Movatterモバイル変換


[0]ホーム

URL:


CN106456935B - Devices, systems and methods using steerable stylets and flexible needles - Google Patents

Devices, systems and methods using steerable stylets and flexible needles
Download PDF

Info

Publication number
CN106456935B
CN106456935BCN201580021691.6ACN201580021691ACN106456935BCN 106456935 BCN106456935 BCN 106456935BCN 201580021691 ACN201580021691 ACN 201580021691ACN 106456935 BCN106456935 BCN 106456935B
Authority
CN
China
Prior art keywords
stylet
needle
actuation
minimally invasive
invasive system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580021691.6A
Other languages
Chinese (zh)
Other versions
CN106456935A (en
Inventor
G·M·普里斯科
M·西米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intuitive Surgical Operations Inc
Original Assignee
Intuitive Surgical Operations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intuitive Surgical Operations IncfiledCriticalIntuitive Surgical Operations Inc
Priority to CN201911219102.1ApriorityCriticalpatent/CN110833382B/en
Publication of CN106456935ApublicationCriticalpatent/CN106456935A/en
Application grantedgrantedCritical
Publication of CN106456935BpublicationCriticalpatent/CN106456935B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

A minimally invasive system is described that includes an elongate instrument and a stylet slidably disposed within a lumen of the elongate instrument. The apparatus comprises: a flexible proximal portion fixedly coupled to the rigid distal portion; and a lumen extending from the proximal end to the distal end through the flexible proximal portion and the rigid distal portion and defining a longitudinal axis of the instrument. The stylet includes a flexible body fixedly coupled to the steerable portion and a sensor element extending through the flexible body. The stylet is movable within the instrument between a retracted state in which the steerable portion is retracted within the instrument, and an extended configuration in which the steerable portion extends at least partially from the rigid distal portion of the instrument.

Description

Translated fromChinese
使用可操控管心针和柔性针的设备、系统以及方法Devices, systems and methods using steerable stylets and flexible needles

相关申请related application

本专利申请要求于2014年4月2日提交的名称为“Devices,Systems,and MethodsUsing a Steerable Stylet and Flexible Needle(使用可操控管心针和柔性针的设备、系统以及方法)”的美国临时专利申请61/974113的申请日的优先权和权益,所述专利申请的全部内容以引用方式并入本文。This patent application claims a U.S. provisional patent entitled "Devices, Systems, and Methods Using a Steerable Stylet and Flexible Needle," filed April 2, 2014 Priority and benefit as of the filing date of application 61/974113, the entire content of which is incorporated herein by reference.

技术领域technical field

本公开涉及用于导航患者解剖结构以进行微创程序的系统和方法,并且更具体地涉及使用型面高度不大的、柔性的、可操控的管心针和针组件获得目标组织活检的装置和方法。The present disclosure relates to systems and methods for navigating patient anatomy for minimally invasive procedures, and more particularly to devices for obtaining targeted tissue biopsies using a low-profile, flexible, steerable stylet and needle assembly and methods.

背景技术Background technique

微创医疗技术旨在减少医疗程序期间被损坏的组织的量,从而减少患者恢复时间、减轻患者不适并且减少有害的副作用。此类微创技术可以通过患者解剖结构中的自然孔口或通过一个或多个手术切口来执行。临床医生可以将医疗工具插入通过这些自然孔口或切口,以到达目标组织部位。医疗工具包括诸如治疗器械、诊断器械以及手术器械的器械。为到达目标组织部位,微创医疗工具可以导航解剖系统诸如肺、结肠、肠、肾脏、心脏、循环系统等中的自然通道或手术创建的通道。Minimally invasive medical techniques aim to reduce the amount of tissue damaged during medical procedures, thereby reducing patient recovery time, lessening patient discomfort, and reducing harmful side effects. Such minimally invasive techniques may be performed through natural orifices in the patient's anatomy or through one or more surgical incisions. Clinicians can insert medical tools through these natural orifices or incisions to reach target tissue sites. Medical tools include devices such as therapeutic devices, diagnostic devices, and surgical devices. To reach target tissue sites, minimally invasive medical tools can navigate natural or surgically created pathways in anatomical systems such as the lungs, colon, intestines, kidneys, heart, circulatory system, and the like.

微创医疗程序通常依靠某种器械位置监控,以确保适当的接近目标组织位置和在目标组织部位处的行为。常规微创医疗器械通常由大体刚性的细长元件(例如,腹腔镜检查系统或机器人系统)或设计成沿循预定解剖路径的高度柔性的系统(例如,血管成形术气囊式导管)形成。不论哪种情况,位置监控通常包括器械的分立部分(例如,导管的远侧尖端)的定位追踪。不主动监控其余的导丝/导管长度,除了在尖端前进的荧光镜(屏)检查可视化期间,感测剩余长度被示出的程度的附带事件中。Minimally invasive medical procedures typically rely on some kind of instrument site monitoring to ensure proper access to and behavior at the target tissue site. Conventional minimally invasive medical devices are typically formed from generally rigid elongated elements (eg, laparoscopic or robotic systems) or highly flexible systems (eg, angioplasty balloon catheters) designed to follow predetermined anatomical paths. In either case, position monitoring typically includes position tracking of a discrete portion of the instrument (eg, the distal tip of the catheter). The remaining guidewire/catheter length is not actively monitored, except in the incidental event of sensing the extent to which the remaining length is shown during fluoroscopic (screen) visualization of tip advancement.

然而,为了安全和有效使用,越来越复杂的微创手术系统可以要求增强的器械位置监控。例如,在经由直线路径接近可成为问题的内部位置处(例如,在不期望刺穿任何介于中间的解剖结构的情况下),柔性的、可操控针的发展为诸如活检和/或治疗处理(诸如消融治疗或放射性粒子放置)的程序提供了机会。诸如例如在用于肝脏或其他内部器官的经皮活检针的情况下,柔性的、可操控的针可以通过直接穿透到组织中而被递送到目标部位。在其他情况中,诸如例如在经腔的肺或胃活检的情况下,柔性的、可操控的针可以通过内窥镜的管腔或导管递送到目标部位。However, increasingly complex minimally invasive surgical systems may require enhanced instrument position monitoring for safe and effective use. For example, the development of flexible, steerable needles for applications such as biopsy and/or therapeutic procedures at internal locations where access via a straight path can be problematic (e.g., where it is not desired to pierce any intervening anatomical structures) (such as ablation therapy or radioactive seed placement) provide opportunities. Flexible, steerable needles can be delivered to the target site by penetrating directly into the tissue, such as, for example, in the case of percutaneous biopsy needles for the liver or other internal organs. In other cases, such as, for example, in the case of transluminal lung or gastric biopsies, a flexible, steerable needle may be delivered through the lumen or catheter of the endoscope to the target site.

微创方式中柔性针的使用和位置追踪能够比常规机器人程序或腹腔镜检查程序明显更加复杂。不仅可操控针的实际形状的可变性远大于刚性元件的联动装置形状的可变性,而且针柔韧性和尖端几何结构会由于组织特性的变化而大大地增加对从目标轨迹偏离的敏感性(例如,伤疤组织或比预期组织更致密的其他组织,可以导致大于柔性针的预期曲率)。具体地,在插入通过组织期间,由于通过组织施加到通常非对称的或斜切的针尖端上的侧向力,柔性针会被动地操控穿过组织。由于柔性针轴跟随在尖端后面,所以针尖端和针轴两者均可以偏离于预期路线。因此,准确地引导并追踪柔性针的位置造成了特有的困难。The use and position tracking of flexible needles in a minimally invasive approach can be significantly more complex than conventional robotic or laparoscopic procedures. Not only is the variability in the actual shape of the steerable needle much greater than that of the linkage shape of the rigid elements, but needle flexibility and tip geometry can greatly increase sensitivity to deviations from the target trajectory due to changes in tissue properties (e.g. , scar tissue, or other tissue that is denser than expected, can result in a greater than expected curvature of the flexible needle). Specifically, during insertion through tissue, flexible needles are passively steered through tissue due to lateral forces exerted by the tissue on the generally asymmetric or beveled needle tip. As the flexible needle shaft follows the tip, both the needle tip and the needle shaft can deviate from the intended course. Therefore, accurately guiding and tracking the position of flexible needles poses unique difficulties.

此外,在某些应用中,许多可操控针可能具有比期望的大的外径。特别是对于腔内针,期望小的外径以确保它们平滑地通过范围槽道。Furthermore, in some applications, many steerable needles may have a larger outer diameter than desired. Especially for endoluminal needles, a small outer diameter is desired to ensure their smooth passage through the scope channels.

因此,期望提供能够在微创医疗程序期间有效地引导并追踪的可操控的、柔性针系统。本文公开的设备、系统以及方法克服了现有技术的不足中的一个或多个。Accordingly, it would be desirable to provide a steerable, flexible needle system that can be efficiently guided and tracked during minimally invasive medical procedures. The devices, systems, and methods disclosed herein overcome one or more of the deficiencies of the prior art.

发明内容Contents of the invention

本发明的实施例通过说明书后面的权利要求进行概述。Embodiments of the invention are summarized by the claims following the specification.

在一个实施例中,本公开描述了微创系统,微创系统包括细长器械和可滑动地设置在细长器械的管腔内的管心针。细长器械从近端延伸到远端。在一方面,器械包括柔性近侧部分和刚性远侧部分。在一方面,柔性近侧部分固定地联接到刚性远侧部分。在一方面,管腔通过柔性近侧部分和刚性远侧部分从近端延伸到远端,以限定器械的纵向轴线。在一方面,管心针包括固定地联接到可操控部分的柔性主体和延伸通过柔性主体的传感器元件。在一方面,管心针在缩回状态和延伸配置之间在细长器械内可移动,在缩回状态中,可操控部分缩回到细长器械内,在延伸配置中,可操控部分至少部分地从细长器械的刚性远侧部分延伸。In one embodiment, the present disclosure describes a minimally invasive system comprising an elongated instrument and a stylet slidably disposed within a lumen of the elongated instrument. The elongated instrument extends from the proximal end to the distal end. In one aspect, the instrument includes a flexible proximal portion and a rigid distal portion. In one aspect, the flexible proximal portion is fixedly coupled to the rigid distal portion. In one aspect, the lumen extends from the proximal end to the distal end by a flexible proximal portion and a rigid distal portion to define the longitudinal axis of the instrument. In one aspect, a stylet includes a flexible body fixedly coupled to the steerable portion and a sensor element extending through the flexible body. In one aspect, the stylet is movable within the elongated instrument between a retracted state in which the steerable portion is retracted into the elongated instrument and an extended configuration in which the steerable portion is at least Extends in part from the rigid distal portion of the elongated instrument.

在另一实施例中,本公开描述了微创系统,微创系统包括致动器、针、管心针和多个致动缆线。针包括从近端延伸到远端并且限定器械的纵向轴线的管腔。管心针能够被定位在细长器械的管腔内。在一方面,管心针包括近侧柔性主体、远侧可操控部分和延伸通过柔性主体的传感器元件。在一方面,远侧可操控部分包括抗弯曲(bend-resistive)尖端。在一方面,管心针在缩回状态和延伸配置之间在针内可移动,在缩回状态中,可操控部分缩回到针的管腔内,在延伸配置中,医疗器械的可操控部分至少部分地从针的远端延伸。在一方面,多个致动缆线通过管心针的柔性主体从致动器延伸并且终止在管心针的可操控部分中。In another embodiment, the present disclosure describes a minimally invasive system that includes an actuator, a needle, a stylet, and a plurality of actuation cables. The needle includes a lumen extending from a proximal end to a distal end and defining a longitudinal axis of the instrument. A stylet can be positioned within the lumen of the elongated instrument. In one aspect, a stylet includes a proximal flexible body, a distal steerable portion, and a sensor element extending through the flexible body. In one aspect, the distal steerable portion includes a bend-resistant tip. In one aspect, the stylet is movable within the needle between a retracted state in which the steerable portion is retracted into the lumen of the needle and an extended configuration in which the steerable portion of the medical device A portion extends at least partially from the distal end of the needle. In one aspect, a plurality of actuation cables extend from the actuator through the flexible body of the stylet and terminate in the steerable portion of the stylet.

在另一实施例中,本公开描述了评估患者中的目标区域的方法。在一方面,方法包括朝向目标区域将针系统推进到患者中。在一方面,针系统包括可滑动地定位在细长医疗器械的管腔内的管心针,并且管心针包括柔性主体、远侧可操控部分以及经配置检测管心针的特性的传感器元件。在一方面,方法包括在细长医疗器械的远端的远侧推进管心针的可操控部分,并且随着管心针朝向目标区域推进时,从传感器元件获取管心针的特性。在一方面,方法包括基于所获取的特性确定管心针和细长医疗器械相对于目标区域的位置。在一方面,方法包括基于确定的位置操控管心针的可操控部分朝向目标区域,并且在所述管心针上方将细长医疗器械推进到目标区域中。In another embodiment, the present disclosure describes a method of assessing a region of interest in a patient. In one aspect, a method includes advancing a needle system into a patient toward a target area. In one aspect, a needle system includes a stylet slidably positioned within a lumen of an elongate medical device, and the stylet includes a flexible body, a distal steerable portion, and a sensor element configured to detect a characteristic of the stylet . In one aspect, a method includes advancing a steerable portion of a stylet distal to the distal end of the elongated medical device, and acquiring a characteristic of the stylet from the sensor element as the stylet is advanced toward the target area. In one aspect, the method includes determining a position of the stylet and the elongated medical device relative to the target region based on the acquired properties. In one aspect, a method includes manipulating a steerable portion of a stylet toward a target area based on the determined position, and advancing the elongate medical instrument over the stylet into the target area.

本公开的附加方面、特征以及优点将根据以下详细描述中变得显而易见。Additional aspects, features, and advantages of the present disclosure will become apparent from the following detailed description.

附图说明Description of drawings

当结合附图阅读时,根据以下具体实施方式最好地理解本公开的方面。应当强调的是,根据行业中的标准惯例,各种特征不是按比例绘制的。实际上,为了便于清楚地论述,各种特征的尺寸可以任意增大或减小。此外,本公开可以在各种示例中重复参考标号和/或字母。这种重复是出于简化和清楚的目的,而其本身并不表示所讨论的各种实施例和/或构造之间的关系。Aspects of the disclosure are best understood from the following Detailed Description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion. Furthermore, the present disclosure may repeat reference numerals and/or letters in various examples. This repetition is for simplicity and clarity and does not in itself indicate a relationship between the various embodiments and/or configurations discussed.

图1示出根据本公开的实施例的远程操作医疗系统。FIG. 1 illustrates a teleoperation medical system according to an embodiment of the present disclosure.

图2示出根据本公开的实施例的包括示例性针系统的医疗系统的方框图。Figure 2 shows a block diagram of a medical system including an exemplary needle system according to an embodiment of the present disclosure.

图3A至图3C示出根据本公开的各种实施例的示例性针轴的透视图。图3A示出包括分立链节(discrete link)的示例性针,图3B示出包括连续鞘管的示例性针,以及图3C示出包括盘管的示例性针。3A-3C illustrate perspective views of exemplary needle shafts according to various embodiments of the present disclosure. Figure 3A shows an example needle including discrete links, Figure 3B shows an example needle including a continuous sheath, and Figure 3C shows an example needle including a coiled tube.

图4示出根据本公开的实施例的示例性针的透视图。Figure 4 shows a perspective view of an exemplary needle according to an embodiment of the present disclosure.

图5示出根据本公开的实施例的示例性传感器管心针的透视图。Figure 5 illustrates a perspective view of an exemplary sensor stylet according to an embodiment of the present disclosure.

图6示出根据本公开的实施例的图5所示的横穿线6-6的示例性传感器管心针的一部分的透视图和部分横截面图。6 illustrates a perspective view and a partial cross-sectional view of a portion of the exemplary sensor stylet shown in FIG. 5 across line 6 - 6 in accordance with an embodiment of the disclosure.

图7A示出根据本公开的实施例的未弯曲状态下的图5所示的传感器管心针的示例性可操控部分的透视图。7A illustrates a perspective view of an exemplary steerable portion of the sensor stylet shown in FIG. 5 in an unbent state, according to an embodiment of the disclosure.

图7B示出根据本公开的实施例的图7A所示的示例性可操控部分的横截面图。7B illustrates a cross-sectional view of the exemplary steerable portion shown in FIG. 7A, according to an embodiment of the disclosure.

图8A和图8B示出根据本公开的在弯曲状态下的图7A所示的示例性可操控部分的透视图。图8A示出在示例性近侧接合枢转部(joint pivot)处弯曲的示例性可操控部分,以及图8B示出在示例性近侧接合枢转部和示例性远侧接合枢转部处弯曲的示例性可操控部分。8A and 8B illustrate perspective views of the exemplary steerable portion shown in FIG. 7A in a bent state according to the present disclosure. FIG. 8A shows an example steerable portion bent at an example proximal joint pivot, and FIG. 8B shows a joint at an example proximal joint pivot and an example distal joint pivot. Curved exemplary steerable portion.

图9示出根据本公开中的一个实施例的示例性针系统的透视图。具体地,图9示出图5所示的示例性传感器管心针,其定位在根据本公开的图4所示的示例性针内并且从其中延伸。Figure 9 shows a perspective view of an exemplary needle system according to one embodiment of the present disclosure. Specifically, FIG. 9 illustrates the example sensor stylet shown in FIG. 5 positioned within and extending from the example needle shown in FIG. 4 in accordance with the present disclosure.

图10示出根据本公开的实施例的图9所示的示例性针系统的示意图,该示例性针系统导航曲折路径(即,在患者的解剖结构内)。10 shows a schematic diagram of the exemplary needle system shown in FIG. 9 navigating a tortuous path (ie, within a patient's anatomy), according to an embodiment of the present disclosure.

图11示出根据本公开的实施例的图9所示的示例性针系统的示意图,该示例性针系统操控朝向目标区域。11 shows a schematic diagram of the exemplary needle system shown in FIG. 9 steered toward a target area, according to an embodiment of the present disclosure.

图12示出图9所示的当示例性针在示例性传感器管心针上推进时的示例性针系统的示意图。12 shows a schematic view of the example needle system shown in FIG. 9 as the example needle is advanced over the example sensor stylet.

图13示出根据本公开的实施例的图9所示的示例性针系统的示意图,该示例性针系统从目标区域获得活检。13 shows a schematic diagram of the exemplary needle system shown in FIG. 9 for obtaining a biopsy from a target region, according to an embodiment of the present disclosure.

图14为示出根据本公开的实施例的使用示例性传感器管心针的示例性方法的流程图。14 is a flowchart illustrating an example method of using an example sensor stylet according to an embodiment of the present disclosure.

具体实施方式Detailed ways

出于促进对本公开的原理的理解的目的,现将参照附图中所示的实施例,并将用特定的语言来描述所述实施例。然而,应该理解,并不旨在对本公开的范围进行限制。在本发明的方面的具体实施方式中,阐述了许多具体细节以便提供对所公开的实施例的透彻理解。然而,对本领域的技术人员而言显而易见的是,在没有这些特定细节的情况下也可以实践本公开的实施例。在其他情况下,未详细描述众所周知的方法、程序、部件以及电路,以免不必要地模糊本发明的实施例的方面。For the purposes of promoting an understanding of the principles of the disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It should be understood, however, that no limitation of the scope of the present disclosure is intended. In the Detailed Description of Aspects of the Invention, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, to one skilled in the art that the disclosed embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the embodiments of the invention.

所述设备、器械、方法的任何改变和进一步修改,以及本公开的原理的任何进一步应用均是可设想的,正如本公开所涉及的领域的技术人员通常会想到的那样。具体地,完全可以设想关于一个实施例所述的特征、部件和/或步骤可以与关于本公开的其他实施例所述的特征、部件和/或步骤组合。此外,本文所提供的尺寸用于特定示例,并且可以设想可利用不同的大小、尺寸和/或比例来实施本公开的概念。为避免不必要的描述性重复,根据一个说明性实施例所描述的一个或多个部件或动作(action)能够适用于其他说明性实施例或从其他说明性实施例中省略。出于简洁的目的,这些组合的许多重复将不单独进行描述。为简单起见,在一些情况下,贯穿附图使用的相同的标号指的是相同的或相似的部分。Any changes and further modifications of the described apparatus, apparatus, methods, and any further applications of the principles of the present disclosure are contemplated, as would normally occur to one skilled in the art to which the present disclosure pertains. In particular, it is fully conceivable that features, components and/or steps described with respect to one embodiment may be combined with features, components and/or steps described with respect to other embodiments of the present disclosure. Additionally, the dimensions provided herein are for specific examples and it is contemplated that different sizes, dimensions and/or ratios may be utilized to implement the concepts of the present disclosure. To avoid unnecessary duplication of description, one or more components or actions described with respect to one illustrative embodiment can be applied to or omitted from other illustrative embodiments. For the sake of brevity, many iterations of these combinations will not be described individually. For simplicity, in some instances, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

下面的实施例将依据器械在三维空间中的状态来描述各种器械和器械的部分。如本文所使用的,术语“位置”指的是对象或对象的一部分在三维空间(例如,沿笛卡尔X,Y,Z坐标的三个平移自由度)中的部位。如本文所使用的,术语“取向”指的是对象或对象的一部分的旋转位移(三个旋转自由度-例如,滚动、俯仰和偏转)。如本文所使用的,术语“姿态”指的是对象或对象的一部分在至少一个平移自由度中的位置,以及该对象或该对象的一部分在至少一个旋转自由度(多达六个总自由度)中的取向。如本文所使用的,术语“形状”指的是沿细长对象测量的一组姿态、位置或取向。The following embodiments will describe various instruments and parts of instruments in terms of their state in three-dimensional space. As used herein, the term "position" refers to the location of an object or a portion of an object in three-dimensional space (eg, three translational degrees of freedom along Cartesian X, Y, Z coordinates). As used herein, the term "orientation" refers to the rotational displacement (three rotational degrees of freedom - eg, roll, pitch, and yaw) of an object or a portion of an object. As used herein, the term "pose" refers to the position of an object or part of an object in at least one translational degree of freedom, and the position of the object or part of the object in at least one rotational degree of freedom (up to six total degrees of freedom). ) in the orientation. As used herein, the term "shape" refers to a set of poses, positions or orientations measured along an elongate object.

应该认识到,术语“近侧”和“远侧”在本文参考操纵从临床医生延伸到手术部位的器械的端部的临床医生使用。术语“近侧”指的是器械更靠近临床医生的部分,而术语“远侧”指的是器械更远离临床医生并且更靠近手术部位的部分。为了简洁和清楚起见,空间术语诸如“水平”、“竖直”、“在上方”以及“在下面”在本文可以参考附图使用。然而,手术器械用于许多取向和位置中,并且这些术语并非旨在是限制性的和绝对的。It should be appreciated that the terms "proximal" and "distal" are used herein with reference to a clinician manipulating the end of an instrument extending from the clinician to the surgical site. The term "proximal" refers to the portion of the instrument that is closer to the clinician, while the term "distal" refers to the portion of the instrument that is further from the clinician and closer to the surgical site. For purposes of brevity and clarity, spatial terms such as "horizontal," "vertical," "above," and "below" may be used herein with reference to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.

本公开总体涉及用于微创医疗程序中的可操控的、柔性针系统,微创医疗程序包括但不限于诊断程序、手术程序和/或治疗程序。在一些情况下,本公开的实施例经配置作为远程操作系统的一部分。本领域的技术人员将意识到,本文公开的可操控的、柔性针系统可以用于要求可操控的、柔性针系统的类似(例如,非远程操作的)应用中。The present disclosure generally relates to steerable, flexible needle systems for use in minimally invasive medical procedures, including but not limited to diagnostic, surgical, and/or therapeutic procedures. In some cases, embodiments of the present disclosure are configured as part of a remote operating system. Those skilled in the art will appreciate that the steerable, flexible needle systems disclosed herein may be used in similar (eg, non-teleoperated) applications requiring a steerable, flexible needle system.

本文公开的针系统包括主动可操控的管心针,所述管心针经配置诸如通过非限制性的示例柔性针引导柔性医疗器械。本文公开的柔性器械和可操控管心针以可伸缩方式布置,以允许器械在管心针推进到组织中时或之后在管心针上朝远侧推进。主动可操控的管心针能够在柔性器械导航通过解剖组织时充当柔性器械的内部引导件。在一方面,本文公开的针系统经配置包括位置/形状传感器,位置/形状传感器沿管心针长度轴向延伸并且在或邻近管心针尖端处终止。本文公开的管心针可以经配置在插入并前进通过解剖组织期间使传感器上的弯曲应变最小化,而且支撑并引导针。本文公开的针系统的这些特征可以增强针在微创程序中的插入期间的精度、可操控性、稳定性以及距离/轨迹控制。因此,本文公开的针系统可以改善柔性针的性能,并且可以增加柔性针(并且特别地,柔性内窥镜针)的合适应用的范围。例如,在一种情况下,本文公开的柔性针系统可以使用户能够更准确地到达目标活检位置并对其取样,更容易在临界结构周围进行导航,并且减少不准确活检的可能性。The needle systems disclosed herein include an actively steerable stylet configured to guide a flexible medical instrument, such as through a non-limiting example flexible needle. The flexible instruments and steerable stylets disclosed herein are telescopically arranged to allow the instrument to be advanced distally over the stylet as or after the stylet is advanced into tissue. The actively steerable stylet can act as an internal guide for the flexible instrument as it navigates through the anatomy. In one aspect, the needle systems disclosed herein are configured to include a position/shape sensor extending axially along the length of the stylet and terminating at or adjacent to the stylet tip. The stylets disclosed herein can be configured to minimize bending strain on the sensor and support and guide the needle during insertion and advancement through anatomical tissue. These features of the needle systems disclosed herein can enhance the precision, maneuverability, stability, and distance/trajectory control of needles during insertion in minimally invasive procedures. Accordingly, the needle systems disclosed herein can improve the performance of flexible needles and can increase the range of suitable applications for flexible needles, and in particular flexible endoscopic needles. For example, in one instance, a flexible needle system disclosed herein may enable a user to more accurately reach and sample a targeted biopsy site, make it easier to navigate around critical structures, and reduce the likelihood of inaccurate biopsies.

根据各种实施例,医疗程序诸如活检程序可以使用远程操作系统实施以引导器械递送。参考附图的图1,用于例如包括诊断程序、治疗程序或手术程序的医疗程序中的远程操作医疗系统通常通过参考标号100来指示。如将要描述的,本公开的远程操作医疗系统受外科医生的远程操作的控制。在替代实施例中,远程操作医疗系统可以受经编程以执行程序或子程序的计算机的部分控制。在其他替代实施例中,受经编程以执行程序或子程序的计算机的完全控制的完全自动化的医疗系统可以用于执行程序或子程序。如图1所示,远程操作医疗系统100大体包括安装到或靠近手术台O的远程操作组件102,其中患者P定位在手术台O上。医疗器械系统104可操作地联接到远程操作组件102。操作者输入系统106允许外科医生或其他类型的临床医生S观察表示手术部位的图像,并且控制医疗器械系统104的操作。According to various embodiments, medical procedures, such as biopsy procedures, may be performed using a remote operating system to guide instrument delivery. Referring to FIG. 1 of the drawings, a teleoperated medical system for use in medical procedures, for example including diagnostic procedures, therapeutic procedures or surgical procedures, is generally indicated by reference numeral 100 . As will be described, the teleoperation medical system of the present disclosure is controlled by the surgeon's teleoperation. In alternative embodiments, the teleoperated medical system may be controlled in part by a computer programmed to execute a program or subroutine. In other alternative embodiments, a fully automated medical system under the complete control of a computer programmed to execute the procedure or subroutine may be used to execute the procedure or subroutine. As shown in FIG. 1 , the teleoperation medical system 100 generally includes a teleoperation assembly 102 mounted to or proximate to an operating table O on which a patient P is positioned. The medical device system 104 is operatively coupled to the teleoperation assembly 102 . The operator input system 106 allows a surgeon or other type of clinician S to view images representing the surgical site and to control the operation of the medical device system 104 .

操作者输入系统106可以位于外科医生的控制台处,外科医生的控制台通常位于与手术台O相同的房间中。然而,应该理解,外科医生S能够位于不同的房间中或完全不同于患者P的建筑物中。操作者输入系统106通常包括用于控制医疗器械系统104的一个或多个控制设备。一个或多个控制设备可以包括许多各种输入设备中的一个或多个或任意数量,诸如手柄、操纵杆、追踪球、数据手套、触发抢、手操作的控制器、语音识别设备、触摸屏、人体运动或存在传感器等。在一些实施例中,(一个或多个)控制设备将具有与远程操作组件的医疗器械相同的自由度,以向外科医生提供临场感,(一个或多个)控制设备与器械一体的感知,从而使得外科医生具有好像置身在手术部位处直接控制器械的强烈感觉。在其他实施例中,(一个或多个)控制设备可以具有比相关联的医疗器械更多或更少的自由度,并且仍向外科医生提供临场感。在一些实施例中,(一个或多个)控制设备为手动输入设备,手动输入设备以六个自由度移动并且还可以包括用于致动器械的可致动柄部(例如,用于闭合抓取的钳头、施加电势到电极、递送药用治疗件等)。The operator input system 106 may be located at the surgeon's console, which is typically located in the same room as the operating table O. However, it should be understood that the surgeon S could be located in a different room or in a building entirely different from the patient P. Operator input system 106 typically includes one or more control devices for controlling medical device system 104 . The one or more control devices may include one or more or any number of a number of various input devices, such as gamepads, joysticks, trackballs, data gloves, trigger guns, hand-operated controllers, voice recognition devices, touch screens, Human motion or presence sensors, etc. In some embodiments, the control device(s) will have the same degrees of freedom as the medical instrument of the teleoperation assembly to provide the surgeon with a sense of presence, a perception that the control device(s) are integrated with the instrument, This gives the surgeon a strong sense of being at the surgical site and directly controlling the instrument. In other embodiments, the control device(s) may have more or fewer degrees of freedom than the associated medical instrument and still provide the surgeon with a sense of presence. In some embodiments, the control device(s) is a manual input device that moves in six degrees of freedom and may also include an actuatable handle for actuating the instrument (e.g., for closing the grip extraction of forceps, application of electrical potentials to electrodes, delivery of medical treatments, etc.).

远程操作组件102支撑医疗器械系统104,并且可以包括一个或多个非伺服控制的链节(例如,可以手动定位并锁定在恰当位置中的一个或多个链节,其通常被称作机构结构(set-up structure)的运动学结构和远程操作操纵器。远程操作组件102包括驱动医疗器械系统104上的输入的多个马达。这些马达响应来自控制系统(例如,控制系统112)的命令而移动。马达包括驱动系统,当联接到医疗器械系统104时,驱动系统可以将医疗器械推进到自然孔口或手术创建的解剖孔口中。其他机动化的驱动系统可以多个自由度移动医疗器械的远端,多个自由度可以包括三个线性运动自由度(例如,沿X,Y,Z笛卡尔坐标轴的线性运动)和三个旋转运动自由度(例如,围绕X,Y,Z笛卡尔坐标轴的旋转)。此外,马达能够用于致动器械的可铰接的(articulable)端部执行器,以用于抓取活检设备等的钳头中的组织。The teleoperated assembly 102 supports the medical device system 104 and may include one or more non-servo-controlled links (e.g., one or more links that can be manually positioned and locked in place, commonly referred to as mechanism structures). (set-up structure) kinematics and teleoperation manipulator. Teleoperation assembly 102 includes a plurality of motors that drive inputs on medical device system 104. These motors respond to commands from a control system (e.g., control system 112) Movement. The motor includes a drive system that, when coupled to the medical device system 104, can advance the medical device into a natural orifice or a surgically created anatomical orifice. Other motorized drive systems can move the medical device in multiple degrees of freedom Distal, multiple degrees of freedom can include three degrees of freedom of linear motion (e.g., linear motion along X, Y, Z Cartesian axes) and three degrees of freedom of rotational motion (e.g., Cartesian motion around X, Y, Z axis of rotation). Furthermore, the motor can be used to actuate an articulable end effector of an instrument for grasping tissue in a forceps head of a biopsy device or the like.

远程操作医疗系统100还包括带有一个或多个子系统的传感器系统108,用于接收关于远程操作组件的器械的信息。此类子系统可以包括位置传感器系统(例如,电磁(EM)传感器系统);形状传感器系统,其用于确定导管尖端和/或一个或多个区段沿器械系统104的柔性主体的位置、取向、速率、速度、姿态和/或形状;和/或可视化系统,其用于捕捉来自导管系统的远端的图像。The teleoperated medical system 100 also includes a sensor system 108 with one or more subsystems for receiving information about the instrumentation of the teleoperated components. Such subsystems may include position sensor systems (e.g., electromagnetic (EM) sensor systems); shape sensor systems for determining the position, orientation of the catheter tip and/or one or more segments along the flexible body of the instrument system 104 , velocity, velocity, pose and/or shape; and/or a visualization system for capturing images from the distal end of the catheter system.

远程操作医疗系统100还包括显示系统110,其用于显示通过传感器系统108的子系统生成的手术部位和(一个或多个)医疗器械系统104的图像或表象。显示器110和操作者输入系统106可以被取向成使得操作者能够利用临场感的感知控制医疗器械系统104和操作者输入系统106。The teleoperated medical system 100 also includes a display system 110 for displaying images or representations of the surgical site and medical instrument system(s) 104 generated by the subsystems of the sensor system 108 . Display 110 and operator input system 106 may be oriented to enable an operator to control medical device system 104 and operator input system 106 with a sense of presence.

替代地或另外地,显示系统110可以使用成像技术诸如计算机断层成像技术(CT)、核磁共振成像(MRI)、荧光镜检查、热像图、超声波、光学相干断层扫描(OCT)、热成像、阻抗成像、激光成像、纳米管X-射线成像等呈现术前或术中记录和/或成像的手术部位的图像。所呈现的术前和术中图像可以包括二维图像、三维图像或四维(包括例如,基于信息的时间的或基于信息的速度)图像和用于再现图像的相关联的图像数据集。Alternatively or additionally, the display system 110 may use imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), fluoroscopy, thermography, ultrasound, optical coherence tomography (OCT), thermal imaging, Impedance imaging, laser imaging, nanotube x-ray imaging, etc. present images of the surgical site recorded and/or imaged pre- or intra-operatively. The presented preoperative and intraoperative images may include two-dimensional, three-dimensional, or four-dimensional (including, for example, information-based time or information-based velocity) images and associated image data sets used to reproduce the images.

在一些实施例中,显示系统110可以显示可视化图像,其中医疗器械的实际位置与术前图像或同步图像配准(例如,动态地参考),以向外科医生呈现处于医疗器械远端部位处的内部手术部位的虚拟图像。In some embodiments, the display system 110 may display a visualization in which the actual position of the medical device is registered (e.g., dynamically referenced) with the pre-operative image or the synchronous image to present the surgeon with the position at the distal site of the medical device. Virtual image of the internal surgical site.

在其他实施例中,显示系统110可以显示虚拟可视化图像,其中医疗器械的实际位置与先前图像(包括术前记录的图像)或同步图像配准,以向外科医生呈现处于手术部位的医疗器械的虚拟图像。医疗器械系统104的一部分的图像可以叠加在虚拟图像上,以辅助外科医生控制医疗器械。In other embodiments, the display system 110 may display a virtual visualization image in which the actual position of the medical device is registered with previous images (including preoperatively recorded images) or synchronized images to present the surgeon with the medical device at the surgical site. virtual image. An image of a portion of the medical instrument system 104 may be superimposed on the virtual image to assist the surgeon in controlling the medical instrument.

