性(连续金属膜层厚度>10nm即可以提供电阻率低于0.1欧姆/sq)。因此,通过本发明的基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器,不仅可以产生多频段的光完美吸收,而且可以非常便利地与外加电源或泵浦电脉冲等有源器件集成,通过电流或电压信号调控半导体材料的电学特性,从而获得同时具备完美电学、光学(光吸收)特性的光电功能器件包括红外检测、红外光电调控和转换、热电子的激励产生和收集、光电调制信号与光谱滤波等。3. By using a continuous metal film layer to cover 100% of the semiconductor resonant cavity array, it completely overcomes the defect that the optical perfect absorber realized based on the metal-dielectric-metal three-layer structure technology cannot control the external power supply or current signal. By maintaining the physical structural properties of the continuous metal, the inherent excellent electrical conductivity of the metal film is retained (the thickness of the continuous metal film > 10nm can provide a resistivity lower than 0.1 ohm/sq). Therefore, through the multi-band optical perfect absorber based on the metal film layer-semiconductor resonant cavity composite structure of the present invention, not only can produce multi-band optical perfect absorption, but also can be very conveniently combined with active sources such as external power supply or pumping electric pulse. Device integration, regulating the electrical properties of semiconductor materials through current or voltage signals, so as to obtain photoelectric functional devices with perfect electrical and optical (light absorption) properties at the same time, including infrared detection, infrared photoelectric regulation and conversion, excitation generation and collection of thermal electrons, Photoelectric modulation signal and spectral filtering, etc.
附图说明Description of drawings
下面结合附图进一步解释和详细说明本发明的内容。但是,以下附图仅是本发明的理想化实施例的示意图,其中为了清楚展示本发明所涉及器件的结构,对其中选定的金属膜层区域的厚度进行了适当放大,但其作为示意图不应该被认为严格反映了几何尺寸的比例关系。另外,本发明所示的实施例亦不应该被认为仅限于图中所示的区域的特定形状。概言之,如下附图是示意性的,不应该被认为限制本发明的范围。The content of the present invention will be further explained and described in detail below in conjunction with the accompanying drawings. However, the following drawings are only schematic diagrams of idealized embodiments of the present invention, wherein in order to clearly show the structure of the device involved in the present invention, the thickness of the selected metal film region is appropriately enlarged, but it is not intended as a schematic diagram should be considered to strictly reflect the proportional relationship of the geometric dimensions. In addition, the illustrated embodiments of the invention should not be construed as limited to the specific shapes of regions illustrated in the drawings. In general, the following figures are schematic and should not be considered as limiting the scope of the invention.
图1是本发明一可选实施方案中基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器的纵向剖面示意图;Fig. 1 is the longitudinal sectional schematic view of the multi-band optical perfect absorber based on metal film layer-semiconductor cavity composite structure in an optional embodiment of the present invention;
图2是本发明一可选实施方案中基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器的俯视示意图;Fig. 2 is a top view schematic diagram of a multi-band optical perfect absorber based on a metal film layer-semiconductor cavity composite structure in an optional embodiment of the present invention;
图3是本发明一可选实施方案中基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器在不同偏振态入射光照射下的光吸收图。金属材料为金,半导体材料单晶硅,金属衬底厚度、金属膜层厚度分别为50nm和20nm。半导体共振腔为圆柱形结构,直径为400nm,圆柱高380nm。半导体共振腔阵列为三角排列,周期大小为500nm。Fig. 3 is an optical absorption diagram of a multi-band optical perfect absorber based on a metal film layer-semiconductor resonant cavity composite structure under the irradiation of incident light with different polarization states in an alternative embodiment of the present invention. The metal material is gold, the semiconductor material is single crystal silicon, the thickness of the metal substrate and the thickness of the metal film layer are 50nm and 20nm respectively. The semiconductor resonant cavity is a cylindrical structure with a diameter of 400nm and a cylinder height of 380nm. The semiconductor resonant cavity array is arranged in a triangle, and the period size is 500nm.
图4是本发明一可选实施方案中基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器的光吸收图。金属材料为金,半导体材料单晶硅,金属衬底厚度、金属膜层厚度分别为100nm和20nm。半导体共振腔为圆柱形结构,直径为400nm,圆柱高380nm。半导体共振腔阵列为三角排列,周期大小为500nm。Fig. 4 is an optical absorption diagram of a multi-band optical perfect absorber based on a metal film layer-semiconductor cavity composite structure in an alternative embodiment of the present invention. The metal material is gold, the semiconductor material is single crystal silicon, and the thickness of the metal substrate and the thickness of the metal film layer are 100nm and 20nm respectively. The semiconductor resonant cavity is a cylindrical structure with a diameter of 400nm and a cylinder height of 380nm. The semiconductor resonant cavity array is arranged in a triangle, and the period size is 500nm.
图5是本发明一可选实施方案中基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器在选用不同半导体材料时的光吸收图。金属材料为金,半导体材料为砷化镓(GaAs)或磷化铟(InP)或砷化铟(InAs),金属反光层厚度、金属膜层厚度分别为100nm和20nm。半导体共振腔为圆柱形结构,直径为400nm,圆柱高380nm。半导体共振腔阵列为三角排列,周期大小为500nm。Fig. 5 is an optical absorption diagram of a multi-band optical perfect absorber based on a metal film layer-semiconductor cavity composite structure in an alternative embodiment of the present invention when different semiconductor materials are selected. The metal material is gold, the semiconductor material is gallium arsenide (GaAs) or indium phosphide (InP) or indium arsenide (InAs), and the thickness of the metal reflective layer and the thickness of the metal film layer are 100nm and 20nm respectively. The semiconductor resonant cavity is a cylindrical structure with a diameter of 400nm and a cylinder height of 380nm. The semiconductor resonant cavity array is arranged in a triangle, and the period size is 500nm.
图6是本发明一可选实施方案中基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器的光吸收图。金属材料为银,半导体材料多晶硅,金属反光层厚度、金属膜层厚度分别为100nm和20nm。半导体共振腔为圆柱形结构,直径为410nm,圆柱高380nm。半导体共振腔阵列为三角排列,周期大小为500nm。Fig. 6 is an optical absorption diagram of a multi-band optical perfect absorber based on a metal film layer-semiconductor cavity composite structure in an alternative embodiment of the present invention. The metal material is silver, the semiconductor material is polysilicon, and the thickness of the metal reflective layer and the thickness of the metal film layer are respectively 100nm and 20nm. The semiconductor resonant cavity is a cylindrical structure with a diameter of 410nm and a cylinder height of 380nm. The semiconductor resonant cavity array is arranged in a triangle, and the period size is 500nm.
具体实施方式Detailed ways
本发明旨在提高一种基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器,其可具有完美的光吸收响应同时也具备金属膜层固有的优异的电导电学特性。该吸收器结构可包括自下而上依次形成的衬底1、金属反光层2、半导体共振腔层3和金属膜层4,其中金属反光层2和金属膜层4的连接交错区域是直接物理接触,金属膜层4与半导体共振腔层3的顶部和侧面是直接物理接触,金属反光层2与半导体共振腔层3底部是直接物理接触,并且金属膜层4与半导体腔及金属反光层配合形成具有多频段光完美吸收特性的结构。The present invention aims to improve a multi-band optical perfect absorber based on a metal film layer-semiconductor resonant cavity composite structure, which can have a perfect light absorption response and also have the inherent excellent electrical conductivity properties of the metal film layer. The absorber structure may include a substrate 1, a metal reflective layer 2, a semiconductor resonant cavity layer 3, and a metal film layer 4 sequentially formed from bottom to top, wherein the connecting interlaced area of the metal reflective layer 2 and the metal film layer 4 is directly physically Contact, the metal film layer 4 is in direct physical contact with the top and side of the semiconductor resonant cavity layer 3, the metal reflective layer 2 is in direct physical contact with the bottom of the semiconductor resonant cavity layer 3, and the metal film layer 4 cooperates with the semiconductor cavity and the metal reflective layer A structure with perfect absorption properties of multi-band light is formed.
前述衬底可选用但不限于硅片、玻璃、塑料、不锈钢等硬质或柔性衬底,用于支撑基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器。The aforementioned substrates can be selected from but not limited to hard or flexible substrates such as silicon wafers, glass, plastics, and stainless steel to support the multi-band optical perfect absorber based on the metal film layer-semiconductor resonant cavity composite structure.
前述金属反光层可以采用一层连续的金属薄膜,其材料可选用但不限于金、银、铜、铝、铂等,其厚度优选在50nm以上,尤其是50nm-200nm。The aforementioned metal reflective layer can be a continuous metal thin film, the material of which can be selected but not limited to gold, silver, copper, aluminum, platinum, etc., and its thickness is preferably more than 50nm, especially 50nm-200nm.
前述半导体共振腔层优选为高折射率的介电材料膜,比如,可选用但不限于单晶硅、多晶硅、纳米晶硅、砷化镓、磷化铟、二氧化钛、砷化铟、锗。The aforementioned semiconductor resonant cavity layer is preferably a high refractive index dielectric material film, such as but not limited to monocrystalline silicon, polycrystalline silicon, nanocrystalline silicon, gallium arsenide, indium phosphide, titanium dioxide, indium arsenide, germanium.
前述金属膜层可以采用一层连续的金属薄膜,其材料可选用但不限于金、银、铜、铝、铂等,其厚度优选在10-20nm。The aforementioned metal film layer can be a continuous metal thin film, the material of which can be selected from but not limited to gold, silver, copper, aluminum, platinum, etc., and its thickness is preferably 10-20 nm.
作为较佳实施方案之一,至少前述半导体共振腔层由圆柱形半导体共振单元排列并构成周期性的微纳米结构。As one of the preferred implementations, at least the aforementioned semiconductor resonant cavity layer is arranged with cylindrical semiconductor resonant units to form a periodic micro-nano structure.
前述金属反光层、半导体共振腔层和金属膜层一起构成具有多频段光完美吸收的结构。进一步的,通过调控前述半导体共振腔的折射率和高度,金属膜层与半导体共振腔的复合结构、阵列的晶格周期,可以优化设计工作在不同波段的完全光吸收器结构。例如,作为较佳的应用方案之一,可以通过电磁场数值分析方法优化吸收器结构中的半导体共振腔的直径、高度以及阵列的周期参数,使得半导体阵列产生的光学共振光谱与覆盖在半导体共振腔上的金属膜层的等离激元共振光谱在频域上重叠,从而获得强的共振耦合,抑制反射损耗,获得近100%光完美吸收。The metal reflective layer, the semiconductor resonant cavity layer and the metal film layer together form a structure with perfect absorption of multi-band light. Furthermore, by adjusting the refractive index and height of the aforementioned semiconductor resonant cavity, the composite structure of the metal film layer and the semiconductor resonant cavity, and the lattice period of the array, the complete optical absorber structure working in different wavelength bands can be optimally designed. For example, as one of the better application schemes, the diameter, height and periodic parameters of the semiconductor resonant cavity in the absorber structure can be optimized by means of electromagnetic field numerical analysis, so that the optical resonance spectrum generated by the semiconductor array is consistent with that covered in the semiconductor resonant cavity The plasmon resonance spectra of the upper metal film layer overlap in the frequency domain, thereby obtaining strong resonance coupling, suppressing reflection loss, and obtaining nearly 100% perfect absorption of light.
下面结合若干较佳实施例及相关附图对本发明的技术方案进行详细说明:The technical solution of the present invention will be described in detail below in conjunction with several preferred embodiments and related drawings:
实施例1:参阅图1所示系本实施例基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器的纵向剖面示意图,其包括自下而上依次设置的衬底、金属反光层、半导体共振腔层与金属膜层。该实施例中的金属反光层构成吸收器的反射和不透光层,半导体共振腔层和金属膜层构成了吸收器产生强电磁共振效应的共振复合结构单元,通过优化设计如图2所示的半导体共振腔层和金属膜层,可得到预设波段的多频段光完美吸收。同时,金属膜层可以作为完美电导层可以与外界电源或电泵浦单元连通,同时也可以作为在电磁共振下产生大量自由电子进入半导体材料内而形成热电子的有源层,从而为获得光电转换和电控操作提供通道。本实施例中的半导体共振腔基于选用的半导体材料,易于高效利用吸收光或电磁场进行半导体能带、光生载流子、光电特性的调控。Embodiment 1: Refer to the longitudinal sectional schematic diagram of the multi-band light perfect absorber based on the metal film layer-semiconductor resonant cavity composite structure shown in Fig. 1, which includes a substrate and a metal reflective layer arranged in sequence from bottom to top , semiconductor resonant cavity layer and metal film layer. The metal reflective layer in this embodiment constitutes the reflective and opaque layer of the absorber, and the semiconductor resonant cavity layer and the metal film layer constitute the resonant composite structural unit for the absorber to produce a strong electromagnetic resonance effect, as shown in Figure 2 through optimized design The semiconductor resonant cavity layer and the metal film layer can obtain the perfect absorption of multi-band light of preset wavelength bands. At the same time, the metal film layer can be used as a perfect conductive layer to communicate with the external power supply or electric pump unit, and can also be used as an active layer that generates a large number of free electrons under electromagnetic resonance and enters into the semiconductor material to form thermal electrons, so as to obtain photoelectricity. Channels are provided for switching and electronically controlled operations. The semiconductor resonant cavity in this embodiment is based on selected semiconductor materials, and it is easy to efficiently use absorbed light or electromagnetic field to regulate semiconductor energy bands, photogenerated carriers, and photoelectric characteristics.
实施例2:本实施例的纵向剖面图可参阅图1,俯视示意图参阅图2,其与实施例1的不同之处主要在于,本实施例中半导体共振腔层形成二维周期阵列结构。参与图3其构成的多频段光完美吸收对不同偏振方向的入射光均能形成完美的光吸收,从而进一步提高吸收器在不同电磁偏振环境下的光吸收性能和光电响应效率。Embodiment 2: Refer to FIG. 1 for the longitudinal sectional view of this embodiment, and to FIG. 2 for a schematic top view. The main difference from Embodiment 1 is that the semiconductor resonant cavity layer in this embodiment forms a two-dimensional periodic array structure. The multi-band optical perfect absorption in Figure 3 can form perfect optical absorption for incident light with different polarization directions, thereby further improving the optical absorption performance and photoelectric response efficiency of the absorber in different electromagnetic polarization environments.
实施例3:参阅图4所示系本实施例基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器的光吸收图。金属材料为金,半导体材料单晶硅,金属衬底厚度、金属膜层厚度分别为100nm和20nm。半导体共振腔为圆柱形结构,直径为400nm,圆柱高380nm。半导体共振腔阵列为三角排列,周期大小为500nm。在近红外波段内,呈现了4个光吸收峰,最大光吸收率达98%。最低吸收率也超过了92%。而这样优异的光吸收效果是在结构100%被20nm厚的金属膜层覆盖的基础上获得的,这与金属膜层内在的对光高反射特性形成巨大反差。这种多频段光完美吸收器由此可以在红外成像和显示以及光谱滤波、光电转换和红外探测等方面实现光、电性能的各种集成方案。Embodiment 3: Referring to FIG. 4, it is the light absorption diagram of the multi-band optical perfect absorber based on the metal film layer-semiconductor resonant cavity composite structure in this embodiment. The metal material is gold, the semiconductor material is single crystal silicon, and the thickness of the metal substrate and the thickness of the metal film layer are 100nm and 20nm respectively. The semiconductor resonant cavity is a cylindrical structure with a diameter of 400nm and a cylinder height of 380nm. The semiconductor resonant cavity array is arranged in a triangle, and the period size is 500nm. In the near-infrared band, there are four light absorption peaks, and the maximum light absorption rate reaches 98%. The minimum absorption rate also exceeds 92%. Such an excellent light absorption effect is obtained on the basis that 100% of the structure is covered by a 20nm-thick metal film layer, which forms a huge contrast with the inherent high light reflection characteristics of the metal film layer. This multi-band optical perfect absorber can thus realize various integrated schemes of optical and electrical properties in infrared imaging and display, spectral filtering, photoelectric conversion, and infrared detection.
实施例4:参阅图5所示系本实施例基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器的光吸收图。金属材料为金,半导体材料为砷化镓(GaAs)或磷化铟(InP)或砷化铟(InAs),金属反光层厚度、金属膜层厚度分别为100nm和20nm。半导体共振腔为圆柱形结构,直径为400nm,圆柱高380nm。半导体共振腔阵列为三角排列,周期大小为500nm。在这一实施例中,多频段光完美吸收在结构选用不同半导体材料时也得以很好的呈现。这为拓展此类吸收器实现基于不同半导体材料在不同频段产生光吸收以及光电响应做了很好的验证。比如,基于选用GaAs作为半导体共振腔材料,吸收器产生了4带光吸收,最大吸收率达到了99.9%。Embodiment 4: Refer to FIG. 5 which is the light absorption diagram of the multi-band optical perfect absorber based on the metal film layer-semiconductor resonant cavity composite structure in this embodiment. The metal material is gold, the semiconductor material is gallium arsenide (GaAs) or indium phosphide (InP) or indium arsenide (InAs), and the thickness of the metal reflective layer and the thickness of the metal film layer are 100nm and 20nm respectively. The semiconductor resonant cavity is a cylindrical structure with a diameter of 400nm and a cylinder height of 380nm. The semiconductor resonant cavity array is arranged in a triangle, and the period size is 500nm. In this embodiment, the perfect absorption of multi-band light can also be well presented when different semiconductor materials are selected for the structure. This is a good verification for expanding this type of absorber to realize light absorption and photoelectric response in different frequency bands based on different semiconductor materials. For example, based on the choice of GaAs as the material of the semiconductor resonant cavity, the absorber produces 4-band light absorption, and the maximum absorption rate reaches 99.9%.
实施例5:参阅图6所示系本实施例基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器的光吸收图。金属材料为银,半导体材料多晶硅,金属反光层厚度、金属膜层厚度分别为100nm和20nm。半导体共振腔为圆柱形结构,直径为410nm,圆柱高380nm。半导体共振腔阵列为三角排列,周期大小为500nm。在这一实施例中,多频段光完美吸收在结构保持阵列周期大小不变的同时选用了一个相对比较大的半导体共振腔也得以实现。比如,在1.953微米的波长处,吸收率达到了99.8%。这一实施例说明,此吸收器的光吸收性能可以在一定结构参数波动范围内都得到很好的保持。因此,该多频段光完美吸收器不仅易于制备而且可以通过调控结构参数实现对光吸收响应在频域的调控,进而提高了本吸收器在不同频段的光学、光电子功能材料方面的技术价值。Embodiment 5: Refer to FIG. 6 which is the light absorption diagram of the multi-band optical perfect absorber based on the metal film layer-semiconductor resonant cavity composite structure in this embodiment. The metal material is silver, the semiconductor material is polysilicon, and the thickness of the metal reflective layer and the thickness of the metal film layer are respectively 100nm and 20nm. The semiconductor resonant cavity is a cylindrical structure with a diameter of 410nm and a cylinder height of 380nm. The semiconductor resonant cavity array is arranged in a triangle, and the period size is 500nm. In this embodiment, the perfect absorption of multi-band light can also be realized by selecting a relatively large semiconductor resonant cavity while the structure keeps the size of the array period unchanged. For example, at a wavelength of 1.953 microns, the absorption rate reaches 99.8%. This example shows that the light absorption performance of this absorber can be well maintained within a certain fluctuation range of structural parameters. Therefore, the multi-band optical perfect absorber is not only easy to prepare, but also can adjust the optical absorption response in the frequency domain by adjusting the structural parameters, thereby improving the technical value of the absorber in optical and optoelectronic functional materials in different frequency bands.
需要说明的是,本发明所揭示的乃较佳实施例的多种,凡是局部的变更或修饰而源于本发明的技术思想而为熟习该项技术的人所易于推知的,俱不脱离本发明的专利权范围。It should be noted that what the present invention discloses is a variety of preferred embodiments, and all partial changes or modifications originating from the technical idea of the present invention and easily deduced by those skilled in the art do not depart from the present invention. The scope of patent rights for inventions.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710062849.5ACN106784030B (en) | 2017-02-03 | 2017-02-03 | Multi-band perfect light absorber based on metal film layer-semiconductor resonant cavity composite structure |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710062849.5ACN106784030B (en) | 2017-02-03 | 2017-02-03 | Multi-band perfect light absorber based on metal film layer-semiconductor resonant cavity composite structure |
| Publication Number | Publication Date |
|---|---|
| CN106784030A CN106784030A (en) | 2017-05-31 |
| CN106784030Btrue CN106784030B (en) | 2019-08-09 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201710062849.5AExpired - Fee RelatedCN106784030B (en) | 2017-02-03 | 2017-02-03 | Multi-band perfect light absorber based on metal film layer-semiconductor resonant cavity composite structure |
| Country | Link |
|---|---|
| CN (1) | CN106784030B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107390305A (en)* | 2017-07-21 | 2017-11-24 | 江西师范大学 | Dual-band all-optical absorber structure |
| CN107369721A (en)* | 2017-07-21 | 2017-11-21 | 江西师范大学 | Broadband light perfect absorber based on aluminum-gallium arsenide structure |
| CN107329285A (en)* | 2017-07-21 | 2017-11-07 | 江西师范大学 | Near infrared light absorption device based on ITO-metal-semiconductor structure |
| CN107436455A (en)* | 2017-08-18 | 2017-12-05 | 江西师范大学 | Dual-band mid-infrared graphene array wave trap |
| CN107450120A (en)* | 2017-08-18 | 2017-12-08 | 江西师范大学 | Multi-band absorption filter based on symmetry-breaking graphene array structure |
| CN107340610A (en)* | 2017-08-18 | 2017-11-10 | 江西师范大学 | Polarization-controlled graphene array multiband filter |
| CN107797167A (en)* | 2017-11-15 | 2018-03-13 | 江西师范大学 | Ultra-wideband optical perfect absorber and preparation method thereof |
| CN107942428A (en)* | 2017-11-15 | 2018-04-20 | 江西师范大学 | A kind of infrared light perfection absorber and preparation method thereof |
| CN109613633B (en)* | 2018-12-29 | 2021-06-01 | 江西师范大学 | Ultra-narrow multi-band optical sensor |
| CN110615997B (en)* | 2019-08-26 | 2021-11-23 | Tcl华星光电技术有限公司 | Composite material, preparation method thereof and display panel |
| CN113009606A (en)* | 2021-02-04 | 2021-06-22 | 江西师范大学 | Five-layer nano-material ultra-wideband perfect absorber and preparation method thereof |
| CN114265257B (en)* | 2021-12-24 | 2025-05-27 | 江西师范大学 | A frequency domain selective light absorption electro-optical control device |
| CN114295550A (en)* | 2021-12-31 | 2022-04-08 | 电子科技大学长三角研究院(湖州) | Optical flow control device based on surface lattice resonance and application thereof |
| CN114509833B (en)* | 2022-01-21 | 2025-06-27 | 苏州大学 | A broadband perfect absorber based on nanosphere array and its preparation method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1853280A (en)* | 2003-09-05 | 2006-10-25 | 新科实业有限公司 | Systems and methods having metal-semiconductor-metal (MSM) photodetectors with buried oxide |
| CN102047434A (en)* | 2008-04-08 | 2011-05-04 | 荷兰原子和分子物理学研究所 | Photovoltaic cell with surface plasmon resonance generating nano-structures |
| CN103367473A (en)* | 2012-03-31 | 2013-10-23 | 中国科学院上海微系统与信息技术研究所 | Metal microcavity optical coupling terahertz quantum well photon detector |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011050165A2 (en)* | 2009-10-21 | 2011-04-28 | Stc.Unm | Plasmonic detectors |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1853280A (en)* | 2003-09-05 | 2006-10-25 | 新科实业有限公司 | Systems and methods having metal-semiconductor-metal (MSM) photodetectors with buried oxide |
| CN102047434A (en)* | 2008-04-08 | 2011-05-04 | 荷兰原子和分子物理学研究所 | Photovoltaic cell with surface plasmon resonance generating nano-structures |
| CN103367473A (en)* | 2012-03-31 | 2013-10-23 | 中国科学院上海微系统与信息技术研究所 | Metal microcavity optical coupling terahertz quantum well photon detector |
| Publication number | Publication date |
|---|---|
| CN106784030A (en) | 2017-05-31 |
| Publication | Publication Date | Title |
|---|---|---|
| CN106784030B (en) | Multi-band perfect light absorber based on metal film layer-semiconductor resonant cavity composite structure | |
| CN106711271B (en) | Three-band near-infrared absorber based on semiconductor super-surface structure | |
| Wang et al. | Graphene based functional devices: A short review | |
| Cen et al. | Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range | |
| CN110441842A (en) | One kind being based on VO2And the multifunction device of graphene mixing Meta Materials | |
| CN113381277B (en) | Circular polarization laser of chiral metamaterial | |
| CN104319471A (en) | Tunable nanometer antenna and preparation method thereof | |
| CN202329818U (en) | Uncooled infrared detection device | |
| Wu et al. | An ultra-broadband, polarization and angle-insensitive metamaterial light absorber | |
| CN209626432U (en) | A light-modulated terahertz broadband absorber based on doped silicon | |
| Tian et al. | Dynamically switchable tri-functional THz-integrated metamaterial absorber based on VO2-graphene | |
| CN111446551A (en) | A multi-band tunable terahertz absorber based on graphene metasurface | |
| Wu et al. | Bi-channel switchable broadband terahertz metamaterial absorber | |
| Wang et al. | Switchable quadruple narrowband to broadband terahertz perfect absorber based on graphene and VO2 metamaterials | |
| CN107146955A (en) | An Efficient and Tunable Terahertz Absorbing Device Based on Graphene Material | |
| Bora et al. | Plasmonic black metals in resonant nanocavities | |
| CN108983344A (en) | A kind of tunable terahertz polarization function translator of wideband | |
| Wang et al. | Design of a sector bowtie nano-rectenna for optical power and infrared detection | |
| CN111817019A (en) | Dielectric-loaded graphene ultra-broadband high-efficiency wide-angle terahertz absorber with graded structure | |
| CN214849067U (en) | Broadband terahertz wave absorber | |
| CN116106998B (en) | Tunable near infrared absorber based on composite structure of shape array and titanium nitride | |
| CN112684648B (en) | A Broadband Tunable Absorber Based on Vanadium Dioxide and Fabry-Perot Cavities | |
| Chen et al. | Ultra-broadband dual-square ring metamaterial absorbers from visible to far-infrared region | |
| CN105703216A (en) | Terahertz quantum level cascaded laser with integration of absorption waveguide and fabrication method of terhertz quantum level cascaded laser | |
| Abdelraouf et al. | All dielectric and plasmonic cross-grating metasurface for efficient perovskite solar cells |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20190809 Termination date:20200203 | |
| CF01 | Termination of patent right due to non-payment of annual fee |