技术领域technical field
本发明属于光电材料及薄膜太阳能电池制备领域,具体涉及一种高质量的硒化亚锗多晶薄膜、含有该薄膜的太阳能电池及其制备方法。The invention belongs to the field of photoelectric materials and thin-film solar cell preparation, and in particular relates to a high-quality polycrystalline germanium selenide film, a solar cell containing the film and a preparation method thereof.
背景技术Background technique
太阳能电池是一种将太阳能转换为电能的有效装置,它能够帮助人类高效地转换并利用太阳能,其中薄膜太阳能电池更因其优异的性能而被广泛关注。太阳能电池中使用的化合物半导体材料中大多含有稀有金属或有毒金属元素,这在很大程度上影响了太阳能电池的发展。例如,目前已实现商品化的薄膜太阳能电池主要为铜铟镓硒电池和碲化镉电池,但铜铟镓硒薄膜太阳能电池制备过程中用到的In和Ga均为昂贵金属,其研发和生产资金投入大,回收周期长,成本偏高;碲化镉薄膜太阳能电池中,碲原料的稀缺,无法保证碲化镉太阳能电池不断增产的需求,并且镉作为重金属是具有生物毒性的,在生产和使用过程中如有排放和污染,会影响环境。因此,人们希望能制备出一种廉价且无毒的薄膜太阳能电池。Solar cells are an effective device that converts solar energy into electrical energy. It can help humans efficiently convert and utilize solar energy. Among them, thin-film solar cells have attracted widespread attention due to their excellent performance. Most of the compound semiconductor materials used in solar cells contain rare metals or toxic metal elements, which largely affects the development of solar cells. For example, the currently commercialized thin-film solar cells are mainly copper indium gallium selenide cells and cadmium telluride cells, but the In and Ga used in the preparation process of copper indium gallium selenide thin film solar cells are expensive metals. The capital investment is large, the recovery cycle is long, and the cost is high; in cadmium telluride thin-film solar cells, the scarcity of tellurium raw materials cannot guarantee the demand for continuous increase in production of cadmium telluride solar cells, and cadmium, as a heavy metal, is biologically toxic. If there is emission and pollution during use, it will affect the environment. Therefore, it is hoped that a cheap and non-toxic thin-film solar cell can be prepared.
发明内容Contents of the invention
为了解决现有技术中的不足,本发明的目的之一是提供了一种高质量的硒化亚锗多晶薄膜及其制备方法,所述高质量的硒化亚锗多晶薄膜解决了目前化合物薄膜太阳能电池(CIGS、CdTe、CZTSSe)中所需材料蕴含的元素在地壳中含量较少、对人体有毒或生产工艺复杂的问题,所述硒化亚锗多晶薄膜是采用近空间升华法制备得到的。In order to solve the deficiencies in the prior art, one of the purposes of the present invention is to provide a high-quality germanium selenide polycrystalline film and its preparation method, the high-quality germanium selenide polycrystalline film solves the current problems Compound thin-film solar cells (CIGS, CdTe, CZTSSe) contain less elements in the earth’s crust, are toxic to the human body, or have complex production processes. prepared.
研究发现,硒化亚锗(GeSe)材料具有高的吸光系数与合适的禁带宽度,其组成元素在地壳中的丰度较高且毒性很低;另外,硒化亚锗(GeSe)是IV-VI族二元化合物,属于p型半导体材料,其间接禁带宽度为1.12eV,吸收边波长约为1000nm,对太阳光谱的响应处于最理想的太阳光谱波段,具有高吸收系数;这些特性决定了硒化亚锗(GeSe)有可能作为薄膜太阳能电池的吸收层材料。但是目前对于硒化亚锗薄膜制备方法的报道主要有双源共蒸发法和磁控溅射等方法,采用上述方法制备得到的硒化亚锗薄膜均是非晶结构的,其无结晶,无定形的状态不利于载流子的传输,无法用于制备太阳能电池。Studies have found that germanium selenide (GeSe) material has a high light absorption coefficient and a suitable band gap width, and its constituent elements have a high abundance in the earth's crust and low toxicity; in addition, germanium selenide (GeSe) is IV -VI group binary compound, which belongs to p-type semiconductor material, its indirect bandgap width is 1.12eV, the absorption edge wavelength is about 1000nm, the response to the solar spectrum is in the most ideal solar spectrum band, and has a high absorption coefficient; these characteristics determine Germanium selenide (GeSe) may be used as the absorber material of thin-film solar cells. However, at present, reports on the preparation methods of germanium selenide thin films mainly include methods such as dual-source co-evaporation and magnetron sputtering. The state is not conducive to the transport of carriers and cannot be used to prepare solar cells.
进一步研究发现,硒化亚锗具有一个重要的物理性质——升华,即在高温(通常大于400℃)下,硒化亚锗会发生升华现象,而在低温下,升华的蒸气可以重新凝结成硒化亚锗。而近空间升华法(Closed space sublimation)是一种利用物质的升华特性制备薄膜的方法。本发明将所述方法用于制备硒化亚锗薄膜,发现该方法的制作过程简单,成膜质量好,且成功研制出一种高性能的硒化亚锗多晶薄膜。Further studies have found that germanium selenide has an important physical property - sublimation, that is, at high temperatures (usually greater than 400 ° C), germanium selenide will undergo sublimation, and at low temperatures, the sublimated vapor can recondense into germanium selenide. Closed space sublimation is a method of preparing thin films by utilizing the sublimation properties of substances. The invention uses the method to prepare the germanium selenide thin film, and finds that the method has simple manufacturing process, good film forming quality, and successfully develops a high-performance germanium selenide polycrystalline thin film.
本发明的目的之二是提供一种含有上述高质量的硒化亚锗多晶薄膜的太阳能电池及其制备方法,将上述方法制备得到的高质量的硒化亚锗多晶薄膜,用于太阳能电池的吸收层;所制备得到的太阳能电池具有优异的光伏性能且对环境友好。近空间升华法具有沉积速率高、设备简单、生产成本低等优点,用于所述含有硒化亚锗多晶薄膜的太阳能电池的制备时,其制作过程简单,成膜质量好,大幅度降低了太阳能电池的制作成本,为太阳能电池产业化提供了一种十分具有发展前景的方法。The second object of the present invention is to provide a solar cell containing the above-mentioned high-quality germanium selenide polycrystalline film and a preparation method thereof, and the high-quality germanium selenide polycrystalline film prepared by the above method is used for solar energy The absorbing layer of the battery; the prepared solar cell has excellent photovoltaic performance and is environmentally friendly. The near-space sublimation method has the advantages of high deposition rate, simple equipment, and low production cost. When used for the preparation of the solar cell containing the germanium selenide polycrystalline thin film, the production process is simple, the film quality is good, and the cost is greatly reduced. It reduces the production cost of solar cells and provides a very promising method for the industrialization of solar cells.
本发明目的是通过如下技术方案实现的:The object of the invention is achieved through the following technical solutions:
一种硒化亚锗多晶薄膜的制备方法,所述薄膜采用近空间升华法制备,所述制备方法具体包括如下步骤:A method for preparing a germanium selenide polycrystalline thin film, the thin film is prepared by a close-space sublimation method, and the preparation method specifically includes the following steps:
(1)设定快速退火炉的沉积程序;(1) Set the deposition program of the rapid annealing furnace;
(2)将硒化亚锗原料和基底置于快速退火炉的沉积腔体中,利用真空泵,使沉积腔体气压维持在一定范围;(2) Place the germanium selenide raw material and the substrate in the deposition chamber of the rapid annealing furnace, and use a vacuum pump to maintain the pressure of the deposition chamber within a certain range;
(3)运行沉积程序,制备得到硒化亚锗多晶薄膜。(3) Running a deposition program to prepare a germanium selenide polycrystalline film.
本发明制得的硒化亚锗多晶薄膜是一种高质量的多晶薄膜,所述的“高质量”是指该多晶薄膜致密、结晶性好、晶粒大。The germanium selenide polycrystalline thin film prepared by the invention is a high-quality polycrystalline thin film, and the "high quality" refers to that the polycrystalline thin film is compact, has good crystallinity, and has large crystal grains.
根据本发明,在步骤(1)中,所述快速退火炉设定的沉积程序分为预热、快速升温、维持温度和结束程序四步。According to the present invention, in step (1), the deposition program set by the rapid annealing furnace is divided into four steps: preheating, rapid temperature rise, temperature maintenance and program termination.
其中,所述预热是在250~390℃之间恒温12~36min;优选地,在300~350℃之间恒温18~22min。Wherein, the preheating is a constant temperature between 250-390° C. for 12-36 minutes; preferably, a constant temperature between 300-350° C. for 18-22 minutes.
其中,所述快速升温的速率为10~50℃/s,优选为20~30℃/s,进一步优选为25℃/s,所述快速升温至400~600℃,优选为400~500℃,进一步优选为400~450℃。Wherein, the rapid temperature rise rate is 10-50°C/s, preferably 20-30°C/s, more preferably 25°C/s, and the rapid temperature rise is 400-600°C, preferably 400-500°C, More preferably, it is 400-450 degreeC.
其中,所述维持温度的时间为1~30s,优选为3~10s,进一步优选为5s。Wherein, the time for maintaining the temperature is 1-30s, preferably 3-10s, more preferably 5s.
其中,所述的结束程序是指温度降低至400℃以下时,打开快速退火炉炉盖,使其继续降温,当热电偶显示温度为180℃以下时,放气,取出样品。Wherein, the end procedure refers to that when the temperature drops below 400°C, the lid of the rapid annealing furnace is opened to continue to cool down, and when the thermocouple shows that the temperature is below 180°C, the gas is released and the sample is taken out.
根据本发明,在步骤(2)中,沉积腔体气压在5~20mTorr,优选为10~15mTorr。According to the present invention, in step (2), the gas pressure in the deposition chamber is 5-20 mTorr, preferably 10-15 mTorr.
根据本发明,在步骤(2)中,所述的硒化亚锗原料是市售或实验室制备得到的任何一种硒化亚锗,其形态可以是固态、粉末状等形式。According to the present invention, in step (2), the germanous selenide raw material is any kind of germanous selenide that is commercially available or prepared in a laboratory, and its form can be solid or powder.
根据本发明,在步骤(2)中,所述的基底是一种耐温基底,可以是现有技术中任一种耐温基底,例如可以是薄膜太阳能电池的衬底(如ITO玻璃)或白玻璃等等。According to the present invention, in step (2), described substrate is a kind of heat-resistant substrate, can be any heat-resistant substrate in the prior art, for example can be the substrate of thin-film solar cell (as ITO glass) or White glass and more.
根据本发明,所述制备方法中,快速退火炉升温速率快,硒化亚锗气体与基底间存在温差,使升华的硒化亚锗气体能够沉积下来,通过充放气改变腔体内压强和调节升温程序,实现了在不同温度不同气压下,制备得到高质量的硒化亚锗多晶薄膜。According to the present invention, in the preparation method, the temperature rise rate of the rapid annealing furnace is fast, and there is a temperature difference between the germanous selenide gas and the substrate, so that the sublimated germanous selenide gas can be deposited, and the pressure in the cavity can be changed and adjusted by charging and discharging gas. The heating program realizes the preparation of high-quality germanium selenide polycrystalline thin films at different temperatures and different pressures.
根据本发明,所述的硒化亚锗多晶薄膜的厚度为300~500nm。According to the present invention, the thickness of the germanium selenide polycrystalline film is 300-500 nm.
本发明还提供一种硒化亚锗多晶薄膜,其由多晶硒化亚锗构成。The invention also provides a polycrystalline germanium selenide thin film, which is composed of polycrystalline germanous selenide.
根据本发明,所述薄膜是采用上述方法制备得到的。According to the present invention, the film is prepared by the above method.
根据本发明,所述的硒化亚锗多晶薄膜的厚度为300~500nm。According to the present invention, the thickness of the germanium selenide polycrystalline film is 300-500 nm.
本发明提供一种含有上述硒化亚锗多晶薄膜的薄膜太阳能电池,所述薄膜太阳能电池包括依次层叠的n型窗口层、p型吸收层和背电极层,其中,所述p型吸收层由所述的硒化亚锗多晶薄膜构成。The present invention provides a thin-film solar cell containing the polycrystalline germanium selenide thin film. The thin-film solar cell includes an n-type window layer, a p-type absorber layer and a back electrode layer stacked in sequence, wherein the p-type absorber layer It is composed of the germanium selenide polycrystalline film.
根据本发明,所述p型吸收层的厚度可以为300~500nm。According to the present invention, the thickness of the p-type absorption layer may be 300-500 nm.
根据本发明,所述薄膜太阳能电池还包括衬底,与所述n型窗口层相邻,即所述薄膜太阳能电池包括依次层叠的衬底、n型窗口层、p型吸收层和背电极层。According to the present invention, the thin-film solar cell further includes a substrate adjacent to the n-type window layer, that is, the thin-film solar cell includes a substrate, an n-type window layer, a p-type absorber layer and a back electrode layer stacked in sequence .
根据本发明,所述衬底为透明导电衬底。优选地,所述透明导电衬底包括透明衬底(例如玻璃(具体可以是白玻璃)或柔性塑料等)和覆盖在所述透明衬底上的透明电极材料(例如氧化铟锡(ITO)、氧化氟锡(FTO)等)层。例如可以为ITO玻璃。According to the present invention, the substrate is a transparent conductive substrate. Preferably, the transparent conductive substrate includes a transparent substrate (such as glass (specifically, white glass) or flexible plastic, etc.) and a transparent electrode material (such as indium tin oxide (ITO), Fluorine tin oxide (FTO, etc.) layer. For example, ITO glass may be used.
根据本发明,所述的n型窗口层的材料可以为CdS、Zn(S,O)、In2S3、In2(S,O,OH)3、TiO2、ZnO中的一种或多种;所述n型窗口层的厚度可以为30~100nm。According to the present invention, the material of the n-type window layer can be one or more of CdS, Zn(S,O), In2 S3 , In2 (S,O,OH)3 , TiO2 , ZnO species; the thickness of the n-type window layer may be 30-100 nm.
根据本发明,所述的背电极层的材料可以为Mo、Cu、Au、Ni、Ag、Al中的一种或多种;所述背电极层的厚度可以为100~200nm。According to the present invention, the material of the back electrode layer may be one or more of Mo, Cu, Au, Ni, Ag, Al; the thickness of the back electrode layer may be 100-200 nm.
本发明还提供一种上述薄膜太阳能电池的制备方法,所述方法包括:n型窗口层沉积步骤、p型吸收层沉积步骤和背电极层沉积步骤,其中,所述p型吸收层由所述的硒化亚锗多晶薄膜构成,所述p型吸收层沉积步骤采用上述的硒化亚锗多晶薄膜的制备方法。The present invention also provides a method for preparing the above-mentioned thin film solar cell, the method comprising: an n-type window layer deposition step, a p-type absorption layer deposition step and a back electrode layer deposition step, wherein the p-type absorption layer is composed of the The germanium selenide polycrystalline thin film is composed of a germanium selenide polycrystalline thin film, and the p-type absorbing layer deposition step adopts the above-mentioned preparation method of the germanous selenide polycrystalline thin film.
根据本发明,所述方法具体包括:According to the present invention, the method specifically includes:
a)n型窗口层沉积步骤:在衬底11表面上沉积n型窗口层12;a) n-type window layer deposition step: depositing an n-type window layer 12 on the surface of the substrate 11;
b)p型吸收层沉积步骤:采用上述的硒化亚锗多晶薄膜的制备方法,在步骤a)制备得到的n型窗口层12上沉积p型吸收层13;b) P-type absorbing layer deposition step: using the above-mentioned preparation method of germanium selenide polycrystalline thin film, depositing a p-type absorbing layer 13 on the n-type window layer 12 prepared in step a);
c)背电极层沉积步骤:在步骤b)制备得到的p型吸收层13上沉积背电极层14,从而制备得到具有p-n结结构的薄膜太阳能电池。c) Back electrode layer deposition step: Deposit a back electrode layer 14 on the p-type absorber layer 13 prepared in step b), so as to prepare a thin film solar cell with a p-n junction structure.
根据本发明,在步骤a)中,所述的沉积n型窗口层12可以采用磁控溅射、真空热蒸发、电化学沉积、化学浴沉积法或溶液涂膜法制备。According to the present invention, in step a), the deposited n-type window layer 12 can be prepared by magnetron sputtering, vacuum thermal evaporation, electrochemical deposition, chemical bath deposition or solution coating method.
根据本发明,在步骤c)中,所述的背电极层14可以采用磁控溅射、热蒸发法等方法制备。According to the present invention, in step c), the back electrode layer 14 can be prepared by magnetron sputtering, thermal evaporation and other methods.
本发明的有益效果:Beneficial effects of the present invention:
1.本发明提供一种高质量的硒化亚锗多晶薄膜及其制备方法,所述硒化亚锗多晶薄膜厚度为300~500nm,所述制备方法是采用近空间升华法,且所述方法制备工艺简单,反应周期短,成膜质量好。1. The present invention provides a high-quality germanium selenide polycrystalline thin film and a preparation method thereof. The thickness of the germanium selenide polycrystalline thin film is 300 to 500 nm, and the preparation method adopts a near-space sublimation method, and the The preparation process of the method is simple, the reaction cycle is short, and the film-forming quality is good.
2.本发明还提供一种含有上述硒化亚锗多晶薄膜的太阳能电池及其制备方法,所述太阳能电池中p型吸收层材料GeSe中所含元素均为地壳中含量较高的元素,资源丰富且因不含有毒成分而对环境友好,其间接禁带宽度为1.12eV,其吸收边波长约为1000nm,对太阳光谱的响应处于最理想的太阳光谱波段,吸光系数高达105cm-1,同时因其升华特性可利用近空间升华法快速成膜,因此以其为p型吸收层构成的薄膜太阳能电池具有优异的光伏性能且对环境友好并有望实现低成本生产的优点。2. the present invention also provides a kind of solar cell containing above-mentioned germanium selenide polycrystalline thin film and preparation method thereof, in the described solar cell, contained element in the p-type absorption layer material GeSe is the element with higher content in the earth's crust, It is rich in resources and environmentally friendly because it does not contain toxic components. Its indirect band gap is 1.12eV, and its absorption edge wavelength is about 1000nm. The response to the solar spectrum is in the most ideal solar spectrum band,and the absorption coefficient is as high as 105 cm1. At the same time, due to its sublimation characteristics, it can be quickly formed by the near-space sublimation method. Therefore, thin-film solar cells composed of it as a p-type absorber layer have excellent photovoltaic performance, are environmentally friendly, and are expected to achieve low-cost production.
附图说明Description of drawings
图1为本发明制备的硒化亚锗多晶薄膜太阳能电池结构示意图;Fig. 1 is the structural representation of the germanium selenide polycrystalline thin-film solar cell prepared by the present invention;
其中,11为衬底,12为n型窗口层、13为p型吸收层(GeSe多晶薄膜),14为背电极层。Wherein, 11 is a substrate, 12 is an n-type window layer, 13 is a p-type absorption layer (GeSe polycrystalline thin film), and 14 is a back electrode layer.
图2为本发明制备所述硒化亚锗多晶薄膜的近空间升华法沉积设备示意图;Fig. 2 is the schematic diagram of the near-space sublimation method deposition equipment that the present invention prepares described germanous selenide polycrystalline thin film;
其中,1-红外灯;2-石墨块;3-石英支架;4-基底;5-硒化亚锗源;6-热电偶;7-撑杆;8-石英腔体。Among them, 1-infrared lamp; 2-graphite block; 3-quartz support; 4-substrate; 5-germanium selenide source; 6-thermocouple; 7-strut; 8-quartz cavity.
图3为本发明实施例1中制备的p型吸收层硒化亚锗多晶薄膜在ITO玻璃衬底上的拉曼图谱。3 is a Raman spectrum of the p-type absorbing layer germanium selenide polycrystalline thin film prepared in Example 1 of the present invention on an ITO glass substrate.
图4为本发明实施例1中制备的硒化亚锗多晶薄膜在ITO玻璃衬底上的X射线粉末衍射图谱。Fig. 4 is an X-ray powder diffraction pattern of the polycrystalline germanium selenide thin film prepared in Example 1 of the present invention on an ITO glass substrate.
图5为本发明实施例1中硒化亚锗多晶薄膜在ITO玻璃衬底上的电子扫描显微镜图像。FIG. 5 is a scanning electron microscope image of the polycrystalline germanium selenide thin film on an ITO glass substrate in Example 1 of the present invention.
图6为本发明实施例1中硒化亚锗多晶薄膜太阳能电池的I-V曲线测试图。6 is an I-V curve test diagram of the germanium selenide polycrystalline thin film solar cell in Example 1 of the present invention.
图7为本发明实施例2中制备的硒化亚锗多晶薄膜在ITO玻璃基底上的X射线粉末衍射图谱。Fig. 7 is an X-ray powder diffraction pattern of the polycrystalline germanium selenide thin film prepared in Example 2 of the present invention on an ITO glass substrate.
图8为本发明实施例2中硒化亚锗多晶薄膜在ITO玻璃衬底上的电子扫描显微镜图像。FIG. 8 is a scanning electron microscope image of the polycrystalline germanium selenide thin film on an ITO glass substrate in Example 2 of the present invention.
图9为本发明实施例2中硒化亚锗多晶薄膜太阳能电池的I-V曲线测试图。FIG. 9 is an I-V curve test diagram of the germanium selenide polycrystalline thin film solar cell in Example 2 of the present invention.
图10为本发明实施例3中制备的硒化亚锗多晶薄膜在ITO玻璃衬底上的X射线粉末衍射图谱。Fig. 10 is an X-ray powder diffraction pattern of the polycrystalline germanium selenide thin film prepared in Example 3 of the present invention on an ITO glass substrate.
图11为本发明实施例3中硒化亚锗多晶薄膜在ITO玻璃衬底上的电子扫描显微镜图像。FIG. 11 is a scanning electron microscope image of the germanium selenide polycrystalline thin film on an ITO glass substrate in Example 3 of the present invention.
图12为本发明实施例3中硒化亚锗多晶薄膜太阳能电池的I-V曲线测试图。Fig. 12 is an I-V curve test diagram of the germanium selenide polycrystalline thin film solar cell in Example 3 of the present invention.
具体实施方式detailed description
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外,应理解,在阅读了本发明所记载的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本发明所限定的范围。Below in conjunction with specific embodiment, further illustrate the present invention. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention. In addition, it should be understood that after reading the contents of the present invention, those skilled in the art may make various changes or modifications to the present invention, and these equivalent forms also fall within the scope of the present invention.
本发明制备的以硒化亚锗多晶薄膜为吸收层的薄膜太阳能电池,包括衬底11及在其上依次沉积的n型窗口层12、p型吸收层(由GeSe多晶薄膜构成)13和背电极层14,如图1所示。The thin-film solar cell with germanium selenide polycrystalline thin film as the absorbing layer prepared by the present invention comprises a substrate 11 and an n-type window layer 12 and a p-type absorbing layer (composed of GeSe polycrystalline thin film) 13 sequentially deposited thereon and the back electrode layer 14, as shown in FIG. 1 .
本发明制备所述硒化亚锗多晶薄膜的近空间升华法沉积设备,如图2所示,包括一快速退火炉,所述快速退火炉包括一密闭的石英腔体8(也称沉积腔体);在腔体的上下两侧外壁各放置一红外灯1;在所述腔体的一侧有惰性气体(如氮气)通入口,另一侧有出气口和连接真空泵的出口;有一撑杆7置于腔体内部的中下部,在所述撑杆7上依次放置石英支架3(其中包括一位于支架的内侧底部的氮化铝片,图中未示出)、硒化亚锗源5(其中包括一盛装硒化亚锗原料的钠钙玻璃片,图中未示出)、基底4和石墨块2;所述硒化亚锗源5位于石英支架3内部的氮化铝片上;所述基底4位于石英支架3的顶部,在所述石英支架3中安插有热电偶6。The present invention prepares the near-space sublimation method deposition equipment of described germanium selenide polycrystalline film, as shown in Figure 2, comprises a rapid annealing furnace, and described rapid annealing furnace comprises an airtight quartz cavity 8 (also claiming deposition chamber body); an infrared lamp 1 is placed on the upper and lower sides of the cavity; an inert gas (such as nitrogen) is provided on one side of the cavity, and the other side has an air outlet and an outlet connected to a vacuum pump; a support The rod 7 is placed in the middle and lower part of the inside of the cavity, and the quartz support 3 (which includes an aluminum nitride sheet positioned at the inner bottom of the support, not shown in the figure), the source of germanium selenide, and the 5 (which includes a soda-lime glass sheet containing a germanium selenide raw material, not shown in the figure), a substrate 4 and a graphite block 2; the germanium selenide source 5 is located on the aluminum nitride sheet inside the quartz support 3; The base 4 is located on top of the quartz support 3 , and a thermocouple 6 is inserted in the quartz support 3 .
实施例1Example 1
一种以高质量的硒化亚锗多晶薄膜为吸收层的薄膜太阳能电池的制备方法,具体步骤包括n型窗口层沉积步骤、p型吸收层沉积步骤和背电极层沉积步骤:A method for preparing a thin-film solar cell using a high-quality germanium selenide polycrystalline thin film as an absorbing layer, the specific steps comprising an n-type window layer deposition step, a p-type absorber layer deposition step and a back electrode layer deposition step:
a)n型窗口层沉积步骤:采用化学浴沉积法,在导电玻璃衬底11上沉积n型窗口层12;a) n-type window layer deposition step: using a chemical bath deposition method to deposit an n-type window layer 12 on the conductive glass substrate 11;
所述衬底11包括透明玻璃(或白玻璃)和覆盖在所述透明玻璃上的透明ITO(In2O3:Sn)镀层(记为ITO导电玻璃或ITO玻璃),厚度为1.1mm;The substrate 11 comprises transparent glass (or white glass) and a transparent ITO (In2 O3 :Sn) coating (referred to as ITO conductive glass or ITO glass) covered on the transparent glass, with a thickness of 1.1mm;
将所述的衬底11(市售,镀层厚度220-230埃,基底(透明玻璃)的方块电阻<7ohm/sq,透光率≥77%),分别用去离子水、丙酮、乙醇超声清洗30分钟,再用高纯氮气吹净后,用紫外-臭氧清洗15分钟;The substrate 11 (commercially available, coating thickness 220-230 angstroms, substrate (transparent glass) sheet resistance<7ohm/sq, light transmittance≥77%) was ultrasonically cleaned with deionized water, acetone and ethanol respectively 30 minutes, then blown with high-purity nitrogen, and then cleaned with UV-ozone for 15 minutes;
所述n型窗口层12材料为CdS,厚度为70nm;The n-type window layer 12 is made of CdS with a thickness of 70nm;
采用化学浴沉积法在所述衬底11上沉积n型窗口层12,沉积步骤为:配置1.5M的硫脲溶液和0.015M的硫酸镉溶液,待水浴循环系统中夹套烧杯内水温达到65℃,依次加入220ml去离子水、30ml硫酸镉溶液、39.12ml氨水(分析纯),打开磁力搅拌,预热3分钟,再加入15ml硫脲溶液,迅速将衬底11浸入溶液中并固定,反应16分钟,待停止反应,将衬底11提出并浸泡在去离子水中,超声30s,用高纯氮气吹干,即在衬底11上沉积n型窗口层12;The n-type window layer 12 is deposited on the substrate 11 by the chemical bath deposition method. The deposition steps are: configure 1.5M thiourea solution and 0.015M cadmium sulfate solution, and wait until the water temperature in the jacketed beaker in the water bath circulation system reaches 65 ℃, add 220ml of deionized water, 30ml of cadmium sulfate solution, and 39.12ml of ammonia water (analytically pure) in sequence, turn on the magnetic stirring, preheat for 3 minutes, then add 15ml of thiourea solution, quickly immerse the substrate 11 in the solution and fix it, and react After 16 minutes, the reaction was stopped, and the substrate 11 was lifted out and soaked in deionized water, ultrasonicated for 30 s, and dried with high-purity nitrogen, that is, the n-type window layer 12 was deposited on the substrate 11;
b)p型吸收层沉积步骤:采用近空间升华法,在n型窗口层12上沉积p型吸收层13;所述p型吸收层13材料为硒化亚锗,厚度为400nm。b) P-type absorbing layer deposition step: using close-space sublimation method to deposit p-type absorbing layer 13 on n-type window layer 12; the p-type absorbing layer 13 is made of germanium selenide with a thickness of 400nm.
采用近空间升华法在n型窗口层12上沉积p型吸收层13,采用的设备示意图如图2所示,沉积步骤为:称量0.35~0.4g硒化亚锗粉末,使用筛子将其均匀地洒在干净的钠钙玻璃上(硒化亚锗源5);石英支架3的内侧底部放置一氮化铝片(未示出);将上述钠钙玻璃放在所述氮化铝片上。将沉积有n型窗口层12的衬底11(基底4)倒放在石英支架3上,盖上石墨板2,即可开始抽真空,抽至腔体压强为10mTorr,一般抽真空时间为30分钟即可,快速退火炉的沉积程序为:C1:20,T1:30,C2:350,T2:1200,C3:350,T3:10,C4:400,T4:5,C5:400,T5:-121(其中,C的单位是℃,T的单位是秒)。待程序完全结束后,温度降低至400℃以下时,打开快速退火炉炉盖,使其继续降温,当热电偶显示温度为180℃以下时,放气,取出样品,即在n型窗口层12上沉积P型吸收层13。The p-type absorbing layer 13 is deposited on the n-type window layer 12 by the near-space sublimation method. The schematic diagram of the equipment used is shown in Fig. Sprinkle on the clean soda-lime glass (germanium selenide source 5); place an aluminum nitride sheet (not shown) on the inner bottom of the quartz support 3; place the above-mentioned soda-lime glass on the aluminum nitride sheet. Place the substrate 11 (substrate 4) deposited with the n-type window layer 12 upside down on the quartz support 3, cover the graphite plate 2, and then start vacuuming until the cavity pressure is 10 mTorr, and the general vacuuming time is 30 mTorr. Minutes, the deposition program of the rapid annealing furnace is: C1:20, T1:30, C2:350, T2:1200, C3:350, T3:10, C4:400, T4:5, C5:400, T5: -121 (wherein, the unit of C is °C, and the unit of T is second). After the program is completely finished, when the temperature drops below 400°C, open the lid of the rapid annealing furnace to continue cooling down. When the thermocouple shows that the temperature is below 180°C, deflate and take out the sample, that is, in the n-type window layer 12 A P-type absorber layer 13 is deposited on it.
图3为本发明实施例1中制备的p型吸收层硒化亚多晶锗薄膜在ITO玻璃衬底上的拉曼图谱。3 is a Raman spectrum of the p-type absorbing layer polycrystalline germanium selenide thin film prepared in Example 1 of the present invention on an ITO glass substrate.
图4为本发明实施例1中制备的硒化亚锗多晶薄膜在ITO玻璃衬底上的X射线粉末衍射图谱。Fig. 4 is an X-ray powder diffraction pattern of the polycrystalline germanium selenide thin film prepared in Example 1 of the present invention on an ITO glass substrate.
图5为本发明实施例1中硒化亚锗多晶薄膜在ITO玻璃衬底上的电子扫描显微镜图像。FIG. 5 is a scanning electron microscope image of the polycrystalline germanium selenide thin film on an ITO glass substrate in Example 1 of the present invention.
c)背电极层沉积步骤:采用真空蒸镀法,在p型吸收层13上沉积背电极层14;c) Depositing the back electrode layer: Depositing the back electrode layer 14 on the p-type absorber layer 13 by vacuum evaporation;
所述背电极层14为金材料,厚度为80nm。The back electrode layer 14 is made of gold material with a thickness of 80nm.
经上述步骤即可制得具有p-n结结构的硒化亚锗多晶薄膜太阳能电池。The germanium selenide polycrystalline thin film solar cell with p-n junction structure can be prepared through the above steps.
图6为本发明实施例1中制备的硒化亚锗多晶薄膜作吸收层组建的太阳能电池I-V曲线测试图。Fig. 6 is an I-V curve test diagram of a solar cell constructed with a germanium selenide polycrystalline thin film prepared in Example 1 of the present invention as an absorber layer.
实施例2Example 2
一种以高质量的硒化亚锗多晶薄膜为吸收层的薄膜太阳能电池的制备方法,具体制备方法与实施例1中的基本相同,不同之处在于:A kind of high-quality germanium selenide polycrystalline thin film is the preparation method of the thin-film solar cell of absorption layer, and concrete preparation method is basically the same as that in embodiment 1, and difference is:
在步骤b)中,快速退火炉的沉积程序为:C1:20,T1:30,C2:300,T2:1200,C3:300,T3:10,C4:400,T4:5,C5:400,T5:-121(其中,C的单位是℃,T的单位是秒),即可得到不同预热温度下的硒化亚锗多晶薄膜。In step b), the deposition program of the rapid annealing furnace is: C1:20, T1:30, C2:300, T2:1200, C3:300, T3:10, C4:400, T4:5, C5:400, T5:-121 (wherein, the unit of C is ℃, and the unit of T is second), then the germanium selenide polycrystalline thin film under different preheating temperatures can be obtained.
图7为本发明实施例2中制备的硒化亚锗多晶薄膜在ITO玻璃基底上的X射线粉末衍射图谱。Fig. 7 is an X-ray powder diffraction pattern of the polycrystalline germanium selenide thin film prepared in Example 2 of the present invention on an ITO glass substrate.
图8为本发明实施例2中硒化亚锗多晶薄膜在ITO玻璃衬底上的电子扫描显微镜图像。FIG. 8 is a scanning electron microscope image of the polycrystalline germanium selenide thin film on an ITO glass substrate in Example 2 of the present invention.
经实施例2制备的硒化亚锗多晶薄膜,按照与实施例1中相同的方法组装成太阳能电池器件,并测试其I-V曲线图,结果如图9所示。The germanium selenide polycrystalline thin film prepared in Example 2 was assembled into a solar cell device in the same manner as in Example 1, and its I-V curve was tested. The results are shown in FIG. 9 .
实施例3Example 3
一种以高质量的硒化亚锗多晶薄膜为吸收层的薄膜太阳能电池的制备方法,具体制备方法与实施例1中的基本相同,不同之处在于:A kind of high-quality germanium selenide polycrystalline thin film is the preparation method of the thin-film solar cell of absorption layer, and concrete preparation method is basically the same as that in embodiment 1, and difference is:
在步骤b)中,快速退火炉的沉积程序为:C1:20,T1:30,C2:350,T2:1200,C3:350,T3:10,C4:450,T4:5,C5:450,T5:-121(其中,C的单位是℃,T的单位是秒),即可得到不同升华温度下的硒化亚锗多晶薄膜。In step b), the deposition program of the rapid annealing furnace is: C1:20, T1:30, C2:350, T2:1200, C3:350, T3:10, C4:450, T4:5, C5:450, T5:-121 (wherein, the unit of C is ℃, and the unit of T is second), and germanium selenide polycrystalline thin films at different sublimation temperatures can be obtained.
图10为本发明实施例3中制备的硒化亚锗多晶薄膜在ITO玻璃衬底上的X射线粉末衍射图谱。Fig. 10 is an X-ray powder diffraction pattern of the polycrystalline germanium selenide thin film prepared in Example 3 of the present invention on an ITO glass substrate.
图11为本发明实施例3中硒化亚锗多晶薄膜在ITO玻璃衬底上的电子扫描显微镜图像。FIG. 11 is a scanning electron microscope image of the germanium selenide polycrystalline thin film on an ITO glass substrate in Example 3 of the present invention.
经实施例3制备的硒化亚锗多晶薄膜,按照与实施例1中相同的方法组装太阳电能池器件,并测试其I-V曲线图,结果如图12所示。The germanium selenide polycrystalline thin film prepared in Example 3 was assembled into a solar cell device in the same manner as in Example 1, and its I-V curve was tested. The results are shown in FIG. 12 .
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The embodiments of the present invention have been described above. However, the present invention is not limited to the above-mentioned embodiments. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611184377.2ACN106783541B (en) | 2016-12-20 | 2016-12-20 | A germanium selenide polycrystalline thin film and a solar cell containing the thin film and its preparation method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201611184377.2ACN106783541B (en) | 2016-12-20 | 2016-12-20 | A germanium selenide polycrystalline thin film and a solar cell containing the thin film and its preparation method |
| Publication Number | Publication Date |
|---|---|
| CN106783541Atrue CN106783541A (en) | 2017-05-31 |
| CN106783541B CN106783541B (en) | 2019-06-04 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201611184377.2AActiveCN106783541B (en) | 2016-12-20 | 2016-12-20 | A germanium selenide polycrystalline thin film and a solar cell containing the thin film and its preparation method |
| Country | Link |
|---|---|
| CN (1) | CN106783541B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109502545A (en)* | 2018-10-10 | 2019-03-22 | 华南师范大学 | Germanium selenide base sun photodegradation aquatic products hydrogen electronic device, electrode system and preparation method thereof |
| CN110349836A (en)* | 2018-04-04 | 2019-10-18 | 中国科学院化学研究所 | A kind of preparation method of certain forbidden bandwidth selenizing germanous film |
| CN111175875A (en)* | 2020-01-16 | 2020-05-19 | 深圳大学 | A Novel Filter Device for UV-Partial Visible Light Band |
| CN113097317A (en)* | 2021-04-02 | 2021-07-09 | 中国科学院化学研究所 | Germanium selenide or germanium sulfide polycrystalline film and preparation method and application thereof |
| CN113097318A (en)* | 2021-04-02 | 2021-07-09 | 中国科学院化学研究所 | Germanium sulfide polycrystalline film and solar cell containing same |
| CN113410340A (en)* | 2021-06-21 | 2021-09-17 | 河南大学 | Method for modifying absorption layer of CZTSSe thin-film solar cell |
| CN115241305A (en)* | 2022-04-21 | 2022-10-25 | 铜仁学院 | GeSe solar cell absorption layer with high photoelectric conversion efficiency and preparation method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040124407A1 (en)* | 2000-02-11 | 2004-07-01 | Kozicki Michael N. | Scalable programmable structure, an array including the structure, and methods of forming the same |
| CN103681933A (en)* | 2012-09-03 | 2014-03-26 | 中国科学院理化技术研究所 | Coatable solar cell and method of making same |
| CN104078508A (en)* | 2014-06-13 | 2014-10-01 | 上海交通大学 | Gate-control PN node based on two-dimensional semiconductor crystal |
| CN106169511A (en)* | 2015-05-18 | 2016-11-30 | 三星电子株式会社 | Including the semiconductor device of two-dimensional material and the method that manufactures this semiconductor device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040124407A1 (en)* | 2000-02-11 | 2004-07-01 | Kozicki Michael N. | Scalable programmable structure, an array including the structure, and methods of forming the same |
| CN103681933A (en)* | 2012-09-03 | 2014-03-26 | 中国科学院理化技术研究所 | Coatable solar cell and method of making same |
| CN104078508A (en)* | 2014-06-13 | 2014-10-01 | 上海交通大学 | Gate-control PN node based on two-dimensional semiconductor crystal |
| CN106169511A (en)* | 2015-05-18 | 2016-11-30 | 三星电子株式会社 | Including the semiconductor device of two-dimensional material and the method that manufactures this semiconductor device |
| Title |
|---|
| C.VODENICHAROV: "《(Electrode-limited currents in the thin-film M-GESE-M System》", 《MATERIALS CHEMISTRY AND PHYSICS》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110349836A (en)* | 2018-04-04 | 2019-10-18 | 中国科学院化学研究所 | A kind of preparation method of certain forbidden bandwidth selenizing germanous film |
| CN110349836B (en)* | 2018-04-04 | 2021-06-01 | 中国科学院化学研究所 | Preparation method of germanium selenide film with certain forbidden bandwidth |
| CN109502545A (en)* | 2018-10-10 | 2019-03-22 | 华南师范大学 | Germanium selenide base sun photodegradation aquatic products hydrogen electronic device, electrode system and preparation method thereof |
| CN109502545B (en)* | 2018-10-10 | 2020-08-11 | 华南师范大学 | Electronic device, electrode system and preparation method of germanium selenide-based solar water splitting for hydrogen production |
| CN111175875A (en)* | 2020-01-16 | 2020-05-19 | 深圳大学 | A Novel Filter Device for UV-Partial Visible Light Band |
| CN113097317A (en)* | 2021-04-02 | 2021-07-09 | 中国科学院化学研究所 | Germanium selenide or germanium sulfide polycrystalline film and preparation method and application thereof |
| CN113097318A (en)* | 2021-04-02 | 2021-07-09 | 中国科学院化学研究所 | Germanium sulfide polycrystalline film and solar cell containing same |
| CN113410340A (en)* | 2021-06-21 | 2021-09-17 | 河南大学 | Method for modifying absorption layer of CZTSSe thin-film solar cell |
| CN115241305A (en)* | 2022-04-21 | 2022-10-25 | 铜仁学院 | GeSe solar cell absorption layer with high photoelectric conversion efficiency and preparation method |
| Publication number | Publication date |
|---|---|
| CN106783541B (en) | 2019-06-04 |
| Publication | Publication Date | Title |
|---|---|---|
| CN106783541A (en) | A kind of selenizing germanous polycrystal film and the solar cell containing the film and preparation method thereof | |
| CN110534591A (en) | A kind of antimony selenide thin-film solar cells and preparation method | |
| CN110828602A (en) | Antimony selenide thin film solar cell and preparation method thereof | |
| CN103762257B (en) | The preparation method of copper-zinc-tin-sulfur absorbed layer film and copper-zinc-tin-sulfur solar cell | |
| CN103346215A (en) | Method for preparing copper-zinc-tin-sulfide solar cell absorbing layer with homogeneous solution method | |
| CN103400903A (en) | Preparation method for improving grain size and density of CZTS film | |
| CN106449816B (en) | A kind of preparation method of CIGS thin-film | |
| CN106784036A (en) | One kind doping cadmium telluride thin-film battery and preparation method thereof | |
| CN102956754B (en) | Preparation method of absorbing layer of thin-film solar cell | |
| CN105679878A (en) | Method for preparing absorption layer of CZTSSe thin film solar cell by co-evaporation | |
| JP2016119441A (en) | Compound solar cell and formation method of thin film with sulfide monocrystalline nanoparticles | |
| CN112201699A (en) | A kind of antimony selenide solar cell with back contact structure and preparation method and application thereof | |
| CN104716229B (en) | Preparation method of copper zinc tin selenium thin film solar cell | |
| CN106449812B (en) | Method for preparing copper-tin-sulfur thin film battery by sputtering tin target and copper sulfide target | |
| CN105679884A (en) | Preparation method of CZTS photovoltaic cell | |
| CN106374012B (en) | A method for preparing copper-zinc-tin-sulfur thin-film solar cells with a simple structure | |
| CN105895735A (en) | Method for preparing CZTS (copper zinc tin sulfide) thin-film solar cell through zinc oxide target sputtering | |
| CN112968128B (en) | Method for growing antimony-based thin film material by two steps of evaporation and hydrothermal method and thin film solar cell | |
| CN102629632B (en) | CIGS nanostructure thin-film photovoltaic battery and preparation method thereof | |
| CN202721169U (en) | A copper indium gallium selenide solar cell | |
| CN113410340A (en) | Method for modifying absorption layer of CZTSSe thin-film solar cell | |
| CN113078224A (en) | Transparent conductive glass copper indium selenium thin-film solar cell device and preparation method and application thereof | |
| CN103474487A (en) | Copper-zinc-tin-sulfur solar battery device and preparation method thereof | |
| CN105977317B (en) | A kind of preparation method of CIGS solar cell absorbed layer | |
| CN105624773B (en) | The preparation method and its single crystal grain and solar cell of a kind of micron order copper germanium zinc-tin sulphur single crystal grain |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |