Movatterモバイル変換


[0]ホーム

URL:


CN106529402A - Multi-task learning convolutional neural network-based face attribute analysis method - Google Patents

Multi-task learning convolutional neural network-based face attribute analysis method
Download PDF

Info

Publication number
CN106529402A
CN106529402ACN201610856231.1ACN201610856231ACN106529402ACN 106529402 ACN106529402 ACN 106529402ACN 201610856231 ACN201610856231 ACN 201610856231ACN 106529402 ACN106529402 ACN 106529402A
Authority
CN
China
Prior art keywords
task
convolutional neural
neural network
network
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610856231.1A
Other languages
Chinese (zh)
Other versions
CN106529402B (en
Inventor
万军
李子青
雷震
谭资昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Automation of Chinese Academy of Science
Original Assignee
Institute of Automation of Chinese Academy of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Automation of Chinese Academy of SciencefiledCriticalInstitute of Automation of Chinese Academy of Science
Priority to CN201610856231.1ApriorityCriticalpatent/CN106529402B/en
Publication of CN106529402ApublicationCriticalpatent/CN106529402A/en
Application grantedgrantedCritical
Publication of CN106529402BpublicationCriticalpatent/CN106529402B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The present invention discloses a multi-task learning convolutional neural network (CNN)-based face attribute analysis method. According to the method, based on a convolutional neural network, a multi-task learning method is adopted to carry out age estimation, gender identification and race classification on a face image simultaneously. In a traditional processing method, when face multi-attribute analysis is carried out, a plurality of times of calculation are required, and as a result, time can be wasted, and the generalization ability of a model is decreased. According to the method of the invention, three single-task networks are trained separately; the weight of a network with the lowest convergence speed is adopted to initialize the shared part of a multi-task network, and the independent parts of the multi-task network are initialized randomly; and the multi-task network is trained, so that a multi-task convolutional neural network (CNN) model can be obtained; and the trained multi-task convolutional neural network (CNN) model is adopted to carry out age, gender and race analysis on an inputted face image simultaneously, and therefore, time can be saved, and accuracy is high.

Description

Translated fromChinese
基于多任务学习的卷积神经网络的人脸属性分析方法Face attribute analysis method based on multi-task learning convolutional neural network

技术领域technical field

本发明涉及图像识别领域,具体涉及一种基于多任务学习的卷积神经网络的人脸属性分析方法。The invention relates to the field of image recognition, in particular to a face attribute analysis method based on a multi-task learning convolutional neural network.

背景技术Background technique

传统的人脸图像分析技术往往只针对单个任务,如年龄估算、性别识别、种族分类等,针对人脸多属性分析时,需要分多次计算,非常消耗时间,很难达到实际需求。此外,单任务的人脸图像分析技术忽视了各个信息之间的联系,不能充分利用人脸图像中所蕴含的信息。人脸的面部特征在不同性别、不同种族之间是不一样的,如男女之间、黑白人种之间皮肤细腻程度、肤色、皮肤光亮程度等存在差异,并且皮肤的光亮程度、色泽、皱纹纹理等会随着年龄增长而发生相应的变化,其变化速度也随性别、种族而异。由此可见,各个人脸信息之间是紧密联系的,将各个任务进行独立学习在一定程度上会丢失很多有用的信息,从而降低模型的泛化能力。Traditional face image analysis techniques are often only for a single task, such as age estimation, gender recognition, race classification, etc. For multi-attribute analysis of faces, it needs to be calculated in multiple times, which is very time-consuming and difficult to meet actual needs. In addition, the single-task face image analysis technology ignores the connection between various information and cannot make full use of the information contained in the face image. The facial features of the human face are different between different genders and different races. For example, there are differences in skin fineness, skin color, and skin lightness between men and women, black and white, and skin lightness, color, and wrinkles. Texture, etc. will change with age, and the speed of change also varies with gender and race. It can be seen that the face information is closely related, and learning each task independently will lose a lot of useful information to a certain extent, thereby reducing the generalization ability of the model.

发明内容Contents of the invention

为了解决现有技术中的上述问题,本发明提出一种基于多任务学习的卷积神经网络的人脸属性分析方法,提高了人脸多属性分析时的计算速度和模型的泛化能力。In order to solve the above-mentioned problems in the prior art, the present invention proposes a face attribute analysis method based on a multi-task learning convolutional neural network, which improves the calculation speed and the generalization ability of the model during face multi-attribute analysis.

本发明提出的基于多任务学习的卷积神经网络的人脸属性分析方法,包括单任务模型分析、多任务模型训练和人脸属性判断三部分;The face attribute analysis method based on the multi-task learning convolutional neural network proposed by the present invention includes three parts: single-task model analysis, multi-task model training and face attribute judgment;

单任务模型分析:Single task model analysis:

步骤A1,将各年龄人脸图像的原始样本进行人脸关键点检测,并进行人脸对齐后按照预设尺寸裁剪生成包含人脸图像的新样本;In step A1, the original samples of face images of different ages are subjected to face key point detection, and after face alignment, they are cropped according to a preset size to generate new samples containing face images;

步骤A2,利用步骤A1生成的新样本,分别训练年龄估算网络、性别识别网络、种族分类网络三个单任务卷积神经网络,比较各网络的收敛速度,获取收敛速度最慢的一个单任务卷积神经网络的权值;Step A2, using the new samples generated in step A1, train three single-task convolutional neural networks of age estimation network, gender recognition network, and race classification network, compare the convergence speed of each network, and obtain the single-task volume with the slowest convergence speed The weight of the product neural network;

多任务模型训练:Multi-task model training:

步骤B1,构建多任务卷积神经网络,该网络共有三个任务输出,分别对应年龄估算、性别识别和种族分类,三个任务都采用softmax损失函数作为目标函数;所述多任务卷积神经网络包括用于多任务学习中数据共享和信息交换的共享部分、以及用于计算上述三个任务输出的独立部分;利用步骤A2获取的单任务卷积神经网络的权值初始化多任务卷积神经网络的共享部分,形成初始化后的多任务卷积神经网络;Step B1, constructing a multi-task convolutional neural network, the network has three task outputs, respectively corresponding to age estimation, gender recognition and race classification, and the three tasks all use the softmax loss function as the objective function; the multi-task convolutional neural network Including a shared part for data sharing and information exchange in multi-task learning, and an independent part for calculating the output of the above three tasks; use the weights of the single-task convolutional neural network obtained in step A2 to initialize the multi-task convolutional neural network The shared part forms an initialized multi-task convolutional neural network;

步骤B2,利用步骤A1中生成的新样本,训练多任务卷积神经网络,得到训练好的多任务卷积神经网络模型;Step B2, using the new samples generated in step A1 to train the multi-task convolutional neural network to obtain the trained multi-task convolutional neural network model;

人脸属性判断:Face attribute judgment:

步骤C1,对所输入图片进行人脸检测,判断是否包含人脸图像,如包含则对输入图像进行人脸关键点检测,并进行人脸对齐,然后按照预设尺寸裁剪生成包含人脸图像的新图片;Step C1, perform face detection on the input image, determine whether it contains a face image, if yes, perform face key point detection on the input image, and perform face alignment, and then crop according to a preset size to generate a face image containing new picture;

步骤C2,将步骤C1所得新图片,输入到步骤B2得到的多任务卷积神经网络模型,进行年龄估算、性别识别和种族分类。Step C2, input the new picture obtained in step C1 into the multi-task convolutional neural network model obtained in step B2 to perform age estimation, gender identification and race classification.

优选的,步骤A1具体包括以下内容:Preferably, step A1 specifically includes the following:

步骤A11,选取各年龄人脸图像作为原始样本;Step A11, selecting face images of various ages as original samples;

步骤A12,对所选取的原始样本进行人脸关键点检测,得到两个关键点;Step A12, performing face key point detection on the selected original samples to obtain two key points;

步骤A13,按照两个关键点的位置及其连线对原始样本进行人脸图像的对齐,所述人脸图像的对齐包括对原始样本的旋转、缩放、平移;Step A13, aligning the face images of the original samples according to the positions of the two key points and their connection lines, the alignment of the face images includes rotation, scaling, and translation of the original samples;

步骤A14,将步骤A13中对齐后的样本按照预设尺寸裁剪生成包含人脸图像的新样本。Step A14, cropping the aligned samples in step A13 according to a preset size to generate a new sample containing a face image.

优选的,步骤A2中在分别训练年龄估算网络、性别识别网络、种族分类网络三个单任务卷积神经网络时,学习率、学习策略等条件完全一致。Preferably, in step A2, when training the three single-task convolutional neural networks of the age estimation network, the gender recognition network, and the race classification network, the conditions such as the learning rate and the learning strategy are completely consistent.

优选的,步骤B1中多任务卷积神经网络的共享部分为多任务网络的底层部分,包括数据输入以及卷积层和池化层。Preferably, the shared part of the multi-task convolutional neural network in step B1 is the bottom part of the multi-task network, including data input, convolutional layer and pooling layer.

优选的,步骤B1中多任务卷积神经网络的独立部分为:年龄估算、性别识别、种族分类三个任务独立的网络结构,每个独立网络结构拥有独立的卷积层、pooling层和全连接层。Preferably, the independent parts of the multi-task convolutional neural network in step B1 are three task-independent network structures: age estimation, gender recognition, and race classification, each independent network structure has an independent convolutional layer, pooling layer, and full connection layer.

优选的,多任务卷积神经网络总损失函数为:Preferably, the total loss function of the multi-task convolutional neural network is:

lmulti-task=α·lage+β·lgender+γ·lracelmulti-task = α·lage +β·lgender +γ·lrace

其中lmulti-task为多任务网络的总损失,α、β、γ分别为预设的三个任务的权重系数,lage、lgender、lrace分别为多任务卷积神经网络中的年龄估算损失、性别识别损失、种族分类损失。Among them, lmulti-task is the total loss of the multi-task network, α, β, and γ are the weight coefficients of the three preset tasks, and lage , lgender , and lrace are the age estimates in the multi-task convolutional neural network. loss, gender recognition loss, race classification loss.

优选的,步骤B2中训练多任务卷积神经网络的方法为:Preferably, the method for training a multi-task convolutional neural network in step B2 is:

步骤B21,从步骤A1生成的新样本中随机抽取m张图像,输入到在步骤B1中构建并已初始化的多任务卷积神经网络,进行多任务同步训练;Step B21, randomly extract m images from the new samples generated in step A1, input them to the multi-task convolutional neural network constructed and initialized in step B1, and perform multi-task synchronous training;

步骤B22,多任务卷积神经网络前向传递,分别计算年龄估算损失lage、性别识别损失lgender和种族分类损失lraceStep B22, forwarding the multi-task convolutional neural network to calculate age estimation loss lage , gender identification loss lgender and race classification loss lrace ;

步骤B23,计算多任务卷积神经网络的总损失lmulti-taskStep B23, calculating the total loss lmulti-task of the multi-task convolutional neural network;

步骤B24:判断网络训练是否收敛,若收敛则停止训练并得到多任务卷积神经网络模型,否则执行步骤B25;Step B24: Determine whether the network training is convergent, if it is convergent, stop the training and obtain the multi-task convolutional neural network model, otherwise execute step B25;

步骤B25:采用反向传播算法计算网络各参数梯度,采用随机梯度下降法更新网络参数权值;返回步骤B21。Step B25: Use the backpropagation algorithm to calculate the gradient of each parameter of the network, and use the stochastic gradient descent method to update the weight of the network parameters; return to step B21.

优选的,步骤C1具体包括以下内容:Preferably, step C1 specifically includes the following:

步骤C11,对所输入的图片检测其是否包含人脸,若不包含人脸则放弃该张图片,否则进入步骤C12;Step C11, check whether the input picture contains a human face, if it does not contain a human face, discard the picture, otherwise enter step C12;

步骤C12,对所输入的图片进行人脸关键点检测,得到两个关键点;Step C12, performing face key point detection on the input image to obtain two key points;

步骤C13,按照上述关键点的位置及其连线对原始图片进行人脸图像的对齐,所述人脸图像的对齐包括对原始图片的旋转、缩放、平移;Step C13, aligning the face images of the original picture according to the positions of the key points and their connections, the alignment of the face images includes rotation, scaling, and translation of the original picture;

步骤C14,将步骤C13中对齐后的图片按照预设尺寸裁剪生成包含人脸图像的新图片。In step C14, the aligned pictures in step C13 are cropped according to a preset size to generate a new picture containing a face image.

优选的,步骤C2具体包括以下内容:Preferably, step C2 specifically includes the following:

步骤C21,将步骤C1得到的新图片输入到已经训练好的多任务卷积神经网络,进行人脸多属性分析;Step C21, input the new picture obtained in step C1 into the multi-task convolutional neural network that has been trained, and perform face multi-attribute analysis;

步骤C22,得到年龄概率p1(i),最终年龄估算结果为各年龄的数学期望值,其中输出结点个数为k+1个,i为输出节点序号,a(i)为输出节点i对应的年龄数值;In step C22, the age probability p1(i) is obtained, and the final age estimation result is the mathematical expectation value of each age, The number of output nodes is k+1, i is the serial number of the output node, and a(i) is the age value corresponding to the output node i;

步骤C23,得到性别类别概率p2(i),最终性别识别结果为概率最大的性别,gender_pre=argmaxip2(i),其中i为性别类别序号;Step C23, obtain the gender category probability p2(i), the final gender recognition result is the gender with the highest probability, gender_pre=argmaxi p2(i), where i is the gender category serial number;

步骤C24,得到种族类别概率p3(i),最终种族分类结果为概率最大的种族,race_pre=argmaxip3(i),其中i为种族类别序号。Step C24, get the race category probability p3(i), the final race classification result is the race with the highest probability, race_pre=argmaxi p3(i), where i is the race category number.

优选的,步骤A12和步骤C12所述的两个关键点为两眼中心点和上嘴唇中心点。Preferably, the two key points described in step A12 and step C12 are the center point of the two eyes and the center point of the upper lip.

本发明通过单任务模型分析、多任务模型训练,然后利用训练好的多任务学习的卷积神经网络对人脸多种属性(年龄、性别、种族)进行判断,提高了人脸多属性分析时的计算速度和模型的泛化能力。The present invention analyzes the multi-task model and trains the multi-task model, and then uses the trained multi-task learning convolutional neural network to judge the multiple attributes (age, gender, race) of the human face, thereby improving the performance of multiple attribute analysis of the human face. The calculation speed and the generalization ability of the model.

附图说明Description of drawings

图1为本实施例的步骤A1流程示意图;Fig. 1 is a schematic flow chart of step A1 of the present embodiment;

图2为本实施例的步骤A2流程示意图;Fig. 2 is the schematic flow chart of step A2 of the present embodiment;

图3为本实施例的多任务卷积神经网络框架示意图;FIG. 3 is a schematic diagram of the multi-task convolutional neural network framework of the present embodiment;

图4为本实施例的步骤B2流程示意图;Fig. 4 is the schematic flow chart of step B2 of the present embodiment;

图5为本实施例的步骤C1流程示意图;FIG. 5 is a schematic flow chart of step C1 of this embodiment;

图6为本实施例的步骤C2流程示意图。FIG. 6 is a schematic flow chart of step C2 of this embodiment.

具体实施方式detailed description

下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。Preferred embodiments of the present invention are described below with reference to the accompanying drawings. Those skilled in the art should understand that these embodiments are only used to explain the technical principles of the present invention, and are not intended to limit the protection scope of the present invention.

本发明基于多任务学习的卷积神经网络的人脸属性分析方法,先进行单任务训练,找出收敛最慢的网络;再将训练好的收敛最慢的网络模型的权值赋给多任务卷积神经网络的共享部分,再进行多任务同步训练;这一步赋权值的工作会使多任务训练变得容易,可以很大程度上减小多任务网络针对收敛最慢任务的训练难度,使各个任务的收敛步调基本一致。The face attribute analysis method of the convolutional neural network based on multi-task learning in the present invention first performs single-task training to find out the network with the slowest convergence; then assigns the weight of the trained network model with the slowest convergence to the multi-task The shared part of the convolutional neural network, and then perform multi-task synchronization training; this step of weight assignment will make multi-task training easier, and can greatly reduce the training difficulty of the multi-task network for the slowest convergence task. Make the convergence pace of each task basically the same.

本发明包括单任务模型分析、多任务模型训练和人脸属性判断三部分;The present invention includes three parts: single-task model analysis, multi-task model training and face attribute judgment;

单任务模型分析:Single task model analysis:

步骤A1,将各年龄人脸图像的原始样本进行人脸关键点检测,并进行人脸对齐后按照预设尺寸裁剪生成包含人脸图像的新样本;In step A1, the original samples of face images of different ages are subjected to face key point detection, and after face alignment, they are cropped according to a preset size to generate new samples containing face images;

步骤A2,利用步骤A1生成的新样本,分别训练年龄估算网络、性别识别网络、种族分类网络三个单任务卷积神经网络,比较各网络的收敛速度,获取收敛速度最慢的一个单任务卷积神经网络的权值;Step A2, using the new samples generated in step A1, train three single-task convolutional neural networks of age estimation network, gender recognition network, and race classification network, compare the convergence speed of each network, and obtain the single-task volume with the slowest convergence speed The weight of the product neural network;

多任务模型训练:Multi-task model training:

步骤B1,构建多任务卷积神经网络,该网络共有三个任务输出,分别对应年龄估算、性别识别和种族分类,三个任务都采用softmax损失函数作为目标函数;所述多任务卷积神经网络包括用于多任务学习中数据共享和信息交换的共享部分、以及用于计算上述三个任务输出的独立部分;利用步骤A2获取的单任务卷积神经网络的权值初始化多任务卷积神经网络的共享部分,形成初始化后的多任务卷积神经网络;Step B1, constructing a multi-task convolutional neural network, the network has three task outputs, respectively corresponding to age estimation, gender recognition and race classification, and the three tasks all use the softmax loss function as the objective function; the multi-task convolutional neural network Including a shared part for data sharing and information exchange in multi-task learning, and an independent part for calculating the output of the above three tasks; use the weights of the single-task convolutional neural network obtained in step A2 to initialize the multi-task convolutional neural network The shared part forms an initialized multi-task convolutional neural network;

步骤B2,利用步骤A1中生成的新样本,训练多任务卷积神经网络,得到训练好的多任务卷积神经网络模型;Step B2, using the new samples generated in step A1 to train the multi-task convolutional neural network to obtain the trained multi-task convolutional neural network model;

人脸属性判断:Face attribute judgment:

步骤C1,对所输入图片进行人脸检测,判断是否包含人脸图像,如包含则对输入图像进行人脸关键点检测,并进行人脸对齐,然后按照预设尺寸裁剪生成包含人脸图像的新图片;Step C1, perform face detection on the input image, determine whether it contains a face image, if yes, perform face key point detection on the input image, and perform face alignment, and then crop according to a preset size to generate a face image containing new picture;

步骤C2,将步骤C1所得新图片,输入到步骤B2得到的多任务卷积神经网络模型,进行年龄估算、性别识别和种族分类。Step C2, input the new picture obtained in step C1 into the multi-task convolutional neural network model obtained in step B2 to perform age estimation, gender identification and race classification.

如图1所示,本实施例中步骤A1具体包括以下内容:As shown in Figure 1, step A1 in this embodiment specifically includes the following contents:

步骤A11,选取各年龄人脸图像作为原始样本;Step A11, selecting face images of various ages as original samples;

步骤A12,对所选取的原始样本进行人脸关键点检测,得到两个关键点;Step A12, performing face key point detection on the selected original samples to obtain two key points;

步骤A13,按照两个关键点的位置及其连线对原始样本进行人脸图像的对齐,所述人脸图像的对齐包括对原始样本的旋转、缩放、平移;Step A13, aligning the face images of the original samples according to the positions of the two key points and their connection lines, the alignment of the face images includes rotation, scaling, and translation of the original samples;

步骤A14,将步骤A13中对齐后的样本按照预设尺寸裁剪生成包含人脸图像的新样本。Step A14, cropping the aligned samples in step A13 according to a preset size to generate a new sample containing a face image.

如图2所示,本实施例中步骤A2分别训练年龄估算网络、性别识别网络、种族分类网络三个单任务卷积神经网络时,学习率、学习策略等条件完全一致。本实施例中得出三个任务的收敛速度最慢的为年龄估算任务,性别识别任务和种族分类任务收敛速度大致相同,所以获取收敛最慢的年龄估算任务网络模型的权值。As shown in Figure 2, when step A2 in this embodiment trains the three single-task convolutional neural networks of the age estimation network, the gender recognition network, and the race classification network, the conditions such as the learning rate and learning strategy are exactly the same. In this embodiment, it is concluded that the slowest convergence speed of the three tasks is the age estimation task, and the convergence speed of the gender recognition task and the race classification task is roughly the same, so the weight of the age estimation task network model with the slowest convergence is obtained.

如图3所示为本实施例多任务卷积神经网络框架图。FIG. 3 is a frame diagram of a multi-task convolutional neural network in this embodiment.

本实施例中,步骤B1中多任务卷积神经网络的共享部分为多任务网络的底层部分,包括数据输入以及卷积层和池化层;共享部分实现多任务学习中数据共享、信息交换;三个任务信息共享,有助于提高模型的泛化能力。如图3所示,本实施例的共享层包括输入、卷积层1、池化层1、卷积层2、池化层2、卷积层3、卷积层4。In this embodiment, the shared part of the multi-task convolutional neural network in step B1 is the bottom part of the multi-task network, including data input, convolutional layer and pooling layer; the shared part realizes data sharing and information exchange in multi-task learning; The information sharing of the three tasks helps to improve the generalization ability of the model. As shown in FIG. 3 , the shared layer in this embodiment includes an input, a convolutional layer 1 , a pooling layer 1 , a convolutional layer 2 , a pooling layer 2 , a convolutional layer 3 , and a convolutional layer 4 .

本实施例中,步骤B1中多任务卷积神经网络的独立部分为:年龄估算、性别识别、种族分类三个任务独立的网络结构,每个独立网络结构拥有独立的卷积层、pooling层(池化层)和全连接层,用于训练出更加专一的特征。如图3所示,本实施例的独立部分为三个分支,分别用于年龄估算、性别识别、种族分类的计算和输出,对应的年龄估算分支包括年龄卷积层5、年龄池化层5、年龄全连接层6,性别估算分支包括性别卷积层5、性别池化层5、性别全连接层6,种族估算分支包括种族卷积层5、种族池化层5、种族全连接层6。In this embodiment, the independent parts of the multi-task convolutional neural network in step B1 are three task-independent network structures: age estimation, gender recognition, and race classification, each independent network structure has an independent convolutional layer and a pooling layer ( Pooling layer) and fully connected layer are used to train more specific features. As shown in Figure 3, the independent parts of this embodiment are three branches, which are used for the calculation and output of age estimation, gender recognition, and race classification respectively. The corresponding age estimation branches include age convolution layer 5 and age pooling layer 5 , Age fully connected layer 6, gender estimation branch includes gender convolutional layer 5, gender pooling layer 5, gender fully connected layer 6, race estimation branch includes race convolutional layer 5, race pooling layer 5, race fully connected layer 6 .

本实施例中,单任务网络结构也可以看做是多任务网络的一部分,只是把其它任务的独立部分去掉了,例如单任务年龄网络的结构是将多任务网络中性别和种族两个任务的独立部分去掉。In this embodiment, the single-task network structure can also be regarded as a part of the multi-task network, but the independent parts of other tasks are removed. The independent part is removed.

本实施例中,多任务卷积神经网络总损失函数如公式(1)所示:In this embodiment, the total loss function of the multi-task convolutional neural network is shown in formula (1):

lmulti-task=α·lage+β·lgender+γ·lrace (1)lmulti-task = α·lage +β·lgender +γ·lrace (1)

其中lmulti-task为多任务网络的总损失,α、β、γ分别为预设的三个任务的权重系数,lage、lgender、lrace分别为多任务卷积神经网络中的年龄估算损失、性别识别损失、种族分类损失。Among them, lmulti-task is the total loss of the multi-task network, α, β, and γ are the weight coefficients of the three preset tasks, and lage , lgender , and lrace are the age estimates in the multi-task convolutional neural network. loss, gender recognition loss, race classification loss.

本实施例中,步骤B2中训练多任务卷积神经网络的方法如图4所示,包括:In this embodiment, the method for training a multi-task convolutional neural network in step B2 is shown in Figure 4, including:

步骤B21,从步骤A1生成的新样本中随机抽取m张图像,输入到在步骤B1中构建并已初始化的多任务卷积神经网络,进行多任务同步训练;Step B21, randomly extract m images from the new samples generated in step A1, input them to the multi-task convolutional neural network constructed and initialized in step B1, and perform multi-task synchronous training;

步骤B22,多任务卷积神经网络前向传递,分别计算年龄估算损失lage、性别识别损失lgender和种族分类损失lraceStep B22, forwarding the multi-task convolutional neural network to calculate age estimation loss lage , gender identification loss lgender and race classification loss lrace ;

步骤B23,计算多任务卷积神经网络的总损失lmulti-taskStep B23, calculating the total loss lmulti-task of the multi-task convolutional neural network;

步骤B24:判断网络训练是否收敛,若收敛则停止训练并得到多任务卷积神经网络模型,否则执行步骤B25;Step B24: Determine whether the network training is convergent, if it is convergent, stop the training and obtain the multi-task convolutional neural network model, otherwise execute step B25;

步骤B25:采用反向传播算法计算网络各参数梯度,采用随机梯度下降法(Stochastic Gradient Descent,SGD)更新网络参数权值;返回步骤B21。Step B25: Use the backpropagation algorithm to calculate the gradient of each parameter of the network, and use the stochastic gradient descent method (Stochastic Gradient Descent, SGD) to update the network parameter weights; return to step B21.

本实施例中,步骤C1具体如图5所示,包括:In this embodiment, step C1 is specifically shown in Figure 5, including:

步骤C11,对所输入的图片检测其是否包含人脸,若不包含人脸则放弃该张图片,否则进入步骤C12;Step C11, check whether the input picture contains a human face, if it does not contain a human face, discard the picture, otherwise enter step C12;

步骤C12,对所输入的图片进行人脸关键点检测,得到两个关键点;Step C12, performing face key point detection on the input image to obtain two key points;

步骤C13,按照上述关键点的位置及其连线对原始图片进行人脸图像的对齐,所述人脸图像的对齐包括对原始图片的旋转、缩放、平移;Step C13, aligning the face images of the original picture according to the positions of the key points and their connections, the alignment of the face images includes rotation, scaling, and translation of the original picture;

步骤C14,将步骤C13中对齐后的图片按照预设尺寸裁剪生成包含人脸图像的新图片。In step C14, the aligned pictures in step C13 are cropped according to a preset size to generate a new picture containing a face image.

本实施例中,步骤C2具体如图6所示,包括:In this embodiment, step C2 is specifically shown in Figure 6, including:

步骤C21,将步骤C1得到的新图片输入到已经训练好的多任务卷积神经网络,前向传递,进行人脸多属性分析;Step C21, input the new picture obtained in step C1 into the multi-task convolutional neural network that has been trained, and pass it forward to perform face multi-attribute analysis;

步骤C22,得到年龄概率p1(i),最终年龄估算结果为各年龄的数学期望值,其中输出结点个数为k+1个,i为输出节点序号,a(i)为输出节点i对应的年龄数值;In step C22, the age probability p1(i) is obtained, and the final age estimation result is the mathematical expectation value of each age, The number of output nodes is k+1, i is the serial number of the output node, and a(i) is the age value corresponding to the output node i;

步骤C23,得到性别类别概率p2(i),最终性别识别结果为概率最大的性别,gender_pre=argmaxip2(i),其中i为性别类别序号;Step C23, obtain the gender category probability p2(i), the final gender recognition result is the gender with the highest probability, gender_pre=argmaxi p2(i), where i is the gender category serial number;

步骤C24,得到种族类别概率p3(i),最终种族分类结果为概率最大的种族,race_pre=argmaxip3(i),其中i为种族类别序号。Step C24, get the race category probability p3(i), the final race classification result is the race with the highest probability, race_pre=argmaxi p3(i), where i is the race category number.

本实施例中,步骤A12和步骤C12所述的两个关键点为两眼中心点和上嘴唇中心点,步骤A14或C14所述的预设尺寸的分辨率为224*224。In this embodiment, the two key points described in step A12 and step C12 are the center point of the two eyes and the center point of the upper lip, and the resolution of the preset size described in step A14 or C14 is 224*224.

本领域技术人员应该能够意识到,结合本文中所公开的实施例描述的各示例的方法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明电子硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以电子硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those skilled in the art should be able to realize that the method steps described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software, or a combination of the two. In order to clearly illustrate the possibility of electronic hardware and software For interchangeability, in the above description, the composition and steps of each example have been generally described according to their functions. Whether these functions are performed by electronic hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may implement the described functionality using different methods for each particular application, but such implementation should not be considered as exceeding the scope of the present invention.

至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。So far, the technical solutions of the present invention have been described in conjunction with the preferred embodiments shown in the accompanying drawings, but those skilled in the art will easily understand that the protection scope of the present invention is obviously not limited to these specific embodiments. Without departing from the principles of the present invention, those skilled in the art can make equivalent changes or substitutions to relevant technical features, and the technical solutions after these changes or substitutions will all fall within the protection scope of the present invention.

Claims (10)

Translated fromChinese
1.一种基于多任务学习的卷积神经网络的人脸属性分析方法,其特征在于,包括单任务模型分析、多任务模型训练和人脸属性判断三部分;1. a face attribute analysis method based on the convolutional neural network of multi-task learning, is characterized in that, comprises three parts of single-task model analysis, multi-task model training and face attribute judgment;单任务模型分析:Single task model analysis:步骤A1,将各年龄人脸图像的原始样本进行人脸关键点检测,并进行人脸对齐后按照预设尺寸裁剪生成包含人脸图像的新样本;In step A1, the original samples of face images of different ages are subjected to face key point detection, and after face alignment, they are cropped according to a preset size to generate new samples containing face images;步骤A2,利用步骤A1生成的新样本,分别训练年龄估算网络、性别识别网络、种族分类网络三个单任务卷积神经网络,比较各网络的收敛速度,获取收敛速度最慢的一个单任务卷积神经网络的权值;Step A2, using the new samples generated in step A1, train three single-task convolutional neural networks of age estimation network, gender recognition network, and race classification network, compare the convergence speed of each network, and obtain the single-task volume with the slowest convergence speed The weight of the product neural network;多任务模型训练:Multi-task model training:步骤B1,构建多任务卷积神经网络,该网络共有三个任务输出,分别对应年龄估算、性别识别和种族分类,三个任务都采用softmax损失函数作为目标函数;所述多任务卷积神经网络包括用于多任务学习中数据共享和信息交换的共享部分、以及用于计算上述三个任务输出的独立部分;利用步骤A2获取的单任务卷积神经网络的权值初始化多任务卷积神经网络的共享部分,形成初始化后的多任务卷积神经网络;Step B1, constructing a multi-task convolutional neural network, the network has three task outputs, respectively corresponding to age estimation, gender recognition and race classification, and the three tasks all use the softmax loss function as the objective function; the multi-task convolutional neural network Including a shared part for data sharing and information exchange in multi-task learning, and an independent part for calculating the output of the above three tasks; use the weights of the single-task convolutional neural network obtained in step A2 to initialize the multi-task convolutional neural network The shared part forms an initialized multi-task convolutional neural network;步骤B2,利用步骤A1中生成的新样本,训练多任务卷积神经网络,得到训练好的多任务卷积神经网络模型;Step B2, using the new samples generated in step A1 to train the multi-task convolutional neural network to obtain the trained multi-task convolutional neural network model;人脸属性判断:Face attribute judgment:步骤C1,对所输入图片进行人脸检测,判断是否包含人脸图像,如包含则对输入图像进行人脸关键点检测,并进行人脸对齐,然后按照预设尺寸裁剪生成包含人脸图像的新图片;Step C1, perform face detection on the input image, determine whether it contains a face image, if yes, perform face key point detection on the input image, and perform face alignment, and then crop according to a preset size to generate a face image containing new picture;步骤C2,将步骤C1所得新图片,输入到步骤B2得到的多任务卷积神经网络模型,进行年龄估算、性别识别和种族分类。Step C2, input the new picture obtained in step C1 into the multi-task convolutional neural network model obtained in step B2 to perform age estimation, gender identification and race classification.2.根据权利要求1所述的方法,其特征在于,步骤A1具体包括以下内容:2. The method according to claim 1, wherein step A1 specifically comprises the following:步骤A11,选取各年龄人脸图像作为原始样本;Step A11, selecting face images of various ages as original samples;步骤A12,对所选取的原始样本进行人脸关键点检测,得到两个关键点;Step A12, performing face key point detection on the selected original samples to obtain two key points;步骤A13,按照两个关键点的位置及其连线对原始样本进行人脸图像的对齐,所述人脸图像的对齐包括对原始样本的旋转、缩放、平移;Step A13, aligning the face images of the original samples according to the positions of the two key points and their connection lines, the alignment of the face images includes rotation, scaling, and translation of the original samples;步骤A14,将步骤A13中对齐后的样本按照预设尺寸裁剪生成包含人脸图像的新样本。Step A14, cropping the aligned samples in step A13 according to a preset size to generate a new sample containing a face image.3.根据权利要求1所述的方法,其特征在于,步骤A2中在分别训练年龄估算网络、性别识别网络、种族分类网络三个单任务卷积神经网络时,学习率、学习策略等条件完全一致。3. The method according to claim 1, wherein, in step A2, when three single-task convolutional neural networks of age estimation network, gender recognition network, and race classification network are trained respectively, conditions such as learning rate and learning strategy are complete. unanimous.4.根据权利要求1所述的方法,其特征在于,步骤B1中多任务卷积神经网络的共享部分为多任务网络的底层部分,包括数据输入、卷积层和池化层。4. The method according to claim 1, wherein the shared part of the multi-task convolutional neural network in step B1 is the bottom part of the multi-task network, including data input, convolutional layer and pooling layer.5.根据权利要求4所述的方法,其特征在于,步骤B1中多任务卷积神经网络的独立部分为:年龄估算、性别识别、种族分类三个任务独立的网络结构,每个独立网络结构拥有独立的卷积层、pooling层和全连接层。5. The method according to claim 4, characterized in that, the independent part of the multi-task convolutional neural network in step B1 is: three independent network structures of age estimation, gender identification and race classification, each independent network structure It has independent convolutional layers, pooling layers and fully connected layers.6.根据权利要求5所述的方法,其特征在于,多任务卷积神经网络总损失函数为:6. method according to claim 5, is characterized in that, multi-task convolutional neural network total loss function is:lmulti-task=α·lage+β·lgender+γ·lracelmulti-task = α·lage +β·lgender +γ·lrace其中lmulti-task为多任务网络的总损失,α、β、γ分别为预设的三个任务的权重系数,lage、lgender、lrace分别为多任务卷积神经网络中的年龄估算损失、性别识别损失、种族分类损失。Among them, lmulti-task is the total loss of the multi-task network, α, β, and γ are the weight coefficients of the three preset tasks, and lage , lgender , and lrace are the age estimates in the multi-task convolutional neural network. loss, gender recognition loss, race classification loss.7.根据权利要求6所述的方法,其特征在于,步骤B2中训练多任务卷积神经网络的方法为:7. method according to claim 6, is characterized in that, the method for training multi-task convolutional neural network in step B2 is:步骤B21,从步骤A1生成的新样本中随机抽取m张图像,输入到在步骤B1中构建并已初始化的多任务卷积神经网络,进行多任务同步训练;Step B21, randomly extract m images from the new samples generated in step A1, input them to the multi-task convolutional neural network constructed and initialized in step B1, and perform multi-task synchronous training;步骤B22,多任务卷积神经网络前向传递,分别计算年龄估算损失lage、性别识别损失lgender和种族分类损失lraceStep B22, forwarding the multi-task convolutional neural network to calculate age estimation loss lage , gender identification loss lgender and race classification loss lrace ;步骤B23,计算多任务卷积神经网络的总损失lmulti-taskStep B23, calculating the total loss lmulti-task of the multi-task convolutional neural network;步骤B24:判断网络训练是否收敛,若收敛则停止训练并得到多任务卷积神经网络模型,否则执行步骤B25;Step B24: Determine whether the network training is convergent, if it is convergent, stop the training and obtain the multi-task convolutional neural network model, otherwise execute step B25;步骤B25:采用反向传播算法计算网络各参数梯度,采用随机梯度下降法更新网络参数权值;返回步骤B21。Step B25: Use the backpropagation algorithm to calculate the gradient of each parameter of the network, and use the stochastic gradient descent method to update the weight of the network parameters; return to step B21.8.根据权利要求1所述的方法,其特征在于,步骤C1具体包括以下内容:8. The method according to claim 1, wherein step C1 specifically comprises the following:步骤C11,对所输入的图片检测其是否包含人脸,若不包含人脸则放弃该张图片,否则进入步骤C12;Step C11, check whether the input picture contains a human face, if it does not contain a human face, discard the picture, otherwise enter step C12;步骤C12,对所输入的图片进行人脸关键点检测,得到两个关键点;Step C12, performing face key point detection on the input image to obtain two key points;步骤C13,按照上述关键点的位置及其连线对原始图片进行人脸图像的对齐,所述人脸图像的对齐包括对原始图片的旋转、缩放、平移;Step C13, aligning the face images of the original picture according to the positions of the key points and their connections, the alignment of the face images includes rotation, scaling, and translation of the original picture;步骤C14,将步骤C13中对齐后的图片按照预设尺寸裁剪生成包含人脸图像的新图片。In step C14, the aligned pictures in step C13 are cropped according to a preset size to generate a new picture containing a face image.9.根据权利要求1所述的方法,其特征在于,步骤C2具体包括以下内容:9. The method according to claim 1, wherein step C2 specifically comprises the following:步骤C21,将步骤C1得到的新图片输入到已经训练好的多任务卷积神经网络,进行人脸多属性分析;Step C21, input the new picture obtained in step C1 into the multi-task convolutional neural network that has been trained, and perform face multi-attribute analysis;步骤C22,得到年龄概率p1(i),最终年龄估算结果为各年龄的数学期望值,其中输出结点个数为k+1个,i为输出节点序号,a(i)为输出节点i对应的年龄数值;In step C22, the age probability p1(i) is obtained, and the final age estimation result is the mathematical expectation value of each age, The number of output nodes is k+1, i is the serial number of the output node, and a(i) is the age value corresponding to the output node i;步骤C23,得到性别类别概率p2(i),最终性别识别结果为概率最大的性别,gender_pre=argmaxip2(i),其中i为性别类别序号;Step C23, obtain the gender category probability p2(i), the final gender recognition result is the gender with the highest probability, gender_pre=argmaxi p2(i), where i is the gender category serial number;步骤C24,得到种族类别概率p3(i),最终种族分类结果为概率最大的种族,race_pre=argmaxip3(i),其中i为种族类别序号。Step C24, get the race category probability p3(i), the final race classification result is the race with the highest probability, race_pre=argmaxi p3(i), where i is the race category number.10.根据权利要求2或8所述的方法,其特征在于,所述的两个关键点为两眼中心点和上嘴唇中心点。10. The method according to claim 2 or 8, wherein the two key points are the center point of the two eyes and the center point of the upper lip.
CN201610856231.1A2016-09-272016-09-27The face character analysis method of convolutional neural networks based on multi-task learningActiveCN106529402B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201610856231.1ACN106529402B (en)2016-09-272016-09-27The face character analysis method of convolutional neural networks based on multi-task learning

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201610856231.1ACN106529402B (en)2016-09-272016-09-27The face character analysis method of convolutional neural networks based on multi-task learning

Publications (2)

Publication NumberPublication Date
CN106529402Atrue CN106529402A (en)2017-03-22
CN106529402B CN106529402B (en)2019-05-28

Family

ID=58344469

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201610856231.1AActiveCN106529402B (en)2016-09-272016-09-27The face character analysis method of convolutional neural networks based on multi-task learning

Country Status (1)

CountryLink
CN (1)CN106529402B (en)

Cited By (118)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN107133948A (en)*2017-05-092017-09-05电子科技大学Image blurring and noise evaluating method based on multitask convolutional neural networks
CN107247947A (en)*2017-07-072017-10-13北京智慧眼科技股份有限公司Face character recognition methods and device
CN107463888A (en)*2017-07-212017-12-12竹间智能科技(上海)有限公司Face mood analysis method and system based on multi-task learning and deep learning
CN107545243A (en)*2017-08-072018-01-05南京信息工程大学Yellow race's face identification method based on depth convolution model
CN107590460A (en)*2017-09-122018-01-16北京达佳互联信息技术有限公司Face classification method, apparatus and intelligent terminal
CN107742107A (en)*2017-10-202018-02-27北京达佳互联信息技术有限公司 Face image classification method, device and server
CN107844781A (en)*2017-11-282018-03-27腾讯科技(深圳)有限公司Face character recognition methods and device, electronic equipment and storage medium
CN107844784A (en)*2017-12-082018-03-27广东美的智能机器人有限公司Face identification method, device, computer equipment and readable storage medium storing program for executing
CN107886073A (en)*2017-11-102018-04-06重庆邮电大学A kind of more attribute recognition approaches of fine granularity vehicle based on convolutional neural networks
CN107958444A (en)*2017-12-282018-04-24江西高创保安服务技术有限公司A kind of face super-resolution reconstruction method based on deep learning
CN108021863A (en)*2017-11-012018-05-11平安科技(深圳)有限公司Electronic device, the character classification by age method based on image and storage medium
CN108171254A (en)*2017-11-222018-06-15北京达佳互联信息技术有限公司Image tag determines method, apparatus and terminal
CN108197525A (en)*2017-11-202018-06-22中国科学院自动化研究所Face image synthesis method and device
CN108229503A (en)*2018-01-042018-06-29浙江大学A kind of feature extracting method for clothes photo
CN108256482A (en)*2018-01-182018-07-06中科视拓(北京)科技有限公司A kind of face age estimation method that Distributed learning is carried out based on convolutional neural networks
CN108345832A (en)*2017-12-282018-07-31新智数字科技有限公司A kind of method, apparatus and equipment of Face datection
CN108416327A (en)*2018-03-282018-08-17京东方科技集团股份有限公司A kind of object detection method, device, computer equipment and readable storage medium storing program for executing
CN108509041A (en)*2018-03-292018-09-07百度在线网络技术(北京)有限公司Method and apparatus for executing operation
CN108537193A (en)*2018-04-172018-09-14厦门美图之家科技有限公司Ethnic attribute recognition approach and mobile terminal in a kind of face character
CN108564097A (en)*2017-12-052018-09-21华南理工大学A kind of multiscale target detection method based on depth convolutional neural networks
CN108665065A (en)*2018-04-252018-10-16清华大学Processing method, device, equipment and the storage medium of task data
CN108734146A (en)*2018-05-282018-11-02北京达佳互联信息技术有限公司Facial image Age estimation method, apparatus, computer equipment and storage medium
CN108764048A (en)*2018-04-282018-11-06中国科学院自动化研究所Face critical point detection method and device
CN108764207A (en)*2018-06-072018-11-06厦门大学A kind of facial expression recognizing method based on multitask convolutional neural networks
CN108764203A (en)*2018-06-062018-11-06四川大学A kind of pedestrian's quantitative analysis and display systems towards urban planning
CN108875932A (en)*2018-02-272018-11-23北京旷视科技有限公司Image-recognizing method, device and system and storage medium
CN108960283A (en)*2018-05-302018-12-07北京市商汤科技开发有限公司Classification task incremental processing method and device, electronic equipment and storage medium
CN109063759A (en)*2018-07-202018-12-21浙江大学A kind of neural network structure searching method applied to the more attribute forecasts of picture
CN109086837A (en)*2018-10-242018-12-25高嵩User property classification method, storage medium, device and electronic equipment based on convolutional neural networks
CN109145987A (en)*2018-08-212019-01-04厦门美图之家科技有限公司model generating method and device
CN109145798A (en)*2018-08-132019-01-04浙江零跑科技有限公司A kind of Driving Scene target identification and travelable region segmentation integrated approach
CN109242516A (en)*2018-09-062019-01-18北京京东尚科信息技术有限公司The single method and apparatus of processing service
CN109299487A (en)*2017-07-252019-02-01展讯通信(上海)有限公司Neural network model, accelerator, modeling method and device, medium and system
CN109325398A (en)*2018-06-302019-02-12东南大学 A face attribute analysis method based on transfer learning
CN109359562A (en)*2018-09-292019-02-19佳都新太科技股份有限公司Target identification method, device, target identification equipment and storage medium
CN109359499A (en)*2017-07-262019-02-19虹软科技股份有限公司 A method and apparatus for face classification
CN109426262A (en)*2017-08-252019-03-05福特全球技术公司Shared processing to deep neural network
CN109472193A (en)*2018-09-212019-03-15北京飞搜科技有限公司Method for detecting human face and device
CN109508654A (en)*2018-10-262019-03-22中国地质大学(武汉)Merge the human face analysis method and system of multitask and multiple dimensioned convolutional neural networks
CN109522824A (en)*2018-10-302019-03-26平安科技(深圳)有限公司Face character recognition methods, device, computer installation and storage medium
CN109522872A (en)*2018-12-042019-03-26西安电子科技大学A kind of face identification method, device, computer equipment and storage medium
CN109583277A (en)*2017-09-292019-04-05大连恒锐科技股份有限公司Gender judgment method for barefoot or stocking foot based on CNN
CN109583431A (en)*2019-01-022019-04-05上海极链网络科技有限公司A kind of face Emotion identification model, method and its electronic device
CN109598184A (en)*2017-09-302019-04-09北京图森未来科技有限公司A kind for the treatment of method and apparatus of multi-split task
CN109697395A (en)*2017-10-242019-04-30华为技术有限公司Thingness prediction technique, device and equipment
CN109727071A (en)*2018-12-282019-05-07中国科学院半导体研究所 Advertising recommendation method and system
CN109871814A (en)*2019-02-222019-06-11成都旷视金智科技有限公司Estimation method, device, electronic equipment and the computer storage medium at age
WO2019109526A1 (en)*2017-12-062019-06-13平安科技(深圳)有限公司Method and device for age recognition of face image, storage medium
CN109886154A (en)*2019-01-302019-06-14电子科技大学 Pedestrian appearance attribute recognition method based on multi-dataset joint training based on Inception V3
CN109893095A (en)*2019-03-112019-06-18常州市贝叶斯智能科技有限公司A kind of intelligent robot system of body composition detection and analysis
CN109947960A (en)*2019-03-082019-06-28南京信息工程大学 The construction method of face multi-attribute joint estimation model based on depth convolution
CN109993102A (en)*2019-03-282019-07-09北京达佳互联信息技术有限公司Similar face retrieval method, apparatus and storage medium
CN110033481A (en)*2018-01-102019-07-19北京三星通信技术研究有限公司Method and apparatus for carrying out image procossing
CN110046571A (en)*2019-04-152019-07-23北京字节跳动网络技术有限公司The method and apparatus at age for identification
CN110069994A (en)*2019-03-182019-07-30中国科学院自动化研究所Face character identifying system, method based on face multizone
CN110084216A (en)*2019-05-062019-08-02苏州科达科技股份有限公司Human face recognition model training and face identification method, system, equipment and medium
CN110111246A (en)*2019-05-152019-08-09北京市商汤科技开发有限公司A kind of avatars generation method and device, storage medium
CN110163269A (en)*2019-05-092019-08-23北京迈格威科技有限公司Model generating method, device and computer equipment based on deep learning
CN110232352A (en)*2019-06-122019-09-13东北大学A kind of improved method of the multitask concatenated convolutional neural network model for recognition of face
CN110263756A (en)*2019-06-282019-09-20东北大学A kind of human face super-resolution reconstructing system based on joint multi-task learning
CN110287836A (en)*2019-06-142019-09-27北京迈格威科技有限公司Image classification method, device, computer equipment and storage medium
CN110334735A (en)*2019-05-312019-10-15北京奇艺世纪科技有限公司Multitask network generation method, device, computer equipment and storage medium
CN110348416A (en)*2019-07-172019-10-18北方工业大学 A multi-task face recognition method based on multi-scale feature fusion convolutional neural network
CN110395257A (en)*2018-04-202019-11-01北京图森未来科技有限公司 A lane line instance detection method and device, automatic driving vehicle
CN110427795A (en)*2019-01-282019-11-08厦门瑞为信息技术有限公司A kind of property analysis method based on head photo, system and computer equipment
CN110444214A (en)*2017-11-242019-11-12深圳市腾讯计算机系统有限公司Speech processing model training method, device, electronic equipment and storage medium
CN110503072A (en)*2019-08-292019-11-26南京信息工程大学 Face age estimation method based on multi-branch CNN architecture
CN110516512A (en)*2018-05-212019-11-29北京中科奥森数据科技有限公司Training method, pedestrian's attribute recognition approach and the device of pedestrian's attributive analysis model
CN110584654A (en)*2019-10-092019-12-20中山大学Multi-mode convolutional neural network-based electrocardiosignal classification method
CN110709856A (en)*2017-05-312020-01-17宝洁公司System and method for determining apparent skin age
US20200065563A1 (en)*2018-08-212020-02-27Software AgSystems and/or methods for accelerating facial feature vector matching with supervised machine learning
CN110874587A (en)*2019-12-262020-03-10浙江大学Face characteristic parameter extraction system
WO2020078214A1 (en)*2018-10-192020-04-23北京市商汤科技开发有限公司Child state analysis method and apparatus, vehicle, electronic device and storage medium
CN111191675A (en)*2019-12-032020-05-22深圳市华尊科技股份有限公司Pedestrian attribute recognition model implementation method and related device
WO2020114118A1 (en)*2018-12-072020-06-11深圳光启空间技术有限公司Facial attribute identification method and device, storage medium and processor
CN111291253A (en)*2018-12-062020-06-16北京嘀嘀无限科技发展有限公司Model training method, consultation recommendation method, device and electronic equipment
CN111325108A (en)*2020-01-222020-06-23中能国际建筑投资集团有限公司Multitask network model, using method, device and storage medium
CN111339818A (en)*2019-12-182020-06-26中国人民解放军第四军医大学 A face multi-attribute recognition system
CN111373419A (en)*2017-10-262020-07-03奇跃公司 Gradient Normalization System and Method for Adaptive Loss Balancing in Deep Multitask Networks
CN111369615A (en)*2020-02-212020-07-03苏州优纳医疗器械有限公司Cell nucleus central point detection method based on multitask convolutional neural network
CN111401294A (en)*2020-03-272020-07-10山东财经大学Multitask face attribute classification method and system based on self-adaptive feature fusion
CN111507263A (en)*2020-04-172020-08-07电子科技大学 A face multi-attribute recognition method based on multi-source data
CN111539452A (en)*2020-03-262020-08-14深圳云天励飞技术有限公司Image recognition method and device for multitask attributes, electronic equipment and storage medium
CN111598000A (en)*2020-05-182020-08-28中移(杭州)信息技术有限公司 Multitask-based face recognition method, device, server and readable storage medium
CN111598600A (en)*2019-02-212020-08-28虹软科技股份有限公司Multimedia information pushing method and system and terminal equipment
CN111626087A (en)*2019-02-282020-09-04北京市商汤科技开发有限公司Neural network training and eye opening and closing state detection method, device and equipment
CN111626115A (en)*2020-04-202020-09-04北京市西城区培智中心学校Face attribute identification method and device
CN111626303A (en)*2020-05-292020-09-04南京甄视智能科技有限公司Sex and age identification method, sex and age identification device, storage medium and server
CN111680547A (en)*2020-04-272020-09-18北京百度网讯科技有限公司 Recognition method, device, electronic device and storage medium of traffic countdown board
CN112052734A (en)*2020-07-312020-12-08北京奇艺世纪科技有限公司Role characteristic identification network generation method, role characteristic identification device, role characteristic identification equipment and role characteristic identification medium
CN112085540A (en)*2020-09-272020-12-15湖北科技学院 Advertising intelligent push system and method based on artificial intelligence technology
CN112149449A (en)*2019-06-262020-12-29北京华捷艾米科技有限公司Face attribute recognition method and system based on deep learning
CN112163676A (en)*2020-10-132021-01-01北京百度网讯科技有限公司 Multi-task service prediction model training method, device, equipment and storage medium
CN112333545A (en)*2019-07-312021-02-05Tcl集团股份有限公司Television content recommendation method, system, storage medium and smart television
WO2021031566A1 (en)*2019-08-212021-02-25五邑大学Multi-task learning-based facial beauty prediction method
CN112784916A (en)*2021-01-292021-05-11西安电子科技大学Air target micro-motion parameter real-time extraction method based on multitask convolutional network
CN112825122A (en)*2019-11-202021-05-21北京眼神智能科技有限公司Ethnicity judgment method, ethnicity judgment device, ethnicity judgment medium and ethnicity judgment equipment based on two-dimensional face image
CN112825117A (en)*2019-11-202021-05-21北京眼神智能科技有限公司Behavior attribute judgment method, behavior attribute judgment device, behavior attribute judgment medium and behavior attribute judgment equipment based on head features
CN112825119A (en)*2019-11-202021-05-21北京眼神智能科技有限公司Face attribute judgment method and device, computer readable storage medium and equipment
CN112906668A (en)*2021-04-072021-06-04上海应用技术大学Face information identification method based on convolutional neural network
US20210174066A1 (en)*2017-11-092021-06-10Beijing Dajia Internet Information Technology Co., Ltd.Method and device for age estimation
CN113095211A (en)*2021-04-082021-07-09第六镜科技(成都)有限公司Image processing method and system and electronic equipment
CN113420768A (en)*2021-08-242021-09-21深圳市信润富联数字科技有限公司Core category determination method and device, electronic equipment and storage medium
WO2021237727A1 (en)*2020-05-292021-12-02Siemens AktiengesellschaftMethod and apparatus of image processing
CN114005166A (en)*2021-11-252022-02-01浩云科技股份有限公司 A face recognition method and device based on multi-task learning
CN114038044A (en)*2021-11-232022-02-11携程旅游信息技术(上海)有限公司 Face gender and age recognition method, device, electronic device and storage medium
WO2022052021A1 (en)*2020-09-112022-03-17京东方科技集团股份有限公司Joint model training method, object information processing method, apparatus, and system
WO2022061726A1 (en)*2020-09-252022-03-31Intel CorporationMethod and system of multiple facial attributes recognition using highly efficient neural networks
CN114332914A (en)*2021-11-292022-04-12中国电子科技集团公司电子科学研究院Personnel feature identification method, device and computer-readable storage medium
CN114467121A (en)*2019-11-272022-05-10华为技术有限公司 A perceptual network and image processing method
CN114495215A (en)*2022-01-142022-05-13山东新一代信息产业技术研究院有限公司 A unified multi-task learning method for interactive robots based on attention mechanism
CN114529731A (en)*2020-10-302022-05-24北京眼神智能科技有限公司Face feature point positioning and attribute analysis method and device, storage medium and equipment
CN114821538A (en)*2022-05-192022-07-29北京地平线机器人技术研发有限公司Training method and device of multi-task model
US11521021B2 (en)2019-04-092022-12-06Hitachi, Ltd.Object recognition system and object recognition method
US11675876B2 (en)2020-10-282023-06-13International Business Machines CorporationTraining robust machine learning models
CN117079337A (en)*2023-10-172023-11-17成都信息工程大学High-precision face attribute feature recognition device and method
CN119580318A (en)*2024-10-282025-03-07广州像素数据技术股份有限公司 A modular face attribute structure analysis method, device, equipment and medium
CN114495215B (en)*2022-01-142025-10-10山东新一代信息产业技术研究院有限公司 Unified multi-task learning method for interactive robots based on attention mechanism

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US12300036B2 (en)2022-02-152025-05-13Ford Global Technologies, LlcBiometric task network
US12406484B2 (en)2022-02-152025-09-02Ford Global Technologies, LlcBiometric task network
US11776323B2 (en)2022-02-152023-10-03Ford Global Technologies, LlcBiometric task network

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103824054A (en)*2014-02-172014-05-28北京旷视科技有限公司Cascaded depth neural network-based face attribute recognition method
CN105469041A (en)*2015-11-192016-04-06上海交通大学Facial point detection system based on multi-task regularization and layer-by-layer supervision neural networ
US20160140436A1 (en)*2014-11-152016-05-19Beijing Kuangshi Technology Co., Ltd.Face Detection Using Machine Learning
CN105760859A (en)*2016-03-222016-07-13中国科学院自动化研究所Method and device for identifying reticulate pattern face image based on multi-task convolutional neural network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103824054A (en)*2014-02-172014-05-28北京旷视科技有限公司Cascaded depth neural network-based face attribute recognition method
US20160140436A1 (en)*2014-11-152016-05-19Beijing Kuangshi Technology Co., Ltd.Face Detection Using Machine Learning
CN105469041A (en)*2015-11-192016-04-06上海交通大学Facial point detection system based on multi-task regularization and layer-by-layer supervision neural networ
CN105760859A (en)*2016-03-222016-07-13中国科学院自动化研究所Method and device for identifying reticulate pattern face image based on multi-task convolutional neural network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邵蔚元 等: "多任务学习及卷积神经网络在人脸识别中的应用", 《计算机工程与应用》*

Cited By (179)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN107133948A (en)*2017-05-092017-09-05电子科技大学Image blurring and noise evaluating method based on multitask convolutional neural networks
CN107133948B (en)*2017-05-092020-05-08电子科技大学Image blurring and noise evaluation method based on multitask convolution neural network
CN110709856B (en)*2017-05-312023-11-28宝洁公司System and method for determining apparent skin age
CN110709856A (en)*2017-05-312020-01-17宝洁公司System and method for determining apparent skin age
CN107247947A (en)*2017-07-072017-10-13北京智慧眼科技股份有限公司Face character recognition methods and device
CN107247947B (en)*2017-07-072021-02-09智慧眼科技股份有限公司Face attribute identification method and device
CN107463888A (en)*2017-07-212017-12-12竹间智能科技(上海)有限公司Face mood analysis method and system based on multi-task learning and deep learning
CN107463888B (en)*2017-07-212020-05-19竹间智能科技(上海)有限公司Face emotion analysis method and system based on multi-task learning and deep learning
CN109299487A (en)*2017-07-252019-02-01展讯通信(上海)有限公司Neural network model, accelerator, modeling method and device, medium and system
US11455831B2 (en)2017-07-252022-09-27Arcsoft Corporation LimitedMethod and apparatus for face classification
CN109359499A (en)*2017-07-262019-02-19虹软科技股份有限公司 A method and apparatus for face classification
CN107545243A (en)*2017-08-072018-01-05南京信息工程大学Yellow race's face identification method based on depth convolution model
CN109426262A (en)*2017-08-252019-03-05福特全球技术公司Shared processing to deep neural network
CN107590460A (en)*2017-09-122018-01-16北京达佳互联信息技术有限公司Face classification method, apparatus and intelligent terminal
CN107590460B (en)*2017-09-122019-05-03北京达佳互联信息技术有限公司Face classification method, apparatus and intelligent terminal
CN109583277A (en)*2017-09-292019-04-05大连恒锐科技股份有限公司Gender judgment method for barefoot or stocking foot based on CNN
CN109598184A (en)*2017-09-302019-04-09北京图森未来科技有限公司A kind for the treatment of method and apparatus of multi-split task
CN109598184B (en)*2017-09-302021-08-24北京图森未来科技有限公司 Method and device for processing multi-segmented tasks
CN107742107A (en)*2017-10-202018-02-27北京达佳互联信息技术有限公司 Face image classification method, device and server
CN107742107B (en)*2017-10-202019-03-01北京达佳互联信息技术有限公司Facial image classification method, device and server
WO2019076227A1 (en)*2017-10-202019-04-25北京达佳互联信息技术有限公司Human face image classification method and apparatus, and server
US11417148B2 (en)2017-10-202022-08-16Beijing Dajia Internet Information Technology Co., Ltd.Human face image classification method and apparatus, and server
CN109697395A (en)*2017-10-242019-04-30华为技术有限公司Thingness prediction technique, device and equipment
CN111373419A (en)*2017-10-262020-07-03奇跃公司 Gradient Normalization System and Method for Adaptive Loss Balancing in Deep Multitask Networks
CN111373419B (en)*2017-10-262025-08-05奇跃公司 Gradient normalization system and method for adaptive loss balancing in deep multi-task networks
CN108021863A (en)*2017-11-012018-05-11平安科技(深圳)有限公司Electronic device, the character classification by age method based on image and storage medium
US11587356B2 (en)*2017-11-092023-02-21Beijing Dajia Internet Information Technology Co., Ltd.Method and device for age estimation
US20210174066A1 (en)*2017-11-092021-06-10Beijing Dajia Internet Information Technology Co., Ltd.Method and device for age estimation
CN107886073B (en)*2017-11-102021-07-27重庆邮电大学 A fine-grained vehicle multi-attribute recognition method based on convolutional neural network
CN107886073A (en)*2017-11-102018-04-06重庆邮电大学A kind of more attribute recognition approaches of fine granularity vehicle based on convolutional neural networks
CN108197525A (en)*2017-11-202018-06-22中国科学院自动化研究所Face image synthesis method and device
CN108197525B (en)*2017-11-202020-08-11中国科学院自动化研究所Face image generation method and device
CN108171254A (en)*2017-11-222018-06-15北京达佳互联信息技术有限公司Image tag determines method, apparatus and terminal
CN110444214A (en)*2017-11-242019-11-12深圳市腾讯计算机系统有限公司Speech processing model training method, device, electronic equipment and storage medium
CN110444214B (en)*2017-11-242021-08-17深圳市腾讯计算机系统有限公司 Speech signal processing model training method, device, electronic device and storage medium
CN107844781A (en)*2017-11-282018-03-27腾讯科技(深圳)有限公司Face character recognition methods and device, electronic equipment and storage medium
CN108564097B (en)*2017-12-052020-09-22华南理工大学Multi-scale target detection method based on deep convolutional neural network
CN108564097A (en)*2017-12-052018-09-21华南理工大学A kind of multiscale target detection method based on depth convolutional neural networks
WO2019109526A1 (en)*2017-12-062019-06-13平安科技(深圳)有限公司Method and device for age recognition of face image, storage medium
CN107844784A (en)*2017-12-082018-03-27广东美的智能机器人有限公司Face identification method, device, computer equipment and readable storage medium storing program for executing
CN108345832A (en)*2017-12-282018-07-31新智数字科技有限公司A kind of method, apparatus and equipment of Face datection
CN107958444A (en)*2017-12-282018-04-24江西高创保安服务技术有限公司A kind of face super-resolution reconstruction method based on deep learning
CN108229503A (en)*2018-01-042018-06-29浙江大学A kind of feature extracting method for clothes photo
CN110033481A (en)*2018-01-102019-07-19北京三星通信技术研究有限公司Method and apparatus for carrying out image procossing
CN108256482B (en)*2018-01-182021-06-25中科视拓(北京)科技有限公司Face age estimation method for distributed learning based on convolutional neural network
CN108256482A (en)*2018-01-182018-07-06中科视拓(北京)科技有限公司A kind of face age estimation method that Distributed learning is carried out based on convolutional neural networks
CN108875932A (en)*2018-02-272018-11-23北京旷视科技有限公司Image-recognizing method, device and system and storage medium
CN108416327B (en)*2018-03-282022-04-29京东方科技集团股份有限公司Target detection method and device, computer equipment and readable storage medium
CN108416327A (en)*2018-03-282018-08-17京东方科技集团股份有限公司A kind of object detection method, device, computer equipment and readable storage medium storing program for executing
CN108509041A (en)*2018-03-292018-09-07百度在线网络技术(北京)有限公司Method and apparatus for executing operation
CN108537193A (en)*2018-04-172018-09-14厦门美图之家科技有限公司Ethnic attribute recognition approach and mobile terminal in a kind of face character
CN110395257A (en)*2018-04-202019-11-01北京图森未来科技有限公司 A lane line instance detection method and device, automatic driving vehicle
CN110395257B (en)*2018-04-202021-04-23北京图森未来科技有限公司 A lane line instance detection method and device, and an automatic driving vehicle
CN108665065A (en)*2018-04-252018-10-16清华大学Processing method, device, equipment and the storage medium of task data
CN108665065B (en)*2018-04-252020-08-04清华大学Method, device and equipment for processing task data and storage medium
CN108764048B (en)*2018-04-282021-03-16中国科学院自动化研究所 Face key point detection method and device
CN108764048A (en)*2018-04-282018-11-06中国科学院自动化研究所Face critical point detection method and device
CN110516512B (en)*2018-05-212023-08-25北京中科奥森数据科技有限公司Training method of pedestrian attribute analysis model, pedestrian attribute identification method and device
CN110516512A (en)*2018-05-212019-11-29北京中科奥森数据科技有限公司Training method, pedestrian's attribute recognition approach and the device of pedestrian's attributive analysis model
CN108734146A (en)*2018-05-282018-11-02北京达佳互联信息技术有限公司Facial image Age estimation method, apparatus, computer equipment and storage medium
CN108960283B (en)*2018-05-302022-01-11北京市商汤科技开发有限公司Classification task increment processing method and device, electronic equipment and storage medium
CN108960283A (en)*2018-05-302018-12-07北京市商汤科技开发有限公司Classification task incremental processing method and device, electronic equipment and storage medium
CN108764203A (en)*2018-06-062018-11-06四川大学A kind of pedestrian's quantitative analysis and display systems towards urban planning
CN108764207A (en)*2018-06-072018-11-06厦门大学A kind of facial expression recognizing method based on multitask convolutional neural networks
CN108764207B (en)*2018-06-072021-10-19厦门大学 A facial expression recognition method based on multi-task convolutional neural network
CN109325398B (en)*2018-06-302020-10-09东南大学Human face attribute analysis method based on transfer learning
WO2020001082A1 (en)*2018-06-302020-01-02东南大学Face attribute analysis method based on transfer learning
CN109325398A (en)*2018-06-302019-02-12东南大学 A face attribute analysis method based on transfer learning
CN109063759A (en)*2018-07-202018-12-21浙江大学A kind of neural network structure searching method applied to the more attribute forecasts of picture
CN109145798A (en)*2018-08-132019-01-04浙江零跑科技有限公司A kind of Driving Scene target identification and travelable region segmentation integrated approach
CN109145798B (en)*2018-08-132021-10-22浙江零跑科技股份有限公司Driving scene target identification and travelable region segmentation integration method
CN109145987B (en)*2018-08-212020-10-20厦门美图之家科技有限公司Model generation method and device
CN109145987A (en)*2018-08-212019-01-04厦门美图之家科技有限公司model generating method and device
US20200065563A1 (en)*2018-08-212020-02-27Software AgSystems and/or methods for accelerating facial feature vector matching with supervised machine learning
US10747989B2 (en)*2018-08-212020-08-18Software AgSystems and/or methods for accelerating facial feature vector matching with supervised machine learning
CN109242516A (en)*2018-09-062019-01-18北京京东尚科信息技术有限公司The single method and apparatus of processing service
CN109472193A (en)*2018-09-212019-03-15北京飞搜科技有限公司Method for detecting human face and device
CN109359562A (en)*2018-09-292019-02-19佳都新太科技股份有限公司Target identification method, device, target identification equipment and storage medium
US11403879B2 (en)2018-10-192022-08-02Beijing Sensetime Technology Development Co., Ltd.Method and apparatus for child state analysis, vehicle, electronic device, and storage medium
WO2020078214A1 (en)*2018-10-192020-04-23北京市商汤科技开发有限公司Child state analysis method and apparatus, vehicle, electronic device and storage medium
CN109086837A (en)*2018-10-242018-12-25高嵩User property classification method, storage medium, device and electronic equipment based on convolutional neural networks
CN109508654A (en)*2018-10-262019-03-22中国地质大学(武汉)Merge the human face analysis method and system of multitask and multiple dimensioned convolutional neural networks
CN109522824A (en)*2018-10-302019-03-26平安科技(深圳)有限公司Face character recognition methods, device, computer installation and storage medium
CN109522872A (en)*2018-12-042019-03-26西安电子科技大学A kind of face identification method, device, computer equipment and storage medium
CN111291253B (en)*2018-12-062023-09-19北京嘀嘀无限科技发展有限公司Model training method, consultation recommendation method and device and electronic equipment
CN111291253A (en)*2018-12-062020-06-16北京嘀嘀无限科技发展有限公司Model training method, consultation recommendation method, device and electronic equipment
WO2020114118A1 (en)*2018-12-072020-06-11深圳光启空间技术有限公司Facial attribute identification method and device, storage medium and processor
CN111291604A (en)*2018-12-072020-06-16深圳光启空间技术有限公司 Facial attribute recognition method, device, storage medium and processor
CN109727071A (en)*2018-12-282019-05-07中国科学院半导体研究所 Advertising recommendation method and system
CN109583431A (en)*2019-01-022019-04-05上海极链网络科技有限公司A kind of face Emotion identification model, method and its electronic device
CN110427795A (en)*2019-01-282019-11-08厦门瑞为信息技术有限公司A kind of property analysis method based on head photo, system and computer equipment
CN109886154A (en)*2019-01-302019-06-14电子科技大学 Pedestrian appearance attribute recognition method based on multi-dataset joint training based on Inception V3
CN111598600A (en)*2019-02-212020-08-28虹软科技股份有限公司Multimedia information pushing method and system and terminal equipment
CN109871814A (en)*2019-02-222019-06-11成都旷视金智科技有限公司Estimation method, device, electronic equipment and the computer storage medium at age
CN111626087A (en)*2019-02-282020-09-04北京市商汤科技开发有限公司Neural network training and eye opening and closing state detection method, device and equipment
CN109947960A (en)*2019-03-082019-06-28南京信息工程大学 The construction method of face multi-attribute joint estimation model based on depth convolution
CN109947960B (en)*2019-03-082024-01-23南京信息工程大学Face multi-attribute joint estimation model construction method based on depth convolution
CN109893095A (en)*2019-03-112019-06-18常州市贝叶斯智能科技有限公司A kind of intelligent robot system of body composition detection and analysis
CN110069994A (en)*2019-03-182019-07-30中国科学院自动化研究所Face character identifying system, method based on face multizone
CN110069994B (en)*2019-03-182021-03-23中国科学院自动化研究所 Face attribute recognition system and method based on face multi-region
CN109993102B (en)*2019-03-282021-09-17北京达佳互联信息技术有限公司Similar face retrieval method, device and storage medium
CN109993102A (en)*2019-03-282019-07-09北京达佳互联信息技术有限公司Similar face retrieval method, apparatus and storage medium
US11521021B2 (en)2019-04-092022-12-06Hitachi, Ltd.Object recognition system and object recognition method
CN110046571A (en)*2019-04-152019-07-23北京字节跳动网络技术有限公司The method and apparatus at age for identification
CN110084216A (en)*2019-05-062019-08-02苏州科达科技股份有限公司Human face recognition model training and face identification method, system, equipment and medium
CN110084216B (en)*2019-05-062021-11-09苏州科达科技股份有限公司Face recognition model training and face recognition method, system, device and medium
CN110163269A (en)*2019-05-092019-08-23北京迈格威科技有限公司Model generating method, device and computer equipment based on deep learning
CN110111246B (en)*2019-05-152022-02-25北京市商汤科技开发有限公司Virtual head portrait generation method and device and storage medium
WO2020228384A1 (en)*2019-05-152020-11-19北京市商汤科技开发有限公司Virtual head portrait generation method and device, and storage medium
US11403874B2 (en)2019-05-152022-08-02Beijing Sensetime Technology Development Co., Ltd.Virtual avatar generation method and apparatus for generating virtual avatar including user selected face property, and storage medium
CN110111246A (en)*2019-05-152019-08-09北京市商汤科技开发有限公司A kind of avatars generation method and device, storage medium
CN110334735A (en)*2019-05-312019-10-15北京奇艺世纪科技有限公司Multitask network generation method, device, computer equipment and storage medium
CN110334735B (en)*2019-05-312022-07-08北京奇艺世纪科技有限公司Multitask network generation method and device, computer equipment and storage medium
CN110232352B (en)*2019-06-122022-11-25东北大学Improvement method of multi-task cascade convolution neural network model for face recognition
CN110232352A (en)*2019-06-122019-09-13东北大学A kind of improved method of the multitask concatenated convolutional neural network model for recognition of face
CN110287836A (en)*2019-06-142019-09-27北京迈格威科技有限公司Image classification method, device, computer equipment and storage medium
CN110287836B (en)*2019-06-142021-10-15北京迈格威科技有限公司Image classification method and device, computer equipment and storage medium
CN112149449A (en)*2019-06-262020-12-29北京华捷艾米科技有限公司Face attribute recognition method and system based on deep learning
CN110263756A (en)*2019-06-282019-09-20东北大学A kind of human face super-resolution reconstructing system based on joint multi-task learning
CN110348416A (en)*2019-07-172019-10-18北方工业大学 A multi-task face recognition method based on multi-scale feature fusion convolutional neural network
CN112333545A (en)*2019-07-312021-02-05Tcl集团股份有限公司Television content recommendation method, system, storage medium and smart television
WO2021031566A1 (en)*2019-08-212021-02-25五邑大学Multi-task learning-based facial beauty prediction method
CN110503072A (en)*2019-08-292019-11-26南京信息工程大学 Face age estimation method based on multi-branch CNN architecture
CN110503072B (en)*2019-08-292023-05-26南京信息工程大学Face age estimation method based on multi-branch CNN architecture
CN110584654A (en)*2019-10-092019-12-20中山大学Multi-mode convolutional neural network-based electrocardiosignal classification method
CN112825117A (en)*2019-11-202021-05-21北京眼神智能科技有限公司Behavior attribute judgment method, behavior attribute judgment device, behavior attribute judgment medium and behavior attribute judgment equipment based on head features
CN112825122A (en)*2019-11-202021-05-21北京眼神智能科技有限公司Ethnicity judgment method, ethnicity judgment device, ethnicity judgment medium and ethnicity judgment equipment based on two-dimensional face image
CN112825119A (en)*2019-11-202021-05-21北京眼神智能科技有限公司Face attribute judgment method and device, computer readable storage medium and equipment
CN114467121A (en)*2019-11-272022-05-10华为技术有限公司 A perceptual network and image processing method
CN111191675A (en)*2019-12-032020-05-22深圳市华尊科技股份有限公司Pedestrian attribute recognition model implementation method and related device
CN111191675B (en)*2019-12-032023-10-24深圳市华尊科技股份有限公司Pedestrian attribute identification model realization method and related device
CN111339818B (en)*2019-12-182023-06-06中国人民解放军第四军医大学Face multi-attribute recognition system
CN111339818A (en)*2019-12-182020-06-26中国人民解放军第四军医大学 A face multi-attribute recognition system
CN110874587A (en)*2019-12-262020-03-10浙江大学Face characteristic parameter extraction system
CN111325108A (en)*2020-01-222020-06-23中能国际建筑投资集团有限公司Multitask network model, using method, device and storage medium
CN111325108B (en)*2020-01-222023-05-26中能国际高新科技研究院有限公司Multitasking network model, using method, device and storage medium
CN111369615A (en)*2020-02-212020-07-03苏州优纳医疗器械有限公司Cell nucleus central point detection method based on multitask convolutional neural network
CN111539452B (en)*2020-03-262024-03-26深圳云天励飞技术有限公司Image recognition method and device for multi-task attribute, electronic equipment and storage medium
CN111539452A (en)*2020-03-262020-08-14深圳云天励飞技术有限公司Image recognition method and device for multitask attributes, electronic equipment and storage medium
CN111401294A (en)*2020-03-272020-07-10山东财经大学Multitask face attribute classification method and system based on self-adaptive feature fusion
CN111507263B (en)*2020-04-172022-08-05电子科技大学Face multi-attribute recognition method based on multi-source data
CN111507263A (en)*2020-04-172020-08-07电子科技大学 A face multi-attribute recognition method based on multi-source data
CN111626115A (en)*2020-04-202020-09-04北京市西城区培智中心学校Face attribute identification method and device
CN111680547B (en)*2020-04-272024-01-12阿波罗智能技术(北京)有限公司Traffic countdown sign recognition method and device, electronic equipment and storage medium
CN111680547A (en)*2020-04-272020-09-18北京百度网讯科技有限公司 Recognition method, device, electronic device and storage medium of traffic countdown board
CN111598000A (en)*2020-05-182020-08-28中移(杭州)信息技术有限公司 Multitask-based face recognition method, device, server and readable storage medium
WO2021237727A1 (en)*2020-05-292021-12-02Siemens AktiengesellschaftMethod and apparatus of image processing
CN111626303A (en)*2020-05-292020-09-04南京甄视智能科技有限公司Sex and age identification method, sex and age identification device, storage medium and server
CN111626303B (en)*2020-05-292021-04-13南京甄视智能科技有限公司Sex and age identification method, sex and age identification device, storage medium and server
CN112052734B (en)*2020-07-312024-05-17北京奇艺世纪科技有限公司Character characteristic recognition network generation method, character characteristic recognition network generation program, character characteristic recognition apparatus, device and medium
CN112052734A (en)*2020-07-312020-12-08北京奇艺世纪科技有限公司Role characteristic identification network generation method, role characteristic identification device, role characteristic identification equipment and role characteristic identification medium
CN114556444A (en)*2020-09-112022-05-27京东方科技集团股份有限公司 Joint model training method and object information processing method, device and system
WO2022052021A1 (en)*2020-09-112022-03-17京东方科技集团股份有限公司Joint model training method, object information processing method, apparatus, and system
US12147887B2 (en)*2020-09-112024-11-19Beijing Boe Technology Development Co., Ltd.Method for training joint model, object information processing method, apparatus, and system
US20220327361A1 (en)*2020-09-112022-10-13Boe Technology Group Co., Ltd.Method for Training Joint Model, Object Information Processing Method, Apparatus, and System
WO2022061726A1 (en)*2020-09-252022-03-31Intel CorporationMethod and system of multiple facial attributes recognition using highly efficient neural networks
CN112085540A (en)*2020-09-272020-12-15湖北科技学院 Advertising intelligent push system and method based on artificial intelligence technology
CN112163676B (en)*2020-10-132024-04-05北京百度网讯科技有限公司Method, device, equipment and storage medium for training multitasking service prediction model
CN112163676A (en)*2020-10-132021-01-01北京百度网讯科技有限公司 Multi-task service prediction model training method, device, equipment and storage medium
US11675876B2 (en)2020-10-282023-06-13International Business Machines CorporationTraining robust machine learning models
CN114529731A (en)*2020-10-302022-05-24北京眼神智能科技有限公司Face feature point positioning and attribute analysis method and device, storage medium and equipment
CN114529731B (en)*2020-10-302024-07-12北京眼神智能科技有限公司Face feature point positioning and attribute analysis method, device, storage medium and equipment
CN112784916A (en)*2021-01-292021-05-11西安电子科技大学Air target micro-motion parameter real-time extraction method based on multitask convolutional network
CN112784916B (en)*2021-01-292022-03-04西安电子科技大学Air target micro-motion parameter real-time extraction method based on multitask convolutional network
CN112906668B (en)*2021-04-072023-08-25上海应用技术大学 Face Information Recognition Method Based on Convolutional Neural Network
CN112906668A (en)*2021-04-072021-06-04上海应用技术大学Face information identification method based on convolutional neural network
CN113095211B (en)*2021-04-082023-08-25第六镜科技(成都)有限公司Image processing method, system and electronic equipment
CN113095211A (en)*2021-04-082021-07-09第六镜科技(成都)有限公司Image processing method and system and electronic equipment
CN113420768A (en)*2021-08-242021-09-21深圳市信润富联数字科技有限公司Core category determination method and device, electronic equipment and storage medium
CN114038044A (en)*2021-11-232022-02-11携程旅游信息技术(上海)有限公司 Face gender and age recognition method, device, electronic device and storage medium
CN114005166A (en)*2021-11-252022-02-01浩云科技股份有限公司 A face recognition method and device based on multi-task learning
CN114332914A (en)*2021-11-292022-04-12中国电子科技集团公司电子科学研究院Personnel feature identification method, device and computer-readable storage medium
CN114495215A (en)*2022-01-142022-05-13山东新一代信息产业技术研究院有限公司 A unified multi-task learning method for interactive robots based on attention mechanism
CN114495215B (en)*2022-01-142025-10-10山东新一代信息产业技术研究院有限公司 Unified multi-task learning method for interactive robots based on attention mechanism
CN114821538A (en)*2022-05-192022-07-29北京地平线机器人技术研发有限公司Training method and device of multi-task model
CN114821538B (en)*2022-05-192024-11-19北京地平线机器人技术研发有限公司 A training method and device for a multi-task model
CN117079337B (en)*2023-10-172024-02-06成都信息工程大学 A high-precision facial attribute feature recognition device and method
CN117079337A (en)*2023-10-172023-11-17成都信息工程大学High-precision face attribute feature recognition device and method
CN119580318A (en)*2024-10-282025-03-07广州像素数据技术股份有限公司 A modular face attribute structure analysis method, device, equipment and medium

Also Published As

Publication numberPublication date
CN106529402B (en)2019-05-28

Similar Documents

PublicationPublication DateTitle
CN106529402A (en)Multi-task learning convolutional neural network-based face attribute analysis method
CN107679522B (en)Multi-stream LSTM-based action identification method
CN109508669B (en) A Face Expression Recognition Method Based on Generative Adversarial Networks
CN108510485B (en) A reference-free image quality assessment method based on convolutional neural network
CN105760835B (en)A kind of gait segmentation and Gait Recognition integral method based on deep learning
CN113673510B (en)Target detection method combining feature point and anchor frame joint prediction and regression
CN110276264B (en)Crowd density estimation method based on foreground segmentation graph
CN109902546A (en) Face recognition method, device and computer readable medium
CN110096156A (en)Virtual costume changing method based on 2D image
CN108710831A (en)A kind of small data set face recognition algorithms based on machine vision
CN107437099A (en)A kind of specific dress ornament image recognition and detection method based on machine learning
CN107704838A (en)The attribute recognition approach and device of destination object
CN110059598A (en)The Activity recognition method of the long time-histories speed network integration based on posture artis
CN107944386B (en) Visual Scene Recognition Method Based on Convolutional Neural Network
CN108961272A (en)It is a kind of to fight the generation method for generating the skin disease image of network based on depth convolution
CN110738161A (en) A face image correction method based on improved generative adversarial network
CN108717732B (en)Expression tracking method based on MobileNet model
CN111127309B (en)Portrait style migration model training method, portrait style migration method and device
CN113724354B (en)Gray image coloring method based on reference picture color style
CN114360018B (en)Rendering method and device of three-dimensional facial expression, storage medium and electronic device
CN114663593B (en)Three-dimensional human body posture estimation method, device, equipment and storage medium
CN112861659B (en)Image model training method and device, electronic equipment and storage medium
CN111445426B (en)Target clothing image processing method based on generation of countermeasure network model
CN108388905A (en)A kind of Illuminant estimation method based on convolutional neural networks and neighbourhood context
CN112446253A (en)Skeleton behavior identification method and device

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp