Movatterモバイル変換


[0]ホーム

URL:


CN106762489A - A kind of electricity generation system based on low-temperature solar energy and cold energy of liquefied natural gas - Google Patents

A kind of electricity generation system based on low-temperature solar energy and cold energy of liquefied natural gas
Download PDF

Info

Publication number
CN106762489A
CN106762489ACN201611227820.XACN201611227820ACN106762489ACN 106762489 ACN106762489 ACN 106762489ACN 201611227820 ACN201611227820 ACN 201611227820ACN 106762489 ACN106762489 ACN 106762489A
Authority
CN
China
Prior art keywords
power generation
pressure
heat exchanger
low
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611227820.XA
Other languages
Chinese (zh)
Other versions
CN106762489B (en
Inventor
孙志新
王蜀家
许福泉
赖剑鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou UniversityfiledCriticalFuzhou University
Priority to CN201611227820.XApriorityCriticalpatent/CN106762489B/en
Publication of CN106762489ApublicationCriticalpatent/CN106762489A/en
Application grantedgrantedCritical
Publication of CN106762489BpublicationCriticalpatent/CN106762489B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开了一种基于低温太阳能及液化天然气冷能的发电系统。该发电系统包括双压朗肯循环发电子系统、单压朗肯循环发电子系统和天然气直接膨胀发电子系统。本发明采用双压朗肯循环和单压朗肯循环的组合实现对能量的深度梯级利用;天然气直接膨胀发电子系统可充分回收LNG的压力能。由于太阳能受辐射强度影响波动较大,通过调节双压朗肯循环中高压循环的压力,可实现工质蒸发温度与太阳能热水温度的相互匹配,保证系统在变工况下的高效运行。

The invention discloses a power generation system based on low-temperature solar energy and liquefied natural gas cold energy. The power generation system includes a dual-pressure Rankine cycle power generation sub-system, a single-pressure Rankine cycle power generation sub-system and a natural gas direct expansion power generation sub-system. The present invention adopts the combination of dual-pressure Rankine cycle and single-pressure Rankine cycle to realize deep cascade utilization of energy; the natural gas direct expansion power generation sub-system can fully recover the pressure energy of LNG. Since solar energy fluctuates greatly due to the influence of radiation intensity, by adjusting the pressure of the high-pressure cycle in the dual-pressure Rankine cycle, the mutual matching of the evaporation temperature of the working fluid and the temperature of the solar hot water can be realized to ensure the efficient operation of the system under variable working conditions.

Description

Translated fromChinese
一种基于低温太阳能及液化天然气冷能的发电系统A power generation system based on low-temperature solar energy and liquefied natural gas cold energy

技术领域technical field

本发明涉及液化天然气冷能发电及太阳能热发电领域,具体涉及一种基于低温太阳能及液化天然气冷能的发电系统。The invention relates to the fields of liquefied natural gas cold energy power generation and solar thermal power generation, in particular to a power generation system based on low-temperature solar energy and liquefied natural gas cold energy.

背景技术Background technique

液化天然气(LNG)是一种清洁能源,其常压储存温度约为-162℃,在气化过程中,会释放大量冷能。太阳能是一种绿色清洁的可再生能源,近年来应用范围越来越广泛。太阳能作为系统热源,利用太阳能产生的热量,将低沸点的有机工质气化,推动汽轮机做功产生电能。LNG作为系统冷源,经过汽轮机的有机工质被LNG冷凝后循环使用,而LNG则进入海水换热器吸热,自身的温度进一步升高,而后进入膨胀机做功发电,回收其压力能。膨胀作功后的天然气温度降低,再经过海水换热器吸热后温度接近环境温度,进入管网供千家万户使用。Liquefied natural gas (LNG) is a clean energy source. Its normal pressure storage temperature is about -162°C. During the gasification process, a large amount of cold energy will be released. Solar energy is a green and clean renewable energy, and its application scope has become more and more extensive in recent years. Solar energy is used as the heat source of the system, and the heat generated by solar energy is used to gasify the organic working fluid with low boiling point, and drive the steam turbine to do work to generate electric energy. LNG is used as the cold source of the system. The organic working medium passing through the steam turbine is condensed by LNG and then recycled, while the LNG enters the seawater heat exchanger to absorb heat, and its temperature rises further, and then enters the expander to generate power and recover its pressure energy. After expansion, the temperature of the natural gas decreases, and after absorbing heat through the seawater heat exchanger, the temperature is close to the ambient temperature, and enters the pipeline network for use by thousands of households.

专利CN201510279905.1涉及一种发电系统以及基于该系统的发电方法,所述发电系统包括混合工质朗肯循环膨胀做功部、丙烷工质朗肯循环膨胀做功部和天然气直接膨胀发电部;所述发电方法包括如下步骤:天然气介质一级直接膨胀、第一级朗肯循环、第二级朗肯循环。优点在于:方法基于能量温度对口和梯级利用的原理,在不过分增加系统复杂度的前提下,通过串联的两个朗肯循环,逐级利用LNG的冷能,减小LNG与朗肯循环工质传热过程的有效能损失,冷能发电效率更高。通过设置天然气的一级直膨,能够在保证管网和用户压力需要的条件下,充分利用LNG的压力能。但是该方法采用海水作为系统热源,对于太阳能等温度更高的热源的利用效率相对较低。Patent CN201510279905.1 relates to a power generation system and a power generation method based on the system. The power generation system includes a mixed working medium Rankine cycle expansion work part, a propane working medium Rankine cycle expansion work part and a natural gas direct expansion power generation part; The power generation method includes the following steps: a first-stage direct expansion of a natural gas medium, a first-stage Rankine cycle, and a second-stage Rankine cycle. The advantage is that the method is based on the principle of energy temperature matching and cascade utilization, and on the premise of not excessively increasing the complexity of the system, through two Rankine cycles connected in series, the cold energy of LNG is utilized step by step, reducing the cost of LNG and Rankine cycles. Effective energy loss in the mass heat transfer process, cold energy power generation efficiency is higher. By setting the first-stage direct expansion of natural gas, the pressure energy of LNG can be fully utilized under the condition of ensuring the pressure requirements of the pipeline network and users. However, this method uses seawater as a system heat source, and the utilization efficiency of higher temperature heat sources such as solar energy is relatively low.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一种基于低温太阳能及液化天然气冷能的发电系统,结合海水和太阳能为系统提供热能,同时充分利用液化天然气的冷能。In view of this, the object of the present invention is to provide a power generation system based on low-temperature solar energy and LNG cold energy, combining seawater and solar energy to provide thermal energy for the system, while making full use of the LNG cold energy.

为实现上述目的,本发明采用如下技术方案:一种基于低温太阳能及液化天然气冷能的发电系统,其特征在于:包括双压朗肯循环发电子系统、单压朗肯循环发电子系统和天然气直接膨胀发电子系统;所述双压朗肯循环发电子系统包括第一回路、第二回路、第三回路和第四回路,所述第一回路包括相互连接的太阳能集热器、太阳能储热器,所述第二回路包括相互连接的太阳能换热器、太阳能储热器,所述第三回路包括依次连接的太阳能换热器、第一汽轮机、中间换热器、低压工质泵、共用海水换热器、高压工质泵,所述第四回路包括依次连接的第一汽轮机、中间换热器、低压工质泵、共用海水换热器、低压海水换热器;所述单压朗肯循环发电子系统包括依次连接并构成回路的中间换热器、第二汽轮机、低温冷凝器、第三工质泵;所述天然气直接膨胀发电子系统包括依次连接的LNG储罐、LNG泵、低温冷凝器、第三海水换热器、第三汽轮机、第四海水换热器。To achieve the above object, the present invention adopts the following technical solution: a power generation system based on low-temperature solar energy and liquefied natural gas cold energy, which is characterized in that it includes a dual-pressure Rankine cycle power generation sub-system, a single-pressure Rankine cycle power generation sub-system and natural gas Direct expansion power generation sub-system; the dual-pressure Rankine cycle power generation sub-system includes a first loop, a second loop, a third loop and a fourth loop, the first loop includes interconnected solar thermal collectors, solar heat storage The second circuit includes a solar heat exchanger and a solar heat storage device connected to each other, and the third circuit includes a solar heat exchanger, a first steam turbine, an intermediate heat exchanger, a low-pressure working medium pump, and a common Seawater heat exchanger, high-pressure working medium pump, the fourth circuit includes the first steam turbine, intermediate heat exchanger, low-pressure working medium pump, shared seawater heat exchanger, and low-pressure seawater heat exchanger; The Ken cycle power generation sub-system includes an intermediate heat exchanger, a second steam turbine, a low-temperature condenser, and a third working fluid pump that are sequentially connected and constitute a circuit; the natural gas direct expansion power generation sub-system includes an LNG storage tank, an LNG pump, Low temperature condenser, third seawater heat exchanger, third steam turbine, fourth seawater heat exchanger.

进一步的,所述双压朗肯循环发电子系统采用的工质为CO2Further, the working fluid used in the dual-pressure Rankine cycle power generation sub-system is CO2 .

进一步的,所述单压朗肯循环发电子系统采用的工质为R32。Further, the working fluid used in the single-pressure Rankine cycle power generation subsystem is R32.

进一步的,所述第一汽轮机为补汽式汽轮机。Further, the first steam turbine is an admission steam turbine.

本发明与现有技术相比具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

1、本发明在充分利用液化天然气冷能的基础上,还梯级利用了太阳能;1. On the basis of making full use of the cold energy of liquefied natural gas, the present invention also utilizes solar energy in steps;

2、本发明有两个热源,一部分利用太阳能,一部分利用海水提供能量;2. The present invention has two heat sources, one part utilizes solar energy, and the other part utilizes seawater to provide energy;

3、本发明中能量先经过双压朗肯循环发电子系统,后经过单压朗肯循环发电子系统,双压朗肯循环发电子系统和单压朗肯循环发电子系统共用一个中间换热器,使太阳能和LNG得到梯级利用;3. In the present invention, the energy first passes through the dual-pressure Rankine cycle power generation sub-system, and then passes through the single-pressure Rankine cycle power generation sub-system. The dual-pressure Rankine cycle power generation sub-system and the single-pressure Rankine cycle power generation sub-system share an intermediate heat exchange device, so that solar energy and LNG can be used in cascades;

4、本发明的双压朗肯循环发电子系统中两个热源温度不同,当太阳能受天气影响温度发生变化时,可以通过调节高压循环的压力,保证系统的稳定高效运行。4. The temperature of the two heat sources in the dual-pressure Rankine cycle power generation sub-system of the present invention is different. When the temperature of solar energy changes due to the weather, the pressure of the high-pressure cycle can be adjusted to ensure the stable and efficient operation of the system.

附图说明Description of drawings

图1是本发明实施例的结构示意图。Fig. 1 is a schematic structural diagram of an embodiment of the present invention.

图中:1-太阳能集热器;2-太阳能储热器;3-太阳能换热器;4-第一汽轮机;5-中间换热器;6-低压工质泵;7-共用海水换热器;8-高压工质泵;9-低压海水换热器;10-第二汽轮机;11-低温冷凝器;12-第三工质泵;13-LNG储罐; 14-LNG泵;15-第三海水换热器;16-第三汽轮机;17-第四海水换热器。In the figure: 1-solar heat collector; 2-solar heat storage; 3-solar heat exchanger; 4-first steam turbine; 5-intermediate heat exchanger; 6-low-pressure working medium pump; 7-shared seawater heat exchange 8-high pressure working medium pump; 9-low pressure seawater heat exchanger; 10-second steam turbine; 11-low temperature condenser; 12-third working medium pump; 13-LNG storage tank; 14-LNG pump; 15- The third seawater heat exchanger; 16-the third steam turbine; 17-the fourth seawater heat exchanger.

具体实施方式detailed description

下面结合附图及实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.

请参照图1,本发明提供一种基于低温太阳能及液化天然气冷能的发电系统,其特征在于:包括双压朗肯循环发电子系统、单压朗肯循环发电子系统和天然气直接膨胀发电子系统。Please refer to Figure 1, the present invention provides a power generation system based on low-temperature solar energy and liquefied natural gas cold energy, which is characterized in that it includes a dual-pressure Rankine cycle power generation sub-system, a single-pressure Rankine cycle power generation sub-system and a natural gas direct expansion power generation sub-system system.

所述双压朗肯循环发电子系统包括第一回路、第二回路、第三回路和第四回路,所述第一回路包括相互连接的太阳能集热器1、太阳能储热器2,所述第二回路包括相互连接的太阳能换热器3、太阳能储热器2,所述第三回路包括依次连接的太阳能换热器3、第一汽轮机4、中间换热器5、低压工质泵6、共用海水换热器7、高压工质泵8,所述第四回路包括依次连接的第一汽轮机4、中间换热器5、低压工质泵6、共用海水换热器7、低压海水换热器9。由于太阳能受辐射强度影响温度波动较大,通过调节双压朗肯循环发电子系统中高压循环的压力,可实现工质蒸发温度与太阳能热水温度的相互匹配,保证系统在变工况下的高效运行。The dual-pressure Rankine cycle power generation subsystem includes a first loop, a second loop, a third loop, and a fourth loop. The first loop includes a solar thermal collector 1 and a solar thermal storage 2 connected to each other. The second loop includes a solar heat exchanger 3 and a solar heat storage 2 connected to each other, and the third loop includes a solar heat exchanger 3, a first steam turbine 4, an intermediate heat exchanger 5, and a low-pressure working medium pump 6 connected in sequence. , shared seawater heat exchanger 7, high-pressure working medium pump 8, the fourth loop includes the first steam turbine 4, intermediate heat exchanger 5, low-pressure working medium pump 6, shared seawater heat exchanger 7, low-pressure seawater exchange Heater9. Since solar energy is affected by radiation intensity and the temperature fluctuates greatly, by adjusting the pressure of the high-pressure cycle in the dual-pressure Rankine cycle power generation sub-system, the mutual matching of the evaporation temperature of the working fluid and the temperature of the solar hot water can be realized to ensure the stability of the system under variable working conditions run efficiently.

所述单压朗肯循环发电子系统包括依次连接并构成回路的中间换热器5、第二汽轮机10、低温冷凝器11、第三工质泵12。单压朗肯循环发电子系统和双压朗肯循环发电子系统通过中间换热器5串联起来,实现了能量的梯级利用。The single-pressure Rankine cycle power generation sub-system includes an intermediate heat exchanger 5 , a second steam turbine 10 , a low-temperature condenser 11 , and a third working medium pump 12 that are sequentially connected to form a loop. The single-pressure Rankine cycle power generation sub-system and the double-pressure Rankine cycle power generation sub-system are connected in series through the intermediate heat exchanger 5 to realize cascade utilization of energy.

所述天然气直接膨胀发电子系统包括依次连接的LNG储罐13、LNG泵14、低温冷凝器11、第三海水换热器15、第三汽轮机16、第四海水换热器17。LNG在对有机工质进行冷却的过程中,自身变成高温蒸汽,被海水进一步加热后推动第三汽轮机16做功,做功后的天然气再次被海水加热后进入管网供用户使用。The natural gas direct expansion sub-system includes an LNG storage tank 13 , an LNG pump 14 , a cryogenic condenser 11 , a third seawater heat exchanger 15 , a third steam turbine 16 , and a fourth seawater heat exchanger 17 . In the process of cooling the organic working medium, LNG itself turns into high-temperature steam, which is further heated by seawater and drives the third steam turbine 16 to do work. The natural gas after work is heated by seawater again and then enters the pipeline network for use by users.

于本实施例中,所述双压朗肯循环发电子系统第一回路为太阳能集热及储热系统。该系统采用但并不限于真空管式集热器及热水罐式储热器。正常运行时,由储热器下部出来的温度较低的水经集热器加热后的高温水(100~150℃,压力0.5 MPa)进入储热器上部,与储热器中的水进行混合,提升储水的平均温度。第二回路中由储热器上部出来的高温水(温度90℃,压力0.5 MPa)进入太阳能换热器3,与第三回路的工质进行热交换,温度降低后返回储热器。第三回路采用的工质为CO2。CO2经过中间换热器5冷却后,变成-13.7℃下的饱和液体,被低压工质泵6加压后送入共用海水换热器7。经过共用海水换热器7加热后的工质温度为5℃,压力为5.08MPa,一部分经过高压工质泵8升压后进入太阳能换热器3吸热成过热蒸汽(温度85℃,压力7.2 MPa),另一部分进入低压海水换热器9蒸发成的饱和气体(温度15℃,压力5.08 MPa)。太阳能换热器3出来的过热蒸汽进入第一汽轮机4膨胀做功。膨胀到中间压力时,与低压海水换热器9出来的低压饱和蒸汽混合,继续膨胀做功,而后进入中间换热器5冷凝,完成一个工作循环。In this embodiment, the first loop of the dual-pressure Rankine cycle power generation sub-system is a solar heat collection and heat storage system. The system uses but is not limited to vacuum tube heat collectors and hot water tank heat storage. During normal operation, the lower temperature water from the lower part of the heat storage is heated by the heat collector and the high temperature water (100~150 ° C, pressure 0.5 MPa) enters the upper part of the heat storage and mixes with the water in the heat storage , to increase the average temperature of the stored water. The high-temperature water (temperature 90°C, pressure 0.5 MPa) coming out of the upper part of the heat storage in the second circuit enters the solar heat exchanger 3, exchanges heat with the working medium of the third circuit, and returns to the heat storage after the temperature drops. The working fluid used in the third loop is CO2 . After CO2 is cooled by the intermediate heat exchanger 5, it becomes a saturated liquid at -13.7°C, pressurized by the low-pressure working medium pump 6, and sent to the shared seawater heat exchanger 7. The temperature of the working medium heated by the shared seawater heat exchanger 7 is 5°C, and the pressure is 5.08MPa. A part of the working medium is boosted by the high-pressure working medium pump 8 and then enters the solar heat exchanger 3 to absorb heat and become superheated steam (temperature 85°C, pressure 7.2 MPa), the other part enters the saturated gas evaporated into the low-pressure seawater heat exchanger 9 (temperature 15°C, pressure 5.08 MPa). The superheated steam from the solar heat exchanger 3 enters the first steam turbine 4 to expand and perform work. When it expands to intermediate pressure, it mixes with the low-pressure saturated steam from the low-pressure seawater heat exchanger 9, continues to expand and do work, and then enters the intermediate heat exchanger 5 to condense to complete a working cycle.

于本实施例中,所述单压朗肯循环发电子系统采用的工质为R32。R32在中间换热器5中吸收CO2的冷凝潜热成为过热蒸汽(温度-20℃,压力0.33456 MPa),然后进入第二汽轮机10做功,其排汽经低温冷凝器11冷凝成温度为-88℃、压力为0.1036 MPa的低温液体,再由第三工质泵12加压后送回到中间换热器5,完成一个工作循环。In this embodiment, the working fluid used in the single-pressure Rankine cycle power generation sub-system is R32. R32 absorbs the condensation latent heat ofCO2 in the intermediate heat exchanger 5 to become superheated steam (temperature -20°C, pressure 0.33456 MPa), and then enters the second steam turbine 10 to do work, and its exhaust steam is condensed by the low-temperature condenser 11 to a temperature of -88 Cryogenic liquid with a pressure of 0.1036 MPa, is pressurized by the third working fluid pump 12 and sent back to the intermediate heat exchanger 5 to complete a working cycle.

于本实施例中,天然气直接膨胀发电子系统中LNG的初始储存温度为-162℃,压力为0.1MPa,流量为10kg/s。经过LNG泵加压至10MPa,进入依次低温冷凝器11和第三海水换热器15吸热,温度升高至10℃。高压的天然气进入第三汽轮机16膨胀做功后,变成低压天然气,被第四海水换热器17加热至接近环境温度后进入管网供用户使用。四级海水换热器17出口压力由外部管网的要求或用户的使用压力来决定。In this embodiment, the initial storage temperature of LNG in the natural gas direct expansion power generation sub-system is -162° C., the pressure is 0.1 MPa, and the flow rate is 10 kg/s. After being pressurized to 10MPa by the LNG pump, it enters the low-temperature condenser 11 and the third seawater heat exchanger 15 to absorb heat successively, and the temperature rises to 10°C. After the high-pressure natural gas enters the third steam turbine 16 and expands to perform work, it becomes low-pressure natural gas, is heated by the fourth seawater heat exchanger 17 to a temperature close to the environment, and then enters the pipeline network for use by users. The outlet pressure of the four-stage seawater heat exchanger 17 is determined by the requirements of the external pipe network or the operating pressure of the user.

以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.

Claims (4)

Translated fromChinese
1.一种基于低温太阳能及液化天然气冷能的发电系统,其特征在于:包括双压朗肯循环发电子系统、单压朗肯循环发电子系统和天然气直接膨胀发电子系统;所述双压朗肯循环发电子系统包括第一回路、第二回路、第三回路和第四回路,所述第一回路包括相互连接的太阳能集热器、太阳能储热器,所述第二回路包括相互连接的太阳能换热器、太阳能储热器,所述第三回路包括依次连接的太阳能换热器、第一汽轮机、中间换热器、低压工质泵、共用海水换热器、高压工质泵,所述第四回路包括依次连接的第一汽轮机、中间换热器、低压工质泵、共用海水换热器、低压海水换热器;所述单压朗肯循环发电子系统包括依次连接并构成回路的中间换热器、第二汽轮机、低温冷凝器、第三工质泵;所述天然气直接膨胀发电子系统包括依次连接的LNG储罐、LNG泵、低温冷凝器、第三海水换热器、第三汽轮机、第四海水换热器。1. A power generation system based on low-temperature solar energy and liquefied natural gas cold energy, characterized in that: it includes a dual-pressure Rankine cycle power generation sub-system, a single-pressure Rankine cycle power generation sub-system and a natural gas direct expansion power generation sub-system; The Rankine cycle power generation subsystem includes a first loop, a second loop, a third loop and a fourth loop, the first loop includes interconnected solar thermal collectors, solar thermal storage, and the second loop includes interconnected The solar heat exchanger and the solar heat storage device, the third loop includes a solar heat exchanger, a first steam turbine, an intermediate heat exchanger, a low-pressure working medium pump, a shared seawater heat exchanger, and a high-pressure working medium pump connected in sequence, The fourth circuit includes a first steam turbine, an intermediate heat exchanger, a low-pressure working medium pump, a shared seawater heat exchanger, and a low-pressure seawater heat exchanger connected in sequence; the single-pressure Rankine cycle power generation subsystem includes sequentially connected and constituted The intermediate heat exchanger of the circuit, the second steam turbine, the low-temperature condenser, and the third working medium pump; the natural gas direct expansion power generation sub-system includes sequentially connected LNG storage tanks, LNG pumps, low-temperature condensers, and the third seawater heat exchanger , the third steam turbine, and the fourth seawater heat exchanger.2.根据权利要求1所述的基于低温太阳能及液化天然气冷能的发电系统,其特征在于:所述双压朗肯循环发电子系统采用的工质为CO22. The power generation system based on low-temperature solar energy and liquefied natural gas cold energy according to claim 1, wherein the working fluid used in the dual-pressure Rankine cycle power generation sub-system is CO2 .3.根据权利要求1所述的基于低温太阳能及液化天然气冷能的发电系统,其特征在于:所述单压朗肯循环发电子系统采用的工质为R32。3. The power generation system based on low-temperature solar energy and liquefied natural gas cold energy according to claim 1, wherein the working fluid used in the single-pressure Rankine cycle power generation sub-system is R32.4.根据权利要求1所述的基于低温太阳能及液化天然气冷能的发电系统,其特征在于:所述第一汽轮机为补汽式汽轮机。4. The power generation system based on low-temperature solar energy and liquefied natural gas cold energy according to claim 1, wherein the first steam turbine is a supplementary steam turbine.
CN201611227820.XA2016-12-272016-12-27 A power generation system based on low temperature solar energy and liquefied natural gas cold energyExpired - Fee RelatedCN106762489B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201611227820.XACN106762489B (en)2016-12-272016-12-27 A power generation system based on low temperature solar energy and liquefied natural gas cold energy

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201611227820.XACN106762489B (en)2016-12-272016-12-27 A power generation system based on low temperature solar energy and liquefied natural gas cold energy

Publications (2)

Publication NumberPublication Date
CN106762489Atrue CN106762489A (en)2017-05-31
CN106762489B CN106762489B (en)2019-02-22

Family

ID=58921844

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201611227820.XAExpired - Fee RelatedCN106762489B (en)2016-12-272016-12-27 A power generation system based on low temperature solar energy and liquefied natural gas cold energy

Country Status (1)

CountryLink
CN (1)CN106762489B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN107916961A (en)*2017-11-162018-04-17中国科学院广州能源研究所A kind of solar energy combines gradient utilization system with natural gas cold energy
CN108252749A (en)*2018-01-082018-07-06辽宁石油化工大学A kind of cold, heat and electricity triple supply method based on SAGD thickened oil recovery UTILIZATION OF VESIDUAL HEAT INs
CN108361163A (en)*2017-12-052018-08-03北京石油化工学院Electricity generation system
CN110080904A (en)*2019-04-182019-08-02杭州紫明冷链科技有限责任公司Cold energy gradient utilization system based on thermo-acoustic technology
CN110185509A (en)*2019-06-112019-08-30赫普科技发展(北京)有限公司A kind of thermal power plant's coupling LNG cold energy generation system and method
CN110552744A (en)*2019-09-062019-12-10北京市燃气集团有限责任公司Multi-energy coupling power supply system and method
CN111485965A (en)*2019-01-252020-08-04碧海舟(北京)节能环保装备有限公司 A method and device for LNG cold energy recovery and power generation based on carbon dioxide working medium
CN111561363A (en)*2020-04-292020-08-21上海电力大学Transcritical CO2Heat pump energy storage system driven by power generation
CN112459857A (en)*2020-11-262021-03-09天津大学Double-pressure organic Rankine cycle power generation system
CN114396367A (en)*2022-02-252022-04-26华陆工程科技有限责任公司 A device for utilizing the cold energy of a carbon dioxide satellite station driven by solar heat
CN114810253A (en)*2022-04-212022-07-29江苏科技大学 A liquefied air energy storage system utilizing LNG cold energy and its working method
KR20240012144A (en)*2022-07-202024-01-29경희대학교 산학협력단Solar powered multi generation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS61223203A (en)*1985-03-271986-10-03Kawasaki Heavy Ind LtdPower system
CN201827033U (en)*2010-09-212011-05-11广东工业大学Disc type solar Stirling heat and power cogeneration device
CN103925024A (en)*2014-04-152014-07-16南京航空航天大学Water-power cogeneration system for recovering waste heat of concentrated seawater of desalination and method of system
CN104728063A (en)*2015-03-242015-06-24北京建筑大学Solar-assisted liquefied natural gas electricity-heat-cold united supply system and method
CN104989473A (en)*2015-05-272015-10-21上海交通大学Power generation system and generating method based on same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS61223203A (en)*1985-03-271986-10-03Kawasaki Heavy Ind LtdPower system
CN201827033U (en)*2010-09-212011-05-11广东工业大学Disc type solar Stirling heat and power cogeneration device
CN103925024A (en)*2014-04-152014-07-16南京航空航天大学Water-power cogeneration system for recovering waste heat of concentrated seawater of desalination and method of system
CN104728063A (en)*2015-03-242015-06-24北京建筑大学Solar-assisted liquefied natural gas electricity-heat-cold united supply system and method
CN104989473A (en)*2015-05-272015-10-21上海交通大学Power generation system and generating method based on same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN107916961B (en)*2017-11-162020-03-24中国科学院广州能源研究所Solar energy and natural gas cold energy combined cascade utilization system
CN107916961A (en)*2017-11-162018-04-17中国科学院广州能源研究所A kind of solar energy combines gradient utilization system with natural gas cold energy
CN108361163B (en)*2017-12-052023-10-13北京石油化工学院Power generation system
CN108361163A (en)*2017-12-052018-08-03北京石油化工学院Electricity generation system
CN108252749A (en)*2018-01-082018-07-06辽宁石油化工大学A kind of cold, heat and electricity triple supply method based on SAGD thickened oil recovery UTILIZATION OF VESIDUAL HEAT INs
CN111485965A (en)*2019-01-252020-08-04碧海舟(北京)节能环保装备有限公司 A method and device for LNG cold energy recovery and power generation based on carbon dioxide working medium
CN110080904A (en)*2019-04-182019-08-02杭州紫明冷链科技有限责任公司Cold energy gradient utilization system based on thermo-acoustic technology
CN110185509A (en)*2019-06-112019-08-30赫普科技发展(北京)有限公司A kind of thermal power plant's coupling LNG cold energy generation system and method
CN110185509B (en)*2019-06-112024-04-16赫普科技发展(北京)有限公司Thermal power plant coupling LNG cold energy power generation system and method
CN110552744A (en)*2019-09-062019-12-10北京市燃气集团有限责任公司Multi-energy coupling power supply system and method
CN111561363A (en)*2020-04-292020-08-21上海电力大学Transcritical CO2Heat pump energy storage system driven by power generation
CN111561363B (en)*2020-04-292022-10-25上海电力大学Transcritical CO 2 Heat pump energy storage system driven by power generation
CN112459857A (en)*2020-11-262021-03-09天津大学Double-pressure organic Rankine cycle power generation system
CN114396367A (en)*2022-02-252022-04-26华陆工程科技有限责任公司 A device for utilizing the cold energy of a carbon dioxide satellite station driven by solar heat
CN114810253A (en)*2022-04-212022-07-29江苏科技大学 A liquefied air energy storage system utilizing LNG cold energy and its working method
CN114810253B (en)*2022-04-212023-11-21江苏科技大学Liquefied air energy storage system utilizing LNG cold energy and working method thereof
KR20240012144A (en)*2022-07-202024-01-29경희대학교 산학협력단Solar powered multi generation system
KR102786562B1 (en)*2022-07-202025-03-26경희대학교 산학협력단Solar powered multi generation system

Also Published As

Publication numberPublication date
CN106762489B (en)2019-02-22

Similar Documents

PublicationPublication DateTitle
CN106762489A (en)A kind of electricity generation system based on low-temperature solar energy and cold energy of liquefied natural gas
CN110374838B (en) A transcritical carbon dioxide energy storage system and method based on LNG cold energy utilization
CN106286170B (en)Solar energy, sea water source heat pump, combustion gas and supercritical carbon dioxide combined marine electricity generation system
CN105673107B (en)The supercritical carbon dioxide electricity generation system and method for the heat collection combined driving of groove tower
CN106089337B (en)For the supercritical CO of waste heat recovery2With organic Rankine association circulating power generation system
CN101216020B (en)Multilevel solar energy middle and low temperature Rankine cycle system
CN102213199B (en)Method and device for utilizing ocean temperature difference to generate electricity
CN102400867B (en)Supercritical CO2 (carbon dioxide) solar thermal generating system with heat accumulating function
CN202017587U (en)Multi-stage flash terrestrial heat extracting power generating system
CN101344075B (en)Self-overlapping type solar low temperature ranking cycle system
CN101915224A (en) Tower type solar cycle thermal power generation system
CN101196354A (en) Jet-type low-temperature waste heat power generation and refrigeration method
CN107940789B (en) A combined cooling, heating and power generation system based on movable solar collectors
CN101187509A (en) Integral injection type low temperature waste heat power generation refrigeration device
CN206539381U (en)A kind of supercritical carbon dioxide cycle generating system based on combustion gas and solar heat
CN108425709A (en)A kind of carbon dioxide low temperature Rankine cycle electricity generation system
CN102094772B (en)Solar energy-driven cogeneration device
CN106593553A (en)Multi-level expansion power generation system recycling liquefied natural gas cold energy
CN106837441A (en)A kind of combustion turbine nitrogen Brayton cycle combined generating system of utilization LNG cold energy
CN119171499A (en) A combined cooling, heating and power Carnot battery energy storage system and method
CN106545370A (en)A kind of helium Closed Brayton Power Cycle electricity generation system of two grade utility LNG cold energy
WO2020029422A1 (en)Disk type solar photothermal gradient utilization system
CN110131005B (en)Double-pressure heat absorption non-azeotropic organic flash evaporation-Rankine cycle medium-low temperature heat energy utilization system
CN102383882A (en) A new type of air energy refrigeration power generation device
CN201943904U (en)Thermal power generating system using solar-energy return-heating, reheating and inter-cooling gas turbine circulation

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20190222

Termination date:20211227


[8]ページ先頭

©2009-2025 Movatter.jp