技术领域technical field
本发明属于检测传感领域,具体涉及一种适用于材料表面参数监测的无源传感网络及传感方法。The invention belongs to the field of detection and sensing, and in particular relates to a passive sensing network and a sensing method suitable for monitoring material surface parameters.
背景技术Background technique
人体体表的生理参数包括温度、湿度、排汗量、PH值以及由心跳、呼吸和脉搏引起的体表变形等指标。这些生理参数直接反应了人体生命活动的状态,通过对这些参数的准确测量,可以对人体健康状态进行监测,或对人体疾病进行诊断以及指导手术和用药。The physiological parameters of the human body surface include indicators such as temperature, humidity, perspiration, pH value, and body surface deformation caused by heartbeat, respiration, and pulse. These physiological parameters directly reflect the state of human life activities. Through accurate measurement of these parameters, the health status of the human body can be monitored, or human diseases can be diagnosed, and surgery and medication can be guided.
传统上,对这类体表生理参数测量的方法多依赖于体外仪器,例如温度计、湿度计或血压计等。这类仪器的使用多需要使用人的手动操作,自动化程度和准确度相对较低,且每次只能测得单一时刻、单一位置和单一参数的数据。而近年来,随着科学技术的发展,出现了大量的用于体表生理参数监测的可穿戴智能设备,例如智能手环、手表等。这类智能可穿戴设备的特点在于,可以实现人体体表生理参数的自动化测量和存储,并且已经达到了相对高的一个准确度。Traditionally, methods for measuring such body surface physiological parameters mostly rely on in vitro instruments, such as thermometers, hygrometers, or sphygmomanometers. The use of this type of instrument mostly requires manual operation by the user, the degree of automation and accuracy is relatively low, and the data of a single moment, a single location, and a single parameter can only be measured each time. In recent years, with the development of science and technology, a large number of wearable smart devices for monitoring physiological parameters of the body surface, such as smart bracelets and watches, have emerged. The feature of this type of smart wearable device is that it can realize the automatic measurement and storage of physiological parameters of the human body surface, and has achieved a relatively high accuracy.
然而,当前这些可穿戴设备的设备存在以下两个重大的缺点:However, current devices for these wearable devices suffer from two major drawbacks:
1、只能完成穿戴设备与皮肤接触处的单一位置的参数测量,而不能实现多点多位置的同时采集或测量,或者不能形成测量网络;1. It can only complete the parameter measurement of a single position where the wearable device is in contact with the skin, but cannot realize simultaneous acquisition or measurement of multiple points and multiple positions, or cannot form a measurement network;
2、这类采集设备需要持续的电源供应,因此需要内置电源,但由于可穿戴设备的体积和重量均不能过大,因此电源的供电时间十分有限,进而导致传感器工作时间受到限制。2. This type of acquisition device needs a continuous power supply, so it needs a built-in power supply. However, because the size and weight of the wearable device cannot be too large, the power supply time of the power supply is very limited, which in turn limits the working time of the sensor.
发明内容Contents of the invention
为了解决体表多生理参数多点测量问题,并解决传感器持续工作的能源供应问题,本发明提出了适用于材料表面生理参数监测的无源传感网络。本发明基于一种多方向发射的多角度超声换能器,在该换能器周围布置多个声表面波传感单元,以材料表面本身为声信号传输信道,多角度超声换能器为声表面波传感单元提供瞬时工作能源,并接收声表面波传感单元返回来的监测信号,进而读取分析所测量的材料表面参数数据。In order to solve the problem of multi-point measurement of multiple physiological parameters on the body surface, and solve the problem of energy supply for continuous operation of sensors, the invention proposes a passive sensor network suitable for monitoring physiological parameters of material surfaces. The present invention is based on a multi-directional multi-angle ultrasonic transducer, a plurality of surface acoustic wave sensing units are arranged around the transducer, the surface of the material itself is the acoustic signal transmission channel, and the multi-angle ultrasonic transducer is the acoustic signal transmission channel. The surface wave sensing unit provides instantaneous working energy, and receives the monitoring signal returned by the surface acoustic wave sensing unit, and then reads and analyzes the measured material surface parameter data.
本发明的一个目的在于提出一种适用于材料表面参数监测的无源传感网络。An object of the present invention is to propose a passive sensor network suitable for the monitoring of material surface parameters.
本发明的适用于材料表面参数监测的无源传感网络包括:控制电路、多角度超声换能器和多个声表面波传感单元;其中,控制电路电学连接至多角度超声换能器;多角度超声换能器半嵌入待测材料表面;在多角度超声换能器的周边布置多个紧贴被测材料表面的声表面波传感单元;控制电路发出控制信号至多角度超声换能器,控制信号的形式是电信号;以多角度超声换能器为通讯节点,以待测材料表面作为通讯信道,以声信号作为能量和信号的载体与布置在多角度超声换能器周边的各个声表面波传感单元进行能量或信息传输;多角度超声换能器将电信号转换成声信号;声信号沿待测材料表面传播声表面波传感单元接收声信号,感知所在位置周围的被测材料表面参数,并将携带被测材料表面参数信息的声信号通过被测材料表面返回至多角度超声换能器;多角度超声换能器将声信号转变成电信号后传输至控制电路,控制电路分析并提取被测材料表面的信息,进而实现对被测材料表面多点多参数的同时监测。The passive sensor network suitable for material surface parameter monitoring of the present invention includes: a control circuit, a multi-angle ultrasonic transducer and a plurality of surface acoustic wave sensing units; wherein, the control circuit is electrically connected to the multi-angle ultrasonic transducer; The angle ultrasonic transducer is half-embedded in the surface of the material to be tested; a plurality of surface acoustic wave sensing units close to the surface of the material to be tested are arranged around the multi-angle ultrasonic transducer; the control circuit sends a control signal to the multi-angle ultrasonic transducer, The form of the control signal is an electrical signal; the multi-angle ultrasonic transducer is used as the communication node, the surface of the material to be tested is used as the communication channel, the acoustic signal is used as the carrier of energy and signal, and each acoustic signal arranged around the multi-angle ultrasonic transducer The surface wave sensing unit transmits energy or information; the multi-angle ultrasonic transducer converts the electrical signal into an acoustic signal; the acoustic signal propagates along the surface of the material to be tested; the surface acoustic wave sensing unit receives the acoustic signal and perceives the measured surroundings The surface parameters of the material, and the acoustic signal carrying the surface parameter information of the tested material is returned to the multi-angle ultrasonic transducer through the surface of the tested material; the multi-angle ultrasonic transducer converts the acoustic signal into an electrical signal and transmits it to the control circuit. Analyze and extract the information on the surface of the tested material, and then realize the simultaneous monitoring of multiple points and parameters on the surface of the tested material.
控制电路包括:能量发出模块和信号分析模块;其中,能量发出模块发出带有能量的控制信号,例如瞬时脉冲等,并传输至多角度超声换能器;信号分析模块处理多角度超声换能器收到的声信号,提取和分析被测材料表面的信息。The control circuit includes: an energy sending module and a signal analysis module; wherein, the energy sending module sends out control signals with energy, such as instantaneous pulses, etc., and transmits them to the multi-angle ultrasonic transducer; the signal analysis module processes the multi-angle ultrasonic transducer The acquired acoustic signal is used to extract and analyze the information on the surface of the tested material.
多角度超声换能器包括中心质量层、主压电晶片层和声匹配层;其中,中心质量层的形状为多边形棱台,多边形棱台的边数为3~10个,中心质量层采用高密度材料;在多边形棱台形的中心质量层的每一个侧面分别设置一片压电晶片,从而在多边形棱台的侧面一周形成主压电晶片层,在不同方向的压电晶片保持互相独立;在主压电晶片层的外表面设置一层声匹配层;从而形成多边形倒梯台形状的多角度超声换能器,多角度超声换能器的上表面小于下表面,多角度超声换能器的上部半嵌入被测材料表面;控制电路电学连接至主压电晶片层;控制电路发出电信号至主压电晶片层,引起中心质量层外表面的各个互相独立的压电晶片振动,将电信号转换成声信号,中心质量层通过大的惯性,保证各个相互独立的压电晶片在振动时,多角度超声换能器不会有大的位置偏移,声匹配层降低了声信号从多角度超声换能器向被测材料表面传播时的能量衰减,提高传播效率;当声表面波传感单元通过被测材料表面返回携带被测材料表面参数信息的声信号时,通过声匹配层降低传播能量衰减,主压电晶片层感受到振动,将声信号转换成电信号,并传输至控制电路。The multi-angle ultrasonic transducer includes a central mass layer, a main piezoelectric wafer layer and an acoustic matching layer; wherein, the shape of the central mass layer is a polygonal prism, and the number of sides of the polygonal prism is 3 to 10, and the central mass layer adopts high Density material; a piece of piezoelectric wafer is respectively arranged on each side of the polygonal prism-shaped central mass layer, thereby forming a main piezoelectric wafer layer around the side of the polygonal prism, and the piezoelectric wafers in different directions remain independent of each other; in the main The outer surface of the piezoelectric wafer layer is provided with a layer of acoustic matching layer; thereby forming a multi-angle ultrasonic transducer in the shape of a polygonal inverted terrace, the upper surface of the multi-angle ultrasonic transducer is smaller than the lower surface, and the upper part of the multi-angle ultrasonic transducer Semi-embedded in the surface of the material to be tested; the control circuit is electrically connected to the main piezoelectric chip layer; the control circuit sends an electrical signal to the main piezoelectric chip layer, causing each independent piezoelectric chip on the outer surface of the central mass layer to vibrate and convert the electrical signal To form an acoustic signal, the central mass layer ensures that the multi-angle ultrasonic transducer will not have a large position shift when each independent piezoelectric chip vibrates through the large inertia, and the acoustic matching layer reduces the acoustic signal from the multi-angle ultrasonic The energy attenuation when the transducer propagates to the surface of the tested material improves the transmission efficiency; when the surface acoustic wave sensing unit returns the acoustic signal carrying the surface parameter information of the tested material through the surface of the tested material, the transmission energy is reduced through the acoustic matching layer Attenuation, the vibrations are felt by the main piezoelectric layer, which converts the acoustic signal into an electrical signal and transmits it to the control circuit.
声表面波传感单元包括:声表面波换能部分和声表面波传感部分,二者之间通过导线连接;声表面波换能部分接收沿被测材料表面传播的声信号,并将声信号转换为电信号传输至声表面波传感部分,声表面波传感部分感知周围被测材料表面的参数,并将携带被测材料表面参数信息的电信号传输至声表面波换能部分,声表面波换能部分将电信号转换为声信号,并通过被测材料表面传输至多角度超声换能器。声表面波换能部分的上表面小于下表面,声表面波换能部分的上部半嵌入至被测材料表面内。The surface acoustic wave sensing unit includes: a surface acoustic wave transducing part and a surface acoustic wave sensing part, the two are connected by wires; the surface acoustic wave transducing part receives the acoustic signal propagating along the surface The signal is converted into an electrical signal and transmitted to the surface acoustic wave sensing part. The surface acoustic wave sensing part senses the parameters of the surface of the surrounding measured material, and transmits the electrical signal carrying the surface parameter information of the measured material to the surface acoustic wave transducing part. The surface acoustic wave transducing part converts the electrical signal into an acoustic signal, and transmits it to the multi-angle ultrasonic transducer through the surface of the material to be tested. The upper surface of the surface acoustic wave transducing part is smaller than the lower surface, and the upper half of the surface acoustic wave transducing part is embedded in the surface of the measured material.
声表面波换能部分包括声阻抗匹配层、单元压电晶片层和大质量结构层;其中,在单元压电晶片层的前表面设置声阻抗匹配层,在单元压电晶片层的后表面设置大质量结构层;声阻抗匹配层面对多角度超声换能器,使得沿被测材料表面传播的声信号低衰减地传输至声表面波换能部分,提高声表面波换能部分的接收效率;单元压电晶片层感受到振动并将声信号转换为电信号,传输至声表面波传感部分;来自声表面波传感部分的电信号引起单元压电晶片层振动,将电信号转换为声信号,大质量结构层保证声信号朝给定的向前方向传播;声阻抗匹配层使得声信号低衰减地传播至被测材料表面,提高传播效率。The surface acoustic wave transducing part includes an acoustic impedance matching layer, a unit piezoelectric wafer layer and a mass structure layer; wherein, the acoustic impedance matching layer is arranged on the front surface of the unit piezoelectric wafer layer, and the acoustic impedance matching layer is arranged on the rear surface of the unit piezoelectric wafer layer. Large-mass structural layer; the acoustic impedance matching layer faces the multi-angle ultrasonic transducer, so that the acoustic signal propagating along the surface of the tested material is transmitted to the surface acoustic wave transducing part with low attenuation, and the receiving efficiency of the surface acoustic wave transducing part is improved; The unit piezoelectric wafer layer feels the vibration and converts the acoustic signal into an electrical signal, which is transmitted to the surface acoustic wave sensing part; the electrical signal from the surface acoustic wave sensing part causes the unit piezoelectric wafer layer to vibrate, and converts the electrical signal into an acoustic signal Signal, the large-mass structural layer ensures that the acoustic signal propagates in a given forward direction; the acoustic impedance matching layer enables the acoustic signal to propagate to the surface of the tested material with low attenuation, improving the propagation efficiency.
单元压电晶片层为平板状,阻抗匹配层的后表面和大质量结构层的前表面为平面,分别设置在单元压电晶片层的前表面和后表面;阻抗匹配层和大质量结构层的上表面均小于下表面。声表面波换能部分的上表面和下表面与前表面和后表面垂直。The unit piezoelectric wafer layer is flat, and the rear surface of the impedance matching layer and the front surface of the large-mass structural layer are planes, which are respectively arranged on the front surface and the rear surface of the unit piezoelectric wafer layer; the impedance matching layer and the large-mass structural layer The upper surface is smaller than the lower surface. The upper surface and the lower surface of the surface acoustic wave transducing part are perpendicular to the front surface and the rear surface.
声表面波传感部分包括压电薄片层、敏感层和叉指电极;其中,压电薄片层作为声信号的传播介质采用压电材料;敏感层和叉指电极分别设置在压电薄片层上;叉指电极布置在压电薄片层的中间,或者布置在压电薄片层上位于敏感层的两端;叉指电极采用金属材料;叉指电极将单元压电晶片层传来的电信号转换为声信号并在压电薄片层的表面传播,敏感层感知周围被测材料表面的参数,当参数(温度、湿度)发生变化时,敏感层与压电薄片层相互作用,并影响声信号表面波传播特性;叉指电极将携带有被测材料表面参数信息的声信号转化成电信号,并传输至单元压电晶片层。The surface acoustic wave sensing part includes a piezoelectric sheet layer, a sensitive layer and interdigital electrodes; among them, the piezoelectric sheet layer uses piezoelectric materials as the propagation medium of the acoustic signal; the sensitive layer and the interdigital electrodes are respectively arranged on the piezoelectric sheet layer ; The interdigital electrodes are arranged in the middle of the piezoelectric sheet layer, or arranged on the piezoelectric sheet layer at both ends of the sensitive layer; the interdigital electrodes are made of metal materials; the interdigital electrodes convert the electrical signal from the unit piezoelectric sheet layer It is the acoustic signal and propagates on the surface of the piezoelectric sheet layer. The sensitive layer perceives the parameters of the surface of the surrounding material to be measured. When the parameters (temperature, humidity) change, the sensitive layer interacts with the piezoelectric sheet layer and affects the surface of the acoustic signal. Wave propagation characteristics; the interdigitated electrode converts the acoustic signal carrying the surface parameter information of the measured material into an electrical signal, and transmits it to the unit piezoelectric wafer layer.
被测材料可以是软材料,也可以是硬材料;如果被测材料是软材料,多角度超声换能器和声表面波换能部分的上表面紧贴被测材料表面,并施加压力压入软材料内,使得软材料变形发生凹陷,从而多角度超声换能器和声表面波换能部分的上面半嵌入被测材料表面内;如果被测材料是硬材料,则事先在被测材料表面预置与多角度超声换能器和声表面波换能部分相匹配的凹陷,从而使得二者的上面半嵌入被测材料表面内。The material to be tested can be a soft material or a hard material; if the material to be tested is a soft material, the upper surface of the multi-angle ultrasonic transducer and the surface acoustic wave transducing part are close to the surface of the material to be tested and pressed into the In the soft material, the soft material is deformed and depressed, so that the upper half of the multi-angle ultrasonic transducer and the surface acoustic wave transducing part are embedded in the surface of the tested material; if the tested material is a hard material, the surface of the tested material should be placed in advance A recess matching the multi-angle ultrasonic transducer and the surface acoustic wave transducing part is preset, so that the upper half of the two is embedded in the surface of the material to be tested.
本发明的另一个目的在于提供一种适用于材料表面参数监测的无源传感网络的传感方法。Another object of the present invention is to provide a sensing method for a passive sensor network suitable for monitoring material surface parameters.
本发明的适用于材料表面参数监测的无源传感网络的传感方法,包括以下步骤:The sensing method of the passive sensor network applicable to material surface parameter monitoring of the present invention comprises the following steps:
1)控制电路发出控制信号至多角度超声换能器,控制信号的形式是电信号;1) The control circuit sends a control signal to the multi-angle ultrasonic transducer, and the form of the control signal is an electrical signal;
2)多角度超声换能器将电信号转换成声信号;2) The multi-angle ultrasonic transducer converts electrical signals into acoustic signals;
3)声信号沿待测材料表面传播;3) The acoustic signal propagates along the surface of the material to be tested;
4)声表面波传感单元接收声信号,并将声信号转换成电信号;4) The surface acoustic wave sensing unit receives the acoustic signal and converts the acoustic signal into an electrical signal;
5)声表面波传感单元感知所在位置周围的被测材料表面参数;5) The surface acoustic wave sensing unit perceives the surface parameters of the measured material around the location;
6)声表面波传感单元将携带被测材料表面参数信息的声信号通过被测材料表面返回至多角度超声换能器;6) The surface acoustic wave sensing unit returns the acoustic signal carrying the surface parameter information of the measured material to the multi-angle ultrasonic transducer through the surface of the measured material;
7)多角度超声换能器将声信号转变成电信号后传输至控制电路;7) The multi-angle ultrasonic transducer converts the acoustic signal into an electrical signal and transmits it to the control circuit;
8)控制电路分析并提取被测材料表面的信息,进而实现对被测材料表面多点多参数的同时监测。8) The control circuit analyzes and extracts the information on the surface of the material to be tested, and then realizes the simultaneous monitoring of multiple points and parameters on the surface of the material to be tested.
其中,在步骤2)中,多角度超声换能器将电信号转换成声信号,具体包括以下步骤:Wherein, in step 2), the multi-angle ultrasonic transducer converts the electrical signal into an acoustic signal, specifically including the following steps:
a)从控制电路发来的电信号至主压电晶片层,引起中心质量层外表面的各个互相独立的压电晶片振动,将电信号转换成声信号;a) The electrical signal sent from the control circuit to the main piezoelectric chip layer causes vibration of each independent piezoelectric chip on the outer surface of the central mass layer, converting the electrical signal into an acoustic signal;
b)中心质量层通过大的惯性,保证各个相互独立的压电晶片在振动时,多角度超声换能器不会有大的位置偏移;b) The central mass layer ensures that the multi-angle ultrasonic transducers will not have a large position shift when each independent piezoelectric wafer vibrates through the large inertia;
c)声匹配层降低了声信号从多角度超声换能器向被测材料表面传播时的能量衰减,提高传播效率。c) The acoustic matching layer reduces the energy attenuation when the acoustic signal propagates from the multi-angle ultrasonic transducer to the surface of the material to be tested, and improves the propagation efficiency.
在步骤3)中,多角度超声换能器和声表面波换能部分的上部半嵌入被测材料表面内,从而主压电晶片层通过声匹配层与被测材料表面进行声信号通讯传播,以及单元压电晶片层通过声阻抗匹配层与被测材料表面进行声信号通讯传播。In step 3), the upper part of the multi-angle ultrasonic transducer and the surface acoustic wave transducing part is half-embedded in the surface of the material under test, so that the main piezoelectric wafer layer communicates with the surface of the material under test through the acoustic matching layer, And the piezoelectric chip layer of the unit communicates with the surface of the material to be tested for propagation of acoustic signals through the acoustic impedance matching layer.
在步骤4)中,声表面波传感单元接收声信号,并将声信号转换成电信号,具体包括以下步骤:In step 4), the surface acoustic wave sensing unit receives the acoustic signal, and converts the acoustic signal into an electrical signal, specifically including the following steps:
a)声阻抗匹配层面对多角度超声换能器,使得沿被测材料表面传播的声信号低衰减地传输至声表面波换能部分;a) The acoustic impedance matching layer faces the multi-angle ultrasonic transducer, so that the acoustic signal propagating along the surface of the tested material is transmitted to the surface acoustic wave transducing part with low attenuation;
b)单元压电晶片层感受到振动并将声信号转换为电信号,传输至声表面波传感部分。b) The piezoelectric wafer layer of the unit senses the vibration and converts the acoustic signal into an electrical signal, which is transmitted to the surface acoustic wave sensing part.
在步骤5)中,声表面波传感单元感知被测材料表面参数,具体包括以下步骤:In step 5), the surface acoustic wave sensing unit perceives the surface parameters of the measured material, specifically including the following steps:
a)叉指电极将单元压电晶片层传来的电信号转换为声信号并在压电薄片层的表面传播;a) The interdigitated electrode converts the electrical signal from the unit piezoelectric wafer layer into an acoustic signal and propagates on the surface of the piezoelectric wafer layer;
b)敏感层感知周围被测材料表面的参数,当参数发生变化时,敏感层与压电薄片层相互作用,并影响声信号表面波传播特性;b) The sensitive layer perceives the parameters of the surface of the surrounding material to be measured. When the parameters change, the sensitive layer interacts with the piezoelectric thin layer and affects the surface wave propagation characteristics of the acoustic signal;
c)叉指电极将携带有被测材料表面参数信息的声信号转化成电信号,并传输至单元压电晶片层。c) The interdigitated electrodes convert the acoustic signal carrying the surface parameter information of the measured material into an electrical signal, and transmit it to the unit piezoelectric wafer layer.
在步骤6)中,声表面波传感单元将声信号通过被测材料表面返回至多角度超声换能器,具体包括以下步骤:In step 6), the surface acoustic wave sensing unit returns the acoustic signal to the multi-angle ultrasonic transducer through the surface of the measured material, specifically including the following steps:
a)来自声表面波传感部分的电信号引起单元压电晶片层振动,将电信号转换为声信号;a) The electrical signal from the surface acoustic wave sensing part causes the piezoelectric wafer layer of the unit to vibrate, converting the electrical signal into an acoustic signal;
b)大质量结构层保证声信号朝给定方向传播;b) The large-mass structural layer ensures that the acoustic signal propagates in a given direction;
c)声阻抗匹配层使得声信号低衰减地传播至被测材料表面,提高传播效率。c) The acoustic impedance matching layer enables the acoustic signal to propagate to the surface of the measured material with low attenuation, improving the propagation efficiency.
在步骤7)中,多角度超声换能器将声信号转变成电信号后传输至控制电路,具体包括以下步骤:In step 7), the multi-angle ultrasonic transducer converts the acoustic signal into an electrical signal and transmits it to the control circuit, specifically including the following steps:
a)通过被测材料表面返回的携带被测材料表面参数信息的声信号,通过声匹配层使得降低能量衰减地传播至主压电晶片;a) The acoustic signal carrying the parameter information of the surface of the measured material returned by the surface of the measured material is transmitted to the main piezoelectric wafer with reduced energy attenuation through the acoustic matching layer;
b)主压电晶片层感受到振动,将声信号转换成电信号,并传输至控制电路。b) The main piezoelectric chip layer senses the vibration, converts the acoustic signal into an electrical signal, and transmits it to the control circuit.
在步骤8)中,控制电路处理分析,提取出被测材料表面的信息,具体包括:控制电路的信号分析模块处理多角度超声换能器收到的声信号,通过监测返回的声信号中波峰之间的时间差,或者声信号的频谱特性来判断被测材料表面的内部物质的特征。In step 8), the control circuit processes and analyzes to extract the information on the surface of the measured material, which specifically includes: the signal analysis module of the control circuit processes the acoustic signal received by the multi-angle ultrasonic transducer, and monitors the wave peak in the returned acoustic signal The time difference between them, or the spectral characteristics of the acoustic signal to judge the characteristics of the internal substance on the surface of the tested material.
本发明的无源传感网络可以用于工程结构表面参数测量或人体表面的生理参数监测。The passive sensor network of the present invention can be used for engineering structure surface parameter measurement or human body surface physiological parameter monitoring.
本发明的优点:Advantages of the present invention:
利用声信号在材料表面传播衰减小的特点,使用材料表面作为超声传输信道,进而解决了衰减、布线和抗干扰等问题;利用声表面波传感单元的瞬时工作特性,使用瞬时声信号提供其工作能源,使得传感器本身不再需要电池供应;利用多角度超声换能器,结合多个声表面波传感单元,实现了材料表面多个参数的多位置同时测量,并形成了测量网络。Taking advantage of the small attenuation of the acoustic signal on the surface of the material, the surface of the material is used as the ultrasonic transmission channel to solve the problems of attenuation, wiring and anti-interference; using the instantaneous working characteristics of the surface acoustic wave sensing unit, the instantaneous acoustic signal is used to provide its The working energy makes the sensor itself no longer need battery supply; the use of multi-angle ultrasonic transducers combined with multiple surface acoustic wave sensing units realizes the multi-position simultaneous measurement of multiple parameters on the material surface and forms a measurement network.
附图说明Description of drawings
图1为本发明的适用于材料表面参数监测的无源传感网络的示意图;Fig. 1 is the schematic diagram of the passive sensor network applicable to material surface parameter monitoring of the present invention;
图2为本发明的适用于材料表面参数监测的无源传感网络的信号连接及声电转换方式的结构框图;Fig. 2 is a structural block diagram of the signal connection and the acoustic-electric conversion mode of the passive sensor network suitable for material surface parameter monitoring of the present invention;
图3为本发明的适用于材料表面参数监测的无源传感网络的多角度超声换能器的示意图,其中,(a)为轴侧图,(b)为侧视图;Fig. 3 is the schematic diagram of the multi-angle ultrasonic transducer of the passive sensor network that is applicable to material surface parameter monitoring of the present invention, wherein, (a) is an axonometric view, (b) is a side view;
图4为本发明的适用于材料表面参数监测的无源传感网络的多角度超声换能器与声表面波传感单元通讯的示意图;4 is a schematic diagram of the communication between the multi-angle ultrasonic transducer and the surface acoustic wave sensing unit of the passive sensor network suitable for material surface parameter monitoring according to the present invention;
图5为本发明的适用于材料表面参数监测的无源传感网络的声表面波传感单元的示意图,其中,(a)为俯视图,(b)为侧视图;5 is a schematic diagram of a surface acoustic wave sensing unit of a passive sensor network suitable for material surface parameter monitoring of the present invention, wherein (a) is a top view, and (b) is a side view;
图6为本发明的适用于材料表面参数监测的无源传感网络用于检测人体温度的曲线图。FIG. 6 is a graph showing the temperature of the human body being detected by the passive sensor network suitable for monitoring material surface parameters according to the present invention.
具体实施方式detailed description
下面结合附图,通过具体实施例,进一步阐述本发明。The present invention will be further elaborated below through specific embodiments in conjunction with the accompanying drawings.
如图1所示,本实施例的适用于材料表面参数监测的无源传感网络包括:控制电路3、多角度超声换能器1和多个声表面波传感单元2;其中,控制电路电学连接至多角度超声换能器1;多角度超声换能器1半嵌入待测材料表面4;在多角度超声换能器的周边布置多个紧贴被测材料表面的声表面波传感单元2。信号连接及声电转换方式如图2所示。As shown in Figure 1, the passive sensor network applicable to the monitoring of material surface parameters in this embodiment includes: a control circuit 3, a multi-angle ultrasonic transducer 1 and a plurality of surface acoustic wave sensing units 2; wherein the control circuit Electrically connected to the multi-angle ultrasonic transducer 1; the multi-angle ultrasonic transducer 1 is half-embedded in the surface 4 of the material to be tested; a plurality of surface acoustic wave sensing units close to the surface of the tested material are arranged around the multi-angle ultrasonic transducer 2. The signal connection and sound-to-electricity conversion method are shown in Figure 2.
如图3所示,多角度超声换能器包括中心质量层13、主压电晶片层12和声匹配层11;其中,中心质量层13的形状为8边形棱台,中心质量层13采用高密度材料;在多边形棱台形的中心质量层的每一个侧面分别设置一片压电晶片,从而在多边形棱台的侧面一周形成主压电晶片层12,在不同方向的压电晶片保持互相独立;在主压电晶片层的外表面设置一层声匹配层13;从而形成多边形倒梯台形状的多角度超声换能器,多角度超声换能器的上表面小于下表面。在本实施例中,控制电路3设置在中心质量层13的上表面。As shown in Figure 3, the multi-angle ultrasonic transducer comprises a central mass layer 13, a main piezoelectric wafer layer 12 and an acoustic matching layer 11; wherein the central mass layer 13 is shaped as an octagonal prism, and the central mass layer 13 adopt High-density material; a piezoelectric wafer is respectively arranged on each side of the polygonal prism-shaped central mass layer, thereby forming a main piezoelectric wafer layer 12 around the sides of the polygonal prism, and the piezoelectric wafers in different directions remain independent of each other; A layer of acoustic matching layer 13 is arranged on the outer surface of the main piezoelectric wafer layer; thereby forming a multi-angle ultrasonic transducer in the shape of a polygonal inverted terrace, the upper surface of the multi-angle ultrasonic transducer is smaller than the lower surface. In this embodiment, the control circuit 3 is arranged on the upper surface of the central mass layer 13 .
如图4所示,多角度超声换能器1以被测材料表面作为通讯信道,与声表面波传感单元2声信号传输。As shown in FIG. 4 , the multi-angle ultrasonic transducer 1 uses the surface of the material to be tested as a communication channel to transmit acoustic signals with the surface acoustic wave sensing unit 2 .
如图5所示,声表面波传感单元包括:声表面波换能部分和声表面波传感部分;声表面波换能部分包括声阻抗匹配层21、单元压电晶片层22和大质量结构层23;其中,在单元压电晶片层22的前表面设置声阻抗匹配层21,在单元压电晶片层的后表面设置大质量结构层23。声表面波传感部分包括压电薄片层24、敏感层25和叉指电极26;其中,压电薄片层24作为声信号的传播介质采用压电材料;敏感层25和叉指电极26分别设置在压电薄片层上;叉指电极26布置在压电薄片层上位于敏感层25的两端。As shown in Figure 5, the surface acoustic wave sensing unit includes: a surface acoustic wave transducing part and a surface acoustic wave sensing part; the surface acoustic wave transducing part comprises an acoustic impedance matching layer 21, a unit piezoelectric wafer layer 22 and a large mass Structural layer 23; wherein, the acoustic impedance matching layer 21 is arranged on the front surface of the unit piezoelectric wafer layer 22, and the large-mass structural layer 23 is arranged on the rear surface of the unit piezoelectric wafer layer. The surface acoustic wave sensing part includes a piezoelectric sheet layer 24, a sensitive layer 25 and an interdigital electrode 26; wherein, the piezoelectric sheet layer 24 adopts a piezoelectric material as a propagation medium of an acoustic signal; the sensitive layer 25 and the interdigital electrode 26 are respectively arranged On the piezoelectric sheet layer; interdigital electrodes 26 are arranged on the piezoelectric sheet layer at both ends of the sensitive layer 25 .
无源传感网络可贴于人体体表,如腹部、背部、上肢或者下肢等位置,传感网络的中心节点是多角度超声换能器结构1,该节点负责提供脉冲能量并处理返回来的声信号。在多角度超声换能器结构1周围,布有多个声表面波传感单元2,多角度超声换能器结构1和声表面波传感单元2之间以人体为通信信道,以声波为能量和信号的载体进行能量或信息传输。声表面波传感单元2可实现对多种生理参数的测量,以腹部为例,可监测的参数包括但不限于体温,心跳信号,呼吸信号,膀胱信号等。The passive sensor network can be attached to the surface of the human body, such as the abdomen, back, upper limbs or lower limbs. The central node of the sensor network is the multi-angle ultrasonic transducer structure 1, which is responsible for providing pulse energy and processing the returned acoustic signal. Around the multi-angle ultrasonic transducer structure 1, a plurality of surface acoustic wave sensing units 2 are arranged. The communication channel between the multi-angle ultrasonic transducer structure 1 and the surface acoustic wave sensing unit 2 uses the human body as the communication channel, and the acoustic wave as the communication channel. Carriers of energy and signals carry out energy or information transmission. The surface acoustic wave sensing unit 2 can realize the measurement of various physiological parameters. Taking the abdomen as an example, the parameters that can be monitored include but are not limited to body temperature, heartbeat signal, respiration signal, bladder signal and so on.
当人体生理参数发生定量变化时,会导致声表面波传感部分的敏感层的物体特性变化,或者直接导致声表面波传感部分本身物理特性发生变化,由此导致声表面波传感部分的波速或者共振频率也会发生相应的定量变化,因此可以通过监测返回的声信号中波峰之间的时间差,或者声信号的频谱特性来判断生理信号的特性。另外,当叉指电极布置在压电薄片层上位于敏感层的两端时,可检测信号中的波速变化;当叉指电极布置在压电薄片层的中间时,可检测信号中的共振频率变化。When the physiological parameters of the human body change quantitatively, it will lead to changes in the object properties of the sensitive layer of the surface acoustic wave sensing part, or directly cause changes in the physical properties of the surface acoustic wave sensing part itself, which will lead to changes in the surface acoustic wave sensing part Corresponding quantitative changes will also occur in the wave velocity or resonance frequency, so the characteristics of the physiological signal can be judged by monitoring the time difference between the peaks in the returned acoustic signal, or the spectral characteristics of the acoustic signal. In addition, when the interdigital electrodes are arranged on the piezoelectric sheet layer at both ends of the sensitive layer, the wave velocity change in the signal can be detected; when the interdigital electrodes are arranged in the middle of the piezoelectric sheet layer, the resonance frequency in the signal can be detected Variety.
这里以对人体温度的检测为例,说明本发明所用的声表面波传感单元对体表信号的检测原理:Here, taking the detection of human body temperature as an example, the detection principle of the surface acoustic wave sensing unit used in the present invention to the body surface signal is illustrated:
当人体体表温度发生变化时,会导致声表面波传感部分构成材料的声波波速发生变化,声表面波传感部分上叉指电极的几何间距也会发生相应的变化。这些变化会导致声表面波传感部分的共振频率发生定量的变化,也会导致声表面波传感部分在返回给换能器的信号中,波峰与波峰之间的时间差(亦即波速)发生变化。而如图6所示,体表温度的变化,与声表面波传感单元的频率变化或者波速的变化之间呈定量的关系,故可以从声表面波传感部分返回的信号中,通过频谱分析或者测量峰峰时间差,来反算人体体表温度。When the body surface temperature of the human body changes, the acoustic wave velocity of the material constituting the surface acoustic wave sensing part will change, and the geometric spacing of the interdigital electrodes on the surface acoustic wave sensing part will also change accordingly. These changes will cause a quantitative change in the resonant frequency of the surface acoustic wave sensing part, and will also cause the time difference between the peak and the peak of the surface acoustic wave sensing part in the signal returned to the transducer (that is, the wave speed) to occur. Variety. As shown in Figure 6, there is a quantitative relationship between the change of body surface temperature and the change of frequency or wave velocity of the surface acoustic wave sensing unit, so it can be obtained from the signal returned by the surface acoustic wave sensing part through the Analyze or measure the peak-to-peak time difference to inversely calculate the body surface temperature of the human body.
除用于人体表面外,该测量网络还可用于工程结构表面,例如:可将该测量网络设于飞行器上,用于检测飞行各部分的是否受到鸟撞击或者损伤;可将该网络设于大跨度桥梁的拉索上,用于检测拉索的拉力及振动情况;可将改网络设于石油管道上,用于检测漏油及油量传输情况。In addition to being used on the surface of the human body, the measurement network can also be used on the surface of engineering structures. For example, the measurement network can be set on the aircraft to detect whether the parts of the flight are hit or damaged by birds; the network can be set on large On the cable of the span bridge, it is used to detect the tension and vibration of the cable; the network can be installed on the oil pipeline to detect oil leakage and oil transmission.
最后需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。Finally, it should be noted that the purpose of the disclosed embodiments is to help further understand the present invention, but those skilled in the art can understand that various replacements and modifications can be made without departing from the spirit and scope of the present invention and the appended claims. It is possible. Therefore, the present invention should not be limited to the content disclosed in the embodiments, and the protection scope of the present invention is subject to the scope defined in the claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610769033.1ACN106442723B (en) | 2016-08-30 | 2016-08-30 | A passive sensor network and sensing method suitable for material surface parameter monitoring |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610769033.1ACN106442723B (en) | 2016-08-30 | 2016-08-30 | A passive sensor network and sensing method suitable for material surface parameter monitoring |
| Publication Number | Publication Date |
|---|---|
| CN106442723Atrue CN106442723A (en) | 2017-02-22 |
| CN106442723B CN106442723B (en) | 2019-01-22 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610769033.1AActiveCN106442723B (en) | 2016-08-30 | 2016-08-30 | A passive sensor network and sensing method suitable for material surface parameter monitoring |
| Country | Link |
|---|---|
| CN (1) | CN106442723B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106897715A (en)* | 2017-03-31 | 2017-06-27 | 努比亚技术有限公司 | A kind of unlocked by fingerprint processing method and mobile terminal |
| CN108169535A (en)* | 2017-12-13 | 2018-06-15 | 北京无线电计量测试研究所 | A kind of device and method that high-voltage signal is measured using piezoelectric material |
| CN109341608A (en)* | 2018-11-24 | 2019-02-15 | 芜湖真玛信息科技有限公司 | A method of utilizing ultrasound examination rough object surfaces degree |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101023334A (en)* | 2004-09-17 | 2007-08-22 | 西门子公司 | Measuring device and method for determining temperature and/or pressure and use of said measuring device |
| CN102853934A (en)* | 2012-07-27 | 2013-01-02 | 上海赛赫信息科技有限公司 | Wireless temperature and humidity sensor and system and measuring method |
| CN103239209A (en)* | 2013-05-03 | 2013-08-14 | 浙江工商大学 | Human abdominal fat detection system and method based on surface acoustic wave resonator |
| CN103968885A (en)* | 2013-01-30 | 2014-08-06 | 西门子公司 | Environmental parameter sensing device, environmental parameter conversion device and monitoring system for oil-immersed transmission |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101023334A (en)* | 2004-09-17 | 2007-08-22 | 西门子公司 | Measuring device and method for determining temperature and/or pressure and use of said measuring device |
| CN102853934A (en)* | 2012-07-27 | 2013-01-02 | 上海赛赫信息科技有限公司 | Wireless temperature and humidity sensor and system and measuring method |
| CN103968885A (en)* | 2013-01-30 | 2014-08-06 | 西门子公司 | Environmental parameter sensing device, environmental parameter conversion device and monitoring system for oil-immersed transmission |
| CN103239209A (en)* | 2013-05-03 | 2013-08-14 | 浙江工商大学 | Human abdominal fat detection system and method based on surface acoustic wave resonator |
| Title |
|---|
| 冯若: "皮肤的声表面波速度成像 生物组织超声特性的物理模型研究", 《超声诊断设备原理与设计》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106897715A (en)* | 2017-03-31 | 2017-06-27 | 努比亚技术有限公司 | A kind of unlocked by fingerprint processing method and mobile terminal |
| CN108169535A (en)* | 2017-12-13 | 2018-06-15 | 北京无线电计量测试研究所 | A kind of device and method that high-voltage signal is measured using piezoelectric material |
| CN109341608A (en)* | 2018-11-24 | 2019-02-15 | 芜湖真玛信息科技有限公司 | A method of utilizing ultrasound examination rough object surfaces degree |
| Publication number | Publication date |
|---|---|
| CN106442723B (en) | 2019-01-22 |
| Publication | Publication Date | Title |
|---|---|---|
| JP5499938B2 (en) | Ultrasonic sensor, measuring device, probe, and measuring system | |
| CN111820946A (en) | A Flexible Velocimetry Device for Doppler Ultrasonic Detection and Its Application | |
| CN109222919A (en) | Pulse wave sensor, sensor array and pulse wave measuring device using same | |
| CN106442723A (en) | Passive sensor network applicable to material surface parameter monitoring and sensing method | |
| CN115236192A (en) | Acoustic emission signal detection method and system | |
| CN116660381A (en) | Measuring system and method for nondestructive detection of fruit hardness through acoustic vibration | |
| CN102670252B (en) | Intracranial pressure non-invasive measuring method and system | |
| TW201318603A (en) | System for detecting irregular bone defects during dental implant osseointegration process and control method thereof | |
| CN112120679A (en) | Pulse detection equipment and manufacturing method thereof | |
| CN101947116B (en) | Bone Density Measuring Device and Detection Method | |
| CN109222917A (en) | pulse wave sensor, sensor array and pulse wave measuring method | |
| CN106725328A (en) | Sleep quality data acquisition device and monitoring system based on surface acoustic wave sensor | |
| CN109596210A (en) | A kind of sound field measurement of high intensity focused ultrasound method based on sound scattering | |
| CN102853902A (en) | Method for noncontact measurement of boundary vibration and application of method | |
| JPH11226011A (en) | Acoustic sensor and biological measurement device | |
| CN221013310U (en) | Wearable ultrasonic Doppler blood flow monitoring system | |
| CN106175717A (en) | Pulse signal measuring method, Apparatus and system | |
| CN210902976U (en) | Pulse detection equipment | |
| CN117222366A (en) | Processing circuit, system and method for testing pixels in an ultrasound imaging device | |
| CN110954254A (en) | A Small Range SAW Pressure Sensor Based on MSC | |
| CN207816294U (en) | With the sensor pressed with ultrasound functions | |
| JP5896832B2 (en) | Sample information processing apparatus and sample information processing method | |
| CN106404912B (en) | A kind of internal passive acoustic sensing system and its method for sensing | |
| CN210300996U (en) | Vibration sensor for detecting vibration of organism and fetal heart monitoring device | |
| CN201847707U (en) | Bone-density measuring device |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |