Movatterモバイル変換


[0]ホーム

URL:


CN106373874A - Fabrication Method of Ohmic Contact Electrode Based on AlGaN/GaN HEMT - Google Patents

Fabrication Method of Ohmic Contact Electrode Based on AlGaN/GaN HEMT
Download PDF

Info

Publication number
CN106373874A
CN106373874ACN201510432421.6ACN201510432421ACN106373874ACN 106373874 ACN106373874 ACN 106373874ACN 201510432421 ACN201510432421 ACN 201510432421ACN 106373874 ACN106373874 ACN 106373874A
Authority
CN
China
Prior art keywords
layer
ohmic
ohm
oxide layer
algan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510432421.6A
Other languages
Chinese (zh)
Inventor
刘美华
陈建国
李�杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University Founder Group Co Ltd
Shenzhen Founder Microelectronics Co Ltd
Original Assignee
Peking University Founder Group Co Ltd
Shenzhen Founder Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University Founder Group Co Ltd, Shenzhen Founder Microelectronics Co LtdfiledCriticalPeking University Founder Group Co Ltd
Priority to CN201510432421.6ApriorityCriticalpatent/CN106373874A/en
Publication of CN106373874ApublicationCriticalpatent/CN106373874A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

The invention provides a manufacturing method of an ohmic contact electrode based on an AlGaN/GaN HEMT. The method comprises the following stesp: successively depositing a silicon nitride passivation layer and a tetraethoxysilane oxide layer above an aluminum gallium nitride barrier layer; etching the silicon nitride passivation layer and the tetraethoxysilane oxide layer at a left-side area and a right-side area to form ohmic etching holes; performing cleaning processing on the aluminum gallium nitride barrier layer below the ohmic etching holes successively by use of a DHF solution, an SC1 solution and an SC2 solution; in the ohmic etching holes, depositing an ohmic electrode metal layer above the ohmic etching holes and the tetraethoxysilane oxide layer, and performing annealing processing on the AlGaN/GaN HEMT with the ohmic electrode metal layer deposited thereon; and performing photoethcing and etching on the ohmic electrode metal layer at an intermediate area above the tetraethoxysilane oxide layer so as to form the ohmic contact electrode. According to the invention, good ohmic contact is formed between the ohmic electrode contact layer and the aluminum gallium nitride barrier layer, and thus ohmic contact resistance of a device is effectively reduced.

Description

Translated fromChinese
基于AlGaN/GaN HEMT的欧姆接触电极的制造方法Fabrication Method of Ohmic Contact Electrode Based on AlGaN/GaN HEMT

技术领域technical field

本发明实施例涉及半导体器件制造技术领域,尤其涉及一种基于AlGaN/GaN HEMT的欧姆接触电极的制造方法。Embodiments of the present invention relate to the technical field of semiconductor device manufacturing, and in particular to a method for manufacturing an ohmic contact electrode based on AlGaN/GaN HEMT.

背景技术Background technique

AlGaN/GaN是国际上广泛关注的新型宽禁带化合物半导体材料,由于其具有较宽的禁带宽度,高电子饱和漂移速率,较高的击穿场强,良好的热稳定性,耐腐蚀和抗辐射性能,所以在高压、高频、高温、大功率和抗辐照环境条件下具有较强的优势。凭借其优良的材料特性,AlGaN/GaN高电子迁移率晶体管(简称:AlGaN/GaN HEMT)被广泛使用。AlGaN/GaN is a new type of wide bandgap compound semiconductor material that is widely concerned in the world. Because of its wide bandgap width, high electron saturation drift rate, high breakdown field strength, good thermal stability, corrosion resistance and Anti-radiation performance, so it has strong advantages in high-voltage, high-frequency, high-temperature, high-power and anti-radiation environmental conditions. With its excellent material properties, AlGaN/GaN high electron mobility transistors (abbreviation: AlGaN/GaN HEMTs) are widely used.

但由于AlGaN/GaN HEMT中GaN材料的带隙较宽和AlGaN非掺杂本征材料的使用,使得AlGaN/GaN HEMT器件中的欧姆接触电阻较高。However, due to the wide band gap of GaN material in AlGaN/GaN HEMT and the use of AlGaN non-doped intrinsic material, the ohmic contact resistance in AlGaN/GaN HEMT device is relatively high.

为了能降低AlGaN/GaN HEMT器件的欧姆接触电阻,现有技术中采用在沉积欧姆电极金属层前,使用氯化氢溶液清除AlGaN势垒层表面原子和离子杂质的方法来降低欧姆接触电阻,但由于在AlGaN势垒层表面其他物质的存在,并不能形成较好的欧姆接触,致使AlGaN/GaN HEMT器件的欧姆接触电阻仍然较高,进而使得AlGaN/GaN HEMT器件产生较高的热量,可靠性较低。In order to reduce the ohmic contact resistance of AlGaN/GaN HEMT devices, in the prior art, before depositing the ohmic electrode metal layer, the method of using hydrogen chloride solution to remove atoms and ionic impurities on the surface of the AlGaN barrier layer is used to reduce the ohmic contact resistance. The presence of other substances on the surface of the AlGaN barrier layer cannot form a good ohmic contact, resulting in a high ohmic contact resistance of the AlGaN/GaN HEMT device, which in turn makes the AlGaN/GaN HEMT device generate higher heat and lower reliability .

发明内容Contents of the invention

本发明实施例提供一种基于AlGaN/GaN HEMT的欧姆接触电极的制造方法,使欧姆电极金属层与铝镓氮势垒层之间形成了良好的欧姆接触,有效降低AlGaN/GaN HEMT器件的欧姆接触电阻,使器件产生较低的热量,提高了器件的可靠性。The embodiment of the present invention provides a method for manufacturing an ohmic contact electrode based on AlGaN/GaN HEMT, so that a good ohmic contact is formed between the ohmic electrode metal layer and the aluminum gallium nitrogen barrier layer, and the ohmic contact of the AlGaN/GaN HEMT device is effectively reduced. The contact resistance makes the device generate lower heat and improves the reliability of the device.

本发明实施例提供一种基于AlGaN/GaN HEMT的欧姆接触电极的制造方法,包括:An embodiment of the present invention provides a method for manufacturing an ohmic contact electrode based on AlGaN/GaN HEMT, including:

在铝镓氮势垒层上方依次沉积氮化硅钝化层和四乙氧基硅烷氧化层;Depositing a silicon nitride passivation layer and a tetraethoxysilane oxide layer sequentially over the AlGaN barrier layer;

对左右两侧区域的氮化硅钝化层和四乙氧基硅烷氧化层分别进行刻蚀,形成欧姆刻蚀孔;Etching the silicon nitride passivation layer and the tetraethoxysilane oxide layer on the left and right sides respectively to form ohmic etching holes;

依次采用DHF溶液,SC1溶液和SC2溶液对所述欧姆刻蚀孔下方的AlGaN势垒层表面进行清洗处理;sequentially using DHF solution, SC1 solution and SC2 solution to clean the surface of the AlGaN barrier layer below the ohmic etching hole;

在所述欧姆刻蚀孔中,所述欧姆刻蚀孔上方及所述四乙氧基硅烷氧化层上方沉积欧姆电极金属层,In the ohmic etching hole, an ohmic electrode metal layer is deposited above the ohmic etching hole and above the tetraethoxysilane oxide layer,

对沉积了所述欧姆电极金属层的所述AlGaN/GaN HEMT进行退火处理;annealing the AlGaN/GaN HEMT on which the ohmic electrode metal layer is deposited;

对所述四乙氧基硅烷氧化层上方的中间区域的欧姆电极金属层进行光刻,刻蚀,形成欧姆接触电极。Perform photoetching and etching on the ohmic electrode metal layer in the middle area above the tetraethoxysilane oxide layer to form an ohmic contact electrode.

进一步地,如上所述的方法,所述在所述欧姆刻蚀孔中,所述欧姆刻蚀孔上方及所述四乙氧基硅烷氧化层上方沉积欧姆电极金属层具体包括:Further, in the above-mentioned method, the depositing an ohmic electrode metal layer in the ohmic etching hole, above the ohmic etching hole and above the tetraethoxysilane oxide layer specifically includes:

在所述欧姆刻蚀孔中,所述欧姆刻蚀孔上方及所述四乙氧基硅烷氧化层上方采用磁控溅射镀膜工艺依次沉积第一钛层,铝层,第二钛层及氮化钛层。In the ohmic etching hole, a first titanium layer, an aluminum layer, a second titanium layer and nitrogen are sequentially deposited on the top of the ohmic etching hole and the tetraethoxysilane oxide layer using a magnetron sputtering coating process. titanium layer.

进一步地,如上所述的方法,所述第一钛层的厚度为200埃,所述铝层的厚度为1200埃,所述第二钛层的厚度为200埃,所述氮化钛层的厚度为200埃。Further, in the above-mentioned method, the thickness of the first titanium layer is 200 angstroms, the thickness of the aluminum layer is 1200 angstroms, the thickness of the second titanium layer is 200 angstroms, and the thickness of the titanium nitride layer is The thickness is 200 Angstroms.

进一步地,如上所述的方法,所述SC1溶液包括:氢氧化氨、过氧化氢和水,所述SC1溶液中的所述氢氧化氨、所述过氧化氢、所述水的比例为1:2:10。Further, in the method as described above, the SC1 solution includes: ammonium hydroxide, hydrogen peroxide and water, and the ratio of the ammonium hydroxide, the hydrogen peroxide and the water in the SC1 solution is 1 :2:10.

进一步地,如上所述的方法,所述SC2溶液包括:氯化氢、过氧化氢和水,所述SC2溶液中的所述氯化氢、所述过氧化氢、所述水的比例为1:2:10。Further, as described above, the SC2 solution includes: hydrogen chloride, hydrogen peroxide and water, and the ratio of the hydrogen chloride, the hydrogen peroxide and the water in the SC2 solution is 1:2:10 .

进一步地,如上所述的方法,所述退火处理的温度为840度,所述退火处理的时间为30秒,所述退火处理在氮气氛围中。Further, in the above method, the temperature of the annealing treatment is 840 degrees, the time of the annealing treatment is 30 seconds, and the annealing treatment is in a nitrogen atmosphere.

进一步地,如上所述的方法,所述在铝镓氮势垒层上方依次沉积氮化硅钝化层和四乙氧基硅烷氧化层具体包括:Further, in the above-mentioned method, the sequential deposition of a silicon nitride passivation layer and a tetraethoxysilane oxide layer on the AlGaN barrier layer specifically includes:

在所述铝镓氮势垒层上方采用化学气相沉积工艺沉积所述氮化硅钝化层;Depositing the silicon nitride passivation layer on the AlGaN barrier layer by using a chemical vapor deposition process;

在所述氮化硅钝化层上方采用物理气相沉积工艺沉积所述四乙氧基硅烷氧化层。The tetraethoxysilane oxide layer is deposited on the silicon nitride passivation layer by physical vapor deposition process.

进一步地,如上所述的方法,所述对左右两侧区域的氮化硅钝化层和四乙氧基硅烷氧化层分别进行刻蚀,形成欧姆刻蚀孔具体包括:Further, in the above-mentioned method, the etching of the silicon nitride passivation layer and the tetraethoxysilane oxide layer on the left and right sides of the region to form the ohmic etching hole specifically includes:

采用干法刻蚀工艺对左右两侧区域的氮化硅钝化层和四乙氧基硅烷氧化层分别进行刻蚀,形成第一欧姆刻蚀孔及第二欧姆刻蚀孔;The silicon nitride passivation layer and the tetraethoxysilane oxide layer on the left and right sides are respectively etched by a dry etching process to form a first ohmic etching hole and a second ohmic etching hole;

相应地,所述第一欧姆刻蚀孔对应的欧姆接触电极为源电极,所述第二欧姆刻蚀孔对应的欧姆接触电极为漏电极。Correspondingly, the ohmic contact electrode corresponding to the first ohmic etching hole is a source electrode, and the ohmic contact electrode corresponding to the second ohmic etching hole is a drain electrode.

本发明实施例提供一种基于AlGaN/GaN HEMT的欧姆接触电极的制造方法,通过在铝镓氮势垒层上方依次沉积氮化硅钝化层和四乙氧基硅烷氧化层;对左右两侧区域的氮化硅钝化层和四乙氧基硅烷氧化层分别进行刻蚀,形成欧姆刻蚀孔;依次采用DHF溶液,SC1溶液和SC2溶液对欧姆刻蚀孔下方的AlGaN势垒层表面进行清洗处理;在欧姆刻蚀孔中,欧姆刻蚀孔上方及四乙氧基硅烷氧化层上方沉积欧姆电极金属层,对沉积了欧姆电极金属层的AlGaN/GaN HEMT进行退火处理;对四乙氧基硅烷氧化层上方的中间区域的欧姆电极金属层进行光刻,刻蚀,形成欧姆接触电极,使欧姆电极金属层与铝镓氮势垒层之间形成了良好的欧姆接触,有效降低AlGaN/GaN HEMT器件的欧姆接触电阻,使器件产生较低的热量,提高了器件的可靠性。An embodiment of the present invention provides a method for manufacturing an ohmic contact electrode based on an AlGaN/GaN HEMT, by sequentially depositing a silicon nitride passivation layer and a tetraethoxysilane oxide layer on the aluminum gallium nitrogen barrier layer; The silicon nitride passivation layer and the tetraethoxysilane oxide layer in the area are respectively etched to form ohmic etching holes; sequentially use DHF solution, SC1 solution and SC2 solution to etch the surface of the AlGaN barrier layer below the ohmic etching holes Cleaning treatment; deposit an ohmic electrode metal layer in the ohmic etching hole, above the ohmic etching hole and above the tetraethoxysilane oxide layer, and anneal the AlGaN/GaN HEMT on which the ohmic electrode metal layer is deposited; The ohmic electrode metal layer in the middle area above the base silane oxide layer is photoetched and etched to form an ohmic contact electrode, so that a good ohmic contact is formed between the ohmic electrode metal layer and the AlGaN barrier layer, effectively reducing AlGaN/ The ohmic contact resistance of the GaN HEMT device makes the device generate lower heat and improves the reliability of the device.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort.

图1为本发明基于AlGaN/GaN HEMT的欧姆接触电极的制造方法实施例一的流程图;FIG. 1 is a flow chart of Embodiment 1 of the method for manufacturing an ohmic contact electrode based on AlGaN/GaN HEMT of the present invention;

图2为本发明实施例一提供的基于AlGaN/GaN HEMT的欧姆接触电极的制造方法中在铝镓氮势垒层上方依次沉积氮化硅钝化层和四乙氧基硅烷氧化层后的结构示意图;Fig. 2 is the structure after sequentially depositing a silicon nitride passivation layer and a tetraethoxysilane oxide layer on the AlGaN barrier layer in the method for manufacturing an ohmic contact electrode based on AlGaN/GaN HEMT provided in Embodiment 1 of the present invention schematic diagram;

图3为本发明实施例一提供的基于AlGaN/GaN HEMT的欧姆接触电极的制造方法中对左右两侧区域的氮化硅钝化层和四乙氧基硅烷氧化层分别进行刻蚀,形成欧姆刻蚀孔后的结构示意图;Fig. 3 is the silicon nitride passivation layer and the tetraethoxysilane oxide layer on the left and right sides in the method of manufacturing the ohmic contact electrode based on AlGaN/GaN HEMT provided by Embodiment 1 of the present invention, respectively, to form an ohmic contact electrode. Schematic diagram of the structure after etching holes;

图4为本发明实施例一提供的基于AlGaN/GaN HEMT的欧姆接触电极的制造方法中在欧姆刻蚀孔中,欧姆刻蚀孔上方及四乙氧基硅烷氧化层上方沉积欧姆电极金属层后的结构示意图;Fig. 4 shows the method for manufacturing an ohmic contact electrode based on AlGaN/GaN HEMT provided by Embodiment 1 of the present invention, after depositing an ohmic electrode metal layer in the ohmic etching hole, above the ohmic etching hole and above the tetraethoxysilane oxide layer Schematic diagram of the structure;

图5为本发明实施例一提供的基于AlGaN/GaN HEMT的欧姆接触电极的制造方法中对四乙氧基硅烷氧化层上方的中间区域的欧姆电极金属层进行光刻,刻蚀,形成欧姆接触电极的结构示意图。Fig. 5 is the photolithography and etching of the ohmic electrode metal layer in the middle area above the tetraethoxysilane oxide layer in the manufacturing method of the ohmic contact electrode based on AlGaN/GaN HEMT provided by Embodiment 1 of the present invention to form the ohmic contact Schematic diagram of the electrode structure.

附图标记:Reference signs:

1-硅衬底 2-氮化镓外延层 3-铝镓氮势垒层1-Silicon substrate 2-GaN epitaxial layer 3-AlGaN barrier layer

4-氮化硅钝化层 5-四乙氧基硅 6-欧姆刻蚀孔4-Silicon nitride passivation layer 5-Tetraethoxy silicon 6-Ohm etched hole

烷氧化层 Alkoxide layer

7-欧姆电极金属层 8-欧姆接触电极7-ohm electrode metal layer 8-ohm contact electrode

具体实施方式detailed description

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

实施例一Embodiment one

图1为本发明基于AlGaN/GaN HEMT的欧姆接触电极的制造方法实施例一的流程图,如图1所示,本实施例提供的基于AlGaN/GaN HEMT的欧姆接触电极的制造方法包括:Fig. 1 is a flowchart of Embodiment 1 of the method for manufacturing an ohmic contact electrode based on an AlGaN/GaN HEMT according to the present invention. As shown in Fig. 1 , the method for manufacturing an ohmic contact electrode based on an AlGaN/GaN HEMT provided in this embodiment includes:

步骤101,在铝镓氮势垒层3上方依次沉积氮化硅钝化层4和四乙氧基硅烷氧化层5。Step 101 , depositing a silicon nitride passivation layer 4 and a tetraethoxysilane oxide layer 5 sequentially on the AlGaN barrier layer 3 .

本实施例中,图2为本发明实施例一提供的基于AlGaN/GaN HEMT的欧姆接触电极的制造方法中在铝镓氮势垒层上方依次沉积氮化硅钝化层和四乙氧基硅烷氧化层后的结构示意图,如图2所示,在铝镓氮势垒层(简称:AlGaN势垒层)3上方依次沉积氮化硅钝化层(简称:SiN钝化层)4和四乙氧基硅烷氧化层(简称:TEOS氧化层)5之前,首先在硅衬底(简称:Si衬底)1上方外延生长氮化镓外延层(简称:GaN外延层)2,然后在GaN外延层2上方形成AlGaN势垒层3。In this embodiment, Fig. 2 shows the sequential deposition of silicon nitride passivation layer and tetraethoxysilane on the AlGaN barrier layer in the manufacturing method of AlGaN/GaN HEMT-based ohmic contact electrode provided in Embodiment 1 of the present invention Schematic diagram of the structure after the oxidation layer, as shown in Figure 2, a silicon nitride passivation layer (abbreviation: SiN passivation layer) 4 and a tetraethylene nitride passivation layer (abbreviation: SiN passivation layer) 4 and tetraethylene Before the oxysilane oxide layer (abbreviation: TEOS oxide layer) 5, a gallium nitride epitaxial layer (abbreviation: GaN epitaxial layer) 2 is epitaxially grown on a silicon substrate (abbreviation: Si substrate) 1 first, and then the GaN epitaxial layer AlGaN barrier layer 3 is formed on top of 2.

本实施例中,在AlGaN势垒层3上方依次沉积SiN钝化层4和TEOS氧化层5时,首先在AlGaN势垒层3上方沉积SiN钝化层4,然后在SiN钝化层4上方沉积TEOS氧化层5,其中,沉积的SiN钝化层4的厚度和沉积的TEOS氧化层5的厚度,本实施例中不做限定。In this embodiment, when depositing the SiN passivation layer 4 and the TEOS oxide layer 5 sequentially on the AlGaN barrier layer 3, the SiN passivation layer 4 is first deposited on the AlGaN barrier layer 3, and then deposited on the SiN passivation layer 4. The TEOS oxide layer 5, wherein, the thickness of the deposited SiN passivation layer 4 and the thickness of the deposited TEOS oxide layer 5 are not limited in this embodiment.

本实施例中,在AlGaN势垒层3上方采用化学气相沉积工艺沉积SiN钝化层4,在SiN钝化层4上方采用物理气相沉积工艺沉积TEOS氧化层5。In this embodiment, the SiN passivation layer 4 is deposited on the AlGaN barrier layer 3 by chemical vapor deposition process, and the TEOS oxide layer 5 is deposited on the SiN passivation layer 4 by physical vapor deposition process.

步骤102,对左右两侧区域的氮化硅钝化层4和四乙氧基硅烷氧化层5分别进行刻蚀,形成欧姆刻蚀孔6。Step 102 , respectively etching the silicon nitride passivation layer 4 and the tetraethoxysilane oxide layer 5 in the left and right regions to form ohmic etching holes 6 .

本实施例中,图3为本发明实施例一提供的基于AlGaN/GaN HEMT的欧姆接触电极的制造方法中对左右两侧区域的氮化硅钝化层和四乙氧基硅烷氧化层分别进行刻蚀,形成欧姆刻蚀孔后的结构示意图,如图3所示,本实施例中,首先对左侧区域的SiN钝化层4和TEOS氧化层5进行刻蚀,形成左侧的欧姆刻蚀孔6。然后对右侧区域的SiN钝化层4和TEOS氧化层5进行刻蚀,形成右侧的欧姆刻蚀孔6。In this embodiment, FIG. 3 shows the silicon nitride passivation layer and the tetraethoxysilane oxide layer on the left and right regions in the manufacturing method of the AlGaN/GaN HEMT-based ohmic contact electrode provided in Embodiment 1 of the present invention. Etching, the schematic diagram of the structure after forming the ohmic etching hole, as shown in Figure 3, in this embodiment, firstly, the SiN passivation layer 4 and the TEOS oxide layer 5 in the left area are etched to form the left ohmic etching hole. Erosion pit 6. Then the SiN passivation layer 4 and the TEOS oxide layer 5 in the right area are etched to form the right ohmic etching hole 6 .

其中,左侧的欧姆刻蚀孔6为第一欧姆刻蚀孔,右侧的欧姆刻蚀孔6为第一欧姆刻蚀孔为第二欧姆刻蚀孔。Wherein, the ohmic etching hole 6 on the left is the first ohmic etching hole, and the ohmic etching hole 6 on the right is the first ohmic etching hole and the second ohmic etching hole.

本实施例中,左侧的欧姆刻蚀孔6及右侧的欧姆刻蚀孔6对称设置,左侧的欧姆刻蚀孔6及右侧的欧姆刻蚀孔6的尺寸相同,欧姆刻蚀孔6的截面为矩形,在欧姆刻蚀孔6的底部为AlGaN势垫层3的上表面。In this embodiment, the ohmic etching hole 6 on the left side and the ohmic etching hole 6 on the right side are arranged symmetrically, and the size of the ohmic etching hole 6 on the left side and the ohmic etching hole 6 on the right side are the same. The cross section of 6 is rectangular, and the bottom of the ohmic etching hole 6 is the upper surface of the AlGaN potential pad layer 3 .

本实施例中,对左右两侧区域的SiN钝化层4和TEOS氧化层5分别进行刻蚀,形成第一欧姆刻蚀孔及第二欧姆刻蚀孔时,采用干法刻蚀工艺。In this embodiment, the SiN passivation layer 4 and the TEOS oxide layer 5 in the left and right regions are respectively etched to form the first ohmic etching hole and the second ohmic etching hole using a dry etching process.

步骤103,依次采用DHF溶液,SC1溶液和SC2溶液对欧姆刻蚀孔6下方的铝镓氮势垒层3表面进行清洗处理。Step 103 , sequentially using DHF solution, SC1 solution and SC2 solution to clean the surface of the AlGaN barrier layer 3 below the ohmic etching hole 6 .

本实施例中,DHF溶液为稀释的氢氟酸溶液。首先采用DHF溶液对欧姆刻蚀孔下方的AlGaN势垒层3表面进行清洗处理,DHF溶液与AlGaN势垒层3表面的自然氧化膜反应,以腐蚀掉AlGaN势垒层3表面的自然氧化膜。In this embodiment, the DHF solution is a diluted hydrofluoric acid solution. Firstly, the surface of the AlGaN barrier layer 3 under the ohmic etching hole is cleaned with DHF solution, and the DHF solution reacts with the natural oxide film on the surface of the AlGaN barrier layer 3 to corrode the natural oxide film on the surface of the AlGaN barrier layer 3 .

其中,AlGaN势垒层3表面的自然氧化膜可以为氧化铝,氧化镓等氧化膜。Wherein, the natural oxide film on the surface of the AlGaN barrier layer 3 may be oxide films such as aluminum oxide and gallium oxide.

然后,采用SC1溶液对欧姆刻蚀孔6下方的AlGaN势垒层3表面进行清洗处理。Then, the surface of the AlGaN barrier layer 3 under the ohmic etching hole 6 is cleaned by using the SC1 solution.

本实施例中,SC1溶液为由氢氧化氨、过氧化氢和水混合而成的溶液。SC1溶液与AlGaN势垒层3表面的颗粒、有机物和金属杂质反应,以去除掉AlGaN势垒层3表面的颗粒、有机物和金属杂质。In this embodiment, the SC1 solution is a solution formed by mixing ammonium hydroxide, hydrogen peroxide and water. The SC1 solution reacts with the particles, organic matter and metal impurities on the surface of the AlGaN barrier layer 3 to remove the particles, organic matter and metal impurities on the surface of the AlGaN barrier layer 3 .

最后,采用SC2溶液对欧姆刻蚀孔6下方的AlGaN势垒层3表面进行清洗处理。Finally, the surface of the AlGaN barrier layer 3 below the ohmic etching hole 6 is cleaned with SC2 solution.

本实施例中,SC2溶液为由氯化氢、过氧化氢和水混合而成的溶液。SC2溶液与AlGaN势垒层3表面的原子和离子杂质反应,以去除掉AlGaN势垒层3表面的原子和离子杂质。In this embodiment, the SC2 solution is a solution formed by mixing hydrogen chloride, hydrogen peroxide and water. The SC2 solution reacts with the atomic and ion impurities on the surface of the AlGaN barrier layer 3 to remove the atomic and ion impurities on the surface of the AlGaN barrier layer 3 .

步骤104,在欧姆刻蚀孔6中,欧姆刻蚀孔6上方及四乙氧基硅烷氧化层5上方沉积欧姆电极金属层7。Step 104 , in the ohmic etching hole 6 , deposit an ohmic electrode metal layer 7 on the ohmic etching hole 6 and on the tetraethoxysilane oxide layer 5 .

本实施例中,图4为本发明基于AlGaN/GaN HEMT的欧姆接触电极的制造方法中在欧姆刻蚀孔中,欧姆刻蚀孔上方及四乙氧基硅烷氧化层上方沉积欧姆电极金属层后的结构示意图,如图4所示,在左右两侧的欧姆刻蚀孔6中,左右两侧的欧姆刻蚀孔6上方,TEOS氧化层5上方沉积欧姆电极金属层7,使欧姆刻蚀孔6上方及TEOS氧化层5上方沉积的欧姆电极金属层7的上表面在同一平面上。In this embodiment, FIG. 4 shows the ohmic electrode metal layer deposited in the ohmic etching hole, above the ohmic etching hole and above the tetraethoxysilane oxide layer in the manufacturing method of the AlGaN/GaN HEMT-based ohmic contact electrode of the present invention. As shown in Figure 4, in the ohmic etching holes 6 on the left and right sides, above the ohmic etching holes 6 on the left and right sides, and above the TEOS oxide layer 5, an ohmic electrode metal layer 7 is deposited, so that the ohmic etching holes 6 and the upper surfaces of the ohmic electrode metal layer 7 deposited on the TEOS oxide layer 5 are on the same plane.

本实施例中,欧姆电极金属层7由下至上可以依次为钛层,铝层,氮化钛层,也可以由下至上依次为:第一钛层,铝层,第二钛层,氮化钛层,还可以由下至上依次为:第一钛层,铝层,第二钛层,铝层,第三钛层,氮化钛层,本实施例中对可实施的欧姆电极金属层7的金属层数和金属种类不做限定。In this embodiment, the metal layer 7 of the ohmic electrode may be a titanium layer, an aluminum layer, and a titanium nitride layer from bottom to top, or it may be: a first titanium layer, an aluminum layer, a second titanium layer, and a nitride layer from bottom to top. The titanium layer can also be sequentially from bottom to top: the first titanium layer, the aluminum layer, the second titanium layer, the aluminum layer, the third titanium layer, and the titanium nitride layer. In this embodiment, the ohmic electrode metal layer 7 that can be implemented The number of metal layers and the type of metal are not limited.

步骤105,对沉积了欧姆电极金属层7的AlGaN/GaN HEMT进行退火处理。Step 105 , annealing the AlGaN/GaN HEMT deposited with the ohmic electrode metal layer 7 .

本实施例中,对沉积了欧姆电极金属层7的AlGaN/GaN HEMT进行退火处理时,欧姆电极金属层7中的金属向AlGaN势垒层扩散,与AlGaN发生反应,AlGaN势垒层中的氮向欧姆电极金属层扩散,形成大量N空位,在退火温度和退火时间达到形成欧姆接触要求时,在AlGaN势垒层3和欧姆电极金属层7之间形成欧姆接触。In this embodiment, when the AlGaN/GaN HEMT deposited with the ohmic electrode metal layer 7 is annealed, the metal in the ohmic electrode metal layer 7 diffuses toward the AlGaN barrier layer and reacts with AlGaN, and the nitrogen in the AlGaN barrier layer Diffuse to the ohmic electrode metal layer to form a large number of N vacancies, and form an ohmic contact between the AlGaN barrier layer 3 and the ohmic electrode metal layer 7 when the annealing temperature and annealing time meet the requirements for forming an ohmic contact.

本实施例中,退火处理的温度和时间为达到形成欧姆接触要求的温度和时间。In this embodiment, the temperature and time of the annealing treatment are the temperature and time required for forming an ohmic contact.

步骤106,对四乙氧基硅烷氧化层5上方的中间区域的欧姆电极金属层7进行光刻,刻蚀,形成欧姆接触电极。Step 106 , performing photolithography and etching on the ohmic electrode metal layer 7 in the middle area above the tetraethoxysilane oxide layer 5 to form an ohmic contact electrode.

本实施例中,对TEOS氧化层5上方的中间区域的欧姆电极金属层7进行光刻,刻蚀后,使欧姆刻蚀孔6上方左右两侧保留的欧姆电极金属层7关于欧姆刻蚀孔的中心轴线对称。在TEOS氧化层5上方左侧保留的欧姆电极金属层7与左侧的欧姆刻蚀孔6、左侧的欧姆刻蚀孔中的欧姆电极金属层及相应的AlGaN势垒层形成左侧的欧姆接触电极,在TEOS氧化层5上方右侧保留的欧姆电极金属层7与右侧的欧姆刻蚀孔6、右侧的欧姆刻蚀孔中的欧姆电极金属层及相应的AlGaN势垒层形成右侧的欧姆接触电极。In this embodiment, the ohmic electrode metal layer 7 in the middle area above the TEOS oxide layer 5 is photolithographically etched. The central axis is symmetrical. The ohmic electrode metal layer 7 left on the left side above the TEOS oxide layer 5, the ohmic etched hole 6 on the left, the ohmic electrode metal layer in the ohmic etched hole on the left and the corresponding AlGaN barrier layer form the ohmic electrode on the left. The contact electrode, the ohmic electrode metal layer 7 reserved on the right side above the TEOS oxide layer 5 forms the right side ohmic contact electrodes.

其中,左侧的欧姆接触电极为源电极,右侧的欧姆接触电极为漏电极。Wherein, the ohmic contact electrode on the left is the source electrode, and the ohmic contact electrode on the right is the drain electrode.

本实施例提供的中基于AlGaN/GaN HEMT的欧姆接触电极的制造方法,在铝镓氮势垒层上方依次沉积氮化硅钝化层和四乙氧基硅烷氧化层;对左右两侧区域的氮化硅钝化层和四乙氧基硅烷氧化层分别进行刻蚀,形成欧姆刻蚀孔;依次采用DHF溶液,SC1溶液和SC2溶液对欧姆刻蚀孔下方的AlGaN势垒层表面进行清洗处理;在欧姆刻蚀孔中,欧姆刻蚀孔上方及四乙氧基硅烷氧化层上方沉积欧姆电极金属层,对沉积了欧姆电极金属层的AlGaN/GaN HEMT进行退火处理;对四乙氧基硅烷氧化层上方的中间区域的欧姆电极金属层进行光刻,刻蚀,形成欧姆接触电极。由于在对欧姆刻蚀孔下方的AlGaN势垒层表面进行清洗处理时采用了DHF溶液,SC1溶液和SC2溶液,分别去除了欧姆刻蚀孔下方的AlGaN势垒层表面的自然氧化膜;颗粒,有机物,金属杂质;原子和离子杂质,使欧姆电极金属层与铝镓氮势垒层之间形成了良好的欧姆接触,有效降低AlGaN/GaN HEMT器件的欧姆接触电阻,使AlGaN/GaN HEMT器件产生较低的热量,提高了器件的可靠性。In the method for manufacturing an ohmic contact electrode based on AlGaN/GaN HEMT provided in this embodiment, a silicon nitride passivation layer and a tetraethoxysilane oxide layer are sequentially deposited on the aluminum gallium nitride barrier layer; The silicon nitride passivation layer and the tetraethoxysilane oxide layer are respectively etched to form ohmic etching holes; the surface of the AlGaN barrier layer below the ohmic etching holes is cleaned with DHF solution, SC1 solution and SC2 solution in sequence ; In the ohmic etching hole, an ohmic electrode metal layer is deposited above the ohmic etching hole and above the tetraethoxysilane oxide layer, and the AlGaN/GaN HEMT deposited with the ohmic electrode metal layer is annealed; the tetraethoxysilane The ohmic electrode metal layer in the middle area above the oxide layer is photolithographically etched to form an ohmic contact electrode. Due to the use of DHF solution, SC1 solution and SC2 solution when cleaning the surface of the AlGaN barrier layer below the ohmic etching hole, the natural oxide film on the surface of the AlGaN barrier layer below the ohmic etching hole was removed respectively; the particles, Organic matter, metal impurities; atomic and ion impurities form a good ohmic contact between the ohmic electrode metal layer and the aluminum gallium nitrogen barrier layer, effectively reducing the ohmic contact resistance of the AlGaN/GaN HEMT device, and making the AlGaN/GaN HEMT device produce Lower heat increases device reliability.

优选地,本实施例中,步骤103中依次采用DHF溶液,SC1溶液和SC2溶液对欧姆刻蚀孔6下方的铝镓氮势垒层3表面进行清洗处理,在采用SC1溶液对欧姆刻蚀孔6下方的铝镓氮势垒层3表面进行清洗处理时,SC1溶液中的氢氧化氨、过氧化氢、水的比例为1:2:10,即NH4OH:H2O2:H2O=1:2:10。在采用SC2溶液对欧姆刻蚀孔6下方的铝镓氮势垒层3表面进行清洗处理时,SC2溶液中的氯化氢、过氧化氢、水的比例为1:2:10,即HCL:H2O2:H2O=1:2:10。Preferably, in this embodiment, in step 103, the DHF solution, the SC1 solution and the SC2 solution are sequentially used to clean the surface of the AlGaN barrier layer 3 below the ohmic etching hole 6, and the SC1 solution is used to clean the surface of the ohmic etching hole 6. When cleaning the surface of the AlGaN barrier layer 3 below 6, the ratio of ammonium hydroxide, hydrogen peroxide, and water in the SC1 solution is 1:2:10, that is, NH4 OH:H2 O2 :H2 O=1:2:10. When using the SC2 solution to clean the surface of the AlGaN barrier layer 3 below the ohmic etching hole 6, the ratio of hydrogen chloride, hydrogen peroxide, and water in the SC2 solution is 1:2:10, that is, HCL:H2 O2 :H2 O=1:2:10.

本实施例中,在采用SC1溶液和SC2溶液对欧姆刻蚀孔下方的铝镓氮势垒层表面进行清洗处理时,将SC1溶液中的氢氧化氨、过氧化氢、水的比例设置为1:2:10,更有效地清理欧姆刻蚀孔下方的AlGaN势垒层表面的颗粒、有机物和金属杂质。将SC2溶液中的氯化氢、过氧化氢、水的比例设置为1:2:10,更有效地清理欧姆刻蚀孔下方的AlGaN势垒层表面的原子和离子杂质。In this embodiment, when using the SC1 solution and the SC2 solution to clean the surface of the AlGaN barrier layer below the ohmic etching hole, the ratio of ammonium hydroxide, hydrogen peroxide, and water in the SC1 solution is set to 1 :2:10, more effectively clean the particles, organic matter and metal impurities on the surface of the AlGaN barrier layer below the ohmic etching hole. The ratio of hydrogen chloride, hydrogen peroxide, and water in the SC2 solution is set to 1:2:10 to more effectively clean the atomic and ion impurities on the surface of the AlGaN barrier layer below the ohmic etching hole.

进一步地,本实施例中,步骤104中在欧姆刻蚀孔6中,欧姆刻蚀孔6上方及四乙氧基硅烷氧化层5上方沉积欧姆电极金属层7具体包括:Further, in this embodiment, in step 104, depositing the ohmic electrode metal layer 7 in the ohmic etching hole 6, above the ohmic etching hole 6 and above the tetraethoxysilane oxide layer 5 specifically includes:

在欧姆刻蚀孔6中,欧姆刻蚀孔6上方及四乙氧基硅烷氧化层5上方采用磁控溅射镀膜工艺依次沉积第一钛层,铝层,第二钛层及氮化钛层。In the ohmic etching hole 6, the first titanium layer, the aluminum layer, the second titanium layer and the titanium nitride layer are sequentially deposited on the top of the ohmic etching hole 6 and the tetraethoxysilane oxide layer 5 by magnetron sputtering coating process .

具体地,本实施例中,首先在在欧姆刻蚀孔6中,欧姆刻蚀孔6上方及四乙氧基硅烷氧化层5上方沉积第一钛层,第一钛层的厚度为200埃,第一钛层分别与四乙氧基硅烷氧化层5的上表面,欧姆刻蚀孔6的侧壁及欧姆刻蚀孔6的底部AlGaN势垒层3上表面贴合;其次在第一钛层上沉积铝层,铝层的厚度为1200埃,然后在铝层上沉积第二钛层,第二钛层的厚度为200埃,最后在第二钛层上沉积氮化钛层,氮化钛层的厚度为200埃。Specifically, in this embodiment, firstly, in the ohmic etching hole 6, a first titanium layer is deposited on the ohmic etching hole 6 and the tetraethoxysilane oxide layer 5, the thickness of the first titanium layer is 200 angstroms, The first titanium layer is attached to the upper surface of the tetraethoxysilane oxide layer 5, the sidewall of the ohmic etching hole 6, and the upper surface of the AlGaN barrier layer 3 at the bottom of the ohmic etching hole 6; Deposit an aluminum layer on the aluminum layer, the thickness of the aluminum layer is 1200 angstroms, and then deposit a second titanium layer on the aluminum layer, the thickness of the second titanium layer is 200 angstroms, and finally deposit a titanium nitride layer on the second titanium layer, titanium nitride The thickness of the layer is 200 Angstroms.

本实施例中,在欧姆刻蚀孔中,欧姆刻蚀孔上方及四乙氧基硅烷氧化层上方采用磁控溅射镀膜工艺依次沉积第一钛层,铝层,第二钛层及氮化钛层,并且第一钛层的厚度为200埃,铝层的厚度为1200埃,第二钛层的厚度为200埃,氮化钛层的厚度为200埃,能够加速铝和钛向AlGaN势垒层扩散。In this embodiment, in the ohmic etching hole, above the ohmic etching hole and above the tetraethoxysilane oxide layer, the first titanium layer, the aluminum layer, the second titanium layer and the nitrided layer are sequentially deposited by a magnetron sputtering coating process. Titanium layer, and the thickness of the first titanium layer is 200 angstroms, the thickness of the aluminum layer is 1200 angstroms, the thickness of the second titanium layer is 200 angstroms, and the thickness of the titanium nitride layer is 200 angstroms, which can accelerate the potential of aluminum and titanium to AlGaN Barrier diffusion.

优选地,本实施例中,步骤105中对沉积了欧姆电极金属层7的AlGaN/GaN HEMT进行退火处理时,退火处理的温度为840度,退火处理的时间为30秒,退火处理在氮气氛围中。Preferably, in this embodiment, when the AlGaN/GaN HEMT on which the ohmic electrode metal layer 7 is deposited is annealed in step 105, the temperature of the annealing treatment is 840 degrees, the time of the annealing treatment is 30 seconds, and the annealing treatment is carried out in a nitrogen atmosphere middle.

本实施例中,将退火处理的温度为840度,退火处理的时间为30秒,退火处理在氮气氛围中,可进一步加速铝和钛向AlGaN势垒层扩散,并加速AlGaN势垒层中的氮向欧姆电极金属层扩散,使欧姆电极金属层与铝镓氮势垒层之间形成性能更好的欧姆接触,进一步降低了AlGaN/GaN HEMT器件的欧姆接触电阻。In this embodiment, the temperature of the annealing treatment is 840 degrees, the time of the annealing treatment is 30 seconds, and the annealing treatment is in a nitrogen atmosphere, which can further accelerate the diffusion of aluminum and titanium to the AlGaN barrier layer, and accelerate the diffusion of aluminum and titanium in the AlGaN barrier layer. Nitrogen diffuses to the metal layer of the ohmic electrode to form a better ohmic contact between the metal layer of the ohmic electrode and the AlGaN barrier layer, further reducing the ohmic contact resistance of the AlGaN/GaN HEMT device.

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.

Claims (8)

CN201510432421.6A2015-07-212015-07-21 Fabrication Method of Ohmic Contact Electrode Based on AlGaN/GaN HEMTPendingCN106373874A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201510432421.6ACN106373874A (en)2015-07-212015-07-21 Fabrication Method of Ohmic Contact Electrode Based on AlGaN/GaN HEMT

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201510432421.6ACN106373874A (en)2015-07-212015-07-21 Fabrication Method of Ohmic Contact Electrode Based on AlGaN/GaN HEMT

Publications (1)

Publication NumberPublication Date
CN106373874Atrue CN106373874A (en)2017-02-01

Family

ID=57880518

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201510432421.6APendingCN106373874A (en)2015-07-212015-07-21 Fabrication Method of Ohmic Contact Electrode Based on AlGaN/GaN HEMT

Country Status (1)

CountryLink
CN (1)CN106373874A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN108447780A (en)*2018-02-112018-08-24厦门市三安集成电路有限公司 Ohmic contact structure of a nitride semiconductor device and its manufacturing method
RU2669339C1 (en)*2017-06-292018-10-10Федеральное государственное бюджетное учреждение науки Институт сверхвысокочастотной полупроводниковой электроники Российской академии наукMethod for manufacturing ohmic contacts
CN110098249A (en)*2018-01-292019-08-06世界先进积体电路股份有限公司Semiconductor structure and its manufacturing method
CN111229685A (en)*2020-01-082020-06-05长江存储科技有限责任公司Method for removing crystal defects of aluminum bonding pad of integrated circuit
CN112834083A (en)*2020-12-302021-05-25华芯威半导体科技(北京)有限责任公司Silicon chip process method of high-precision pressure sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20040132253A1 (en)*2002-08-282004-07-08Fujitsu LimitedManufacture method of semiconductor device with gate insulating films of different thickness
CN1906765A (en)*2004-01-162007-01-31克里公司Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
CN102039288A (en)*2009-10-132011-05-04中芯国际集成电路制造(上海)有限公司Washing method of wafer
CN102468127A (en)*2010-11-032012-05-23北大方正集团有限公司Method for cleaning wafer in double-polycrystal capacitor process
CN203733803U (en)*2013-03-152014-07-23半导体元件工业有限责任公司Semiconductor device
CN103972069A (en)*2014-05-082014-08-06西安电子科技大学Method for manufacturing AlGaN-GaN heterojunction ohmic contact

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20040132253A1 (en)*2002-08-282004-07-08Fujitsu LimitedManufacture method of semiconductor device with gate insulating films of different thickness
CN1906765A (en)*2004-01-162007-01-31克里公司Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
CN102039288A (en)*2009-10-132011-05-04中芯国际集成电路制造(上海)有限公司Washing method of wafer
CN102468127A (en)*2010-11-032012-05-23北大方正集团有限公司Method for cleaning wafer in double-polycrystal capacitor process
CN203733803U (en)*2013-03-152014-07-23半导体元件工业有限责任公司Semiconductor device
CN103972069A (en)*2014-05-082014-08-06西安电子科技大学Method for manufacturing AlGaN-GaN heterojunction ohmic contact

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张汝京等: "《纳米集成电路制造工艺》", 31 July 2014, 清华大学出版社*

Cited By (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
RU2669339C1 (en)*2017-06-292018-10-10Федеральное государственное бюджетное учреждение науки Институт сверхвысокочастотной полупроводниковой электроники Российской академии наукMethod for manufacturing ohmic contacts
CN110098249A (en)*2018-01-292019-08-06世界先进积体电路股份有限公司Semiconductor structure and its manufacturing method
CN108447780A (en)*2018-02-112018-08-24厦门市三安集成电路有限公司 Ohmic contact structure of a nitride semiconductor device and its manufacturing method
CN111229685A (en)*2020-01-082020-06-05长江存储科技有限责任公司Method for removing crystal defects of aluminum bonding pad of integrated circuit
CN111229685B (en)*2020-01-082021-06-01长江存储科技有限责任公司Method for removing crystal defects of aluminum bonding pad of integrated circuit
CN112834083A (en)*2020-12-302021-05-25华芯威半导体科技(北京)有限责任公司Silicon chip process method of high-precision pressure sensor

Similar Documents

PublicationPublication DateTitle
CN106298887B (en)Preparation method of groove gate MOSFET with high threshold voltage and high mobility
JP5166576B2 (en) GaN-based semiconductor device manufacturing method
CN119545841A (en) A radio frequency component and its application and manufacturing method
CN106373874A (en) Fabrication Method of Ohmic Contact Electrode Based on AlGaN/GaN HEMT
CN110660643A (en)Method for optimizing passivation of gallium nitride high electron mobility transistor
KR100969608B1 (en) Leakage Current Reduction Method of Nitride Semiconductor Devices
US20160013305A1 (en)Nitride semiconductor device and method for manufacturing nitride semiconductor device
CN111697113A (en)Preparation method of Micro-LED device and Micro-LED device
TWI653742B (en) Semiconductor device and method of manufacturing same
CN106257686A (en)Semiconductor device and manufacture method thereof
CN107230617A (en)The preparation method of gallium nitride semiconductor device
CN115692184A (en)P-AlGaN gate enhancement transistor based on selective wet etching process and preparation method
CN103597582B (en)Nitride semiconductor device and method for manufacturing same
CN113809154B (en) A nitride barrier stress modulation device and its preparation method
CN106571387A (en)High K material-based stacked-gate AlGaN/GaN high-electron mobility MOS device
CN107230625A (en)Gallium nitride transistor and its manufacture method
CN107154338A (en)A kind of raising GaN HEMT passivation effects, the process for treating surface for reducing current collapse
CN104115262B (en)Nitride compound semiconductor device
CN107230614B (en) Preparation method of gallium nitride semiconductor device
CN116885000A (en) A P-GaN transistor based on P-type nitride isolation and its preparation method
CN107230725A (en)The preparation method of gallium nitride semiconductor device
CN107230726A (en)The manufacture method of enhancement type gallium nitride transistor
CN107230716A (en)The preparation method of gallium nitride transistor
CN107230714A (en)The preparation method of gallium nitride semiconductor device
CN107230624A (en)Gallium nitride transistor and its manufacture method

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
RJ01Rejection of invention patent application after publication

Application publication date:20170201

RJ01Rejection of invention patent application after publication

[8]ページ先頭

©2009-2025 Movatter.jp