远程操作医疗系统100还包括控制系统112。控制系统112包括至少一个存储器和至少一个处理器(未示出),并且通常包括多个处理器,用于实现医疗器械系统104、操作者输入系统106、传感器系统108以及显示系统110之间的控制。控制系统112还包括编程的指令(例如,储存指令的计算机可读介质)以实施根据本文公开的方面所述的方法中的一些或全部。虽然控制系统112在图1的简化示意图中被视为单个方框,但该系统可以包括两个或更多个数据处理电路,其中处理的一部分任选地在远程操作组件102上或与远程操作组件102相邻被执行,处理的另一部分在操作者输入系统106等处执行。可以采用多种多样的集中式或分布式数据处理架构中的任一种。类似地,编程的指令可以实施为多个单独的程序或子程序,或者它们可以结合到本文所述的远程操作系统的多个其他方面中。在一个实施例中,控制系统112支持无线通信协议,诸如蓝牙、红外数据通讯(IrDA)、家庭无线射频(HomeR)F、IEEE 802.11、数字增强无绳通讯(DECT)以及无线遥测技术。The teleoperated medical system 100 also includes a control system 112 . Control system 112 includes at least one memory and at least one processor (not shown), and typically includes multiple processors, for enabling communication between medical device system 104, operator input system 106, sensor system 108, and display system 110. control. Control system 112 also includes programmed instructions (eg, a computer-readable medium storing instructions) to implement some or all of the methods described in accordance with aspects disclosed herein. Although control system 112 is viewed as a single block in the simplified schematic diagram of FIG. Component 102 is executed adjacently, another portion of the process is executed at operator input system 106 or the like. Any of a variety of centralized or distributed data processing architectures may be employed. Similarly, programmed instructions may be implemented as separate programs or subroutines, or they may be incorporated into various other aspects of the remote operating system described herein. In one embodiment, the control system 112 supports wireless communication protocols such as Bluetooth, Infrared Data Communication (IrDA), Home Radio Frequency (HomeR)F, IEEE 802.11, Digital Enhanced Cordless Communications (DECT), and wireless telemetry.

在一些实施例中,控制系统112可以包括一个或多个伺服控制器,该一个或多个伺服控制器从医疗器械系统104接收力和/或扭矩反馈。响应于所述反馈,伺服控制器将信号传输至操作者输入系统106。(一个或多个)伺服控制器还可以传输指示远程操作组件102移动(一个或多个)医疗器械系统104的信号,医疗器械系统104经由人体中的开口延伸到患者体内的内部手术部位。可以使用任何合适的常规或专门的伺服控制器。伺服控制器可以与远程操作组件102分开或成为一体。在一些实施例中,伺服控制器和远程操作组件被提供作为与患者身体相邻安置的远程操作臂推车的一部分。In some embodiments, control system 112 may include one or more servo controllers that receive force and/or torque feedback from medical device system 104 . In response to the feedback, the servo controller transmits a signal to the operator input system 106 . The servo controller(s) may also transmit signals instructing the teleoperation assembly 102 to move the medical device system(s) 104 extending through the opening in the body to an internal surgical site within the patient. Any suitable conventional or specialized servo controller may be used. The servo controller may be separate from or integrated with the remote operation assembly 102 . In some embodiments, the servo controller and teleoperated assembly are provided as part of a teleoperated arm cart positioned adjacent to the patient's body.

控制系统112可以进一步包括虚拟可视化系统,以向(一个或多个)医疗器械系统104提供导航辅助。使用虚拟可视化系统的虚拟导航基于对与解剖通道的三维结构相关联的所获取的数据集的参考。更具体地,虚拟可视化系统处理使用成像技术成像的手术部位的图像,成像技术为诸如计算机断层成像技术(CT)、核磁共振成像(MRI)、荧光镜检查、热像图、超声波、光学相干断层扫描(OCT)、热成像、阻抗成像、激光成像、纳米管X-射线成像等。使用软件将所记录的图像转换成部分或全部解剖器官或解剖区域的二维或三维合成表象。图像数据集与合成表象相关联。合成表象和图像数据集描述通道的各种位置和形状以及其连通性。用于生成合成表象的图像可以临床程序期间在术前或术中记录。在替代实施例中,虚拟可视化系统可以使用标准表象(即,没有患者具体)或标准表象和患者具体数据的混合。合成表象和通过合成表象生成的虚拟图像可以表示在运动的一个或多个阶段期间(例如,在肺的吸气/呼气循环期间)的可变形解剖区域的静态姿态。Control system 112 may further include a virtual visualization system to provide navigational assistance to medical device system(s) 104 . Virtual navigation using the virtual visualization system is based on reference to acquired datasets associated with the three-dimensional structure of the anatomical passage. More specifically, the virtual visualization system processes images of surgical sites imaged using imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), fluoroscopy, thermography, ultrasound, optical coherence tomography, Scanning (OCT), thermal imaging, impedance imaging, laser imaging, nanotube X-ray imaging, etc. Software is used to convert the recorded images into a 2D or 3D composite representation of part or all of an anatomical organ or region. An image dataset is associated with a synthetic representation. Synthetic representation and image datasets describe the various locations and shapes of channels and their connectivity. The images used to generate the composite representation can be recorded preoperatively or intraoperatively during the clinical procedure. In alternative embodiments, the virtual visualization system may use standard representations (ie, no patient-specific) or a mix of standard representations and patient-specific data. The synthetic representation and the virtual images generated by the synthetic representation may represent the static pose of the deformable anatomical region during one or more phases of motion (eg, during the inspiratory/expiratory cycle of the lungs).

在虚拟导航程序期间,传感器系统108可以用于计算器械相对于患者解剖结构的合适部位。所述部位能够用于产生患者解剖结构的宏观水平追踪图像和患者解剖结构的虚拟内部图像。利用术前记录的手术图像(诸如,来自虚拟可视化系统的图像)使用光纤传感器来配准并且显示医疗实施的各种系统是已知的。例如美国专利申请No.13/107,562(提交于2011年5月13日)(公开为“Medical System Providing Dynamic Registration of aModel of an Anatomical Structure for Image-Guided Surgery(为图像引导的手术提供解剖结构模型的动态配准的医疗系统)”)公开了一种此系统,所述专利申请的全文以引用方式并入本文。During a virtual navigation procedure, the sensor system 108 may be used to calculate the proper location of the instrument relative to the patient's anatomy. The regions can be used to generate macroscopic level tracking images of the patient's anatomy and virtual internal images of the patient's anatomy. Various systems are known that utilize fiber optic sensors to register and display medical practices using pre-operatively recorded surgical images, such as images from virtual visualization systems. For example, U.S. Patent Application No. 13/107,562 (filed May 13, 2011) (disclosed as "Medical System Providing Dynamic Registration of a Model of an Anatomical Structure for Image-Guided Surgery) A medical system for dynamic registration)"), which is incorporated herein by reference in its entirety.

远程操作医疗系统100可以进一步包括任选的操作和支撑系统(未示出),诸如照明系统、操控控制系统、冲洗系统和/或抽吸系统。在替代实施例中,远程操作系统可以包括多于一个的远程操作组件和/或多于一个的操作者输入系统。操纵器组件的确切的数目将取决于手术程序和手术室内的空间约束,以及其他因素。操作者输入系统可以放置在一起或者其可以定位在分开的位置中。多个操作者输入系统允许多于一个的操作者以各种组合控制一个或多个操纵器组件。The teleoperated medical system 100 may further include optional operating and support systems (not shown), such as lighting systems, steering control systems, irrigation systems, and/or suction systems. In alternative embodiments, the teleoperating system may include more than one teleoperating component and/or more than one operator input system. The exact number of manipulator assemblies will depend on the surgical procedure and space constraints within the operating room, among other factors. The operator input systems can be placed together or they can be located in separate locations. Multiple operator input systems allow more than one operator to control one or more manipulator assemblies in various combinations.

图2示出医疗器械系统200,其包括示例性针系统205、致动器210以及传感器系统108。针系统205可以与远程操作医疗系统100的医疗器械系统104相同。在所描画的实施例中,针系统205通过致动器210进行操纵(例如,机械地弯扭(articulated)或以其他方式移动)。在一些实施例中,致动器210可以通过远程操作平台215进行控制(例如,远程操作平台215可以将控制信号发送到致动器210)。远程操作平台215可以包括图1所示的远程操作医疗系统102。在程序期间,远程操作平台215可以实现除针系统205以外的各种医疗器械的机械弯扭和控制,作为非限制性示例,各种医疗器械为诸如组织抓取器、电外科烧灼探针、牵开器、吻合器、血管密封器、内窥镜、解剖刀、超声波剪切器以及抽吸/冲洗器械。FIG. 2 shows a medical device system 200 including an exemplary needle system 205 , actuator 210 , and sensor system 108 . Needle system 205 may be identical to medical instrument system 104 of teleoperated medical system 100 . In the depicted embodiment, needle system 205 is manipulated (eg, mechanically articulated or otherwise moved) by actuator 210 . In some embodiments, actuator 210 may be controlled via teleoperation platform 215 (eg, teleoperation platform 215 may send control signals to actuator 210). The teleoperation platform 215 may include the teleoperation medical system 102 shown in FIG. 1 . During the procedure, the teleoperation platform 215 can enable the mechanical bending and control of various medical instruments other than the needle system 205, such as tissue grabbers, electrosurgical cautery probes, Retractors, staplers, vessel sealers, endoscopes, scalpels, ultrasonic cutters, and suction/irrigation instruments.

在所描画的实施例中,医疗器械系统200包括柔性鞘管225。柔性鞘管225为中空导管,其被成形且经配置可滑动地接收针系统205。在一些实施例中,柔性鞘管225为递送器械,其经配置将针系统递送到患者体内的目标部位。在那方面,柔性鞘管225包括从近端232延伸到远端234的管腔230。在一些实施例中,柔性鞘管225可以包括柔性支气管器械,诸如用于肺的检查、诊断、活检或治疗中的支气管窥镜或支气管导管。在一些实施例中,柔性鞘管225可以包括柔性胃肠器械,诸如用于胃肠器官的检查、诊断、活检或治疗中的内窥镜。医疗器械系统200还可以适合于在各种解剖系统中的任何一个中经由自然通道或手术创建的连接通道进行其他组织的导航和治疗,各种解剖系统包括结肠、肠、肾脏、大脑、心脏、循环系统等。In the depicted embodiment, medical device system 200 includes a flexible sheath 225 . Flexible sheath 225 is a hollow catheter shaped and configured to slidably receive needle system 205 . In some embodiments, flexible sheath 225 is a delivery instrument configured to deliver the needle system to a target site within the patient's body. In that regard, the flexible sheath 225 includes a lumen 230 extending from a proximal end 232 to a distal end 234 . In some embodiments, the flexible sheath 225 may comprise a flexible bronchial instrument, such as a bronchoscope or a bronchial tube used in the examination, diagnosis, biopsy or treatment of the lung. In some embodiments, flexible sheath 225 may comprise a flexible gastrointestinal instrument, such as an endoscope used in the examination, diagnosis, biopsy, or treatment of gastrointestinal organs. The medical device system 200 may also be adapted for navigation and treatment of other tissues via natural or surgically created connecting channels in any of a variety of anatomical systems, including colon, bowel, kidney, brain, heart, circulatory system etc.

在一些实施例中,医疗器械系统200可以用于非远程操作的探查性程序或者用于涉及传统的手动操作的医疗器械(诸如内窥镜)的程序中。在此类情况下,致动器210可以由任选的手动控制器220进行手动控制。在一些实施例中,任选的手动控制器220为致动器210本身(例如,用于转针的旋钮、柄部或夹持件)。在其他实施例中,任选的手动控制器220能够为(一个或多个)柄部、(一个或多个)触发器、(一个或多个)控制杆、(一个或多个)夹持件或用于向致动器210提供控制输入的任何其他用户界面。任选的手动控制器220可以直接的机械联动装置并和/或者经由电子控制件连接到致动器210,并且可以有线和/或无线方式与致动器210进行通信。In some embodiments, the medical device system 200 may be used in exploratory procedures that are not teleoperated or in procedures involving traditional manually operated medical devices such as endoscopes. In such cases, actuator 210 may be manually controlled by optional manual controller 220 . In some embodiments, optional manual control 220 is actuator 210 itself (eg, a knob, handle, or grip for turning a needle). In other embodiments, optional manual control 220 can be handle(s), trigger(s), lever(s), grip(s) components or any other user interface for providing control input to actuator 210. An optional manual controller 220 may be connected to the actuator 210 by direct mechanical linkage and/or via electronic controls and may be in wired and/or wireless communication with the actuator 210 .

针系统205包括细长器械235,细长器械235包括柔性部分238和刚性部分240。在所描画的实施例中,细长器械235包括可操控的柔性针,可操控的柔性针包括在刚性部分240处的尖锐的针尖端245(下面关于图3进一步详细描述)。针235包括从近端248延伸到远端249的管腔246(图4中示出)。在其他实施例中,针系统205包括代替针的另外类型的细长器械。Needle system 205 includes an elongated instrument 235 that includes a flexible portion 238 and a rigid portion 240 . In the depicted embodiment, elongated instrument 235 includes a steerable flexible needle including a sharpened needle tip 245 at rigid portion 240 (described in further detail below with respect to FIG. 3 ). Needle 235 includes a lumen 246 (shown in FIG. 4 ) that extends from a proximal end 248 to a distal end 249 . In other embodiments, needle system 205 includes another type of elongate instrument instead of a needle.

针系统205包括可操控的管心针260。在所描画的实施例中,管心针260被示出延伸通过针235的管腔246。针235的管腔246被成形并经配置可滑动地接收管心针260。管心针260和针235之间的结构关系结合图5在下面进一步描述。管心针260从近端262延伸到远端264。管心针包括细长的柔性主体266和可操控部分268。传感器元件270沿主体266的纵向轴线LA轴向延伸。在所描画的实施例中,传感器元件270延伸到可操控部分268中。在其他实施例中,传感器元件270邻近可操控部分268终止。Needle system 205 includes a steerable stylet 260 . In the depicted embodiment, the stylet 260 is shown extending through the lumen 246 of the needle 235 . Lumen 246 of needle 235 is shaped and configured to slidably receive stylet 260 . The structural relationship between stylet 260 and needle 235 is further described below in connection with FIG. 5 . Stylet 260 extends from proximal end 262 to distal end 264 . The stylet includes an elongated flexible body 266 and a steerable portion 268 . The sensor element 270 extends axially along the longitudinal axis LA of the body 266 . In the depicted embodiment, sensor element 270 extends into steerable portion 268 . In other embodiments, the sensor element 270 terminates adjacent to the steerable portion 268 .

针系统205能够通过致动器210操纵。具体地,管心针260能够通过致动器210操纵。在一个示例中,致动器210能够通过操控管心针260的可操控部分268沿期望的手术轨迹到达患者内的目标部位,改变可操控部分268的形状和/或改变可操控部分268的取向来操纵管心针260(并且,因此操纵针235)。管心针260的可操控部分268将参考图4和图5在下面进一步详细地描述。Needle system 205 can be manipulated by actuator 210 . Specifically, stylet 260 is steerable by actuator 210 . In one example, actuator 210 is capable of changing the shape of steerable portion 268 and/or changing the orientation of steerable portion 268 by manipulating steerable portion 268 of stylet 260 to a target site within the patient along a desired surgical trajectory. to manipulate the stylet 260 (and, therefore, the needle 235). Steerable portion 268 of stylet 260 will be described in further detail below with reference to FIGS. 4 and 5 .

针系统205还可以容纳缆线、联动装置或在致动器210和管心针260之间延伸以可控制地弯曲或转动管心针260的可操控部分268的其他操控控制件(未在图2中示出)。在一些实施例中,针235能够限定一个或多个附加管腔,其他医疗器械、缆线、联动装置和/或其他操控控制可以延伸通过所述附加管腔。Needle system 205 may also house a cable, linkage, or other steerable control (not shown) extending between actuator 210 and stylet 260 to controllably bend or turn steerable portion 268 of stylet 260. 2 shown). In some embodiments, needle 235 can define one or more additional lumens through which other medical instruments, cables, linkages, and/or other steering controls can extend.

在由远程操作组件致动器械系统200的实施例中,致动器210可以包括联接到远程操作组件的机动化驱动元件的驱动输入。在手动操作器械系统200的实施例中,致动器210可以包括抓取特征件、手动致动器以及用于手动控制器械系统的运动的其他部件。In embodiments where instrument system 200 is actuated by a teleoperated assembly, actuator 210 may include a drive input coupled to a motorized drive element of the teleoperated assembly. In embodiments of the manually operated instrument system 200, the actuator 210 may include gripping features, manual actuators, and other components for manually controlling the movement of the instrument system.

在各种实施例中,针系统205能够包括任意数量的可操控的柔性针和相应的管心针,如通过任选的针280和任选的管心针282所指示的(连同附加的针所需的任何专用的或共享的致动元件、控制元件、感测元件和/或处理元件)。In various embodiments, needle system 205 can include any number of steerable flexible needles and corresponding stylets, as indicated by optional needle 280 and optional stylet 282 (along with additional needle any dedicated or shared actuation elements, control elements, sensing elements, and/or processing elements required).

如本文所使用的,针指的是广泛类别的柔性针,其带有在基部处的控制输入和/或端口(即,在患者身体的外部)以及旨在用于刺入或刺穿目标组织的远侧区域。根据针的形状和机械性质,针和患者解剖结构(即,目标组织和/或手术入口点与目标组织之间的任何介于中间的解剖结构)之间的相互作用力能够使针偏斜,使得能够通过向针的基部简单地施加旋转来提供操控。替代地或另外地,针235能够由管心针260(和致动器210)操纵,以提供成形和方向性。同具有低轴向刚度并且不适合于穿透或刺穿的导管型设备相比,可操控针通常具有足够高的轴向刚度和尖端形状,以允许其借助最小的轴向挤压刺穿或穿透组织。As used herein, needle refers to a broad class of flexible needles with control inputs and/or ports at the base (i.e., outside of the patient's body) and intended for penetrating or penetrating target tissue the far side area. Depending on the shape and mechanical properties of the needle, interaction forces between the needle and the patient anatomy (i.e., the target tissue and/or any intervening anatomy between the surgical entry point and the target tissue) can deflect the needle, This enables manipulation to be provided by simply applying rotation to the base of the needle. Alternatively or additionally, needle 235 can be steered by stylet 260 (and actuator 210 ) to provide shaping and directionality. Steerable needles typically have sufficiently high axial stiffness and tip shape to allow them to puncture or Penetrates tissue.

注意,与针235相关联的术语“柔性”应该被广泛地解释。实质上,它意味着针能够弯曲而无损害。在一些实施例中,如图3A所示,柔性针290可以包括一系列密集的部件291,其类似于蛇形布置中的“椎骨”。例如,参见美国专利No.6,817,974和美国专利申请公开No.2013/0046317,两者的全部内容均以引用方式并入本文。在此布置中,每个部件291是运动链中的短链节,并且每个链节之间的可移动机械约束(例如,销铰、插口结合(cup andball)等)可以允许链节之间的一个(例如,俯仰)或两个(例如,俯仰或偏转)自由度(DOF)的相对运动。在其他实施例中,针290为连续的,诸如图3B所示的封闭的、弹性体的、可弯曲的管294(例如,镍钛诺、聚合物等)或者如图3C所示开放的、可弯曲的管296(例如,切口切割(kerf-cut)管、螺旋盘管等)。在图3C所示的实施例中,管296包括绕成盘旋或盘绕配置的一定柔性长度的材料,以形成有弹性的柔性管状主体。例如,管296可以包括类似于在美国专利申请公开No.2012/0123395中所描述的特征,所述专利申请的全部内容以引用方式并入本文。Note that the term "flexible" in association with needle 235 should be interpreted broadly. Essentially, it means that the needle can be bent without damage. In some embodiments, as shown in FIG. 3A , flexible needle 290 may comprise a series of densely packed components 291 that resemble "vertebrae" in a serpentine arrangement. See, eg, US Patent No. 6,817,974 and US Patent Application Publication No. 2013/0046317, both of which are incorporated herein by reference in their entirety. In this arrangement, each member 291 is a short link in a kinematic chain, and movable mechanical constraints (e.g., pin hinges, cup and balls, etc.) One (for example, pitch) or two (for example, pitch or yaw) degrees of freedom (DOF) of relative motion. In other embodiments, the needle 290 is continuous, such as a closed, elastomeric, bendable tube 294 (e.g., nitinol, polymer, etc.) as shown in FIG. 3B or an open, flexible tube 294 as shown in FIG. 3C. A bendable tube 296 (eg, kerf-cut tube, helical coil, etc.). In the embodiment shown in FIG. 3C, tube 296 comprises a flexible length of material wound into a coiled or coiled configuration to form a resilient flexible tubular body. For example, tube 296 may include features similar to those described in US Patent Application Publication No. 2012/0123395, which is incorporated herein by reference in its entirety.

柔性针290可以由任何合适的生物相容材料制成,所述材料提供必备的拉伸和弯曲性质。作为非限制示例,合适的材料可以包括形状记忆材料,诸如镍钛诺、不锈钢以及塑料。在一些实施例中,柔性针290整个由相同的材料制成。在其他实施例中,柔性针290可以由两种或更多种不同的材料制成。在一些实施例中,柔性针290可用生物相容的润滑剂涂覆。Flexible needle 290 may be made from any suitable biocompatible material that provides the requisite stretch and bend properties. Suitable materials may include, by way of non-limiting example, shape memory materials such as nitinol, stainless steel, and plastic. In some embodiments, flexible needle 290 is made entirely of the same material. In other embodiments, flexible needle 290 may be made of two or more different materials. In some embodiments, flexible needle 290 may be coated with a biocompatible lubricant.

图4示出针235的远侧部分300。如上关于图2所提及,针235包括柔性部分238和刚性部分240。柔性部分238相对于刚性部分240而言是近侧。在所描画的实施例中,柔性部分238包括限定管腔246的中空的、连续的柔性管。如上所提及,柔性部分238可以包括盘绕结构,盘绕结构与期望的断裂强度和最小的轴向挤压结合增添针235的最大柔性(如图3C所示)。管腔246终止于针235的远端249处。在所描画的实施例中,柔性部分238是被动柔性的并且经配置响应外部的或内部的力而弯曲。在其他实施例中,柔性部分238可以主动地可操控(例如,通过图2所示的致动器210可控制)。FIG. 4 shows the distal portion 300 of the needle 235 . As mentioned above with respect to FIG. 2 , needle 235 includes a flexible portion 238 and a rigid portion 240 . Flexible portion 238 is proximal relative to rigid portion 240 . In the depicted embodiment, flexible portion 238 includes a hollow, continuous flexible tube that defines lumen 246 . As mentioned above, the flexible portion 238 may include a coiled structure that adds to the maximum flexibility of the needle 235 (as shown in FIG. 3C ) in combination with desired breaking strength and minimal axial compression. Lumen 246 terminates at a distal end 249 of needle 235 . In the depicted embodiment, flexible portion 238 is passively flexible and configured to bend in response to external or internal forces. In other embodiments, flexible portion 238 may be actively steerable (eg, controllable by actuator 210 shown in FIG. 2 ).

在所描画的实施例中,刚性部分240包括远侧尖端245,远侧尖端245包括针235的切削元件245或刀片245。远侧尖端245经配置穿透组织并对组织进行取样,同时允许可预测的曲线路径和针操控通过组织。在所描画的实施例中,远侧尖端245包括环形的、非斜切的、部分圆锥形的刀片。不同于斜切的刀片,对称的、圆锥形的刀片能够通过组织取芯同时保持相对直的路径。随着针235被推进通过组织,组织能够通过远端249处的孔302进入管腔246。In the depicted embodiment, rigid portion 240 includes a distal tip 245 that includes a cutting element 245 or blade 245 of needle 235 . The distal tip 245 is configured to penetrate and sample tissue while allowing a predictable curved path and needle steering through the tissue. In the depicted embodiment, distal tip 245 comprises an annular, non-beveled, part-conical blade. Unlike beveled blades, symmetrical, conical blades are capable of coring through tissue while maintaining a relatively straight path. As needle 235 is advanced through tissue, tissue can enter lumen 246 through aperture 302 at distal end 249 .

刚性部分240和柔性部分238通过任何各种已知的方法固定地附接到彼此,作为非限制性示例,所述已知的方法包括粘合剂、焊接(例如,激光焊接)和/或机械紧固件。例如,在所描画的实施例中,柔性部分238的远端305通过胶粘合剂附接到刚性部分240的近端310。然而,在一些实施例中,刚性部分240能够在柔性部分238上延伸,并且沿近侧部分238的长度在更近侧的位置处附接到柔性部分238。在一些实施例中,刚性部分240为柔性部分238的整体延伸。Rigid portion 240 and flexible portion 238 are fixedly attached to each other by any of a variety of known methods including, by way of non-limiting examples, adhesives, welding (eg, laser welding), and/or mechanical fastener. For example, in the depicted embodiment, the distal end 305 of the flexible portion 238 is attached to the proximal end 310 of the rigid portion 240 by glue adhesive. However, in some embodiments, rigid portion 240 can extend over flexible portion 238 and be attached to flexible portion 238 at a more proximal location along the length of proximal portion 238 . In some embodiments, rigid portion 240 is an integral extension of flexible portion 238 .

在所描画的实施例中,针235包括标记320a、320b。标记320a定位在远侧尖端245上,而标记320b定位在相对于远侧尖端245而言是近侧的刚性部分240上。标记320a和标记320b能够起到插入距离或位置指示器的作用。在一些实施例中,标记320a、320b可以为不透射线的(例如,荧光检查标记)。标记320a包括环形标记,而标记320b包括带状标记。其他实施例可以包括任何数目、类型和布置的位置标记。In the depicted embodiment, needle 235 includes markings 320a, 320b. Marker 320a is positioned on distal tip 245 and marker 320b is positioned on rigid portion 240 proximal relative to distal tip 245 . Markers 320a and 320b can function as insertion distance or position indicators. In some embodiments, the markers 320a, 320b may be radiopaque (eg, fluoroscopy markers). Indicia 320a includes a ring-shaped indicia, while indicia 320b includes a strip-shaped indicium. Other embodiments may include any number, type and arrangement of position markers.

包括远侧尖端245的刚性部分240具有从大约1mm到10mm范围内的长度L1。例如,在一个实施例中,刚性部分240具有大约8mm的长度L1。刚性部分240的其他长度L1可以更大或更小。远侧尖端245具有从大约1mm到8mm范围内的长度L2。例如,在一个实施例中,刚性部分240具有大约4mm的长度L2。远侧尖端245的其他长度L2可以更大或更小。以上提供的尺寸仅出于示例性的目的,而并非旨在进行限制。可以设想其他尺寸。Rigid portion 240 including distal tip 245 has a length L1 ranging from about 1 mm to 10 mm. For example, in one embodiment, rigid portion 240 has a length L1 of approximately 8 mm. The other length L1 of the rigid portion 240 may be larger or smaller. Distal tip 245 has a length L2 ranging from about 1 mm to 8 mm. For example, in one embodiment, rigid portion 240 has a length L2 of approximately 4 mm. Other lengths L2 of the distal tip 245 may be greater or lesser. The dimensions provided above are for illustrative purposes only and are not intended to be limiting. Other dimensions are contemplated.

针235具有从大约1mm到2.5mm范围内的外径D1。例如,在一个实施例中,针235具有大约1.5mm的外径。其他针外径可以更大或更小。在一些实施例中,外径D1从针235的近端248到远端249渐缩(图2中示出),并且近端248处的针外径D1大于远端249处的针外径D1。在一些实施例中,针外径D1在针235的整个长度上基本不变。在替代实施例中,在近侧部分的较大外径D1到远侧部分300的较小外径之间,在针235中能够存在陡变或止挡部(stop)。提供以上尺寸仅出于示例性的目的,而并非旨在进行限制。可以设想其他尺寸。Needle 235 has an outer diameter D1 ranging from about 1 mm to 2.5 mm. For example, in one embodiment, needle 235 has an outer diameter of approximately 1.5 mm. Other needle outer diameters can be larger or smaller. In some embodiments, the outer diameter D1 tapers from the proximal end 248 to the distal end 249 of the needle 235 (shown in FIG. 2 ), and the outer needle diameter D1 at the proximal end 248 is greater than the outer needle diameter D1 at the distal end 249. . In some embodiments, needle outer diameter D1 is substantially constant throughout the length of needle 235 . In an alternative embodiment, there can be an abrupt change or stop in the needle 235 between the larger outer diameter D1 of the proximal portion to the smaller outer diameter of the distal portion 300 . The above dimensions are provided for exemplary purposes only and are not intended to be limiting. Other dimensions are contemplated.

针235具有从大约0.8mm到1.4mm范围内的管腔内径D2。内径D2的尺寸设定成允许组织和流体通道通过管腔246。例如,在一个实施例中,针235具有大约1mm的内径D2。其他针内径可以更大或更小。在一些实施例中,内径D2从针235的近端248到远端249渐缩(图2中示出),并且近端248处的内径D2大于远端249处的内径。在一些实施例中,内径D2在针235的整个长度上基本不变。在替代实施例中,在近侧部分的较大内径D2到远侧部分300的较小内径之间,在针235中可以存在陡变或止挡部。提供以上尺寸仅出于示例性的目的,而并非旨在进行限制。可以设想其他尺寸。Needle 235 has a lumen inner diameter D2 ranging from about 0.8 mm to 1.4 mm. Inner diameter D2 is sized to allow tissue and fluid passage through lumen 246 . For example, in one embodiment, needle 235 has an inner diameter D2 of approximately 1 mm. Other needle inner diameters can be larger or smaller. In some embodiments, the inner diameter D2 tapers from the proximal end 248 to the distal end 249 of the needle 235 (shown in FIG. 2 ), and the inner diameter D2 at the proximal end 248 is greater than the inner diameter at the distal end 249 . In some embodiments, inner diameter D2 is substantially constant throughout the length of needle 235 . In alternative embodiments, there may be a sharp change or stop in needle 235 between the larger inner diameter D2 of the proximal portion to the smaller inner diameter of the distal portion 300 . The above dimensions are provided for exemplary purposes only and are not intended to be limiting. Other dimensions are contemplated.

图5示出图2所示的可操控管心针260的透视图。具体地,图5示出管心针260的远侧部分350。如上参考图2所提及,管心针260包括细长的、柔性主体266和可操控部分268。在所描画的实施例中,主体266经配置响应作用到柔性主体上的力而被动地偏转,而可操控部分268经配置响应远程操作组件和/或来自致动器210(图2中示出)的控制信号而主动地弯扭。主体266经配置承载和引导致动缆线(例如,致动缆线360)到可操控部分268。在所描画的实施例中,主体266包括捆绑在一起的多个致动导管355以将致动缆线360引导到可操控部分268中。如图5和图6所示,主体266缺少围绕被捆绑的导管355的实心壁。在其他实施例中,主体266可以包括围绕该捆导管355的鞘管。FIG. 5 shows a perspective view of the steerable stylet 260 shown in FIG. 2 . Specifically, FIG. 5 shows distal portion 350 of stylet 260 . As mentioned above with reference to FIG. 2 , stylet 260 includes an elongated, flexible body 266 and a steerable portion 268 . In the depicted embodiment, body 266 is configured to deflect passively in response to a force applied to the flexible body, while steerable portion 268 is configured to respond to a remote operating assembly and/or from actuator 210 (shown in FIG. 2 ). ) to actively bend the control signal. Body 266 is configured to carry and guide an actuation cable (eg, actuation cable 360 ) to steerable portion 268 . In the depicted embodiment, body 266 includes a plurality of actuation conduits 355 bundled together to guide actuation cables 360 into steerable portion 268 . As shown in FIGS. 5 and 6 , the body 266 lacks a solid wall surrounding the bundled conduit 355 . In other embodiments, the body 266 may include a sheath surrounding the bundle of catheters 355 .

管心针260具有从大约0.8mm到1.4mm范围内的外径D3。例如,在一个实施例中,管心针260具有大约1.0mm的外径。其他管心针外径可以更大或更小。在所描画的实施例中,近端262处的外径(图2中示出)大于远端264处的外径。在一些实施例中,管心针260的外径D3非常接近针235的远侧尖端245的内径D4(图4中示出),使得针235的远侧尖端245经配置紧贴地接收管心针260的可操控部分268。在一些实施例中,内径D4近似等于内径D2。在一些实施例中,管心针260的外径D3非常接近针235的内径D2,使得当管心针260接收在针235的管腔246内时,传感器元件270与针235的纵向轴线NA基本上对齐(图4中示出)。在一些实施例中,管心针260的外径D3非常接近针235的内径,使得当管心针260被接收在管腔246内时,管心针260阻塞针235的管腔246。Stylet 260 has an outer diameter D3 ranging from about 0.8 mm to 1.4 mm. For example, in one embodiment, the stylet 260 has an outer diameter of approximately 1.0 mm. Other stylet outer diameters may be larger or smaller. In the depicted embodiment, the outer diameter at proximal end 262 (shown in FIG. 2 ) is greater than the outer diameter at distal end 264 . In some embodiments, the outer diameter D3 of the stylet 260 is very close to the inner diameter D4 (shown in FIG. 4 ) of the distal tip 245 of the needle 235 such that the distal tip 245 of the needle 235 is configured to snugly receive the stylet. Steerable portion 268 of needle 260. In some embodiments, inner diameter D4 is approximately equal to inner diameter D2. In some embodiments, the outer diameter D3 of the stylet 260 is very close to the inner diameter D2 of the needle 235 such that when the stylet 260 is received within the lumen 246 of the needle 235, the sensor element 270 is substantially aligned with the longitudinal axis NA of the needle 235. Align on top (shown in Figure 4). In some embodiments, the outer diameter D3 of the stylet 260 is very close to the inner diameter of the needle 235 such that when the stylet 260 is received within the lumen 246 , the stylet 260 occludes the lumen 246 of the needle 235 .

具体地,外径D3在主体266的整个长度上保持不变,并且沿可操控部分268的长度L3的至少一部分朝远侧渐缩。在替代实施例中,管心针外径D3沿管心针260的长度变化。在替代实施例中,在管心针260的近侧部分的较大外径到远侧部分350的较小外径之间,在管心针260中能够存在陡变或止挡部。可操控部分268的长度L3能够在从大约2mm到6mm变动。例如,在一个实施例中,可操控部分268具有大约5mm的长度L3。可操控部分268的其他长度L3可以更大或更小。提供以上尺寸仅出于示例性的目的,而并非旨在进行限制。可以设想其他尺寸。In particular, outer diameter D3 remains constant throughout the length of body 266 and tapers distally along at least a portion of length L3 of steerable portion 268 . In an alternative embodiment, the stylet outer diameter D3 varies along the length of the stylet 260 . In an alternate embodiment, there can be an abrupt change or stop in the stylet 260 between the larger outer diameter of the proximal portion 260 to the smaller outer diameter of the distal portion 350 . The length L3 of the steerable portion 268 can vary from about 2mm to 6mm. For example, in one embodiment, steerable portion 268 has a length L3 of approximately 5 mm. The other length L3 of the steerable portion 268 may be greater or lesser. The above dimensions are provided for exemplary purposes only and are not intended to be limiting. Other dimensions are contemplated.

图6示出管心针260的主体266的透视和部分横截面图。如图6中所示,主体266的每个导管355包括经配置可滑动地接收致动缆线360的柔性管。在所描画的实施例中,每个导管355包括柔性微弹簧圈(microcoil)结构。在其他实施例中,每个导管355可以包括任何合适类型的中空的、柔性的、生物相容的管,其被设定尺寸并经配置可滑动地接收致动缆线360。在所描画的实施例中,主体266包括被布置成圆周地围绕经配置承载传感器元件270的传感器导管362的八个导管355。在所描画的实施例中,每个导管355被定位成围绕传感器导管362紧邻相邻的导管355,使得导管355之间不留缝隙(例如,径向地)。在一方面,传感器导管362被成形并经配置保持传感器元件270的轴向位置在1mm范围内(相对于管心针260的纵向轴线LA)。通过各种已知方法中的任何一种,导管355和传感器导管362固定地附接到彼此,作为非限制性示例,所述已知方法包括粘合剂、焊接(例如,激光焊接)和/或机械紧固件。例如,在所描画的实施例中,导管355通过激光焊接联接到彼此并且联接到传感器导管360。该配置能够利用小的俯仰和很少至无的轴向挤压为管心针260增添期望程度的轴向刚度。主体266可以包括任何数目和布置的导管355,导管355经配置将期望数目的致动缆线360准确引导至可操控部分268中。例如,在所描画的实施例中,由于可操控部分268经配置接收八条致动缆线360,因此主体266包括八个导管355,其中每个导管355经配置接收单个致动缆线360。在此类实施例中,致动缆线360的拉动或致动很大程度上有助于管心针尖端(即,可操控部分268)的弯曲,这可以改善设备形状、位置以及推进方向的可控性。一些其他的实施例可缺少用于容纳致动缆线的导管。在此类实施例中,张紧或拉动致动缆线可以沿整个管心针260产生分布式弯曲。FIG. 6 shows a perspective and partial cross-sectional view of the body 266 of the stylet 260 . As shown in FIG. 6 , each conduit 355 of body 266 includes a flexible tube configured to slidably receive an actuation cable 360 . In the depicted embodiment, each catheter 355 includes a flexible microcoil structure. In other embodiments, each catheter 355 may comprise any suitable type of hollow, flexible, biocompatible tube sized and configured to slidably receive the actuation cable 360 . In the depicted embodiment, body 266 includes eight conduits 355 arranged circumferentially around sensor conduit 362 configured to carry sensor element 270 . In the depicted embodiment, each conduit 355 is positioned immediately adjacent adjacent conduit 355 around sensor conduit 362 such that no gaps (eg, radially) exist between conduits 355 . In one aspect, the sensor conduit 362 is shaped and configured to maintain the axial position of the sensor element 270 to within 1 mm (relative to the longitudinal axis LA of the stylet 260). Conduit 355 and sensor conduit 362 are fixedly attached to each other by any of a variety of known methods including, by way of non-limiting examples, adhesives, welding (e.g., laser welding), and/or or mechanical fasteners. For example, in the depicted embodiment, conduits 355 are coupled to each other and to sensor conduit 360 by laser welding. This configuration can add a desired degree of axial stiffness to the stylet 260 with little pitch and little to no axial extrusion. Body 266 may include any number and arrangement of conduits 355 configured to precisely guide a desired number of actuation cables 360 into steerable portion 268 . For example, in the depicted embodiment, since steerable portion 268 is configured to receive eight actuation cables 360 , body 266 includes eight conduits 355 , where each conduit 355 is configured to receive a single actuation cable 360 . In such embodiments, the pulling or actuation of the actuation cable 360 largely facilitates the bending of the stylet tip (i.e., the steerable portion 268), which can improve the shape, position, and direction of advancement of the device. Controllability. Some other embodiments may lack conduits for housing actuation cables. In such embodiments, tensioning or pulling the actuation cable may create a distributed bend along the entirety of the stylet 260 .

如图5和图6所示,主体266和可操控部分268通过各种已知方法中的任何一种固定地附接到彼此,作为非限制性示例,所述已知方法包括粘合剂、焊接(例如,激光焊接)和/或机械紧固件。例如,在所描画的实施例中,主体266的远端365通过激光焊接联接到可操控部分268的近端370。然而,在一些实施例中,近端370能够在主体266的远端355上延伸,并且在沿主体长度的更近侧位置处附接到主体266。在此类实施例中,主体266可以延伸小的距离到可操控部分268中。在一些实施例中,可操控部分268为主体266的整体延伸。As shown in FIGS. 5 and 6 , the body 266 and the steerable portion 268 are fixedly attached to each other by any of a variety of known methods including, by way of non-limiting examples, adhesives, Welding (eg, laser welding) and/or mechanical fasteners. For example, in the depicted embodiment, the distal end 365 of the body 266 is coupled to the proximal end 370 of the steerable portion 268 by laser welding. In some embodiments, however, the proximal end 370 can extend over the distal end 355 of the body 266 and be attached to the body 266 at a more proximal location along the length of the body. In such embodiments, body 266 may extend a small distance into steerable portion 268 . In some embodiments, the steerable portion 268 is an integral extension of the main body 266 .

如图2和图6所示,传感器元件270沿主体266的纵向轴线LA轴向延伸。在图6所描画的实施例中,传感器元件270在传感器导管362内延伸通过主体266的中心。在其他实施例中,传感器导管362可相对于导管355定位在偏离中心的位置中。在所描画的实施例中,传感器元件270至少部分地延伸到管心针260的可操控部分268中。在替代实施例中,传感器元件270终止于在相对于可操控部分268而言是近侧的主体266内。As shown in FIGS. 2 and 6 , the sensor element 270 extends axially along the longitudinal axis LA of the body 266 . In the embodiment depicted in FIG. 6 , sensor element 270 extends through the center of body 266 within sensor conduit 362 . In other embodiments, sensor conduit 362 may be positioned in an off-center position relative to conduit 355 . In the depicted embodiment, sensor element 270 extends at least partially into steerable portion 268 of stylet 260 . In an alternative embodiment, sensor element 270 terminates within body 266 proximally relative to steerable portion 268 .

如果针系统205为图1所示的远程操作医疗系统100的医疗器械系统104,则传感器元件270可以为传感器系统108的部件。如果针系统205为手动操作或以其他方式用于非机器人程序,则传感器元件270可以联接到追踪系统,追踪系统询问传感器元件270并且处理接收的数据(例如,来自形状传感器元件的形状数据)。不管管心针260的具体操控机构如何,针系统205的可用性均通过包括传感器元件270而得到增强。根据传感器元件270延伸到可操控部分268中有多远,传感器元件270能够确定管心针260的可操控部分268和/或沿管心针主体266和/或针235的一个或多个分立区段的位置、取向、速率、姿态和/或形状。传感器元件270读取的数据能够通过图1所示的传感器系统108和/或控制系统112转换成可用的形状和/或位置信息。然后,形状和/或位置信息能够用于进一步引导管心针260的操纵(并且因此引导针235的操纵)。If needle system 205 is medical device system 104 of teleoperated medical system 100 shown in FIG. 1 , sensor element 270 may be a component of sensor system 108 . If needle system 205 is manually operated or otherwise used in a non-robotic procedure, sensor element 270 may be coupled to a tracking system that interrogates sensor element 270 and processes received data (eg, shape data from a shape sensor element). Regardless of the specific steering mechanism of the stylet 260 , the usability of the needle system 205 is enhanced by the inclusion of the sensor element 270 . Depending on how far sensor element 270 extends into steerable portion 268 , sensor element 270 can determine steerable portion 268 of stylet 260 and/or one or more discrete regions along stylet body 266 and/or needle 235 The position, orientation, velocity, pose and/or shape of the segment. Data read by sensor elements 270 can be converted into usable shape and/or position information by sensor system 108 and/or control system 112 shown in FIG. 1 . The shape and/or position information can then be used to further guide the manipulation of the stylet 260 (and thus the manipulation of the needle 235).

在所描画的实施例中,传感器元件270是提供管心针260(和针235,当管心针260定位在针235内时)的形状和/或位置测量的传感器。在所描画的实施例中,传感器元件270可以包括能够用于点定位(即,位置/取向测量)的EM传感器系统。在一些实施例中,传感器元件270包括多个EM传感器或以各种时间间隔累积测量的单个EM传感器,以确定管心针260在任何给定时间点处的形状。EM传感器元件270可以包括可经受外部生成的电磁场的一个或多个导电线圈。然后,EM传感器元件270的每个线圈产生感应电信号,所述感应电信号具有取决于线圈相对于外部生成的电磁场的位置和取向的特性。在一个实施例中,EM传感器系统可以经配置和定位成测量六个自由度(“6-DOF”),例如,三个位置坐标X,Y,Z和指示基准点的俯仰、偏转和滚动的三个取向角度。在替代实施例中,EM传感器系统可以经配置和定位成测量五个自由度(“5-DOF”),例如,三个位置坐标X,Y,Z和基准点的二个取向。例如,在一些实施例中,传感器元件270包括5-DOF EM传感器,其经配置提供与管心针266的主体266有关的位置和/或取向数据(例如,以随着针235在管心针260上延伸并且连同管心针一起延伸,允许用户辨认针尖端249在患者体内的哪个位置)。EM传感器系统的进一步描述在提交于1999年8月11日的公开为“Six-Degree of Freedom Tracking System Having aPassive Transponder on the Object Being Tracked(在被追踪对象上具有被动应答器的六自由度追踪系统)”美国专利No.6,380,732中有所提供,所述专利的全部内容以引用方式并入本文。In the depicted embodiment, sensor element 270 is a sensor that provides shape and/or position measurements of stylet 260 (and needle 235 when stylet 260 is positioned within needle 235). In the depicted embodiment, sensor element 270 may comprise an EM sensor system that can be used for point localization (ie, position/orientation measurement). In some embodiments, sensor element 270 includes multiple EM sensors or a single EM sensor that accumulates measurements at various time intervals to determine the shape of stylet 260 at any given point in time. EM sensor element 270 may include one or more conductive coils that may be subjected to an externally generated electromagnetic field. Then, each coil of the EM sensor element 270 generates an induced electric signal having a characteristic depending on the position and orientation of the coil with respect to an externally generated electromagnetic field. In one embodiment, the EM sensor system can be configured and positioned to measure six degrees of freedom (“6-DOF”), e.g., three positional coordinates X, Y, Z and pitch, yaw, and roll indicating a reference point. Three orientation angles. In an alternate embodiment, the EM sensor system may be configured and positioned to measure five degrees of freedom ("5-DOF"), eg, three positional coordinates X, Y, Z and two orientations of a fiducial. For example, in some embodiments, sensor element 270 includes a 5-DOF EM sensor configured to provide position and/or orientation data related to body 266 of stylet 266 (e.g. 260 and along with the stylet, allowing the user to identify where the needle tip 249 is within the patient). A further description of the EM sensor system is presented in the publication published on August 11, 1999 as "Six-Degree of Freedom Tracking System Having a Passive Transponder on the Object Being Tracked" )" U.S. Patent No. 6,380,732, which is incorporated herein by reference in its entirety.

在一些实施例中,传感器元件270可以包括与管心针260对齐的光导纤维(例如,光导纤维可以提供在如图6所示的传感器导管362内)。传感器元件270的光导纤维可以形成光纤弯曲传感器用于确定针系统205的至少一部分的形状。用于监控光导纤维的形状和在三个维度中的相对位置的各种系统和方法在提交于2005年7月13日的公开为“Fiber opticposition and shape sensing device and method relating thereto(光纤位置和形状感测设备及其相关方法)”的美国专利申请No.11/180,389;提交于2004年7月16日的公开为“Fiber-optic shape and relative position sensing(光纤形状和相对位置感测)”的美国临时专利申请No.60/588,336;以及提交于1998年6月17日的公开为“Optical FiberBend Sensor(光导纤维弯曲传感器)”的美国专利No.6,389,187中有所描述,这些专利申请的全部内容以引用方式并入本文。在其他替代中,采用其他应变感测技术诸如瑞利(Rayleigh)散射、拉曼(Raman)散射、布里渊(Brillouin)散射以及荧光散射的传感器可以是合适的。在其他替代实施例中,针系统205的形状可以使用其他技术来确定。In some embodiments, sensor element 270 may include an optical fiber aligned with stylet 260 (eg, an optical fiber may be provided within sensor catheter 362 as shown in FIG. 6 ). The optical fiber of sensor element 270 may form a fiber optic bend sensor for determining the shape of at least a portion of needle system 205 . Various systems and methods for monitoring the shape and relative position of an optical fiber in three dimensions are disclosed in "Fiber optic position and shape sensing device and method relating thereto" filed on July 13, 2005 U.S. Patent Application No. 11/180,389, published July 16, 2004, published as "Fiber-optic shape and relative position sensing (fiber-optic shape and relative position sensing)" U.S. Provisional Patent Application No. 60/588,336; and U.S. Patent No. 6,389,187, filed June 17, 1998 and published as "Optical Fiber Bend Sensor," the entire contents of these patent applications Incorporated herein by reference. Among other alternatives, sensors employing other strain sensing techniques such as Rayleigh scattering, Raman scattering, Brillouin scattering, and fluorescence scattering may be suitable. In other alternative embodiments, the shape of needle system 205 may be determined using other techniques.

更具体地,穿过光导纤维的光经处理以检测管心针260和/或针系统205的形状,并且用于利用该信息来辅助医疗程序。传感器系统(例如,如图2所述的传感器系统108或另一类型的追踪系统)可以包括询问系统用于生成并检测用于确定管心针260的形状的光。该信息进而能够用于确定其他相关变量,诸如医疗器械的各部分的速度和加速度。More specifically, the light passing through the fiber optic is processed to detect the shape of the stylet 260 and/or needle system 205 and is used to utilize this information to assist medical procedures. A sensor system (eg, sensor system 108 as described in FIG. 2 or another type of tracking system) may include an interrogation system for generating and detecting light for determining the shape of stylet 260 . This information can in turn be used to determine other relevant variables, such as the velocity and acceleration of parts of the medical device.

如上所述,传感器元件270可以包括细长的光纤形状传感器,该传感器提供沿管心针260的长度的形状测量。传感器元件270可以包括在传感器长度上的单个连续的感测区域或者沿传感器长度分布的多个感测区域。与分立位置传感器相比,细长传感器能够利用单个传感器沿管心针260的长度进行形状测量。单个细长形状传感器的一体化特性可以提供管心针260的更准确的形状测量,这能够更精确地控制和/或增强错误校正,以确保管心针260(和针235)准确地穿过期望的手术轨迹。As noted above, sensor element 270 may include an elongated fiber optic shape sensor that provides shape measurements along the length of stylet 260 . The sensor element 270 may comprise a single continuous sensing region over the sensor length or a plurality of sensing regions distributed along the sensor length. In contrast to discrete position sensors, the elongated sensor enables shape measurements along the length of the stylet 260 with a single sensor. The integral nature of a single elongated shape sensor can provide more accurate shape measurements of the stylet 260, which can enable more precise control and/or enhanced error correction to ensure accurate passage of the stylet 260 (and needle 235) Desired surgical trajectory.

注意,虽然出于说明的目的将传感器元件270描绘并描述成单个细长传感器,但是在其他实施例中,传感器元件270能够包括多个分立的形状传感器。在一个此类实施例中,每个形状传感器可以测量管心针260的总长度的连续部分的形状。多个形状传感器可以提供更高的形状建模精确度,或者可用于补偿能够影响传感器的环境因素(例如,沿管心针260的长度的温度变化)。Note that while sensor element 270 is depicted and described as a single elongated sensor for purposes of illustration, in other embodiments sensor element 270 can include multiple discrete shape sensors. In one such embodiment, each shape sensor may measure the shape of a continuous portion of the overall length of the stylet 260 . Multiple shape sensors can provide greater shape modeling accuracy, or can be used to compensate for environmental factors that can affect the sensors (eg, temperature variations along the length of the stylet 260).

图7A和图7B示出根据本公开的一个实施例的管心针260的可操控部分268。与具有低轴向刚度并且不是很适合于穿透或刺穿的导管型设备相比,管心针260通常具有高轴向刚度和尖端形状(即,可操控部分268的形状),该尖端形状允许其借助最小的轴向挤压或屈曲来穿透或刺穿组织。在图7A描绘的所描画的实施例中,可操控部分268包括朝向远端264渐缩的柔性的、有节的(jointed)结构。可操控部分268从近端400延伸到远端264。在所描画的实施例中,可操控部分268包括近侧可弯曲节段410和远侧抗弯曲节段415。在所描画的实施例中,可弯曲节段410包括连续的有节的结构,该有节的结构包括多个可弯扭区段:近侧区段417、中间区段418以及远侧区段419。近侧接合枢转部420将近侧区段417和中间区段418分开,并且远侧接合枢转部425将中间区段418和远侧区段419分开。图7所示的可弯曲部分410仅为例示性的而并非旨在进行限制。在该公开的视图中,可弯曲部分410可以包括任何类型的可操控的、大致管状的结构,该结构经配置容纳致动缆线360并且在致动缆线360致动时在多个方向上弯曲。换言之,管心针260的可操控部分268可以根据需要包括从具有许多区段的至少一个可弯曲节段到任意数目的可弯曲节段以提供可操控管心针260的所需功能。在一些情况下,管心针260的可操控部分268包括类似于在名称为“Articulatingmechanism with flex-hinged links(借助挠性铰接链节的铰接机构)”,和提交于2004年9月24日的美国专利申请No.2005/0273085;和/或名称为“Medical instrument withflexible wrist mechanism(带有柔性腕部机构的医疗器械)”,以及提交于2011年8月15日的美国专利申请No.2013/0046317中公开的部件或特征,所述专利申请两者的全文均以引用方式并入本文。7A and 7B illustrate steerable portion 268 of stylet 260 according to one embodiment of the present disclosure. Stylet 260 generally has a high axial stiffness and a tip shape (i.e., the shape of steerable portion 268 ) that It is allowed to penetrate or pierce tissue with minimal axial compression or buckling. In the depicted embodiment depicted in FIG. 7A , steerable portion 268 comprises a flexible, jointed structure that tapers toward distal end 264 . Steerable portion 268 extends from proximal end 400 to distal end 264 . In the depicted embodiment, steerable portion 268 includes a proximal bendable segment 410 and a distal bend-resistant segment 415 . In the depicted embodiment, the bendable section 410 comprises a continuous articulated structure comprising a plurality of bendable sections: a proximal section 417, an intermediate section 418, and a distal section. 419. Proximal engagement pivot 420 separates proximal section 417 from intermediate section 418 and distal engagement pivot 425 separates intermediate section 418 from distal section 419 . The bendable portion 410 shown in FIG. 7 is illustrative only and not intended to be limiting. In the views of this disclosure, bendable portion 410 may comprise any type of steerable, generally tubular structure configured to receive actuation cable 360 and to move in multiple directions when actuation cable 360 is actuated. bending. In other words, the steerable portion 268 of the stylet 260 may include from at least one bendable segment having as many segments to any number of bendable segments as desired to provide the desired functionality of the steerable stylet 260 . In some cases, the steerable portion 268 of the stylet 260 includes a structure similar to that described in "Articulating mechanism with flex-hinged links" and filed September 24, 2004. U.S. Patent Application No.2005/0273085; and/or titled "Medical instrument with flexible wrist mechanism" and U.S. Patent Application No.2013/ 0046317, both of which are hereby incorporated by reference in their entirety.

可操控部分268可以由任何合适的生物相容的材料制成,该材料提供必备的拉伸和弯曲性质。作为非限制性示例,合适的材料可以包括聚合物、形状记忆材料(诸如镍钛诺)、不锈钢以及塑料。在一些实施例中,可操控部分268整个由相同的材料制成。在其他实施例中,可操控部分268可以由两种或更多种不同的材料制成。例如,在一些实施例中,抗弯曲节段415可以由比可弯曲节段410更加刚性的材料形成。在一些实施例中,可操控部分268可以用生物相容的润滑剂涂覆。Steerable portion 268 may be made of any suitable biocompatible material that provides the requisite stretch and flex properties. Suitable materials may include, by way of non-limiting example, polymers, shape memory materials (such as Nitinol), stainless steel, and plastics. In some embodiments, the steerable portion 268 is made entirely of the same material. In other embodiments, the steerable portion 268 may be made of two or more different materials. For example, in some embodiments, bend-resistant segment 415 may be formed from a more rigid material than bendable segment 410 . In some embodiments, steerable portion 268 may be coated with a biocompatible lubricant.

可弯曲节段410和抗弯曲节段415通过各种已知方法中的任何一种固定地附接到彼此,作为非限制性示例,所述已知方法包括粘合剂、焊接(例如,激光焊接)和/或机械紧固件。例如,在所描画的实施例中,可弯曲节段410的远侧区段419和抗弯曲节段415通过激光焊接联接到彼此。在其他实施例中,可弯曲节段410和抗弯曲节段415可以由单个一体的、细长的管状或实心构件形成,该构件可以根据本发明进行切削以形成三个区段417、418、419,可弯曲节段410的近侧接合枢转部420和远侧接合枢转部425以及抗弯曲部分415。The bendable segment 410 and the bend resistant segment 415 are fixedly attached to each other by any of a variety of known methods including, by way of non-limiting examples, adhesives, welding (e.g., laser welding) and/or mechanical fasteners. For example, in the depicted embodiment, distal section 419 and bending-resistant section 415 of bendable section 410 are coupled to each other by laser welding. In other embodiments, the bendable segment 410 and the bend-resistant segment 415 may be formed from a single unitary, elongated tubular or solid member that may be cut in accordance with the present invention to form the three segments 417, 418, 419 , the proximal engagement pivot 420 and the distal engagement pivot 425 of the bendable segment 410 and the bending resistant portion 415 .

抗弯曲节段415形成管心针260的远侧尖端,并且被成形和经配置借助最小的轴向挤压穿透组织。在所描画的实施例中,抗弯曲节段415形成圆锥形的、尖锐的尖端。在其他实施例中,抗弯曲节段415可以具有能够使其借助最小的轴向挤压穿透组织的任何形状。抗弯曲节段415经配置接收和/或锚固致动缆线360。在所描画的实施例中,抗弯曲节段415包括沟槽或缺口430以接收和/或锚固致动缆线360的远端435。在所描画的实施例中,管心针260包括八条致动线360,并且抗弯曲节段415包括八个互补的沟槽430,以接收致动线360中的每个。在其他实施例中,抗弯曲节段415可以包括任何数目的沟槽430,以适应包括在管心针260中的致动线360的数目。在所描画的实施例中,沟槽430被布置成对称地且圆周地围绕抗弯曲节段415。在其他实施例中,沟槽430以能够实现管心针260的期望可操控性的任何方式围绕抗弯曲节段415布置。Anti-bend segment 415 forms the distal tip of stylet 260 and is shaped and configured to penetrate tissue with minimal axial compression. In the depicted embodiment, the anti-bending section 415 forms a conical, sharp tip. In other embodiments, the anti-bending section 415 may have any shape that enables it to penetrate tissue with minimal axial compression. The bending resistant section 415 is configured to receive and/or anchor the actuation cable 360 . In the depicted embodiment, the bending-resistant section 415 includes a groove or notch 430 to receive and/or anchor a distal end 435 of the actuation cable 360 . In the depicted embodiment, stylet 260 includes eight actuation wires 360 , and bending-resistant section 415 includes eight complementary grooves 430 to receive each of actuation wires 360 . In other embodiments, the anti-bending section 415 may include any number of grooves 430 to accommodate the number of actuation wires 360 included in the stylet 260 . In the depicted embodiment, grooves 430 are arranged symmetrically and circumferentially around bending-resistant segment 415 . In other embodiments, the groove 430 is arranged around the bend-resistant section 415 in any manner that enables the desired steerability of the stylet 260 .

如上所述,可操控部分268(并且特别是,可弯曲部分410)经配置响应远程操作组件和/或来自致动器210(图2中示出)的控制信号,依靠选择性致动单个致动缆线360来主动地进行弯扭。如图7A所示,每个致动缆线360在终止于沟槽430内之前从柔性部分266延伸到并通过可操控部分268中的单个槽道440。在所描画的实施例中,示出四个致动缆线360a、360b、360c以及360d。例如,所描画的实施例示出致动线360a、360b、360c以及360d的相应远端435a、435b、435c以及435d,所述远端锚固在四个互补的沟槽430内。As noted above, steerable portion 268 (and in particular, bendable portion 410 ) is configured to respond to a remote operation assembly and/or a control signal from actuator 210 (shown in FIG. 2 ), by selectively actuating a single actuator. Cable 360 is moved to actively bend and twist. As shown in FIG. 7A , each actuation cable 360 extends from flexible portion 266 to and through a single channel 440 in steerable portion 268 before terminating in groove 430 . In the depicted embodiment, four actuation cables 360a, 360b, 360c, and 360d are shown. For example, the depicted embodiment shows respective distal ends 435a , 435b , 435c , and 435d of actuation wires 360a , 360b , 360c , and 360d anchored within four complementary grooves 430 .

在所描画的实施例中,致动缆线360围绕管心针260的纵向轴线LA成对布置。具体地,如图7A所示,致动缆线360a和致动缆线360b形成通过槽道440a和440b延伸的一对。在一个实施例中,致动缆线360a和致动缆线360b为相同的连续致动缆线的两个分支,并且所述两个分支360a、360b在近端处一起被致动。图7B示出可操控部分268(如图2中所示)的区段217的横截面图。如图7B所示,槽道440分组成围绕可操控部分268的纵向轴线LA对称布置的四对。例如,槽道440a与槽道440b配对,并且槽道440c与槽道440d配对。因此,致动缆线360a与致动缆线360b配对,并且致动缆线360c与致动缆线360d配对。在其他实施例中,槽道440(并且因此,致动缆线360)可以能够实现管心针260的期望的可操控性的任何方式围绕可弯曲部分410布置。In the depicted embodiment, the actuation cables 360 are arranged in pairs about the longitudinal axis LA of the stylet 260 . Specifically, as shown in FIG. 7A, actuation cable 360a and actuation cable 360b form a pair extending through channels 440a and 440b. In one embodiment, the actuation cable 360a and the actuation cable 360b are two branches of the same continuous actuation cable, and the two branches 360a, 360b are actuated together at the proximal end. FIG. 7B shows a cross-sectional view of section 217 of steerable portion 268 (shown in FIG. 2 ). As shown in FIG. 7B , the channels 440 are grouped into four pairs arranged symmetrically about the longitudinal axis LA of the steerable portion 268 . For example, channel 440a mates with channel 440b, and channel 440c mates with channel 440d. Thus, actuation cable 360a mates with actuation cable 360b, and actuation cable 360c mates with actuation cable 360d. In other embodiments, channel 440 (and thus, actuation cable 360 ) may be arranged about bendable portion 410 in any manner that enables the desired steerability of stylet 260 .

能够施加拉力和/或延伸力以引起管心针260的可操控部分268的期望弯曲。致动缆线360能够经由机械张紧器、马达致动器或(例如,联接到管心针260的)任何其他机构控制。例如,在一些实施例中,致动缆线360能够包括响应热变化的材料,诸如(一条或多条)镍钛诺线,其经配置响应于电流引起的加热而收缩(诸如,在Dunlop等的“A Nitinol WireActuated Stewart Platform(镍钛诺线致动的Strwart平台)”(收录于2002年11月27日至29日2002Australasian Conference on Robotics and Automation的Proc.)中所描述的,其全部内容以引用方式并入本文)。各种其他操控机构将显而易见。例如,在一些实施例中,每个致动缆线260可以延伸通过多个致动导管中的一个进入到槽道440中,并且通过多个致动导管中的另一个返回。Tension and/or extension forces can be applied to cause the desired bending of the steerable portion 268 of the stylet 260 . Actuation cable 360 can be controlled via a mechanical tensioner, a motor actuator, or any other mechanism (eg, coupled to stylet 260 ). For example, in some embodiments, the actuation cable 360 can comprise a thermally responsive material, such as Nitinol wire(s), configured to shrink in response to current-induced heating (such as in Dunlop et al. "A Nitinol Wire Actuated Stewart Platform (Strwart Platform Nitinol Wire Actuated)" (collected in the Proc. of the 2002Australasian Conference on Robotics and Automation from November 27 to 29, 2002) described in its entirety in incorporated herein by reference). Various other manipulation mechanisms will be apparent. For example, in some embodiments, each actuation cable 260 may extend through one of the plurality of actuation conduits into channel 440 and return through another of the plurality of actuation conduits.

在图7A中,可操控部分268被示出处于直的或未弯曲的状态中,其中纵向轴线LA与例示性x-轴平行对齐。图8A和图8B示出处于弯曲状态中的可操控部分268。在图8A中,由于致动缆线360c和360d处于张紧状态,所以可操控部分268在例示性x-z平面中在近侧接合枢转部420处朝向槽道440c和440d的方向弯曲(例如,处于俯仰中)。具体地,可操控部分268中相对于近侧接合枢转部420而言是远侧的部分(即,区段418、区段419以及抗弯区节段415)分别在承载张紧的缆线360c和360d的槽道440c和440d的方向上弯曲或弯扭。在图8B中,由于致动缆线360a和致动缆线360b也处于张紧状态(即,除致动缆线360c和致动缆线360d以外)中,因此可操控部分268还在例示性x-y平面上在远侧接合枢转部425处朝向槽道440a和440b的方向弯曲。具体地,可操控部分268中相对于远侧接合枢转部425而言是远侧的部分(即,区段419和抗弯曲节段415)分别在承载张紧的缆线360a和360b的槽道440a和440b的方向上弯曲或弯扭。In FIG. 7A , steerable portion 268 is shown in a straight or unbent state with longitudinal axis LA aligned parallel to the exemplary x-axis. 8A and 8B illustrate the steerable portion 268 in a bent state. 8A, with actuation cables 360c and 360d in tension, steerable portion 268 bends in the exemplary x-z plane at proximal engagement pivot 420 in the direction of channels 440c and 440d (eg, in pitch). Specifically, the portion of steerable portion 268 that is distal relative to proximal engagement pivot 420 (i.e., section 418, section 419, and anti-bending section section 415) is carrying the tensioned cable. The channels 440c and 440d of 360c and 360d are bent or twisted in the direction. In FIG. 8B, the steerable portion 268 is also illustratively in place since the actuation cables 360a, 360b are also in tension (ie, in addition to the actuation cables 360c and 360d). The x-y plane is curved at distal engagement pivot 425 in the direction of channels 440a and 440b. Specifically, the portion of steerable portion 268 that is distal relative to distal engagement pivot 425 (i.e., segment 419 and bend-resistant segment 415) is in the groove carrying tensioned cables 360a and 360b, respectively. bend or twist in the direction of the tracks 440a and 440b.

图9示出根据本公开的一个实施例的针系统500的透视图。针系统500可以类似于图2所示的针系统205。具体地,图9示出图5所示的示例性传感器管心针,其定位在根据本公开的在图4中所示的示例性针系统内,并且从该针系统延伸。针系统500包括管心针260,管心针260可滑动地定位在针235的管腔246内。管心针260和针235以相对于彼此可伸缩的方式布置。因此,管心针260能够完全缩回到针235的管腔246中,并且还能够从针235朝远侧延伸(即,当针235保持固定时),如图9所示。FIG. 9 shows a perspective view of a needle system 500 according to one embodiment of the present disclosure. Needle system 500 may be similar to needle system 205 shown in FIG. 2 . Specifically, FIG. 9 illustrates the example sensor stylet shown in FIG. 5 positioned within and extending from the example needle system shown in FIG. 4 according to the present disclosure. Needle system 500 includes stylet 260 slidably positioned within lumen 246 of needle 235 . Stylet 260 and needle 235 are arranged in a telescoping manner relative to each other. Thus, the stylet 260 can be fully retracted into the lumen 246 of the needle 235 and can also be extended distally from the needle 235 (ie, while the needle 235 remains stationary), as shown in FIG. 9 .

如图9所描绘,管心针260的形状和尺寸被设定成被接收在针235的内部。具体地,管心针260的可操控部分268的形状和尺寸被设定成紧贴地接收在针235的刚性部分240的内部。在所描画的实施例中,针235的内径D2被设定成仅稍大于管心针260的外径D3,从而允许管心针260在其从针235显露出来时牢固地支撑在针235的刚性部分240内。As depicted in FIG. 9 , stylet 260 is shaped and sized to be received inside needle 235 . In particular, steerable portion 268 of stylet 260 is shaped and dimensioned to be snugly received within rigid portion 240 of needle 235 . In the depicted embodiment, the inner diameter D2 of the needle 235 is set to be only slightly larger than the outer diameter D3 of the stylet 260, thereby allowing the stylet 260 to be firmly supported on the edge of the needle 235 as it emerges from the needle 235. Rigid part 240 inside.

在一些实施例中,图1所示的远程操作医疗系统100经配置控制管心针260的可操控部分268的移动或弯扭。具体地,远程操作系统100能够控制致动缆线360的致动,并且从而控制管心针260的可操控部分268的移动和弯曲。如果当操纵或移动可操控部分268时,可操控部分268定位在针235内(如图9所示),那么针235将呈现可操控部分268的移动的样子(mimic)并且与其一致地移动(例如,由于针235覆盖并围绕管心针260的移动部分)。在一些实施例中,远程操作系统100和针系统500经配置将可操控部分268变换到一组预定的形状或弯曲角度。例如,在一些实施例中,通过向远程操作系统100输入单个命令,可操控部分268可以具有带有“向左弯曲”的预定第一位置,该“向左弯曲”在近侧接合枢转部420处具有预设角度α1,如图8A所示。在其他实施例中,可以操纵可操控部分268并且将其移动到包括一个或多个接合枢转部的各种弯曲形状中,接合枢转部具有一系列的弯曲角度。In some embodiments, the teleoperated medical system 100 shown in FIG. 1 is configured to control movement or bending of the steerable portion 268 of the stylet 260 . Specifically, the teleoperation system 100 is capable of controlling the actuation of the actuation cable 360 and thereby the movement and bending of the steerable portion 268 of the stylet 260 . If the steerable portion 268 is positioned within the needle 235 (as shown in FIG. 9 ) when the steerable portion 268 is manipulated or moved, the needle 235 will mimic and move in unison with the movement of the steerable portion 268 ( For example, as the needle 235 covers and surrounds the moving portion of the stylet 260). In some embodiments, teleoperating system 100 and needle system 500 are configured to transform steerable portion 268 into a set of predetermined shapes or bend angles. For example, in some embodiments, upon input of a single command to teleoperating system 100, steerable portion 268 may have a predetermined first position with a "left bend" that engages the pivot proximally. There is a preset angle α1 at 420, as shown in FIG. 8A. In other embodiments, the steerable portion 268 can be manipulated and moved into various curved shapes including one or more engagement pivots having a range of bending angles.

图10至图12示出根据本公开的一个实施例的图9所示的示例性针系统500的示意图,系统500导航患者解剖结构P以获得活检样本。图10示出根据本公开的实施例的导航曲折路径510(即,患者解剖结构内的通道)的针系统500的示意图,其中管心针260在针235内处于缩回或被覆盖状态。在所描画的实施例中,针系统500被示出通过柔性鞘管520朝向目标区域515推进。柔性鞘管520可以与以上关于图2所述的柔性鞘管225相同。在所描画的实施例中,针235可滑动地接收在柔性鞘管520内,并且管心针260可滑动地接收在针235内。当针235通过柔性鞘管520推进时,管心针260在针235的管腔246内处于缩回或未延伸的状态。具体地,管心针260的远端264被定位在相对于针235的远端249而言的近侧。在针系统500通过柔性鞘管520推进期间,用户无需利用带有管心针260的传感器元件270,但用户可以这么做,以确认针系统500准确地通过柔性鞘管520前进。10-12 show schematic diagrams of the exemplary needle system 500 shown in FIG. 9 navigating a patient's anatomy P to obtain a biopsy sample, according to one embodiment of the present disclosure. 10 shows a schematic diagram of a needle system 500 navigating a tortuous path 510 (ie, a passage within a patient's anatomy) with the stylet 260 in a retracted or covered state within the needle 235, according to an embodiment of the present disclosure. In the depicted embodiment, needle system 500 is shown advanced toward target area 515 through flexible sheath 520 . Flexible sheath 520 may be the same as flexible sheath 225 described above with respect to FIG. 2 . In the depicted embodiment, needle 235 is slidably received within flexible sheath 520 and stylet 260 is slidably received within needle 235 . When the needle 235 is advanced through the flexible sheath 520 , the stylet 260 is in a retracted or unextended state within the lumen 246 of the needle 235 . In particular, the distal end 264 of the stylet 260 is positioned proximally relative to the distal end 249 of the needle 235 . During advancement of the needle system 500 through the flexible sheath 520 , the user need not utilize the sensor element 270 with the stylet 260 , but the user may do so to confirm that the needle system 500 is being advanced accurately through the flexible sheath 520 .

图11示出根据本公开的实施例的朝向目标区域515操控的针系统500的示意图。具体地,图11示出从针235显露出来以在目标区域515的方向上穿透组织的管心针260。随着用户从柔性鞘管520推进针235,并且贯穿整个程序,用户可以采用荧光镜检查或其他成像与不透射线标志320(或其他不透射线标志,未描画)协作,以追踪针235在患者解剖结构内的位置(例如,相对于目标区域515)。在将针235和管心针260从柔性鞘管520推进之后(即,其中管心针260定位在针235内),用户能够从针235推进管心针260以使管心针260先于针235穿透组织(例如,未对组织取芯同时阻塞针235的管腔260接收组织)。随着推进传感器管心针260,用户可以利用从传感器元件270接收的数据来估计并追踪管心针260的位置、取向和进程。FIG. 11 shows a schematic diagram of a needle system 500 maneuvered toward a target area 515 in accordance with an embodiment of the present disclosure. Specifically, FIG. 11 shows stylet 260 emerging from needle 235 to penetrate tissue in the direction of target region 515 . As the user advances the needle 235 from the flexible sheath 520, and throughout the procedure, the user may employ fluoroscopy or other imaging in conjunction with the radiopaque marker 320 (or other radiopaque marker, not depicted) to track where the needle 235 is. The location within the patient's anatomy (eg, relative to the target area 515). After advancing the needle 235 and stylet 260 from the flexible sheath 520 (i.e., with the stylet 260 positioned within the needle 235), the user can advance the stylet 260 from the needle 235 so that the stylet 260 is ahead of the needle. 235 penetrates tissue (eg, without coring tissue while occluding lumen 260 of needle 235 to receive tissue). As sensor stylet 260 is advanced, a user may utilize data received from sensor element 270 to estimate and track the position, orientation, and progress of stylet 260 .

从传感器元件270获得的信息能够以各种方式来使用。例如,能够根据测量的形状确定进入到组织中的总插入深度以及尖端位置和取向(例如,管心针260的远端264)。这些变量能够用于伺服回路中,以精确地控制管心针260和针235的插入和取向-而非依据控制输入仅测量近侧插入和旋转量并且假设最佳传输到尖端,传感器元件270能够用于直接测量远侧插入和旋转,与针235或管心针260的扭曲和轴向柔性以及针235或管心针260与组织之间的摩擦和法向力的影响无关。在另一实施例中,测量的尖端位置和取向(如根据形状信息计算出的)能够用于规划算法中,该规划算法计算从当前管心针的位置到目标区域515的可行路径。代替(潜在地不精确的)成像技术或者除成像技术以外,传感器元件270能够用于测量传感器管心针的姿态和针的姿态。The information obtained from sensor element 270 can be used in various ways. For example, the total insertion depth into tissue as well as the tip position and orientation (eg, distal end 264 of stylet 260 ) can be determined from the measured shape. These variables can be used in a servo loop to precisely control the insertion and orientation of the stylet 260 and needle 235 - rather than just measuring the amount of proximal insertion and rotation based on control inputs and assuming optimal delivery to the tip, the sensor element 270 can For direct measurement of distal insertion and rotation, independent of twisting and axial flexibility of needle 235 or stylet 260 and the effects of friction and normal force between needle 235 or stylet 260 and tissue. In another embodiment, the measured tip position and orientation (as calculated from the shape information) can be used in a planning algorithm that calculates a feasible path from the current stylet position to the target region 515 . Instead of (potentially inaccurate) imaging techniques or in addition to imaging techniques, sensor element 270 can be used to measure sensor stylet pose and needle pose.

在另一实施例中,传感器元件270能够用于与成像技术结合,以改善针235和/或管心针260相对于术前数据的配准。例如,通过将可成像的基准特征附接到传感器元件270的一部分,或者将传感器元件270上的固定参考点对接到患者身上的可见基准特征,能够将传感器元件270和/或传感器管心针270的基部或一些其他部分配准到图像坐标空间。响应组织运动或变形,术中成像将提供适应管心针和针的轨迹的手段。管心针260和/或针235的测量形状能够用于辅助检测并定位术中图像中的管心针260和/或针235,使得可测量其相对于解剖目标的位置/取向。In another embodiment, sensor element 270 can be used in conjunction with imaging techniques to improve registration of needle 235 and/or stylet 260 relative to preoperative data. For example, sensor element 270 and/or sensor stylet 270 can be attached to a portion of sensor element 270 by attaching an imageable fiducial feature to a portion of sensor element 270, or docking a fixed reference point on sensor element 270 to a visible fiducial feature on the patient. The base or some other part is registered to the image coordinate space. Intraoperative imaging will provide a means to adapt the trajectory of the stylet and needle in response to tissue motion or deformation. The measured shape of the stylet 260 and/or needle 235 can be used to aid in detecting and locating the stylet 260 and/or needle 235 in the intraoperative image so that its position/orientation relative to the anatomical target can be measured.

基于来自管心针260的传感器元件270的感测数据和随后的结论,用户和/或远程操作系统100能够选择性地操控管心针260的可操控部分268朝向目标区域515(例如,通过选择性地张紧或释放特定的致动缆线360(如图5所示),以使可操控部分268的特定节段弯曲,如图8A和图8B所示)。具体地,管心针260的传感器元件270能够与驱动机构结合使用来提供输入,以便手动地(例如,通过用户)或自动地(例如,通过远程操作系统100)控制在医疗程序期间操控管心针260的可操控部分268的致动器。Based on the sensed data from the sensor element 270 of the stylet 260 and subsequent conclusions, the user and/or the remote operating system 100 can selectively manipulate the steerable portion 268 of the stylet 260 toward the target area 515 (e.g., by selecting To selectively tension or release a specific actuation cable 360 (as shown in FIG. 5 ) to bend a specific segment of the steerable portion 268, as shown in FIGS. 8A and 8B ). Specifically, the sensor element 270 of the stylet 260 can be used in conjunction with the drive mechanism to provide input to control the manipulation of the stylet during a medical procedure, either manually (e.g., by a user) or automatically (e.g., by a remote operating system 100). An actuator of the steerable portion 268 of the needle 260.

当用户将管心针260推进到组织中时或之后,用户可以朝远侧推进针235,以使针235在管心针260上滑动。图12示出针235的在管心针260的可操控部分268上方延伸(并且沿循管心针260的弧线)以穿透目标区域515(例如,以从目标区域515获得或吸入活检样本)的刚性部分240。当管心针260被精确地操控到达目标区域515(或者甚至操控到达较大目标区域515内的感兴趣的分立区域)时,随着针235在管心针260上推进通过组织,管心针260可以稍微先于针235推进,以引导针235的轨迹。While or after the user advances the stylet 260 into tissue, the user may advance the needle 235 distally to slide the needle 235 over the stylet 260 . 12 shows needle 235 extending over steerable portion 268 of stylet 260 (and following the arc of stylet 260) to penetrate target region 515 (e.g., to obtain or aspirate a biopsy sample from target region 515). ) of the rigid portion 240. When stylet 260 is precisely steered to target region 515 (or even to a discrete region of interest within larger target region 515), as needle 235 is advanced over stylet 260 through tissue, the stylet 260 may be advanced slightly ahead of needle 235 to guide the trajectory of needle 235 .

在用户确认(例如,使用射线照相术数据和/或来自传感器元件270的感测数据)针235在目标区域内的准确定位之后,用户可以朝近侧撤回管心针260,如图13所示,并且开始通过目标区域吸入和/或取芯,以获得组织样本(例如,活检样本)。在一些实施例中,针系统500将目标区域515的活检样本吸入到针管腔246中。在其他实施例中,针系统500将目标区域515的活检样本取芯到针235的刚性部分240中。After the user confirms (e.g., using radiographic data and/or sensing data from sensor element 270) the accurate positioning of needle 235 within the target area, the user may withdraw stylet 260 proximally, as shown in FIG. , and begin aspiration and/or coring through the target area to obtain a tissue sample (eg, biopsy sample). In some embodiments, needle system 500 draws a biopsy sample of target region 515 into needle lumen 246 . In other embodiments, needle system 500 cores a biopsy sample of target region 515 into rigid portion 240 of needle 235 .

图14在流程图600中示出用于使用或控制管心针260的方法的一个实施例的。在步骤605处,针系统500(例如,管心针260和针235)可以在感兴趣区域或目标组织(例如,图10所示的目标区域515)的方向上一起被推进到患者解剖结构(例如,图10所示的患者解剖结构P)内。在一些实施例中,管心针260和针235可在递送设备(例如,图10所示的柔性鞘管520)内推进。当管心针260和针235朝向感兴趣区域推进时,管心针260可以伸缩地覆盖在针235内。FIG. 14 illustrates in flowchart 600 one embodiment of a method for using or controlling stylet 260 . At step 605, needle system 500 (e.g., stylet 260 and needle 235) may be advanced together into the patient's anatomy in the direction of a region of interest or target tissue (e.g., target region 515 shown in FIG. 10). For example, within patient anatomy P) shown in FIG. 10 . In some embodiments, stylet 260 and needle 235 can be advanced within a delivery device (eg, flexible sheath 520 shown in FIG. 10 ). The stylet 260 may telescopically fit within the needle 235 as the stylet 260 and needle 235 are advanced toward the region of interest.

在步骤610处,在朝向感兴趣区域推进针系统500期间,无需利用管心针260的传感器元件270,但是控制系统112(例如,控制系统112的处理器)可以分析通过传感器元件270供应的形状和/或位置数据,以确认针系统500通过患者解剖结构的精确进程。At step 610, sensor element 270 of stylet 260 need not be utilized during advancement of needle system 500 toward the region of interest, but control system 112 (e.g., a processor of control system 112) may analyze the shape supplied by sensor element 270. and/or position data to confirm the precise progression of the needle system 500 through the patient's anatomy.

在步骤615处,在将针系统500定位在感兴趣区域的附近之后,管心针260可以先于针235被推进(例如,越过针235的远端249)以穿透组织,如图11所示。管心针260可以穿透组织而不对组织进行取芯,并且促进针235稍后前进通过组织。At step 615, after positioning the needle system 500 in the vicinity of the region of interest, the stylet 260 may be advanced ahead of the needle 235 (e.g., past the distal end 249 of the needle 235) to penetrate tissue, as shown in FIG. Show. Stylet 260 may penetrate tissue without coring the tissue and facilitate later advancement of needle 235 through the tissue.

在步骤620处,随着传感器元件270被推进到组织中,传感器元件270能够取得或检测管心针260的当前形状/位置,并且控制系统112可以分析通过传感器元件270供应的形状和/或位置数据,以确定针系统500相对于感兴趣区域的位置。At step 620, as the sensor element 270 is advanced into the tissue, the sensor element 270 can take or detect the current shape/position of the stylet 260, and the control system 112 can analyze the shape and/or position supplied by the sensor element 270 data to determine the position of the needle system 500 relative to the region of interest.

在步骤625处,基于通过传感器元件270供应的形状和/或位置数据,控制系统112可以操控管心针260朝向感兴趣区域。At step 625, based on the shape and/or position data supplied by the sensor element 270, the control system 112 may steer the stylet 260 toward the region of interest.

在步骤630处,控制系统112可以在管心针260上朝向感兴趣区域推进针235或者将针235推进到感兴趣区域中,如图12所示。At step 630 , control system 112 may advance needle 235 over stylet 260 toward or into the region of interest, as shown in FIG. 12 .

在步骤635处,管心针260可以通过针235撤回,如图13所示。At step 635 , the stylet 260 may be withdrawn through the needle 235 as shown in FIG. 13 .

在步骤640处,针235可以进一步推进到感兴趣区域中,以通过组织进行取芯并获得活检样本。At step 640, the needle 235 may be advanced further into the region of interest to coring through the tissue and obtaining a biopsy sample.

本发明的实施例中的一个或多个元件可以在软件中实施,以在计算机系统(诸如控制系统112)的处理器上执行。当在软件中实施时,本发明的实施例的元件本质上为执行必要任务的代码段。程序或代码段能够存储在处理器可读存储介质或设备中,其中所述设备可以已经通过传输介质或通信链接经由实施在载波中的计算机数据信号下载。处理器可读存储设备可以包括能够存储信息的任何介质,包括光学介质、半导体介质以及磁性介质。处理器可读存储设备示例包括电子电路;半导体设备、半导体存储器设备、只读存储器(ROM)、闪存存储器、可擦除可编程只读存储器(EPROM);软盘、CD-ROM、光盘、硬盘或其他存储设备。代码段可以经由计算机网络(诸如因特网、内联网等)进行下载。One or more elements of embodiments of the invention may be implemented in software for execution on a processor of a computer system, such as control system 112 . When implemented in software, the elements of the embodiments of the invention are essentially the code segments to perform the necessary tasks. Programs or code segments can be stored in a processor-readable storage medium or in a device that may have been downloaded via a computer data signal embodied in a carrier wave through a transmission medium or a communication link. Processor-readable storage devices may include any medium that can store information, including optical, semiconductor, and magnetic media. Examples of processor-readable storage devices include electronic circuits; semiconductor devices, semiconductor memory devices, read-only memory (ROM), flash memory, erasable programmable read-only memory (EPROM); floppy disks, CD-ROMs, optical disks, hard disks, or other storage devices. Code segments may be downloaded via a computer network (such as the Internet, an intranet, etc.).

注意,提出的过程和显示可以不是固有地涉及任何特定的计算机或其他装置。各种这些系统的所需结构将作为元件在权利要求书中出现。此外,本发明的实施例并不参考任何特定的编程语言进行描述。应该认识到,各种编程语言均可以用于实施如本文所述的本发明的教导。Note that the presented processes and displays may not be inherently related to any particular computer or other apparatus. The required structure for a variety of these systems will appear as elements in the claims. Furthermore, embodiments of the present invention are not described with reference to any particular programming language. It should be appreciated that a variety of programming languages can be used to implement the teachings of the invention as described herein.

尽管已经在附图中示出且描述本发明的某些示例性实施例,但应该理解,此类实施例仅是对广义发明的说明而非对其进行限制,并且由于本领域的普通技术人员可以想到各种其他修改,因此本发明的实施例不限于所示和所述的特定结构和布置。While certain exemplary embodiments of the present invention have been shown and described in the drawings, it is to be understood that such embodiments are illustrative only of the broad invention and not limiting thereof, and that persons of ordinary skill in the art will Various other modifications are conceivable and thus the embodiments of the invention are not limited to the specific structures and arrangements shown and described.

Claims (27)

CN201580021691.6A2014-04-022015-03-23 Devices, systems and methods using steerable stylets and flexible needlesActiveCN106456935B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201911219102.1ACN110833382B (en)2014-04-022015-03-23Devices, systems, and methods using steerable stylet and flexible needle

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US201461974113P2014-04-022014-04-02
US61/974,1132014-04-02
PCT/US2015/022006WO2015153174A1 (en)2014-04-022015-03-23Devices, systems, and methods using a steerable stylet and flexible needle

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
CN201911219102.1ADivisionCN110833382B (en)2014-04-022015-03-23Devices, systems, and methods using steerable stylet and flexible needle

Publications (2)

Publication NumberPublication Date
CN106456935A CN106456935A (en)2017-02-22
CN106456935Btrue CN106456935B (en)2019-12-24

Family

ID=54241106

Family Applications (2)

Application NumberTitlePriority DateFiling Date
CN201580021691.6AActiveCN106456935B (en)2014-04-022015-03-23 Devices, systems and methods using steerable stylets and flexible needles
CN201911219102.1AActiveCN110833382B (en)2014-04-022015-03-23Devices, systems, and methods using steerable stylet and flexible needle

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
CN201911219102.1AActiveCN110833382B (en)2014-04-022015-03-23Devices, systems, and methods using steerable stylet and flexible needle

Country Status (6)

CountryLink
US (2)US10779803B2 (en)
EP (1)EP3125983B1 (en)
JP (2)JP6629230B2 (en)
KR (1)KR102337419B1 (en)
CN (2)CN106456935B (en)
WO (1)WO2015153174A1 (en)

Families Citing this family (112)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9232959B2 (en)2007-01-022016-01-12Aquabeam, LlcMulti fluid tissue resection methods and devices
US12290277B2 (en)2007-01-022025-05-06Aquabeam, LlcTissue resection with pressure sensing
ES2769535T3 (en)2008-03-062020-06-26Aquabeam Llc Tissue ablation and cauterization with optical energy carried in a fluid stream
US20120191079A1 (en)2011-01-202012-07-26Hansen Medical, Inc.System and method for endoluminal and translumenal therapy
EP3351196A1 (en)2012-02-292018-07-25Procept Biorobotics CorporationAutomated image-guided tissue resection and treatment
US10231867B2 (en)2013-01-182019-03-19Auris Health, Inc.Method, apparatus and system for a water jet
WO2014201165A1 (en)2013-06-112014-12-18Auris Surgical Robotics, Inc.System for robotic assisted cataract surgery
US10426661B2 (en)2013-08-132019-10-01Auris Health, Inc.Method and apparatus for laser assisted cataract surgery
JP6629230B2 (en)2014-04-022020-01-15インテュイティブ サージカル オペレーションズ, インコーポレイテッド Minimal invasive system
US20160287279A1 (en)2015-04-012016-10-06Auris Surgical Robotics, Inc.Microsurgical tool for robotic applications
US11457987B2 (en)*2015-05-152022-10-04The Johns Hopkins UniversityManipulator device and therapeutic and diagnostic methods
JP6476293B2 (en)*2015-06-122019-02-27オリンパス株式会社 Flexible tube insertion device
JP6150962B1 (en)*2015-07-172017-06-21オリンパス株式会社 manipulator
US10575754B2 (en)2015-09-232020-03-03Covidien LpCatheter having a sensor and an extended working channel
US9949749B2 (en)2015-10-302018-04-24Auris Surgical Robotics, Inc.Object capture with a basket
US10231793B2 (en)2015-10-302019-03-19Auris Health, Inc.Object removal through a percutaneous suction tube
US9955986B2 (en)2015-10-302018-05-01Auris Surgical Robotics, Inc.Basket apparatus
GB2557852B (en)*2015-11-252021-02-17Gyrus Acmi IncSheaths for needle delivery
EP3216415A1 (en)*2016-03-072017-09-13Deutsches Krebsforschungszentrum Stiftung des Öffentlichen RechtsA system for navigated punction, biopsy or ablation comprising a needle-like instrument and a removable sensor carrier
AU2017268213B2 (en)*2016-05-162021-03-04TrackX Technology, LLCSystem and method for image localization of effecters during a medical procedure
US10825177B2 (en)*2016-05-162020-11-03TrackX Technology, LLCImaging system and method for image localization of effecters during a medical procedure
US20200077991A1 (en)*2016-05-312020-03-12Intuitive Surgical Operations, Inc.Pliant biopsy needle system
CN109310287B (en)*2016-07-012023-01-03直观外科手术操作公司Computer-aided medical system and control method thereof
US10682192B2 (en)*2016-09-302020-06-16Intuitive Surgical Operations, Inc.Variable-length guide apparatus for delivery of a flexible instrument and methods of use
CN110177507A (en)*2016-10-052019-08-27宾夕法尼亚大学理事会That sharply turns turns to needle
EP3525696B1 (en)*2016-10-122025-09-10Intuitive Surgical Operations, Inc.Surgical puncture device insertion systems
US11529190B2 (en)2017-01-302022-12-20Covidien LpEnhanced ablation and visualization techniques for percutaneous surgical procedures
JP7252894B2 (en)*2017-02-282023-04-05ボストン サイエンティフィック サイムド,インコーポレイテッド articulating needle
US20200093472A1 (en)*2017-03-242020-03-26Robert J CottoneSystems and methods for tissue displacement
CN108934160B (en)2017-03-282021-08-31奥瑞斯健康公司Shaft actuating handle
EP3606457A4 (en)*2017-04-032021-04-21Broncus Medical Inc. ELECTROSURGICAL ACCESS SHEATH
CN115089089A (en)*2017-04-032022-09-23奥林巴斯株式会社 Outer casings and medical systems
US10285574B2 (en)*2017-04-072019-05-14Auris Health, Inc.Superelastic medical instrument
EP3606592B1 (en)2017-04-072025-01-08Bard Access Systems, Inc.Optical fiber-based medical device tracking and monitoring system
EP3606400B1 (en)2017-04-072022-03-09Auris Health, Inc.Patient introducer alignment
IT201700042116A1 (en)*2017-04-142018-10-14Medical Microinstruments Spa ROBOTIC ASSEMBLY FOR SURGERY
CN106943183B (en)*2017-04-262023-09-08郑明辉Minimally invasive flexible puncture tube and minimally invasive channel puncture assembly
CN111050702B (en)*2017-07-132022-07-05坦迪尼控股股份有限公司 Prosthetic heart valve and devices and methods for delivering the prosthetic heart valve
WO2019038073A1 (en)*2017-08-222019-02-28Koninklijke Philips N.V.Adjustable flexibility/stiffness intraluminal device
US11179203B2 (en)*2017-10-262021-11-23Biosense Webster (Israel) Ltd.Position-tracking-enabling connector for an ear-nose-throat (ENT) tool
US11642099B2 (en)*2017-12-082023-05-09Koninklijke Philips N.V.Rolled flexible substrate with integrated window for intraluminal ultrasound
US10456556B2 (en)*2018-02-192019-10-29Bendit Technologies Ltd.Steering tool with enhanced flexibility and trackability
WO2019163906A1 (en)*2018-02-212019-08-29オリンパス株式会社Medical system and operation method of medical system
US10872449B2 (en)2018-05-022020-12-22Covidien LpSystem and method for constructing virtual radial ultrasound images from CT data and performing a surgical navigation procedure using virtual ultrasound images
JP7267309B2 (en)2018-06-072023-05-01オーリス ヘルス インコーポレイテッド Robotic medical system with high-strength instruments
JP7391886B2 (en)2018-06-282023-12-05オーリス ヘルス インコーポレイテッド Medical system incorporating pulley sharing
US11071591B2 (en)2018-07-262021-07-27Covidien LpModeling a collapsed lung using CT data
WO2020036685A1 (en)2018-08-152020-02-20Auris Health, Inc.Medical instruments for tissue cauterization
WO2020036686A1 (en)2018-08-172020-02-20Auris Health, Inc.Bipolar medical instrument
CN112770689B (en)*2018-09-262024-07-19奥瑞斯健康公司 Systems and instruments for suction and irrigation
US11553831B2 (en)*2018-10-042023-01-17Biosense Webster (Israel) Ltd.Malleable suction device
US11576738B2 (en)2018-10-082023-02-14Auris Health, Inc.Systems and instruments for tissue sealing
CN112842533B (en)*2018-10-092023-09-05北京术锐机器人股份有限公司Flexible surgical tool and vascular intervention surgical robot system
CN109316654A (en)*2018-10-232019-02-12中国福利会国际和平妇幼保健院Speech recognition intelligence tracheal catheter
US12419713B2 (en)2018-11-152025-09-23Intuitive Surgical Operations, Inc.Surgical instrument with sensor aligned cable guide
WO2020131529A1 (en)2018-12-202020-06-25Auris Health, Inc.Shielding for wristed instruments
EP3883492B1 (en)2019-01-252025-05-21Auris Health, Inc.Vessel sealer with heating capabilities
EP3908201B1 (en)2019-03-252024-04-24Auris Health, Inc.Instruments for medical stapling
US11975157B2 (en)2019-04-122024-05-07Covidien LpMethod of manufacturing an elongated catheter having multiple sensors for three-dimensional location of the catheter
SG11202110918UA (en)*2019-05-022021-10-28Intersect Ent Int GmbhSensor carrier
CN114126529A (en)2019-06-252022-03-01奥瑞斯健康公司Medical instrument including a wrist with hybrid redirecting surfaces
WO2020263629A1 (en)2019-06-272020-12-30Auris Health, Inc.Systems and methods for a medical clip applier
WO2020263949A1 (en)2019-06-282020-12-30Auris Health, Inc.Medical instruments including wrists with hybrid redirect surfaces
EP4005609B1 (en)*2019-07-292024-05-29Sam Youl YoonBiliary drainage device for negative-pressure retrograde percutaneous transhepatic biliary drainage
US11896330B2 (en)2019-08-152024-02-13Auris Health, Inc.Robotic medical system having multiple medical instruments
US10959792B1 (en)2019-09-262021-03-30Auris Health, Inc.Systems and methods for collision detection and avoidance
WO2021059100A1 (en)2019-09-262021-04-01Auris Health, Inc.Systems and methods for collision avoidance using object models
US11737845B2 (en)2019-09-302023-08-29Auris Inc.Medical instrument with a capstan
US11737835B2 (en)2019-10-292023-08-29Auris Health, Inc.Braid-reinforced insulation sheath
CN114727850A (en)2019-11-212022-07-08奥瑞斯健康公司Systems and methods for draping surgical systems
CN112826497B (en)2019-11-252025-09-09巴德阿克塞斯系统股份有限公司Optical tip tracking system and method thereof
EP4061272A4 (en)2019-11-252023-11-22Bard Access Systems, Inc.Shape-sensing systems with filters and methods thereof
CN114901188A (en)2019-12-312022-08-12奥瑞斯健康公司Dynamic pulley system
EP4084724A4 (en)2019-12-312023-12-27Auris Health, Inc. ADVANCED BASKET DRIVE MODE
US12370002B2 (en)2020-03-302025-07-29Auris Health, Inc.Workspace optimization for robotic surgery
US12239393B2 (en)*2020-05-182025-03-04Intuitive Surgical Operations, Inc.Hard stop that produces a reactive moment upon engagement for cantilever-based force sensing
US12064191B2 (en)2020-06-032024-08-20Covidien LpSurgical tool navigation using sensor fusion
US11701492B2 (en)2020-06-042023-07-18Covidien LpActive distal tip drive
EP4167892A4 (en)2020-06-192024-10-30Remedy Robotics, Inc. SYSTEMS AND METHODS FOR GUIDING INTRALUMINAL DEVICES WITHIN THE VASCULAR SYSTEM
CN113842536A (en)2020-06-262021-12-28巴德阿克塞斯系统股份有限公司Dislocation detection system
CN115802975A (en)2020-06-292023-03-14奥瑞斯健康公司System and method for detecting contact between a connecting rod and an external object
US12402955B2 (en)*2020-06-292025-09-02Regents Of The University Of MinnesotaExtended-reality visualization of endovascular navigation
WO2022005870A1 (en)2020-06-292022-01-06Bard Access Systems, Inc.Automatic dimensional frame reference for fiber optic
US11357586B2 (en)2020-06-302022-06-14Auris Health, Inc.Systems and methods for saturated robotic movement
CN115734765A (en)2020-06-302023-03-03奥瑞斯健康公司 Robotic medical system with crash proximity indicator
US11020099B1 (en)*2020-07-012021-06-01Verix Health, Inc.Lung access device
WO2022011287A1 (en)2020-07-102022-01-13Bard Access Systems, Inc.Continuous fiber optic functionality monitoring and self-diagnostic reporting system
US20220016394A1 (en)*2020-07-162022-01-20Canon U.S.A., Inc.Medical Apparatus and Method of Use Thereof
WO2022031613A1 (en)2020-08-032022-02-10Bard Access Systems, Inc.Bragg grated fiber optic fluctuation sensing and monitoring system
US12256923B2 (en)2020-08-132025-03-25Covidien LpEndoluminal robotic systems and methods for suturing
US12383352B2 (en)2020-08-132025-08-12Covidien LpEndoluminal robotic (ELR) systems and methods
US12161309B2 (en)2020-09-242024-12-10Covidien LpArticulating mechanism for the laparoscopic ablation device for blunt dissection
CN114246583A (en)2020-09-252022-03-29巴德阿克塞斯系统股份有限公司 Fiber Optic Oximetry Systems for Detection and Confirmation
CN112370125B (en)*2020-11-132022-08-05哈尔滨理工大学Winding type flexible needle puncture mechanism
WO2022150411A1 (en)*2021-01-062022-07-14Bard Access Systems, Inc.Needle guidance using fiber optic shape sensing
US12426954B2 (en)2021-01-262025-09-30Bard Access Systems, Inc.Fiber optic shape sensing system associated with port placement
US12121307B2 (en)2021-07-012024-10-22Remedy Robotics, Inc.Vision-based position and orientation determination for endovascular tools
US11707332B2 (en)2021-07-012023-07-25Remedy Robotics, Inc.Image space control for endovascular tools
EP4364163A1 (en)2021-07-012024-05-08Remedy Robotics, Inc.Vision-based position and orientation determination for endovascular tools
US12419694B2 (en)2021-10-252025-09-23Bard Access Systems, Inc.Reference plane for medical device placement
FR3129601A1 (en)2021-12-012023-06-02Universite De Lille Device for loading and pushing radioactive grains
US12303220B2 (en)2022-01-262025-05-20Covidien LpAutonomous endobronchial access with an EM guided catheter
CN114795411B (en)*2022-04-152024-07-19哈尔滨理工大学Flexible needle puncture mechanism with slotting support
CN115211908B (en)*2022-06-172024-07-02清华大学Spring-based multipurpose flexible controllable instrument
US12343117B2 (en)2022-06-282025-07-01Bard Access Systems, Inc.Fiber optic medical systems and methods for identifying blood vessels
US12349984B2 (en)2022-06-292025-07-08Bard Access Systems, Inc.System, method, and apparatus for improved confirm of an anatomical position of a medical instrument
CN115444573B (en)*2022-08-102024-10-29上海优医基医学科技有限公司Flexible instrument control method and system and surgical robot
CN115869508A (en)*2022-11-172023-03-31同济大学Flexible interventional catheter, catheter system and method of use
CN120583909A (en)*2023-01-122025-09-02马格尼司帝有限公司 Camera module and flexible circuit board for long interventional device
US20250040961A1 (en)*2023-08-042025-02-06Boston Scientific Medical Device LimitedSteerable endoscopic needle
CN117017453B (en)*2023-09-122024-05-10哈尔滨工业大学 Steerable flexible needles for medical testing and treatment
CN119184768B (en)*2024-09-252025-04-11江苏省肿瘤医院 Minimally invasive surgery modular deformable suture needle and its morphology control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2009023779A1 (en)*2007-08-152009-02-19Chunyuan QiuSystems and methods for intubation

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4651718A (en)*1984-06-291987-03-24Warner-Lambert Technologies Inc.Vertebra for articulatable shaft
US5833632A (en)1995-12-071998-11-10Sarcos, Inc.Hollow guide wire apparatus catheters
US6123699A (en)*1997-09-052000-09-26Cordis Webster, Inc.Omni-directional steerable catheter
US6858005B2 (en)2000-04-032005-02-22Neo Guide Systems, Inc.Tendon-driven endoscope and methods of insertion
US6817974B2 (en)*2001-06-292004-11-16Intuitive Surgical, Inc.Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
US6616628B2 (en)2001-11-162003-09-09Cardiac Pacemakers, Inc.Steerable catheter with a longitudinally adjustable curved core
WO2003101308A1 (en)*2002-06-042003-12-11Office Of Technology Licensing Stanford UniversityDevice and method for rapid aspiration and collection of body tissue from within an enclosed body space
US7662128B2 (en)*2002-12-232010-02-16Salcudean Septimiu ESteerable needle
US7678117B2 (en)*2004-06-072010-03-16Novare Surgical Systems, Inc.Articulating mechanism with flex-hinged links
WO2006058195A2 (en)*2004-11-232006-06-01Pneumrx, Inc.Steerable device for accessing a target site and methods
US9096033B2 (en)*2007-06-132015-08-04Intuitive Surgical Operations, Inc.Surgical system instrument sterile adapter
US20090062606A1 (en)*2007-08-312009-03-05Hoya CorporationEndoscope guiding tube device
JP2009056054A (en)*2007-08-312009-03-19Hoya CorpEndoscope guiding tube device
US8649847B1 (en)*2009-05-042014-02-11Intelligent Fiber Optic Systems, Inc.Steerable shape sensing biopsy needle and catheter
US9055960B2 (en)*2010-11-152015-06-16Intuitive Surgical Operations, Inc.Flexible surgical devices
CN103501713A (en)*2010-12-202014-01-08脊柱诊察公司Articulating tissue removal systems and methods
JP6290099B2 (en)*2012-02-032018-03-07インテュイティブ サージカル オペレーションズ, インコーポレイテッド Steerable flexible needle with implantable shape sensing function
GB2500784B (en)*2012-02-282015-07-22Spiration IncLung Biopsy Needle
JP6279555B2 (en)*2012-05-232018-02-14ヴェリトラクト,インコーポレイテッド Elongated medical device with a sheath
US9011429B2 (en)*2012-06-072015-04-21Smith & Nephew, Inc.Flexible probe with adjustable tip
US10029073B2 (en)*2012-11-132018-07-24Abbott Cardiovascular Systems, Inc.Steerable assembly for surgical catheter
CN114366181B (en)*2013-12-132024-08-02直观外科手术操作公司Telescopic biopsy needle
JP6629230B2 (en)*2014-04-022020-01-15インテュイティブ サージカル オペレーションズ, インコーポレイテッド Minimal invasive system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2009023779A1 (en)*2007-08-152009-02-19Chunyuan QiuSystems and methods for intubation

Also Published As

Publication numberPublication date
JP6629230B2 (en)2020-01-15
WO2015153174A1 (en)2015-10-08
US10779803B2 (en)2020-09-22
JP2020032277A (en)2020-03-05
US20210015470A1 (en)2021-01-21
EP3125983A4 (en)2018-03-21
KR20160140840A (en)2016-12-07
JP2017511187A (en)2017-04-20
EP3125983B1 (en)2021-05-05
US20180214138A9 (en)2018-08-02
KR102337419B1 (en)2021-12-13
JP6816243B2 (en)2021-01-20
CN110833382A (en)2020-02-25
CN110833382B (en)2023-05-30
US20170095234A1 (en)2017-04-06
CN106456935A (en)2017-02-22
EP3125983A1 (en)2017-02-08

Similar Documents

PublicationPublication DateTitle
CN106456935B (en) Devices, systems and methods using steerable stylets and flexible needles
US12075988B2 (en)Telescoping biopsy needle
JP7553006B2 (en) Medical Tools
JP7167035B2 (en) Systems and methods for instrument buckling detection
CN110833455B (en) Flexible Instruments with Embedded Actuation Catheters
WO2015088961A1 (en)Sensor stylet

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp