技术领域technical field
本发明涉及热舒适控制技术领域,具体涉及一种局部热舒适控制方法、局部热舒适控制器及控制系统。The invention relates to the technical field of thermal comfort control, in particular to a local thermal comfort control method, a local thermal comfort controller and a control system.
背景技术Background technique
由于热舒适对于人们的工作和生活环境都具有重要的影响,所以,室内热舒适理论和基于预测平均投票数(Predicted Mean Vote,PMV)的室内热舒适控制方法正在成为科技界研究的热点之一。PMV综合了空气温度、平均辐射温度、空气流速、空气湿度、人体新陈代谢率及服装热阻六个因素,是至今最全面的评价热环境的指标,已被编入国际标准IS07730。1996年ASHRAE开始使用7级热感觉指标,见表1第1列。热舒适评价指标(PMV)如表1中的第2列。Since thermal comfort has an important impact on people's working and living environments, the theory of indoor thermal comfort and the indoor thermal comfort control method based on Predicted Mean Vote (PMV) are becoming one of the research hotspots in the scientific and technological circles. . PMV combines six factors including air temperature, average radiant temperature, air velocity, air humidity, human metabolic rate and clothing thermal resistance. It is the most comprehensive index for evaluating the thermal environment so far, and has been incorporated into the international standard IS07730. ASHRAE began in 1996 Use the 7-level thermal sensation index, see Table 1, column 1. The thermal comfort evaluation index (PMV) is shown in the second column in Table 1.
表1热舒适评价指标Table 1 Thermal comfort evaluation index
PMV方程的表达式为:The expression of the PMV equation is:
其中:in:
式中各项参数说明如下:The parameters in the formula are explained as follows:
M——代谢率,W/m2,M——metabolic rate, W/m2 ,
W——对外做功消耗的热量(对多大多数活动可以忽略不计),W/m2;W——the heat consumed by external work (negligible for most activities), W/m2 ;
Icl——服装热阻,m2·℃/W;Icl — thermal resistance of clothing, m2 °C/W;
fcl——着装时人的体表面积与裸露时人的体表面积之比,无量纲;fcl ——the ratio of the body surface area of a person when clothed to that of a person when naked, dimensionless;
ta——空气温度,℃;ta —air temperature, °C;
——平均辐射温度,℃; ——average radiation temperature, °C;
var——空气流速,m/s;var ——air velocity, m/s;
pa——水蒸气分压,Pa;pa —partial pressure of water vapor, Pa ;
hc——对流换热系数,M/m2·℃;hc ——convective heat transfer coefficient, M/m2 °C;
tcl——服装表面温度,℃。tcl — clothing surface temperature, °C.
PMV指标代表了在同一环境中大多数人的热舒适,但由于年龄不同、体质不同、性别不同等因素,PMV指标不能够代表所有人的热舒适。为此,Fanger提出了预测不满意百分率(Predicted Percentage of Dissatisfied,PPD)指标来表示人群对热环境不满意的百分数,并用概率分析方法,给出PMV与PPD之间的定量关系表达式为:The PMV index represents the thermal comfort of most people in the same environment, but due to factors such as age, physique, and gender, the PMV index cannot represent the thermal comfort of all people. For this reason, Fanger proposed the Predicted Percentage of Dissatisfied (PPD) index to indicate the percentage of people who are dissatisfied with the thermal environment, and used the probability analysis method to give the quantitative relationship between PMV and PPD as follows:
PMV-PPD指标是目前国际广泛采用的评价热舒适的指标。国际标准组织IS07730推荐采用PMV-PPD指标来描述与评价环境的舒适程度。The PMV-PPD index is an index widely used in the world to evaluate thermal comfort. The International Standard Organization IS07730 recommends using the PMV-PPD index to describe and evaluate the comfort level of the environment.
事实上,对同在一个公共办公场所和相同的气候环境的人们,对室内热舒适感觉差别是非常大的,这只能通过分析影响人体热感觉的多个因素的综合来解释。热舒适是一个统计概念,相应的预测模型只是建立在大多数人满意的基础上,并没有做到兼顾每个人的热感觉和热舒适。为了建立具有“个性化”的、局部热舒适模型,并研究能满足节能要求的控制方法,对于改善室内工作人员的工作环境和提高工作效率,具有重要的理论研究价值和实际应用价值。In fact, for people in the same public office space and the same climate environment, the difference in indoor thermal comfort is very large, which can only be explained by analyzing the synthesis of multiple factors that affect human thermal perception. Thermal comfort is a statistical concept, and the corresponding prediction model is only based on the satisfaction of most people, and does not take into account everyone's thermal sensation and thermal comfort. In order to establish a "personalized" local thermal comfort model and study control methods that can meet energy-saving requirements, it has important theoretical research value and practical application value for improving the working environment of indoor workers and improving work efficiency.
目前,在公共办公场所采用中央空调(壁式空调或立式空调),使室内气温差异较大,即离空调出风口远近距离对热舒适感觉不同。因此,仍有一部工作人员对室内公共办公场所的热舒适不满意。At present, central air conditioners (wall air conditioners or vertical air conditioners) are used in public office spaces, resulting in large differences in indoor temperature, that is, the feeling of thermal comfort is different at a distance from the air outlet of the air conditioner. Therefore, there is still a staff who are dissatisfied with the thermal comfort of indoor public office spaces.
(1)室内集体办公场所的舒适度直接影响人们的工作效率。对同在一个室内公共办公场所,到目前为止,能让室内大多数工作人员都感到舒适又节能的热舒适控制难题还没有得到很好解决。(1) The comfort of the indoor collective office space directly affects people's work efficiency. For the same indoor public office space, so far, the problem of thermal comfort control that can make most of the indoor staff feel comfortable and energy-saving has not been well resolved.
(2)无论是壁挂式空调、柜式空调,还是中央空调都无法满足大多数工作人员对热舒适的要求,对热舒适的感觉差别也是很大的。致使同在一个办公场所,只能采用单一的热舒适进行控制。(2) Whether it is a wall-mounted air conditioner, a cabinet air conditioner, or a central air conditioner, they cannot meet the requirements of most workers for thermal comfort, and the feeling of thermal comfort varies greatly. As a result, in the same office, only a single thermal comfort can be used for control.
发明内容Contents of the invention
鉴于上述问题,本发明提出了克服上述问题或者至少部分地解决上述问题的一种局部热舒适控制方法、局部热舒适控制器及控制系统。In view of the above problems, the present invention proposes a local thermal comfort control method, a local thermal comfort controller and a control system that overcome the above problems or at least partially solve the above problems.
为此目的,第一方面,本发明提出一种局部热舒适控制方法,包括:For this purpose, in the first aspect, the present invention proposes a local thermal comfort control method, including:
每隔预设时长,获取传感器采集的目标局部的与预测平均投票数PMV相关的各参数值,确定所述目标局部的PMV第一值;Every preset time length, acquire the parameter values of the target part collected by the sensor and related to the predicted average number of votes PMV, and determine the first value of the PMV of the target part;
基于所述PMV第一值以及所述目标局部的PMV第二值,确定第一控制信息;所述PMV第二值为预先设定的用于控制所述目标局部热舒适的PMV标准值;所述第一控制信息用于指示所述目标局部的空调进风口的控制阀的阀门开度;Based on the PMV first value and the target local PMV second value, determine first control information; the PMV second value is a preset PMV standard value for controlling the target local thermal comfort; The first control information is used to indicate the valve opening of the control valve of the air-conditioning air inlet of the target part;
基于所述第一控制信息指示的阀门开度,控制所述目标局部的空调进风口的控制阀的阀门开度,以每隔预设时长,获取所述传感器采集的PMV相关的各参数值,确定所述目标局部的PMV第一值。Based on the valve opening indicated by the first control information, control the valve opening of the control valve of the air-conditioning air inlet of the target part, so as to obtain the parameter values related to the PMV collected by the sensor every preset time length, A first value of PMV for the target portion is determined.
第二方面,本发明还提出一种局部热舒适控制器,包括:In the second aspect, the present invention also proposes a local thermal comfort controller, including:
第一确定单元,用于每隔预设时长,获取传感器采集的目标局部的与预测平均投票数PMV相关的各参数值,确定所述目标局部的PMV第一值;The first determination unit is configured to obtain the parameter values of the target part collected by the sensor and related to the predicted average vote number PMV every preset time length, and determine the first value of the PMV of the target part;
第二确定单元,用于基于所述PMV第一值以及所述目标局部的PMV第二值,确定第一控制信息;所述PMV第二值为预先设定的用于控制所述目标局部热舒适的PMV标准值;所述第一控制信息用于指示所述目标局部的空调进风口的控制阀的阀门开度;The second determination unit is configured to determine first control information based on the first PMV value and the second PMV value of the target part; the second PMV value is preset and used to control the target part heat A comfortable PMV standard value; the first control information is used to indicate the valve opening of the control valve of the air-conditioning air inlet of the target part;
控制单元,用于基于所述第一控制信息指示的阀门开度,控制所述目标局部的空调进风口的控制阀的阀门开度,以每隔预设时长,获取所述传感器采集的PMV相关的各参数值,确定所述目标局部的PMV第一值。A control unit, configured to control the valve opening of the control valve of the air-conditioning air inlet of the target part based on the valve opening indicated by the first control information, so as to obtain the PMV correlation collected by the sensor every preset time period. For each parameter value of , determine the first value of the target local PMV.
第三方面,本发明还提出一种控制系统,包括:In a third aspect, the present invention also proposes a control system, including:
如第二方面所述的局部热舒适控制器、各局部热舒适控制器对应的传感器以及全局热舒适控制器;The local thermal comfort controllers, the sensors corresponding to each local thermal comfort controller, and the global thermal comfort controller as described in the second aspect;
所述局部热舒适控制器分别连接该局部热舒适控制器对应的传感器以及所述全局热舒适控制器。The local thermal comfort controller is respectively connected to the sensor corresponding to the local thermal comfort controller and the global thermal comfort controller.
相比于现有技术,本发明提出的局部热舒适控制方法、局部热舒适控制器及控制系统,通过分析热湿环境下影响室内舒适度的有关因素,通过局部的两个PMV值,确定第一控制信息,控制局部的空调进风口的控制阀的阀门开度,以控制局部的空调进风口的流量,实现局部热舒适控制,对于改善室内工作人员的工作环境和提高工作效率,满足室内工作人员对舒适度的不同要求,并达到节能降耗的目的,具有重要的理论研究价值和实际应用价值。Compared with the prior art, the local thermal comfort control method, local thermal comfort controller and control system proposed by the present invention determine the first thermal comfort by analyzing the relevant factors affecting indoor comfort in a hot and humid environment, and by using two local PMV values. One control information, control the valve opening of the control valve of the local air-conditioning inlet to control the flow of the local air-conditioning inlet, realize local thermal comfort control, and improve the working environment and work efficiency of indoor staff to meet the needs of indoor work. It has important theoretical research value and practical application value to meet the different requirements of personnel for comfort and achieve the purpose of saving energy and reducing consumption.
附图说明Description of drawings
图1为本发明第一实施例提供的一种局部热舒适控制方法流程图;Fig. 1 is a flow chart of a local thermal comfort control method provided by the first embodiment of the present invention;
图2为本发明第一实施例提供的一种局部热舒适控制器结构图;Fig. 2 is a structural diagram of a local thermal comfort controller provided by the first embodiment of the present invention;
图3为室内公共办公场所全局-局部热舒适控制示意图;Figure 3 is a schematic diagram of global-local thermal comfort control in indoor public office spaces;
图4a为OEGPR规则离线训练流程图;Figure 4a is a flow chart of OEGPR rule offline training;
图4b为OEGPR规则在线预测流程图;Figure 4b is a flowchart of online prediction of OEGPR rules;
图4c为OEGPR规则模型自适应更新流程图;Figure 4c is a flow chart of OEGPR rule model adaptive update;
图5为OEGPR规则模型结构图;Fig. 5 is a structural diagram of the OEGPR rule model;
图6为第二确定单元结构图,图6中右侧虚线框中的内容表示第二确定单元的内部结构图;Fig. 6 is a structural diagram of a second determining unit, and the content in the dotted line box on the right side in Fig. 6 represents the internal structural diagram of the second determining unit;
图7为室内所有人体的热舒适度分布曲线示意图;Fig. 7 is a schematic diagram of thermal comfort distribution curves of all human bodies in the room;
图8为座位送风口的阀门开度示意图。Fig. 8 is a schematic diagram of the valve opening of the seat air outlet.
具体实施方式detailed description
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are the Some, but not all, embodiments are invented.
需要说明的是,在本文中,“第一”、“第二”、“第三”和“第四”仅仅用来将相同的名称区分开来,而不是暗示这些名称之间的关系或者顺序。It should be noted that in this article, "first", "second", "third" and "fourth" are only used to distinguish the same names, not to imply the relationship or order between these names .
如图1所示,本实施例公开一种局部热舒适控制方法,可包括以下步骤101~103:As shown in Fig. 1, this embodiment discloses a local thermal comfort control method, which may include the following steps 101-103:
101、每隔预设时长,获取传感器采集的目标局部的与预测平均投票数PMV相关的各参数值,确定所述目标局部的PMV第一值。101. Acquire the parameter values of the target part collected by the sensor and related to the predicted average number of votes PMV every preset time period, and determine the first PMV value of the target part.
例如,可针对PMV相关的每个参数,均设置相应的传感器采集参数值。For example, for each parameter related to PMV, a corresponding sensor acquisition parameter value can be set.
102、基于所述PMV第一值以及所述目标局部的PMV第二值,确定第一控制信息;所述PMV第二值为预先设定的用于控制所述目标局部热舒适的PMV标准值;所述第一控制信息用于指示所述目标局部的空调进风口的控制阀的阀门开度。102. Determine first control information based on the first PMV value and the second PMV value of the target part; the second PMV value is a preset PMV standard value for controlling thermal comfort of the target part ; The first control information is used to indicate the valve opening degree of the control valve of the air-conditioning air inlet of the target local area.
本实施例中,确定第一控制信息,例如,将PMV第二值减去所述PMV第一值,得到差值,然后通过相应算法,计算控制阀的阀门开度。例如,预设的空调进风口的控制阀的阀门开度增大对应的第一差值范围,预设的空调进风口的控制阀的阀门开度减小对应的第二差值范围,若差值处于第一差值范围,则第一控制信息用于指示所述目标局部的空调进风口的控制阀的阀门开度增大;若差值处于第二差值范围,则第一控制信息用于指示所述目标局部的空调进风口的控制阀的阀门开度减小。In this embodiment, the first control information is determined, for example, the second PMV value is subtracted from the first PMV value to obtain a difference, and then the valve opening of the control valve is calculated through a corresponding algorithm. For example, the preset valve opening of the control valve of the air inlet of the air conditioner increases corresponding to the first difference range, and the preset valve opening of the control valve of the air inlet of the air conditioner decreases corresponding to the second difference range. If the value is in the first difference range, the first control information is used to indicate that the valve opening of the control valve of the air-conditioning inlet of the target part is increased; if the difference is in the second difference range, the first control information is used The valve opening degree of the control valve of the air-conditioning air inlet of the indicated target part decreases.
103、基于所述第一控制信息指示的阀门开度,控制所述目标局部的空调进风口的控制阀的阀门开度,从而控制所述目标局部的空调进风口的流量,以每隔预设时长,获取所述传感器采集的PMV相关的各参数值,确定所述目标局部的PMV第一值。103. Based on the valve opening degree indicated by the first control information, control the valve opening degree of the control valve of the air-conditioning air inlet of the target part, so as to control the flow rate of the air-conditioning air inlet of the target part, so that every preset time duration, acquire the values of various parameters related to the PMV collected by the sensor, and determine the first local PMV value of the target.
相比于现有技术,本实施例公开的局部热舒适控制方法,通过分析热湿环境下影响室内舒适度的有关因素,通过局部的两个PMV值,确定第一控制信息,控制局部的空调进风口的控制阀的阀门开度,以控制局部的空调进风口的流量,实现局部热舒适控制,对于改善室内工作人员的工作环境和提高工作效率,满足室内工作人员对舒适度的不同要求,并达到节能降耗的目的,具有重要的理论研究价值和实际应用价值。Compared with the prior art, the local thermal comfort control method disclosed in this embodiment determines the first control information by analyzing the relevant factors affecting indoor comfort in a hot and humid environment, and controls the local air conditioner through two local PMV values. The valve opening of the control valve of the air inlet is used to control the flow of the air inlet of the local air conditioner to realize local thermal comfort control. It can improve the working environment and work efficiency of the indoor staff and meet the different requirements of the indoor staff for comfort. And to achieve the purpose of saving energy and reducing consumption, it has important theoretical research value and practical application value.
在一个具体的例子中,步骤101所述确定所述目标局部的PMV第一值之后,还包括图1未示出的步骤102’和103’:In a specific example, after the first value of the local PMV of the target is determined in step 101, steps 102' and 103' not shown in Fig. 1 are also included:
102’、基于所述PMV第一值以及所述目标局部的PMV第二值,确定第二控制信息;所述第二控制信息用于指示所述目标局部的自然风进风口的控制阀的阀门开度;102'. Based on the first PMV value and the second PMV value of the target part, determine second control information; the second control information is used to indicate the valve of the control valve of the natural wind inlet of the target part opening;
103’、基于所述第二控制信息指示的阀门开度,控制所述目标局部的自然风进风口的控制阀的阀门开度,以每隔预设时长,获取所述传感器采集的PMV相关的各参数值,确定所述目标局部的PMV第一值。103'. Based on the valve opening indicated by the second control information, control the valve opening of the control valve of the target local natural wind inlet, so as to obtain the PMV-related data collected by the sensor every preset time period. For each parameter value, a first PMV value of the target part is determined.
本实施例通过局部的两个PMV值,确定第一控制信息和第二控制信息,以分别控制局部的空调进风口的流量以及局部的自然风进风口的流量,实现更加快速有效的对局部热舒适控制。In this embodiment, the first control information and the second control information are determined by two local PMV values to control the flow of the local air-conditioning inlet and the flow of the local natural wind inlet respectively, so as to achieve more rapid and effective cooling of the local heat. Comfort control.
在一个具体的例子中,步骤101所述确定所述目标局部的PMV第一值,包括:采用预设的在线集成高斯过程回归OEGPR规则,确定所述目标局部的PMV第一值。In a specific example, the step 101 of determining the first PMV value of the target part includes: adopting a preset online integrated Gaussian process regression OEGPR rule to determine the first PMV value of the target part.
在一个具体的例子中,步骤101所述确定所述目标局部的PMV第一值之后,还包括图1中未示出的步骤101’:In a specific example, after the first value of the local PMV of the target is determined in step 101, a step 101' not shown in Fig. 1 is also included:
101’、将所述目标局部的PMV第一值上报全局热舒适控制器,以使所述全局热舒适控制器基于各局部的PMV第一值,确定全局的PMV第一值,并基于所述全局的PMV第一值以及全局的PMV第三值,确定第三控制信息;所述PMV第三值为预先设定的用于控制全局热舒适的PMV标准值;所述第三控制信息用于指示全局的空调进风口的控制阀的阀门开度;并基于所述第三控制信息指示的阀门开度,控制全局的空调进风口的控制阀的阀门开度,从而实现控制全局的空调进风口的流量。101'. Report the target local first PMV value to the global thermal comfort controller, so that the global thermal comfort controller determines the global first PMV value based on the local first PMV values, and based on the The first global PMV value and the third global PMV value determine third control information; the third PMV value is a preset PMV standard value for controlling global thermal comfort; the third control information is used to Indicating the valve opening of the control valve of the global air-conditioning air inlet; and based on the valve opening indicated by the third control information, controlling the valve opening of the control valve of the global air-conditioning air inlet, thereby realizing the control of the global air-conditioning air inlet traffic.
在一个具体的例子中,步骤101所述确定所述目标局部的PMV第一值之后,还包括图1中未示出的步骤101”:In a specific example, after the first value of the local PMV of the target is determined in step 101, a step 101" not shown in Fig. 1 is further included:
101”、将所述目标局部的PMV第一值上报全局热舒适控制器,以使所述全局热舒适控制器基于各局部的PMV第一值,确定全局的PMV第一值,并基于所述全局的PMV第一值以及全局的PMV第三值,确定第三控制信息以及第四控制信息;所述PMV第三值为预先设定的用于控制全局热舒适的PMV标准值;所述第三控制信息用于指示全局的空调进风口的控制阀的阀门开度;所述第四控制信息用于指示全局的自然风进风口的控制阀的阀门开度;并基于所述第三控制信息和第四控制信息指示的阀门开度,控制全局的空调进风口和自然风进风口的控制阀的阀门开度。101", reporting the target local PMV first value to the global thermal comfort controller, so that the global thermal comfort controller determines the global PMV first value based on the local PMV first values, and based on the The global PMV first value and the global PMV third value determine the third control information and the fourth control information; the PMV third value is a preset PMV standard value for controlling global thermal comfort; the first The third control information is used to indicate the valve opening degree of the control valve of the global air-conditioning air inlet; the fourth control information is used to indicate the valve opening degree of the control valve of the global natural wind air inlet; and based on the third control information and the valve opening indicated by the fourth control information, control the valve opening of the control valve of the overall air-conditioning air inlet and the natural wind air inlet.
如图2所示,本实施例公开一种局部热舒适控制器,可包括以下单元:第一确定单元21、第二确定单元22以及控制单元23,各单元具体说明如下:As shown in Figure 2, this embodiment discloses a local thermal comfort controller, which may include the following units: a first determination unit 21, a second determination unit 22, and a control unit 23, each unit is specifically described as follows:
第一确定单元21,用于每隔预设时长,获取传感器采集的目标局部的与预测平均投票数PMV相关的各参数值,确定所述目标局部的PMV第一值;The first determination unit 21 is configured to acquire the parameter values of the target part collected by the sensor and related to the predicted average number of votes PMV every preset time length, and determine the first value of the PMV of the target part;
第二确定单元22,用于基于所述PMV第一值以及所述目标局部的PMV第二值,确定第一控制信息;所述PMV第二值为预先设定的用于控制所述目标局部热舒适的PMV标准值;所述第一控制信息用于指示所述目标局部的空调进风口的控制阀的阀门开度;The second determining unit 22 is configured to determine first control information based on the first PMV value and the second PMV value of the target part; the second PMV value is preset for controlling the target part PMV standard value for thermal comfort; the first control information is used to indicate the valve opening of the control valve of the air-conditioning air inlet of the target part;
控制单元23,用于基于所述第一控制信息指示的阀门开度,控制所述目标局部的空调进风口的控制阀的阀门开度,以每隔预设时长,获取所述传感器采集的PMV相关的各参数值,确定所述目标局部的PMV第一值。The control unit 23 is configured to control the valve opening of the control valve of the air-conditioning air inlet of the target part based on the valve opening indicated by the first control information, so as to obtain the PMV collected by the sensor every preset time period With respect to each parameter value, a first value of the PMV of the target part is determined.
本实施例公开的局部热舒适控制器,可实现图1所示的局部热舒适控制方法流程,因此,本实施例中的局部热舒适控制器的效果及说明可参见图1所示的方法实施例,在此不再赘述。The local thermal comfort controller disclosed in this embodiment can realize the flow of the local thermal comfort control method shown in Figure 1, therefore, the effect and description of the local thermal comfort controller in this embodiment can be referred to the implementation of the method shown in Figure 1 example, which will not be repeated here.
在一个具体的例子中,所述第二确定单元22,还用于所述第一确定单元21确定所述目标局部的PMV第一值之后,基于所述PMV第一值以及所述目标局部的PMV第二值,确定第二控制信息;所述第二控制信息用于指示所述目标局部的自然风进风口的控制阀的阀门开度;In a specific example, the second determining unit 22 is further configured to, after the first determining unit 21 determines the first PMV value of the local target, based on the first PMV value and the local target The second value of PMV is to determine the second control information; the second control information is used to indicate the valve opening of the control valve of the natural wind inlet of the target local area;
所述控制单元23,还用于基于所述第二控制信息指示的阀门开度,控制所述目标局部的自然风进风口的控制阀的阀门开度,以每隔预设时长,获取所述传感器采集的PMV相关的各参数值,确定所述目标局部的PMV第一值。The control unit 23 is further configured to control the valve opening of the control valve of the target local natural wind inlet based on the valve opening indicated by the second control information, so as to acquire the Each parameter value related to the PMV collected by the sensor is used to determine the first local PMV value of the target.
在一个具体的例子中,所述第一确定单元21,具体用于采用预设的在线集成高斯过程回归OEGPR规则,确定所述目标局部的PMV第一值。In a specific example, the first determining unit 21 is specifically configured to determine the first local PMV value of the target by adopting a preset online integrated Gaussian process regression OEGPR rule.
在一个具体的例子中,图2所示的局部热舒适控制器还包括图2未示出的:In a specific example, the local thermal comfort controller shown in Figure 2 also includes:
上报单元24,用于所述第一确定单元21确定所述目标局部的PMV第一值之后,将所述目标局部的PMV第一值上报全局热舒适控制器。The reporting unit 24 is configured to report the target local first PMV value to the global thermal comfort controller after the first determining unit 21 determines the target local first PMV value.
另外,本发明还提出一种控制系统,实现全局-局部的热舒适控制,具体包括:In addition, the present invention also proposes a control system to realize global-local thermal comfort control, specifically including:
如图2所示的局部热舒适控制器、各局部热舒适控制器对应的传感器以及全局热舒适控制器;The local thermal comfort controllers, the sensors corresponding to each local thermal comfort controller, and the global thermal comfort controller are shown in Figure 2;
所述局部热舒适控制器分别连接该局部热舒适控制器对应的传感器以及所述全局热舒适控制器。The local thermal comfort controller is respectively connected to the sensor corresponding to the local thermal comfort controller and the global thermal comfort controller.
下面以室内公共办公场所为应用场景进一步说明局部热舒适控制流程。The following uses an indoor public office space as an application scenario to further illustrate the local thermal comfort control process.
图3为室内公共办公场所全局-局部热舒适控制示意图。Figure 3 is a schematic diagram of global-local thermal comfort control in indoor public office spaces.
图3中工业计算机控制系统可包括上述实施例中提及的全局热舒适控制器。局部控制系统可包括上述实施例中提及的局部热舒适控制器。PMVr1至PMVrM为上述实施例中提及的预先设定的用于控制局部热舒适的PMV标准值,因为图3有M号座位,因此有M个PMV标准值,即PMVr1至PMVrM。The industrial computer control system in Fig. 3 may include the global thermal comfort controller mentioned in the above embodiments. The local control system may include the local thermal comfort controller mentioned in the above embodiments. PMVr1 to PMVrM are the preset PMV standard values for controlling local thermal comfort mentioned in the above embodiment, because there are M seats in Figure 3, so there are M PMV standard values, namely PMVr1 to PMVrM .
图3中PMV1至PMVM为各局部(即1,2,…,M)的实际PMV值;Among Fig. 3, PMV1 to PMVM are the actual PMV values of each part (i.e. 1, 2, ..., M);
图3中V1至VM为各局部(即1,2,…,M)的空气流速;Among Fig. 3, V1 to VM are the air velocity of each part (i.e. 1, 2, ..., M);
图3中t1至tM为各局部(即1,2,…,M)的温度;In Fig. 3, t1 to tM are the temperature of each part (i.e. 1, 2, ..., M);
图3中h1至hM为各局部(即1,2,…,M)的湿度。In Fig. 3, h1 to hM are the humidity of each part (ie 1, 2, ..., M).
在线集成高斯过程回归(Online Ensemble Gaussian Process Regression,OEGPR)规则如下:The Online Ensemble Gaussian Process Regression (OEGPR) rules are as follows:
OEGPR规则包括三个关键运算流程:离线训练(如图4a)、在线预测(如图4b)和模型自适应更新(如图4c)。模型结构如图5所示,其实施步骤叙述如下:OEGPR rules include three key operation processes: offline training (as shown in Figure 4a), online prediction (as shown in Figure 4b) and model adaptive update (as shown in Figure 4c). The model structure is shown in Figure 5, and its implementation steps are described as follows:
(1)收集过程输入输出数据用于模型训练。(1) Collect process input and output data for model training.
(2)基于即时学习(Just-in-time Learning,JIT)局部化方法构建一组满足冗余度要求的局部区域。(2) Construct a set of local regions that meet the redundancy requirement based on the Just-in-time Learning (JIT) localization method.
(3)为每一个局部区域建立相应的高斯过程回归(Gaussian ProcessRegression,GPR)和概率数据描述(Probabilistic Data Descriptor,PDD)模型。(3) Establish corresponding Gaussian Process Regression (GPR) and Probabilistic Data Descriptor (PDD) models for each local area.
(4)对于一个新的测试样本,基于局部GPR模型估计输出变量预测分布的均值和方差。(4) For a new test sample, estimate the mean and variance of the output variable prediction distribution based on the local GPR model.
(5)通过贝叶斯推理和PDD模型自适应估计查询点关于不同局部区域的后验概率,并将其作为局部模型的混合权值。(5) The posterior probability of the query point with respect to different local regions is estimated by Bayesian inference and PDD model adaptively, and it is used as the hybrid weight of the local model.
(6)通过有限混合机理将局部预测结果融合成输出变量的全局预测均值和方差。(6) The local prediction results are fused into the global prediction mean and variance of the output variable through a limited mixing mechanism.
(7)新样本可用时,选择与新样本具有最大相关性的局部GPR和PDD模型,基于移动窗口技术实现模型更新。(7) When new samples are available, select the local GPR and PDD models that have the greatest correlation with the new samples, and implement model updating based on the moving window technique.
(8)下一个查询点到来时返回(4)。(8) Return to (4) when the next query point arrives.
在图4a至4c和图5中,xnew表示一个新的测量值,ym,new(m=1,2,…,M)表示局部输出,表示全局输出的预测均值,σ2表示全局输出的方差,p(LDm|xnew)表示具有最大的后验概率。In Figures 4a to 4c and Figure 5, xnew represents a new measurement value, ym,new (m=1,2,...,M) represents a local output, Represents the predicted mean of the global output, σ2 represents the variance of the global output, and p(LDm |xnew ) represents the maximum posterior probability.
基于人工神经网络(Artificial Neural Networks,ANN)构建第二确定单元结构,如图6所示。ANN网络模型结构为n×m×2,输入有n个结点,即n个输入量;隐层数为1,隐层结点数为m;输出层结点为2,2个输出量。A second definite unit structure is constructed based on artificial neural networks (Artificial Neural Networks, ANN), as shown in FIG. 6 . The ANN network model structure is n×m×2, the input has n nodes, that is, n inputs; the number of hidden layers is 1, the number of nodes in the hidden layer is m; the number of nodes in the output layer is 2, and 2 outputs.
在图6中,ek=PMVrk-PMV′k,其中,k=1,2,…,M,PMVrk为设定值,PMV′k为基于软测量模型的预测值,Tr为室内温度设定值,RHr为室内相对湿度设定值。第二确定单元进一步描述为如图6右侧虚线框中所示。In Figure 6, ek =PMVrk -PMV'k , where k=1,2,...,M, PMVrk is the set value, PMV'k is the predicted value based on the soft sensor model, and Tr is the indoor Temperature setting value, RHr is the indoor relative humidity setting value. The second determination unit is further described as shown in the dashed box on the right side of FIG. 6 .
该网络的输入变量分别设x1为当前偏差值e1(k),x2为先前一步预测值PMV预测(k-1),x3为为先前二步预测值PMV预测(k-2),x4为当前室内温度测量值T(k)(℃),x5为先前一步室内温度测量值T(k-1)(℃),x6为当前相对湿度测量值RH(k)(%),x7为先前一步相对湿度测量值RH(k-1)(%),x8为当前风速测量值v(k)(%),………;ANN控制器的二个输出分别为:u1用于控制中央空调的进风量,u2用于控制自然风的输入量。The input variables of the network set x1 as the current deviation value e1 (k), x2 as the previous one-step forecast value PMVforecast (k-1), x3 as the previous two-step forecast value PMVforecast (k-2), and x4 as The current indoor temperature measurement value T(k)(℃), x5 is the previous step indoor temperature measurement value T(k-1)(℃), x6 is the current relative humidity measurement value RH(k)(%), x7 is the previous step The relative humidity measurement value RH(k-1)(%), x8 is the current wind speed measurement value v(k)(%),...; the two outputs of the ANN controller are respectively: u1 is used to control the central air-conditioning Intake air volume, u2 is used to control the input volume of natural wind.
基于优化控制的目标函数J及优化算法,即优化算法可采用“微粒群-模糊聚类(Particles Swarm Optimization-Fuzzy C-Means,PSOFCM)算法”,或“遗传-模糊聚类(Genetic Fuzzy C-Means,GFCM)算法”。Based on the objective function J and optimization algorithm of optimal control, that is, the optimization algorithm can adopt "Particles Swarm Optimization-Fuzzy C-Means (PSOFCM) algorithm", or "Genetic-Fuzzy C-Means (Genetic Fuzzy C-Means) algorithm". Means, GFCM) algorithm".
最优控制算法的目标是在整个设定时间段内(如几十分钟)使室内热舒适和能量消耗最优化。通过目标函数的最小化来实现最优化。The goal of the optimal control algorithm is to optimize indoor thermal comfort and energy consumption throughout a set period of time (such as tens of minutes). Optimization is achieved by minimizing the objective function.
(1)室内当前空气温度测量值当和先前一步温度测量值等(T(k),T(k-1)…);(1) The measured value of the current indoor air temperature is the same as the measured value of the previous step temperature (T(k), T(k-1)...);
(2)在每一个时间步距k,最优控制u加热(致冷)就是在几十分钟内使目标函数J达到最小的输出值,即通过n步操作使目标函数J达到最优。(2) At each time step k, the optimal control of uheating (cooling) is to make the objective function J reach the minimum output value within tens of minutes, that is, to make the objective function J reach the optimum through n steps of operation.
式中的H为能耗。H in the formula is energy consumption.
最优控制算式的目标函数的数学表达式为The mathematical expression of the objective function of the optimal control formula is
J(P加热(致冷),T,T设定值)=CPheatP加热(致冷)+Ccomf(exp(PMV(T,T设定值)2)-1) (2)J(Pheating (cooling) , T, Tsetting value ) = CPheat Pheating (cooling) + Ccomf (exp(PMV(T, Tsetting value )2 )-1) (2)
式中:P加热(致冷)=加热(致冷)操作(W);In the formula: Pheating (refrigeration) = heating (refrigeration) operation (W);
PMV(T,T设定值)=预测均值表决(-);PMV(T, Tset value ) = predicted mean vote (-);
T=室内空气温度;T = indoor air temperature;
T设定值=室内设定值温度;Tsetpoint = indoor setpoint temperature;
CPheat=加热项的加权系数;CPheat = weighting coefficient for heating term;
Ccomf=热舒适项的加权系数。Ccomf = weighting coefficient for the thermal comfort term.
图6原理简要叙述:基于OEGPR自适应软测量预测热舒适指标,即PMV′,预测值与设定值比较后产生偏差(包括当前值和先前值)及相关测量参数值作为ANN控制器输入,由此来计算中央空调和自然风(新鲜空气)的控制量,并通过目标函数控优化算法在线自适应调整ANN网络的权值,以满足室内工作人员对热舒适的不同要求。Brief description of the principle in Fig. 6: Based on the OEGPR adaptive soft sensor to predict the thermal comfort index, that is, PMV′, the deviation (including the current value and the previous value) generated after the comparison between the predicted value and the set value and the related measurement parameter values are used as the input of the ANN controller. From this, the control amount of central air-conditioning and natural wind (fresh air) is calculated, and the weight of the ANN network is adaptively adjusted online through the objective function control optimization algorithm to meet the different requirements of indoor workers for thermal comfort.
采用计算流体力学(Computational Fluid Dynamics,CFD)软件,模拟研究室内人员对局部热舒适指标不同需求的预测模型;通过改变室外温度、室内温度、空气流速、空气湿度等,研究室内空气流和热传递的分布规律,确定室内局部热舒适指标的预测模型;基于数值模拟的优化策略,确定变风量空调系统的设计方案;基于CFD模型构建多输入、多输出、非线性、时变的综合优化控制系统;为下一步的试验研究提供理论依据。Computational Fluid Dynamics (CFD) software is used to simulate the prediction model of the different needs of indoor personnel for local thermal comfort indicators; by changing the outdoor temperature, indoor temperature, air velocity, air humidity, etc., the indoor air flow and heat transfer are studied Determine the prediction model of the indoor local thermal comfort index; determine the design scheme of the variable air volume air conditioning system based on the optimization strategy of numerical simulation; build a multi-input, multi-output, nonlinear, time-varying comprehensive optimization control system based on the CFD model ; Provide a theoretical basis for the next step of experimental research.
在Airpak软件环境中建立房间模型、空调模型、桌椅模型和人体模型,模拟夏季高温下室内的热环境对人体热舒适度的影响。设置PMV计算公式获得人体的平均热舒适度。从1~14的座位顺序获得室内所有人体的热舒适度分布曲线如图7所示。The room model, air conditioner model, table and chair model and human body model are established in the Airpak software environment to simulate the influence of the indoor thermal environment on the thermal comfort of the human body under high temperature in summer. Set the PMV calculation formula to obtain the average thermal comfort of the human body. The thermal comfort distribution curves of all human bodies in the room obtained from the seating order of 1 to 14 are shown in Figure 7.
在有座位送风进行室内局部热舒适控制的情况下,座位送风口的阀门开度如图8所示。In the case of seat air supply for indoor local thermal comfort control, the valve opening of the seat air supply outlet is shown in Figure 8.
实验结果表明,通过在不同座位上采取局部送风的方式可以有效改善人体的热舒适度。这是对传统空调控制下,室内热环境分布不均匀时,是一种改善热环境舒适度的有效方案,其结果证明了本发明提出的局部热舒适控制方案是有效、可行的。The experimental results show that the thermal comfort of the human body can be effectively improved by adopting local air supply on different seats. This is an effective scheme to improve the comfort of the thermal environment when the indoor thermal environment is unevenly distributed under traditional air conditioning control. The results prove that the local thermal comfort control scheme proposed by the present invention is effective and feasible.
本领域技术人员可以理解,可以把实施例中的各单元组合成一个单元,以及此外可以把它们分成多个子单元。除了这样的特征和/或过程或者单元中的至少一些是互相排斥之处,可以采用任何组合对本说明书中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。It will be understood by those skilled in the art that the units in the embodiments can be combined into one unit, and furthermore they can be divided into a plurality of subunits. All features and/or procedures or elements disclosed in this specification, as well as all procedures or elements of any method or apparatus so disclosed, may be combined in any combination, except where at least some of such features and/or procedures or elements are mutually exclusive. Unless expressly stated otherwise, each feature disclosed in this specification may be replaced by alternative features serving the same, equivalent or similar purpose.
本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。Those skilled in the art will appreciate that although some of the embodiments described herein include some features and not others that are included in other embodiments, combinations of features from different embodiments are meant to be within the scope of the invention. And form different embodiments.
本领域技术人员可以理解,实施例中的各单元可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。Those skilled in the art can understand that each unit in the embodiment can be realized by hardware, or by a software module running on one or more processors, or by a combination thereof. Those skilled in the art should understand that a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some or all components according to the embodiments of the present invention. The present invention can also be implemented as an apparatus or an apparatus program (for example, a computer program and a computer program product) for performing a part or all of the methods described herein.
虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。Although the embodiments of the present invention have been described in conjunction with the accompanying drawings, those skilled in the art can make various modifications and variations without departing from the spirit and scope of the present invention. within the bounds of the requirements.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610791692.5ACN106403162A (en) | 2016-08-31 | 2016-08-31 | Local heat comfort control method, local heat comfort controller and control system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610791692.5ACN106403162A (en) | 2016-08-31 | 2016-08-31 | Local heat comfort control method, local heat comfort controller and control system |
| Publication Number | Publication Date |
|---|---|
| CN106403162Atrue CN106403162A (en) | 2017-02-15 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610791692.5APendingCN106403162A (en) | 2016-08-31 | 2016-08-31 | Local heat comfort control method, local heat comfort controller and control system |
| Country | Link |
|---|---|
| CN (1) | CN106403162A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107120782A (en)* | 2017-02-28 | 2017-09-01 | 上海交通大学 | A kind of HVAC system control method based on multi-user's hot comfort data |
| CN111639462A (en)* | 2020-05-29 | 2020-09-08 | 桂林电子科技大学 | Building indoor thermal comfort prediction method in natural ventilation environment based on deep belief neural network |
| CN112119263A (en)* | 2018-03-19 | 2020-12-22 | 开利公司 | Machine learning method for adjusting individual or common regions |
| CN112344530A (en)* | 2020-10-20 | 2021-02-09 | 青岛海信电子产业控股股份有限公司 | Terminal and indoor environment adjustment method |
| CN112747498A (en)* | 2021-01-29 | 2021-05-04 | 江苏大学 | Personal thermal management method based on Peltier effect |
| CN118794119A (en)* | 2024-08-15 | 2024-10-18 | 西南交通大学 | A workstation environment control method considering human thermal sensation |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002286274A (en)* | 2001-03-26 | 2002-10-03 | Energy Save Kk | Control method and control device for air conditioner |
| CN102162664A (en)* | 2010-02-24 | 2011-08-24 | 株式会社东芝 | Air-conditioning control system and air-conditioning control method |
| CN102778002A (en)* | 2012-07-09 | 2012-11-14 | 广东美的电器股份有限公司 | Air conditioner for controlling thermal comfort feeling of human body and control method |
| CN103003637A (en)* | 2010-05-12 | 2013-03-27 | 原子能及能源替代委员会 | Personalized control of thermal comfort for building occupants |
| CN103175283A (en)* | 2011-12-21 | 2013-06-26 | 珠海格力电器股份有限公司 | Control method and device for operation mode of air conditioner and air conditioner |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002286274A (en)* | 2001-03-26 | 2002-10-03 | Energy Save Kk | Control method and control device for air conditioner |
| CN102162664A (en)* | 2010-02-24 | 2011-08-24 | 株式会社东芝 | Air-conditioning control system and air-conditioning control method |
| CN103003637A (en)* | 2010-05-12 | 2013-03-27 | 原子能及能源替代委员会 | Personalized control of thermal comfort for building occupants |
| CN103175283A (en)* | 2011-12-21 | 2013-06-26 | 珠海格力电器股份有限公司 | Control method and device for operation mode of air conditioner and air conditioner |
| CN102778002A (en)* | 2012-07-09 | 2012-11-14 | 广东美的电器股份有限公司 | Air conditioner for controlling thermal comfort feeling of human body and control method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107120782A (en)* | 2017-02-28 | 2017-09-01 | 上海交通大学 | A kind of HVAC system control method based on multi-user's hot comfort data |
| CN107120782B (en)* | 2017-02-28 | 2019-11-05 | 上海交通大学 | A kind of HVAC system control method based on multi-user's hot comfort data |
| CN112119263A (en)* | 2018-03-19 | 2020-12-22 | 开利公司 | Machine learning method for adjusting individual or common regions |
| CN111639462A (en)* | 2020-05-29 | 2020-09-08 | 桂林电子科技大学 | Building indoor thermal comfort prediction method in natural ventilation environment based on deep belief neural network |
| CN111639462B (en)* | 2020-05-29 | 2023-04-18 | 桂林电子科技大学 | Building indoor thermal comfort prediction method in natural ventilation environment based on deep belief neural network |
| CN112344530A (en)* | 2020-10-20 | 2021-02-09 | 青岛海信电子产业控股股份有限公司 | Terminal and indoor environment adjustment method |
| CN112344530B (en)* | 2020-10-20 | 2022-05-27 | 青岛海信电子产业控股股份有限公司 | Terminal and indoor environment adjusting method |
| CN112747498A (en)* | 2021-01-29 | 2021-05-04 | 江苏大学 | Personal thermal management method based on Peltier effect |
| CN112747498B (en)* | 2021-01-29 | 2022-04-26 | 江苏大学 | A personal thermal management method based on the Peltier effect |
| CN118794119A (en)* | 2024-08-15 | 2024-10-18 | 西南交通大学 | A workstation environment control method considering human thermal sensation |
| Publication | Publication Date | Title |
|---|---|---|
| CN106403162A (en) | Local heat comfort control method, local heat comfort controller and control system | |
| EP3891441B1 (en) | System and method for personalized thermal comfort control | |
| Boutahri et al. | Machine learning-based predictive model for thermal comfort and energy optimization in smart buildings | |
| Choi et al. | Development of the data-driven thermal satisfaction prediction model as a function of human physiological responses in a built environment | |
| Mao et al. | Comparative studies on using RSM and TOPSIS methods to optimize residential air conditioning systems | |
| Zhou et al. | Optimization of ventilation system design and operation in office environment, Part I: Methodology | |
| Kwong et al. | Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: A review | |
| Holopainen et al. | Comfort assessment in the context of sustainable buildings: Comparison of simplified and detailed human thermal sensation methods | |
| CN104633866B (en) | Hot comfort evaluation system based on ambient parameter and human body physiological parameter | |
| Turhan et al. | Development of a personalized thermal comfort driven controller for HVAC systems | |
| Pazhoohesh et al. | A satisfaction-range approach for achieving thermal comfort level in a shared office | |
| Zhai et al. | Inverse design methods for indoor ventilation systems using CFD-based multi-objective genetic algorithm | |
| JP5038757B2 (en) | Air conditioning control system | |
| JP6897767B2 (en) | Set value calculation system, method and program | |
| JP2007285579A (en) | Air conditioning controller | |
| JP6668010B2 (en) | Air conditioning control device, air conditioning control method, and air conditioning control program | |
| JP2013088105A (en) | Air-conditioning control system | |
| Ma et al. | Real-time indoor thermal comfort prediction in campus buildings driven by deep learning algorithms | |
| CN110991478A (en) | Method for establishing thermal comfort model and method and system for setting user preference temperature | |
| CN106705380A (en) | Indoor air temperature setting method and device of central air conditioner system | |
| Volkov et al. | Modeling the thermal comfort of internal building spaces in hospital | |
| JP4196484B2 (en) | Control device and control method for air conditioning system | |
| CN116123699B (en) | Air conditioner control method and system based on human body thermal comfort prediction | |
| CN117073203A (en) | A method for improving thermal comfort during the start-up stage of household air conditioners | |
| Wang et al. | A model-based control of CO2 concentration in multi-zone ACB air-conditioning systems |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20170215 | |
| RJ01 | Rejection of invention patent application after publication |