Movatterモバイル変換


[0]ホーム

URL:


CN106374162B - A method and device for thermal management of battery module based on thermoelectric effect - Google Patents

A method and device for thermal management of battery module based on thermoelectric effect
Download PDF

Info

Publication number
CN106374162B
CN106374162BCN201610944434.6ACN201610944434ACN106374162BCN 106374162 BCN106374162 BCN 106374162BCN 201610944434 ACN201610944434 ACN 201610944434ACN 106374162 BCN106374162 BCN 106374162B
Authority
CN
China
Prior art keywords
heat
battery
temperature
plate
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610944434.6A
Other languages
Chinese (zh)
Other versions
CN106374162A (en
Inventor
张恒运
隋杨
龚元明
牛甜甜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Engineering Science
Original Assignee
Shanghai University of Engineering Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Engineering SciencefiledCriticalShanghai University of Engineering Science
Priority to CN201610944434.6ApriorityCriticalpatent/CN106374162B/en
Publication of CN106374162ApublicationCriticalpatent/CN106374162A/en
Application grantedgrantedCritical
Publication of CN106374162BpublicationCriticalpatent/CN106374162B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

A kind of battery modules thermal management algorithm and device based on pyroelectric effect, battery pack box house, in the thermal conducting path formed by battery modules-heat carrier-semiconductor heat electrical component-liquid thermal conductivity channel, the battery modules thermal management algorithm includes two kinds of operating modes: executing refrigeration mode under high temperature environment, semiconductor heat electrical component upper temp drops to environment temperature or less, as chill surface, semiconductor heat electrical component temperature of lower rises, as radiating surface, the heat of generation carries discharge by liquid thermal conductivity channel;Heating mode is executed at low ambient temperatures, semiconductor heat electrical component upper temp rises, and becomes heating surface, is heated battery modules temperature to reach normal operating temperature range by heat carrier heat transfer, semiconductor heat electrical component temperature of lower decline simultaneously, becomes heat-absorbent surface.This method and device collection refrigeration calorify one, and compact-sized, heat transfer efficient can guarantee that battery works in optimum temperature environment always, have a good application prospect.

Description

A kind of battery modules thermal management algorithm and device based on pyroelectric effect
Technical field
The present invention relates to automobile-used energy-storage battery field of radiating more particularly to a kind of battery modules heat pipes based on pyroelectric effectManage method and device.
Background technique
Energy-storage battery such as lithium ion battery energy density is high, and small in size, cycle life is longer, in electric passenger vehicle, commercial affairsApplication potential is very big on vehicle.However since temperature increases influence self performance and circulation longevity to lithium ion battery in charge and discharge processLife, excessively high temperature even cause thermal runaway, lead to the accidents such as spontaneous combustion, explosion, conventional lithium cobaltate cathode material battery temperatureIt needs to control within 50 degrees Celsius, to avoid thermal runaway and explosion on fire, improves safety.With battery material and techniqueProgress, although can be promoted by the battery operating temperature of positive electrode of LiFePO4 to 60 degrees Celsius or higher, with temperatureSpend further up, battery capacity decaying is obvious, and thermal runaway and Ignition Phenomena still can occur at high temperature.On the other hand, existThe internal resistance of cell is big under low temperature, poor activity, difficulty in starting.Therefore it studies power lithium-ion battery thermal management technology and its implements especiallyUrgently.
The cooling battery of air-cooled or liquid cooling mode, conventional wind-cooling heat dissipating system is usually taken in power lithium-ion battery cooling systemStructure of uniting is simple, but heat dissipation effect is limited, and battery temperature uniformity is poor.Liquid cooling mode heat exchange efficiency is high, but it is cooled downAbility is limited to environment temperature, and cooling water temperature obstructs battery heat dissipation up to 40 DEG C or more instead when hot weather.
It is carried out in the way of heat management is a kind of novel battery heat management by semiconductor heat electrical component, semiconductor heat electrical component oneAs be made of bismuth tellurium semiconductor material, thermoelectric components are in energization since paltie effect forms chill surface and feverFace, to realize the cooling to battery or heat effect.
Patent application CN 03274312.2 discloses a kind of battery type of cooling using semiconductor cooler, including batteryThe refrigerator of case side side wall perimeter, the hot face of refrigerator and air cooling fin fitting, the fitting of refrigerator huyashi-chuuka (cold chinese-style noodles) pass cold plate, and by interiorSetting fan convection current, heat exchange passes cold plate and battery exchanges heat to enhance.Since the cross-ventilation coefficient of heat transfer is small, generally in tens W/m2K is leftThere are multiple thermal resistances on the right side along journey from fan to other side battery, and heat exchanged thermoresistance is excessive, and refrigerator refrigerating efficiency is low.In addition, refrigerationDevice radiating surface fin can heat battery case close to battery case instead, and heat dissipation purpose is not achieved.
Patent application CN 201210054888.8 discloses a kind of battery cooling apparatus of semiconductor refrigerating recirculated water, movesPower battery pack is connected to one for storing the external cooling water tank of coolant liquid by water inlet pipe and outlet pipe, cooling water tank and halfThe connection of conductor cooling device, water inlet pipe are equipped with a water pump for pushing coolant liquid circulation, further include a controller, input terminal withTemperature sensor and power battery pack circuit connection, output end are connect with semiconductor cooling device and pump circuit.Semiconductor systemThe chill surface of cold element is close to connection with cold aluminium is passed, and radiating surface is close to connection with air-cooled radiating device;Pass cold aluminium be set to it is describedIn cooling water tank, for reducing cooling water temperature, cooling water is connected again to reduce battery temperature with battery pack.The technical solutionIt is disadvantageous in that, since the heating surface calorific value of semiconductor refrigerating element is big, had both included the heat that chill surface absorbs, and also includedThe heat that refrigeration electrical power is converted, using wind-cooling heat dissipating low efficiency, efficiency of freezing is limited.In addition, semiconductor refrigerating element away fromIt is remote from battery, it needs to reheat battery pack by refrigeration water tank and pipeline institute's reservoir storage, power consumption is big, and water route is along Cheng LengliangLoss is big, and thermal response speed is slow, and refrigerating efficiency is insufficient.
Summary of the invention
Technical problem to be solved by the present invention lies in provide a kind of battery modules heat management device based on pyroelectric effectAnd method, the present invention is in battery case, the compact setting semiconductor heat electrical component in the lower part of battery modules, passes through leading for high-termal conductivityHot body and battery form thermal conducting path, under megathermal climate environment and execute different operating modes under microthermal climate environment, haveHave that thermal response speed is fast, temperature control is accurate, noiseless, applies in energy storage lithium ion battery, electricity can be reduced in hot weatherPond temperature can heat battery in severe cold weather, be greatly improved battery life and job stability, also, described device structureCompact, small volume is conducive to arrangement in a limited space.
The present invention is achieved by the following technical solutions:
A kind of battery modules thermal management algorithm based on pyroelectric effect, it is characterised in that:
Battery modules-heat carrier of battery pack box house-semiconductor heat electrical component-liquid thermal conductivity channel forms thermally conductive logicalHeat-conducting liquid suction circulation in liquid thermal conductivity channel is formed liquid heat exchange access, institute by road, the pump machine outside battery pack cabinetStating battery modules thermal management algorithm includes two kinds of operating modes:
Execute refrigeration mode under high temperature environment, semiconductor heat electrical component upper temp drop to environment temperature hereinafter, atFor chill surface, and battery modules temperature is reduced to by environment temperature by heat carrier heat transfer hereinafter, semiconductor thermoelectric group simultaneouslyPart temperature of lower rises, and becomes radiating surface, and pump machine is opened at this time, and the heat that radiating surface generates passes through thermally conductive in liquid heat exchange accessThe circulation of liquid carries discharge;
Heating mode is executed at low ambient temperatures, and semiconductor heat electrical component upper temp rises, and becomes heating surface, by leadingHot body heat conduction heats battery modules temperature to reach normal operating temperature range, while semiconductor heat electrical component lower part temperatureDegree decline, becomes heat-absorbent surface, if heat-absorbent surface temperature is lower than environment temperature, pump machine is opened, conductive fluid in liquid heat exchange accessThe cyclic absorption amount of heat of body exchanges heat, and starts to work and generates heat with battery modules, and heat-absorbent surface temperature gradually rises, until being equal toOr it is higher than environment temperature, at this time without using the cycle heat exchange of heat-conducting liquid in liquid heat exchange access, pump machine is closed, and passes through electricityPond lodge body directly exchanges heat.
A kind of device of the battery modules thermal management algorithm using above-mentioned based on pyroelectric effect, it is characterised in that:
In battery pack box house, from top to bottom sequentially it is close to configuration battery modules, heat transfer support plate, semiconductor thermoelectric groupHeat transfer support plate is close in part and liquid thermal conductivity channel, and the even multiple heat carriers of cloth in battery modules, heat carrier lower part, in which:
Heat transfer support plate is horizontal, and battery pack cabinet wall is close in edge;
Semiconductor heat electrical component includes that horizontal the first heat exchanger plate and the second heat exchanger plate and vertically-arranged are tightly attached to the twoBetween several thermoelectric units, each thermoelectric unit includes several pairs of p-type thermoelectric arms and N-type thermoelectric arm being electrically connected in series,Series/parallel is electrically connected between thermoelectric unit;The positive and negative anodes of single semiconductor heat electrical component directly with it is straight outside battery pack cabinetFlow power positive cathode electrical connection;Alternatively, after the electrical connection of multiple semiconductor thermoelectric component series/parallels, positive and negative anodes again with battery packDC power supply electricity positive and negative anodes connection outside cabinet;Also, the current direction of semiconductor heat electrical component allows hand over;
Liquid thermal conductivity channel is located at the battery pack bottom of box, and heat-conducting liquid is contained in liquid thermal conductivity channel, and corresponding liquid is ledThe both ends port of the passage of heat, opens up inlet and liquid outlet on battery pack cabinet, and liquid thermal conductivity channel passes through battery pack cabinetThe pump machine of exterior arrangement is connected to external heat exchanger.
Refrigeration mode is executed in hot weather, due to paltie effect, first heat exchange on semiconductor heat electrical component topPlate is cold plate, and rapid drop in temperature to environment temperature, can be by battery temperature hereinafter, radiated by heat transfer support plate, heat carrierDegree is reduced to environment temperature hereinafter, and the second heat exchanger plate of semiconductor heat electrical component lower part is heat sink, the heat generatedIt is discharged by liquid thermal conductivity channel and external heat exchanger;Heating mode, semiconductor heat are switched under cold low temperature environmentElectrical component positive and negative umpolung makes first heat exchanger plate on semiconductor heat electrical component top become heating plate, by leading after energizationHot support plate, heat carrier heating, rise battery temperature, reach normal operating temperature range, and under semiconductor heat electrical componentSecond heat exchanger plate in portion is absorber plate, if the second heat exchanger plate temperature, which is equal to, is higher than environment temperature, pump machine is closed, if theTwo heat exchanger plate temperature are lower than environment temperature, and pump machine is opened, and the second heat exchanger plate passes through the heat-conducting liquid in liquid thermal conductivity channelAmount of heat is absorbed, and battery is heated by the first heat exchanger plate, heat transfer support plate.
Further, the heat carrier is the rectangular plate-like heat transmission fin for being parallel to battery configuration, the battery modulesMultiple square brick shape battery stacks are horizontal or vertically-arranged in column:
If battery stack is horizontal, upright parallel configures multiple rows of thermally conductive supporting vertical plate above the heat transfer support plate, thermally conductiveHeat transfer support plate is close in supporting vertical plate lower end, and the adjacent thermally conductive supporting vertical plate of two rows, adjacent two layers are close in the battery both ends of stackingA piece of heat transmission fin is configured between battery, alternatively, configuring one layer of battery between two panels heat transmission fin, heat transmission fin is close to adjacentBattery, left and right two ora terminalis are close to the adjacent thermally conductive supporting vertical plate of two rows;
If battery vertically-arranged in column, a piece of heat transmission fin is configured between two column batteries, alternatively, matching between two panels heat transmission finOne piece of battery is set, alternatively, the ipsilateral corresponding a piece of heat transmission fin of configuration of each column battery, heat transmission fin are close to adjacent battery, underIt is close to heat transfer support plate in end;
Heat-conducting pad is configured or not configured between battery and the binding face of heat transmission fin;If configuring heat-conducting pad, leadThe size of heat pad piece and the size of battery and the binding face of heat transmission fin match, and heat-conducting pad is graphite heat-conducting fin, grapheneThermally conductive sheet or organosilicon thermally conductive sheet, heat-conducting pad are connected with heat transmission fin and battery respectively by gum.
Battery-heat transmission fin-heat transfer support plate thermal conducting path, by the heat transmission fin of high-termal conductivity and single battery andThe directly contact of heat transfer support plate carries out heat transfer, and the coefficient of heat transfer is big, and thermal response speed is fast, and heat transfer efficiency is high, and each electricityPond, single battery each position temperature it is uniform, ensure that the working efficiency of battery, and the good reliability that battery uses;Opposite battery and heat transmission fin, the flexibility of heat-conducting pad is good, can reduce interface thermal conduction resistance, improves heating conduction, and delayRush mechanical stress.
Further, the heat carrier includes the heating column for being in the form of a column vertical configuration and the thermally conductive diffuser plate of landscape configuration,Multiple cylindrical batteries of the battery modules are in rectangular vertical configuration, are closely sleeved in the aperture of thermally conductive diffuser plate, thermally conductiveColumn upper end is fastened on thermally conductive diffuser plate bottom, and heat transfer support plate is close in lower end, and it is rectangular that battery is located at surrounding for four heating columnsAt center, battery is not contacted with heating column.
Heating column cross sectional shape is rectangular, round, star or other similar, with biggish thermally conductive outer rim section shapesShape forms by the thermally conductive diffuser plate of battery-- heating column-heat transfer support plate thermal conducting path, passes through the thermally conductive diffuser plate of high-termal conductivityHeat transfer is carried out with single battery and directly contacting for heat transfer support plate with heating column, heating column has thermally conductive and support dualFunction.
Further, filling phase-change material layers or Embedding Material in the battery pack cabinet above the heat transfer support plateLayer or insulating heat-conductive oil;Alternatively, the interior filling phase transformation material of battery pack cabinet between the heat transfer support plate and thermally conductive diffuser platePerhaps Embedding Material layer or insulating heat-conductive are oily for the bed of material;The phase-change material layers are the stone comprising phase transition temperature at 20~80 DEG COne of wax, fatty acid phase-change material or a variety of phase-change material layers;The elasticity Embedding Material layer is greater than for thermal conductivityOrganosilicon, the urethane material of 0.2W/mK;The insulating heat-conductive oil is organic conduction oil that thermal conductivity is greater than 0.05W/mK.
Phase-change material layers or thermoplasticity Embedding Material layer have certain heat-conducting effect: latent heat of the phase-change material when dissolvingThe partial heat of battery generation can be absorbed, and keep temperature-resistant, so that battery temperature thermal shock amplitude is reduced, in addition, logicalThermally conductive diffuser plate, heating column and battery pack cabinet or heat transmission fin and battery pack cabinet are crossed, other part heat is exported, thusFurther decrease battery temperature;Thermoplasticity Embedding Material usually has heat filling, can also further strengthen thermally conductive, reduction heatImpact can reduce mechanical stress, slow down mechanical shock in addition, thermoplasticity Embedding Material has preferable toughness and ductility.
Insulating heat-conductive oil is one kind of common synthetic oil or refined mineral oil, such as: alkyl benzene-type (benzenoid form) is thermally conductiveOil, biphenyl and Biphenyl Ether eutectic conduction oil, organic silicone oil, the DowTherm conduction oil of typical brand such as DOW Chemical, in vehicleIn driving process, thermally conductive, the convection current comprehensive function that the liquid concussion of conduction oil generates are conducive to battery and radiate outward.
Further, the heat carrier is copper or iron heat carrier, alternatively, heat carrier is that outer surface covers one layer through anodic oxygenAfter changing Passivation Treatment, the aluminium heat carrier or aluminium alloy heat carrier of the oxidation film layer with middle piezoelectricity dielectric strength;It is described thermally conductiveSupport plate is that copper sheet or iron plate have alternatively, heat transfer support plate is that outer surface covers one layer after anodic oxidation passivation is handledThe aluminium sheet or aluminium alloy plate of the oxidation film layer of piezoelectricity dielectric strength, with a thickness of 0.5~20mm, with thermally conductive double with supportWeight function.Not only heat transfer efficiency is high and easy to process for the material selection of heat carrier, heat transfer support plate;Aluminium after anodic oxidationOr its alloy, hardness and wearability are improved, horniness anode oxide film fusing point is up to 2320K, breakdown voltage resistant up to 2000V,With excellent electrical insulating property.
Further, it is equipped with supporting rib stiffener between first heat exchanger plate and the second heat exchanger plate, the first heat is handed overIt changes plate and the second heat exchanger plate fixes as one;The battery pack bottom of box has thermally conductive Jia Qiang Zhu.Supporting rib stiffener is by low thermally conductiveMaterial is made, alternatively, being equipped with low heat conduction material between supporting rib stiffener and the first heat exchanger plate and the contact surface of the second heat exchanger plateBacking strap piece, supporting rib stiffener only play the role of reinforcing semiconductor heat electrical component mechanical strength;Thermally conductive reinforcing rib not only increases electricityThe mechanical strength and impact resistance of pond module box body also increase the surface area of battery case, accelerate battery modules tank surfaceHeat transfer effect.
Further, between first heat exchanger plate and heat transfer support plate, the second heat exchanger plate and liquid thermal conductivity channel 7It is close together between top by interface thermal conductive material layer;The interface thermal conductive material layer is with polyurethane, organosilicon, epoxyResin or acrylic acid are matrix, and thermal conductivity is not less than the conducting adhesive glue-line of 0.2W/mK;Alternatively, first heat exchanger plate andSecond heat exchanger plate outer surface has the coat of metal, is connected respectively with heat transfer support plate and liquid thermal conductivity channel roof by weldingIt connects.There are two effects for interface thermal conductive material layer tool: first is that guaranteeing that the thermal conductive contact face between semiconductor heat electrical component and battery is filledPoint, thermally conductive barrier caused by the air gap for avoiding regional area from being formed by reasons such as roughness, unevenness, assembly, second is that boundaryFace thermal conductive material layer can also play the role of being mechanically fixed and mitigating mechanical stress.
Further, the first heat exchanger plate 4 and the second heat exchanger plate 6 are ceramic mould electrical isolation heat exchanger plate, the p-type heatFigure of merit ZT=0.5~2.4 of electric arm and N-type thermoelectric arm.
According to paltie effect, the heat absorption of thermoelectric components cold end is Qc=2NsITc under ideal cooling condition, and hot end heat release isQh=2NsITh, Qc is cold end caloric receptivity in formula, and N is thermoelectric arm logarithm, and s is Seebeck coefficient, and I is electric current, and Tc, Th are respectivelyCold and hot end temperature (K).Due to Joule heat and conduction effect comprehensive function, cold end caloric receptivity Qc, electrical power in practicalQte, hot end thermal discharge Qh are expressed as (H.Y.Zhang, Y.C.Mui, M.Tarin, Analysis ofthermoelectric cooler performance for high power electronic packages,AppliedThermal Engineering 30,2010, pp.561-568):
In above-mentioned formula: ρ, k, G are respectively thermoelectric arm resistivity, thermal coefficient and geometric parameter, be defined as area andThe ratio between height, Δ T are hot end and cold-end temperature difference.
It can be seen that the numerical value of Seebeck coefficient s is bigger, thermoelectric arm thermal coefficient k and electricalresistivityρ are smaller, then semiconductorThermoelectric components working efficiency is higher, and nondimensional figure of merit ZT=s2T/k is also bigger (wherein T indicates mean temperature).Pass throughP-type and N-type semiconductor is made in doped bismuth telluride alloy base material, by a p-type thermoelectric arm and a N-type thermoelectric arm metal water conservancy diversionPlate connects, and constitutes a basic thermoelectric unit of semiconductor cooler.Document has been delivered according to the Massachusetts Institute of Technology,(Zhiting Tian,Sangyeop Lee,Gang Chen,Heat Transfer in ThermoelectricMaterials and Devices, ASME J Heat Transfer135,2013, pp.061605-1), bismuth telluride ZT value canReach 0.5~1 or so, and novel bismuth telluride/antimony telluride composite thermoelectric material ZT value is up to 2.4.It, can basis in actual designThermoelectric components material, the temperature of hot and cold side, current range and need to control calorific value, temperature and the radiator structure of object intoRow optimization design.
Further, the liquid thermal conductivity channel is snakelike embedding tube passage or Pocket Machining channel, internal coolant bodyFor water-ethylene glycol combination cooling liquid.It is capable of providing high efficient heat exchanging coefficient, the coefficient of heat transfer is up to several hundred to up to ten thousand W/m2K, liquid are ledPassage of heat plate body surrounding is closely connected by welding, screw bolt reinforcing and battery pack cabinet, and semiconductor heat electrical component is installed at topSecond heat exchanger plate can carry out good heat exchange with semiconductor heat electrical component, and in cooling mode will by external heat exchangerHeat dissipation is into atmosphere.
The beneficial effects of the present invention are:
1, it can guarantee that battery works in optimum temperature environment always.Since hot weather adds exposure in sunshine, electricityPond temperature can reach 50-60 DEG C, directly initiates battery and is possible to cause thermal runaway, the present invention is freezed using thermoelectric components, can be incited somebody to actionThe battery temperature of overheat is down to 40 DEG C of environment temperature or less and reuses battery, greatly improves battery reliability and working performance.
2, the heat exchange structure of direct contact type, heat exchange efficiency are high.It is compared with the device of traditional refrigeration cycle water tank, this hairIt is bright thermoelectric components are directly arranged in battery bottom to freeze, reduce the intermediate ring of water tank refrigeration and pipeline loss of refrigeration capacitySection, little power consumption, thermal response is fast, and system effectiveness is high, another aspect waste heat discharge can by the very high Water-cooling circulating of the coefficient of heat transfer withAnd external heat exchanger, system effectiveness can further improve, and heat exchanger is avoided closely to lead to very much battery preheating effect from battery modules.
3, refrigeration, heating are integrated in one, compact-sized.The present apparatus can not only be freezed using thermoelectric components, in low temperatureSevere cold weather, the reversed electrified regulation of thermoelectric components, by extension fin structure arrangement can quickly heat battery to 0 degree Celsius withOn, it is compact-sized, it is suitable for Vehicular dynamic battery system.
Detailed description of the invention
A kind of preferred structure when Fig. 1 is the radiating fin vertically-arranged of the present apparatus faces perspective diagram
Fig. 2 is that A-A is to section view along Fig. 1, another kind preferred structure structure schematic diagram when radiating fin vertically-arranged
Fig. 3 is that a kind of preferred structure when the radiating fin of the present apparatus is horizontal faces perspective diagram
Fig. 4 is that the present apparatus uses a kind of preferred structure when heating column to face perspective diagram
Fig. 5 is the B-B direction section view partial enlargement diagram of Fig. 4
Fig. 6 is the positive negative sense of direct current and temperature height variation signal when semiconductor heat electrical component freezes
Fig. 7 is the positive negative sense of direct current and temperature height variation signal when semiconductor heat electrical component heats
Fig. 8 is a kind of preferred structure in liquid thermal conductivity channel
Fig. 9 is that battery operation generates heat (single battery calorific value is in terms of 8W), and 50 DEG C of high-temperature battery is in the temperature for cooling down 600sDegree develops computer artificial result
Figure 10 is under battery not operating condition, 50 DEG C of high-temperature battery is cooling down temperature evolution Computer Simulation in 600 secondsAs a result
Figure 11 is the Temperature Distribution computer artificial result of high-temperature battery (50 DEG C) in cooling 600s (battery does not generate heat)
Figure 12 is low temperature battery (- 30 DEG C) after heating 600s, and the Temperature Distribution computer artificial result for placing 120s is (everyA battery-heating amount is 8W)
In Fig. 1~12: 1 is battery modules, and 2 be heat transmission fin, and 3 be heat transfer support plate, and 4 be the first heat exchanger plate, and 5 be heatElectric unit, 6 be the second heat exchanger plate, and 7 be liquid thermal conductivity channel, and 701 be groove, and 702 be water cooling wing plate, and 8 is vertical for thermally conductive supportPlate, 9 be heat-conducting pad, and 10 be interface thermal conductive material layer, and 11 be heating column, and 12 be supporting rib stiffener, and 13 be thermally conductive diffuser plate, 14It is liquid outlet for inlet, 15,16 be battery pack cabinet, and 17 be phase-change material layers.
Specific embodiment
The present invention will be further explained below with reference to the attached drawings.
Shown in as shown in Figure 1, Figure 3 and Figure 4, inside battery pack cabinet 16, from top to bottom sequentially it is close to configuration battery modules 1,Heat transfer support plate 3, semiconductor heat electrical component and liquid thermal conductivity channel 7, and the even multiple heat carriers of cloth in battery modules 1, it is thermally conductiveHeat transfer support plate 3 is close in body lower part, forms battery modules-heat carrier-semiconductor heat electrical component-liquid thermal conductivity channel formation and leadsHeat passage, in which:
Heat transfer support plate 3 is horizontal, and 16 inner wall of battery pack cabinet is close in edge;
Semiconductor heat electrical component includes that horizontal the first heat exchanger plate 4 and the second heat exchanger plate 6 and vertically-arranged are tightly attached to twoSeveral thermoelectric units 5 between person, each thermoelectric unit 5 include several pairs of p-type thermoelectric arms and N-type thermoelectricity being electrically connected in seriesArm;Series/parallel is electrically connected between thermoelectric unit 5;After the electrical connection of multiple semiconductor thermoelectric component series/parallels, positive and negative anodes again withDC power supply electricity positive and negative anodes connection outside battery pack cabinet 16;Also, the current direction of semiconductor heat electrical component allows hand over.
Supporting rib stiffener 12 is equipped between first heat exchanger plate 4 and the second heat exchanger plate 6, by the first heat exchanger plate 4 and theTwo heat exchanger plates 6 fix as one;16 bottom of battery pack cabinet is with thermally conductive plus strong Zhu;
Heat carrier is that outer surface covers one layer after anodic oxidation passivation is handled, the oxidation film with middle piezoelectricity dielectric strengthThe aluminium heat carrier or aluminium alloy heat carrier of layer;Heat transfer support plate 3 is that outer surface covers one layer after anodic oxidation passivation is handled,The aluminium sheet or aluminium alloy plate of oxidation film layer with middle piezoelectricity dielectric strength, with a thickness of 0.5~20mm.
Liquid thermal conductivity channel 7 is located at 16 bottom of battery pack cabinet, and heat-conducting liquid, corresponding liquid are contained in liquid thermal conductivity channel 7The both ends port of body passage of heat 7, opens up inlet 14 and liquid outlet 15 on battery pack cabinet 16, and liquid thermal conductivity channel 7 is logicalThe pump machine for crossing battery pack cabinet exterior arrangement is connected to external heat exchanger.
Refrigeration mode is executed in hot weather, due to paltie effect, first heat exchange on semiconductor heat electrical component topPlate 4 be cold plate, rapid drop in temperature to environment temperature hereinafter, by heat transfer support plate 3, heat carrier radiate, can be by batteryTemperature is reduced to environment temperature hereinafter, and the second heat exchanger plate 6 of semiconductor heat electrical component lower part is heat sink.
Heating mode is switched under cold low temperature environment, the reversion of semiconductor heat electrical component positive and negative anodes makes half after energizationFirst heat exchanger plate on conductor thermoelectric components top becomes heating plate, is heated by heat transfer support plate, heat carrier, can be by battery temperatureDegree rises, and reaches normal operating temperature range, and the second heat exchanger plate of semiconductor heat electrical component lower part is absorber plate,If the second heat exchanger plate temperature, which is equal to, is higher than environment temperature, pump machine is closed;If the second heat exchanger plate temperature is lower than environment temperatureDegree, liquid thermal conductivity channel are opened, and the second heat exchanger plate absorbs amount of heat by the heat-conducting liquid in liquid thermal conductivity channel, and leads toCross the first heat exchanger plate, heat transfer support plate heating battery.
As shown in Figure 1, Figure 3, heat carrier is the rectangular plate-like heat transmission fin 2 for being parallel to battery configuration, and heat transmission fin 2 squeezesMolding, or fixed between heat transfer support plate 3 by welding, splicing, with a thickness of 0.1~10mm, form the thermally conductive wing of battery-Piece-heat transfer support plate-thermoelectric components-liquid cooling system thermal dissipating path.In Fig. 1, multiple square brick shape batteries of battery modules 1 are in columnVertically-arranged, the battery pack cabinet 16 of 3 top of heat transfer support plate is interior to fill phase-change material layers 17, and the battery stack in Fig. 3 is horizontal.
In Fig. 3,3 top upright parallel of heat transfer support plate configures the thermally conductive supporting vertical plate 8 of 3 rows, and thermally conductive 8 lower end of supporting vertical plate is tightThe adjacent thermally conductive supporting vertical plates (8) of two rows are close at the battery both ends of patch 3,3 layer stackup of heat transfer support plate, between adjacent two layers batteryA piece of heat transmission fin 2 is configured, heat transmission fin 2 is close to adjacent battery, and it is vertical that left and right two ora terminalis is close to the thermally conductive support of adjacent two rowsPlate 8.
As shown in Figure 1, the ipsilateral corresponding a piece of heat transmission fin 2 of configuration of each column battery, as shown in Fig. 2, two panels heat transmission fin 2Between configure one piece of battery, heat transmission fin 2 is close to adjacent battery, and heat transfer support plate 3 is close in lower end.
As shown in Figure 1, configure heat-conducting pad 9 between battery and the binding face of heat transmission fin 2, size and battery with it is thermally conductiveThe size of the binding face of fin 2 matches, heat-conducting pad 9 be graphite heat-conducting fin, graphene thermally conductive sheet or organosilicon thermally conductive sheet,Heat-conducting pad 9 is connected with heat transmission fin 2 and battery respectively by gum.
As shown in Figures 4 and 5, heat carrier includes the heating column 11 for being in the form of a column vertical configuration and the thermally conductive diffuser plate of landscape configuration13, multiple cylindrical batteries of the battery modules 1 are in rectangular vertical configuration, are closely sleeved on the aperture of thermally conductive diffuser plate 13Interior, 11 upper end of heating column is fastened on thermally conductive 13 bottom of diffuser plate, and heat transfer support plate 3 is close in lower end, and battery is located at four heating columnsAt 11 square central surrounded, battery is not contacted with heating column, the battery pack between heat transfer support plate 3 and thermally conductive diffuser plate 13Phase-change material layers 17 are filled in cabinet 16.
As shown in Figure 1, between the first heat exchanger plate 4 and heat transfer support plate 3, the second heat exchanger plate 6 and liquid thermal conductivity channel 7It is close together between top by interface thermal conductive material layer 10;The interface thermal conductive material layer 10 be with polyurethane, organosilicon,Epoxy resin or acrylic acid are matrix, and thermal conductivity is not less than the conducting adhesive glue-line of 0.2W/mK.
Liquid thermal conductivity channel 7 as shown in Figure 8 is Pocket Machining channel, has water cooling fin 702 and groove 701, conduitWidth dimensions have biggish heat exchange area and good exchange capability of heat between 10mm-0.3mm.
As shown in figs. 6-7, thermoelectric unit is connected by several pairs of p-types and N-type thermoelectric arm, several thermoelectric units are serial/parallelIt is unified into semiconductor heat electrical component.As shown in fig. 6, additional power source anode is connected with thermoelectric components cathode under refrigeration work mode,Electronics is migrated to electric current opposite direction, forms refrigeration mode, and the first heat exchanger plate 4 is cold end (temperature Tc), the second heat exchanger plate 6For hot end (temperature Th);As shown in fig. 7, semiconductor heat electrical component is under heating work mode, additional power source anode and thermoelectricityComponent anode is connected, and forms heating mode.
Figure 10, Figure 11 are the calculating of the temperature evolution of high-temperature battery (50 DEG C) when semiconductor heat electrical component is 600 seconds coolingMachine simulation result, battery do not start, calorific value zero.Using 2x3 array semi-conductor thermoelectric components, each thermoelectric components having a size of50mm x 50mm, maximum calorific value Qcmax=310W, including 128 pairs of thermoelectric arms, battery modules include that 12 soft-package batteries are verticalFormula is placed, each battery size 10cm x12cm x1cm, and is fitted closely with fin plate.Consider 40 DEG C of temperature, battery is because of vehicle bodyInsolation reaches 50 DEG C, and under 8A electric current refrigeration work mode, edge battery and intermediate cell temperature gradually decline, and declines in 600sTo 21.9 DEG C and 24.5 DEG C, it can normally start trouble free service.Figure 10 shows that high-temperature battery (50 DEG C) is cooling in thermoelectric componentsThe Temperature Distribution computer artificial result of 600s (battery does not start).
As shown in figure 9, same battery module structure, if opening battery, single electricity in thermoelectric components refrigeration momentPond calorific value is 8W, 12 battery-heating 96W, and temperature still gradually declines under thermoelectric components 8A refrigeration mode situation, is makingAt cold 600 seconds, edge battery and intermediate cell temperature gradually decline, and drop to 34 DEG C and 29 DEG C in 600s, are not influencing battery justOften operation.
As shown in figure 12, (- 30 DEG C) under low temperature environment, thermoelectric components heating mode is opened, battery temperature gradually rises,600s is heated in thermoelectric components, stands 120s later, it can be seen that battery temperature obviously on 0 DEG C, can normally start.

Claims (9)

Semiconductor heat electrical component includes that horizontal the first heat exchanger plate (4) and the second heat exchanger plate (6) and vertically-arranged are tightly attached to twoSeveral thermoelectric units (5) between person, each thermoelectric unit (5) include several pairs of p-type thermoelectric arms being electrically connected in series and N-typeThermoelectric arm, series/parallel electrical connection between thermoelectric unit (5);The positive and negative anodes of single semiconductor heat electrical component directly with battery lodgeThe external DC power supply positive and negative anodes electrical connection of body (16);Alternatively, after multiple semiconductor thermoelectric component series/parallel electrical connections, justCathode is connect with the DC power supply electricity positive and negative anodes of battery pack cabinet (16) outside again;Also, the electric current side of semiconductor heat electrical componentTo allowing hand over;
Heating mode is executed at low ambient temperatures, and semiconductor heat electrical component upper temp rises, becomes heating surface, pass through heat carrierHeat transfer heats battery modules (1) temperature to reach normal operating temperature range, while semiconductor heat electrical component lower part temperatureDegree decline, becomes heat-absorbent surface, if heat-absorbent surface temperature is lower than environment temperature, pump machine is opened, conductive fluid in liquid heat exchange accessThe cyclic absorption amount of heat of body exchanges heat, and starts to work and generates heat with battery modules (1), heat-absorbent surface temperature gradually rises, untilAt or above environment temperature, at this time without using the cycle heat exchange of heat-conducting liquid in liquid heat exchange access, pump machine is closed, and is led toBattery pack cabinet (16) is crossed directly to exchange heat.
5. the battery modules heat management device according to claim 1 based on pyroelectric effect, it is characterised in that: described thermally conductiveBody is copper or iron heat carrier, alternatively, heat carrier is that outer surface covers one layer after anodic oxidation passivation is handled, it is exhausted with middle piezoelectricityThe aluminium heat carrier or aluminium alloy heat carrier of the oxidation film layer of edge intensity;The heat transfer support plate (3) be copper sheet or iron plate, orPerson, heat transfer support plate (3) are that outer surface covers one layer after anodic oxidation passivation is handled, the oxidation with middle piezoelectricity dielectric strengthThe aluminium sheet or aluminium alloy plate of film layer, with a thickness of 0.5~20mm.
7. the battery modules heat management device according to claim 1 based on pyroelectric effect, it is characterised in that: described firstBetween heat exchanger plate (4) and heat transfer support plate (3), pass through boundary between the second heat exchanger plate (6) and liquid thermal conductivity channel (7) topFace thermal conductive material layer (10) is close together;The interface thermal conductive material layer (10) be with polyurethane, organosilicon, epoxy resin orAcrylic acid is matrix, and thermal conductivity is not less than the conducting adhesive glue-line of 0.2W/mK;Alternatively, first heat exchanger plate (4) and secondHeat exchanger plate (6) outer surface has the coat of metal, passes through weldering at the top of heat transfer support plate (3) and liquid thermal conductivity channel (7) respectivelyIt connects in succession.
CN201610944434.6A2016-11-022016-11-02 A method and device for thermal management of battery module based on thermoelectric effectActiveCN106374162B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201610944434.6ACN106374162B (en)2016-11-022016-11-02 A method and device for thermal management of battery module based on thermoelectric effect

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201610944434.6ACN106374162B (en)2016-11-022016-11-02 A method and device for thermal management of battery module based on thermoelectric effect

Publications (2)

Publication NumberPublication Date
CN106374162A CN106374162A (en)2017-02-01
CN106374162Btrue CN106374162B (en)2019-04-30

Family

ID=57893346

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201610944434.6AActiveCN106374162B (en)2016-11-022016-11-02 A method and device for thermal management of battery module based on thermoelectric effect

Country Status (1)

CountryLink
CN (1)CN106374162B (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2019131018A1 (en)*2017-12-262019-07-04Shin-Etsu Polymer Co., Ltd.Heat dissipating structure and battery provided with the same
CN108390123B (en)*2018-01-042021-04-09福建省汽车工业集团云度新能源汽车股份有限公司Power battery package thermal management system and car
CN108520987B (en)*2018-04-032020-04-21安徽省神能电池科技有限公司 A temperature-adjustable electric vehicle battery assembly
FR3062521B1 (en)*2018-04-102023-09-08Sogefi Air & Cooling BATTERY UNIT WITH MEANS OF TEMPERATURE REGULATION INTEGRATED IN THE HOUSING
DE102018113964A1 (en)*2018-06-122019-12-12Webasto SE Housing for receiving a thermally conditioned electrical component and vehicle battery and distribution box
CN108832228A (en)*2018-06-202018-11-16安徽知之信息科技有限公司A kind of water circle device of new energy car battery case
CN108682921B (en)*2018-07-022023-11-03山东大学Electric automobile battery thermal management system based on phase change material soaking and heat storage technology
CN109066008B (en)*2018-07-272021-03-16中国科学院上海硅酸盐研究所Electric vehicle battery heat management device
CN108666495A (en)*2018-07-302018-10-16江苏银基烯碳能源科技有限公司 a battery pack
CN109163590A (en)*2018-08-222019-01-08中国电子科技集团公司第十四研究所A kind of graphene phase change material device
CN109185842A (en)*2018-09-292019-01-11黄河科技学院A kind of driving power and heat dissipating method with overheating protection function
CN109524741B (en)*2018-10-082021-07-20江苏大学 A liquid cooling plate combined with a cooling sheet, a power battery cooling liquid cooling system and a control method
CN111048864B (en)*2018-10-112021-07-02伟巴斯特车顶供暖系统(上海)有限公司A thermal management subassembly, battery module and vehicle for battery module
CN109585729A (en)*2018-10-262019-04-05福建省汽车工业集团云度新能源汽车股份有限公司A kind of controlling temp type power battery pack
DE102018220488A1 (en)*2018-11-282020-05-28Robert Bosch Gmbh Battery module and use of such a battery module
CN111355004B (en)*2018-12-212021-06-08江苏时代新能源科技有限公司Battery module
CN109473746A (en)*2018-12-272019-03-15西安科技大学 A battery pack thermal management device and method based on liquid and phase change materials
US12102999B2 (en)*2018-12-282024-10-01AstraveusDevice and method for handling a particle suspension
CN109802194B (en)*2019-01-172022-02-01重庆大学Battery pack based on Peltier effect and heat pipe cooling and heat management method thereof
FR3092935B1 (en)*2019-02-152023-01-13Hutchinson THERMOELECTRIC DEVICE WITH SEEBECK EFFECT
CN110176650A (en)*2019-05-072019-08-27南方科技大学Integrated thermal management system for power battery pack
CN110336096B (en)*2019-07-312024-04-30上海马勒热系统有限公司Electric automobile battery cooling system based on semiconductor thermoelectric technology
CN112369681A (en)*2019-09-092021-02-19湖北中烟工业有限责任公司 A heater isolation sleeve and an electric smoking system with the heater isolation sleeve
CN110881738A (en)*2019-11-282020-03-17长安大学 a cooling helmet
CN110994069B (en)*2019-12-062021-07-06山东元齐新动力科技有限公司Air-cooled heat dissipation battery pack and vehicle
CN111129662B (en)*2019-12-272022-05-13广东工业大学 A battery bionic heat dissipation and heat recovery system and its realization method
CN111211708A (en)*2020-01-082020-05-29广东工业大学 A kind of anti-overheating cycle energy storage device
CN111180832A (en)*2020-02-172020-05-19江苏嘉和热系统股份有限公司Thermoelectric cooling coupling liquid cooling battery thermal management device and voltage regulation and control strategy
CN112117511A (en)*2020-04-162020-12-22江苏大学Air-cooling and liquid-cooling coupled battery thermal management system based on semiconductor
CN114121710A (en)*2020-08-252022-03-01上海微电子装备(集团)股份有限公司Substrate bonding pressurizing device, substrate bonding equipment and substrate bonding method
CN112186296B (en)*2020-09-232022-02-15武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所)Battery thermal management structure
CN112993434B (en)*2021-01-052022-06-24刘国民New energy automobile battery heat abstractor
CN113067055B (en)*2021-02-272022-08-30哈尔滨威星动力电源科技开发有限责任公司Visual type heat preservation lithium cell
CN113437394A (en)*2021-08-062021-09-24骆驼集团新能源电池有限公司High-rate start-stop battery semiconductor liquid cooling system
CN113823858B (en)*2021-08-132023-05-02上海工程技术大学Power battery thermal management device
CN113675326A (en)*2021-08-242021-11-19东北大学Semiconductor thermoelectric device with embedded cooling water tank
CN113889684B (en)*2021-09-152023-09-29东风时代(武汉)电池系统有限公司Battery pack thermal management system and method
CN114039124A (en)*2021-11-092022-02-11镇江市高等专科学校Power battery multistage heat dissipation system based on magnetic refrigeration effect and control method
CN114976502B (en)*2022-06-162023-09-22江铃汽车股份有限公司Busbar, battery pack and cooling method of high-voltage storage battery
CN116053644B (en)*2023-01-052024-03-12三峡大学 A battery thermal management system integrating phase change and thermoelectric refrigeration
CN117080187B (en)*2023-08-212024-04-05安徽国麒科技有限公司Thermoelectric cooling structure of BMS battery management system
CN117174956B (en)*2023-11-012024-02-09上海重塑能源科技有限公司Fuel cell control method and device, electronic equipment and fuel cell
CN118367264A (en)*2024-05-232024-07-19威胜能源技术股份有限公司 A battery pack structure for energy storage
CN118782971A (en)*2024-09-112024-10-15南昌航空大学 A high rate battery pack
CN120111857A (en)*2025-05-072025-06-06山东点石建筑设计有限公司 Inverters for construction sites

Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101202323A (en)*2006-12-152008-06-18邓贤金High efficiency and low cost thermoelectric module and making process thereof
CN202758989U (en)*2012-07-132013-02-27八叶(厦门)新能源科技有限公司Battery system with multi-medium cooling source
CN103594755A (en)*2013-12-032014-02-19吉林大学Power battery group liquid flow non-contact thermal-control device
CN104795610A (en)*2014-01-202015-07-22广州贝特缪斯能源科技有限公司Thermoelectric cooling-based power battery thermal management system
CN105655665A (en)*2016-02-032016-06-08上海工程技术大学Heat dissipation device of power battery
CN105742542A (en)*2016-05-062016-07-06上海工程技术大学Forced convection power battery heat radiation device
CN105762438A (en)*2016-03-242016-07-13吉林大学High-thermal-conductivity liquid heat exchange device for columnar battery pack forming
CN206134883U (en)*2016-11-022017-04-26上海工程技术大学Battery module heat pipe reason device based on pyroelectric effect

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101202323A (en)*2006-12-152008-06-18邓贤金High efficiency and low cost thermoelectric module and making process thereof
CN202758989U (en)*2012-07-132013-02-27八叶(厦门)新能源科技有限公司Battery system with multi-medium cooling source
CN103594755A (en)*2013-12-032014-02-19吉林大学Power battery group liquid flow non-contact thermal-control device
CN104795610A (en)*2014-01-202015-07-22广州贝特缪斯能源科技有限公司Thermoelectric cooling-based power battery thermal management system
CN105655665A (en)*2016-02-032016-06-08上海工程技术大学Heat dissipation device of power battery
CN105762438A (en)*2016-03-242016-07-13吉林大学High-thermal-conductivity liquid heat exchange device for columnar battery pack forming
CN105742542A (en)*2016-05-062016-07-06上海工程技术大学Forced convection power battery heat radiation device
CN206134883U (en)*2016-11-022017-04-26上海工程技术大学Battery module heat pipe reason device based on pyroelectric effect

Also Published As

Publication numberPublication date
CN106374162A (en)2017-02-01

Similar Documents

PublicationPublication DateTitle
CN106374162B (en) A method and device for thermal management of battery module based on thermoelectric effect
CN206134883U (en)Battery module heat pipe reason device based on pyroelectric effect
CN105742542B (en)A kind of forced convertion power battery heat-radiating device
CN109802194B (en)Battery pack based on Peltier effect and heat pipe cooling and heat management method thereof
CN103928729B (en)A kind of electric automobile power battery group temperature control system based on heat pipe
KR101236273B1 (en)Solar panel cooling without power consumption
CN109361036A (en) A high-efficiency and energy-saving battery module thermal management device
CN108390123A (en)A kind of power battery pack heat management system and automobile
CN105900260A (en)Battery, casing structure of battery, battery core protection method, mobile device and kit thereof
CN207651636U (en)A kind of automobile power cell packet heat management system and automobile
CN103199316A (en)Battery pack and heat radiation structure thereof
CN103825067A (en)Efficient heat radiation device for lithium ion power battery
CN208189738U (en)A kind of power battery module
CN107959090A (en)A kind of power battery thermal management system
CN112510285A (en)Heat dissipation method and device for vehicle battery module
WO2022000765A1 (en)Household energy storage constant-temperature battery system
CN111244571A (en) A thermal management structure and method for a square lithium battery pack
CN209515765U (en)A kind of thermal management device of battery that novel temperature-uniforming plate is coupled with phase-change material
CN201285784Y (en)Accumulator heat management apparatus based on thermoelectric effect of semiconductor
An et al.Cooling and preheating performance of dual-active lithium-ion battery thermal management system under harsh conditions
CN203103466U (en) Thermal management system of lithium battery in HEV
CN110707259A (en)High-protection-level air-cooled lithium battery pack thermal management system and method
CN217485571U (en)Thermoelectric refrigeration samming battery module and samming system
CN203760594U (en)Temperature control system of electric car power battery pack based on heat pipe
CN115312907A (en)Battery pack temperature control system and large-capacity battery pack

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp