


技术领域technical field
本发明涉及微机电系统技术领域,具体地,涉及一种双分立电极分布式全角度信号控制系统。The invention relates to the technical field of micro-electromechanical systems, in particular to a dual-discrete electrode distributed full-angle signal control system.
背景技术Background technique
微机械电子系统(MEMS)主要包括微机构、微传感器、微执行器以及相关的电路等几部分。MEMS是近年来发展起来的一种新型多学科交叉的技术,它对21世纪的人类产生了巨大而深远的影响。Micro-mechanical electronic system (MEMS) mainly includes several parts such as micro-mechanism, micro-sensor, micro-actuator and related circuits. MEMS is a new type of multi-disciplinary technology developed in recent years, which has had a huge and far-reaching impact on human beings in the 21st century.
谐振微陀螺仪采用全角度控制技术,具有稳定性高、抗冲击能力强、精度高、误差小等优越特性,在航空航天、惯性导航以及民用消费电子等领域等具有广泛的应用前景。这种陀螺利用反馈电路中的振幅控制模块、频率控制模块及正交控制模块,将产生的信号经过各种处理之后,较为精确地得到谐振陀螺的总角度的变化。The resonant micro gyroscope adopts full-angle control technology, which has the advantages of high stability, strong shock resistance, high precision, and small error. It has a wide range of application prospects in aerospace, inertial navigation, and civil consumer electronics. This kind of gyroscope utilizes the amplitude control module, the frequency control module and the quadrature control module in the feedback circuit, and after various processing of the generated signal, the change of the total angle of the resonant gyroscope can be obtained relatively accurately.
谐振微陀螺仪的全角度控制,是它本身工作的重要环节。对一些文献进行检索发现,中国专利公开号为103344228A、申请号201310257428.X的发明专利申请,该发明提供了一种摇动质量体声波固体波动微陀螺驱动与检测电路,该电路包括嵌入式核心部分、外围电路部分、摇动质量体声波固体波动微陀螺部分和计算机显示部分,其中:嵌入式核心部分连接外围电路部分,再连接摇动质量体声波固体波动微陀螺部分,然后经过外围电路部分,再回到嵌入式核心部分;同时嵌入式核心部分与计算机显示部分直接连接并实时通信;对于陀螺的驱动与检测,主要在嵌入式核心部分完成,外围电路部分起辅助作用,从而控制陀螺并敏感陀螺输出。该发明能够为摇动质量体声波固体波动微陀螺提供稳定有效的驱动信号,有效地实现了陀螺驱动检测的反馈机制,检测出陀螺信号。但是该专利中的频率锁定、陀螺振幅控制、模拟电路带来的噪声以及误差等,还可以进一步的改进。The full-angle control of the resonant micro gyroscope is an important part of its own work. Searched some documents and found that the Chinese patent publication number is 103344228A and the application number is 201310257428.X. The invention provides a driving and detection circuit for a shaking mass bulk acoustic wave solid wave micro-gyroscope, and the circuit includes an embedded core part , Peripheral circuit part, shaking mass bulk acoustic wave solid wave micro-gyroscope part and computer display part, among which: the embedded core part is connected to the peripheral circuit part, and then connected to the shaking mass bulk acoustic wave solid wave solid wave micro-gyroscope part, and then passes through the peripheral circuit part, and then returns to the To the embedded core part; at the same time, the embedded core part is directly connected with the computer display part and communicates in real time; for the driving and detection of the gyroscope, it is mainly completed in the embedded core part, and the peripheral circuit part plays an auxiliary role, so as to control the gyroscope and sensitive to the output of the gyroscope . The invention can provide a stable and effective driving signal for the shaking mass bulk acoustic wave solid wave micro-gyro, effectively realize the feedback mechanism of the gyro driving detection, and detect the gyro signal. However, the frequency locking, gyro amplitude control, noise and errors caused by analog circuits in this patent can be further improved.
基于此,迫切需要一种双分立电极分布式全角度信号控制系统,使其避免或减小上述影响因素,同时扩展其应用范围。Based on this, there is an urgent need for a dual-discrete electrode distributed full-angle signal control system, which avoids or reduces the above-mentioned influencing factors, and at the same time expands its application range.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的缺陷,本发明的目的是提供一种双分立电极分布式全角度信号控制系统,所述系统进行闭环设计与控制,从而实现对谐振陀螺的全角度的检测与控制。In view of the defects in the prior art, the purpose of the present invention is to provide a dual-discrete electrode distributed full-angle signal control system, the system is designed and controlled in a closed loop, thereby realizing the full-angle detection and control of the resonant gyroscope.
为实现以上目的,本发明提供一种双分立电极分布式全角度信号控制系统,所述系统包括:谐振陀螺、第一分立电极、第二分立电极、前置级模块、角度输出模块、振幅控制模块、频率控制模块和正交控制模块;其中:In order to achieve the above purpose, the present invention provides a dual-discrete-electrode distributed full-angle signal control system, which includes: a resonant gyroscope, a first discrete electrode, a second discrete electrode, a pre-stage module, an angle output module, and an amplitude control system. modules, frequency control modules, and quadrature control modules; where:
所述谐振陀螺在给定的信号下被激振或被驱动,并产生检测信号,分别输入给振幅控制模块、频率控制模块、正交控制模块和角度输出模块;The resonant gyroscope is excited or driven under a given signal, and generates a detection signal, which is respectively input to the amplitude control module, the frequency control module, the quadrature control module and the angle output module;
所述第一分立电极、第二分立电极分布在谐振陀螺周边,该第一分立电极输入端连接稳压电源,采集驱动电压信号,输出给前置级模块;第二分立电极与振幅控制模块连接,该第二分立电极输入端连接振幅控制模块,采集反馈电压信号,输出给振幅控制模块;The first discrete electrode and the second discrete electrode are distributed around the resonant gyroscope. The input end of the first discrete electrode is connected to a regulated power supply, and the driving voltage signal is collected and output to the pre-stage module; the second discrete electrode is connected to the amplitude control module. , the second discrete electrode input terminal is connected to the amplitude control module, collects the feedback voltage signal, and outputs it to the amplitude control module;
所述前置级模块处理稳压电源输出的电压信号,得到两参考信号EX和EY,并将两参考信号EX和EY分别输出给角度输出模块、振幅控制模块、频率控制模块、正交控制模块;The pre-stage module processes the voltage signal output by the regulated power supply, obtains two reference signals EX and EY , and outputs the two reference signals EX and EY to the angle output module, the amplitude control module, the frequency control module, Quadrature control module;
所述角度输出模块,用于输出谐振陀螺的转动角度θ;The angle output module is used to output the rotation angle θ of the resonant gyro;
所述振幅控制模块,用于稳定驱动电压的振幅信号,使驱动谐振陀螺振动的振幅稳定,最终将稳定的驱动电压振幅信号反馈到谐振陀螺中;The amplitude control module is used to stabilize the amplitude signal of the driving voltage, so as to stabilize the amplitude of the vibration of the driving resonant gyro, and finally feed back the stable amplitude signal of the driving voltage to the resonant gyro;
所述频率控制模块,用于稳定驱动电压的频率信号,使驱动谐振陀螺振动的频率稳定,最终将稳定的驱动电压频率信号反馈到谐振陀螺中,从而使谐振陀螺频率稳定;The frequency control module is used to stabilize the frequency signal of the driving voltage, stabilize the frequency of the vibration of the driving resonant gyroscope, and finally feed back the stable driving voltage frequency signal to the resonant gyroscope, thereby stabilizing the frequency of the resonant gyroscope;
所述正交控制模块,用于使谐振陀螺各轴谐振频率稳定,减小正交漂移;The quadrature control module is used to stabilize the resonance frequency of each axis of the resonant gyroscope and reduce the quadrature drift;
所述振幅控制模块和频率控制模块输出的稳定的振幅和频率信号反馈回第一分立电极,所述正交控制模块输出的正交控制信号反馈回第二分立电极。The stable amplitude and frequency signals output by the amplitude control module and the frequency control module are fed back to the first discrete electrode, and the quadrature control signal output by the quadrature control module is fed back to the second discrete electrode.
优选地,所述谐振陀螺为半球陀螺、半球体陀螺、圆环陀螺、圆盘陀螺、多环陀螺、圆柱陀螺、圆柱体陀螺。Preferably, the resonant gyro is a hemispherical gyro, a hemispherical gyro, a ring gyro, a disc gyro, a multi-ring gyro, a cylindrical gyro, or a cylindrical gyro.
优选地,所述两套分立电极分别分布在谐振陀螺的内侧和外侧,或者分别分布在谐振陀螺的内侧和上侧,或者分别分布在谐振陀螺的内侧和下侧,或者分别分布在谐振陀螺的外侧和上侧,或者分别分布在谐振陀螺的外侧和下侧。Preferably, the two sets of discrete electrodes are respectively distributed on the inner side and the outer side of the resonant gyroscope, or respectively distributed on the inner side and upper side of the resonant gyroscope, or respectively distributed on the inner side and lower side of the resonant gyroscope, or respectively distributed on the inner side and the lower side of the resonant gyroscope. The outer side and the upper side, or respectively distributed on the outer side and the lower side of the resonant gyroscope.
优选地,所述谐振陀螺的角度变化总和Θ的变化,受谐振陀螺本身的不对称性以及刚度和阻尼不对称性的影响,也受正交误差以及信号传输过程中时间延迟影响。Preferably, the change of the angular change sum Θ of the resonant gyroscope is affected by the asymmetry of the resonant gyroscope itself, as well as the stiffness and damping asymmetry, and also by the quadrature error and the time delay in the signal transmission process.
优选地,所述前置级模块包含第一信号合成器和第二信号合成器,其中:Preferably, the pre-stage module includes a first signal synthesizer and a second signal synthesizer, wherein:
第一信号合成器与第一分立电极中的电极A3、A7、A15、A11相连接;The first signal combiner is connected to the electrodes A3, A7, A15, and A11 in the first discrete electrodes;
第二信号合成器与第一分立电极中的电极A1、A5、A13、A9相连接;The second signal combiner is connected to the electrodes A1, A5, A13, and A9 in the first discrete electrodes;
其中:电极A1到A16均为分立电极,电极与电极之间相互隔离,形状成叶瓣状,分布于微陀螺周边,用于采集驱动电压信号。Among them: the electrodes A1 to A16 are all discrete electrodes, and the electrodes are isolated from each other, shaped like lobes, and distributed around the micro-gyroscope for collecting driving voltage signals.
优选地,所述角度输出模块包括一个除法器和一个角度输出器,除法器的输入端连接参考信号EX和EY,输入端采集电压信号,输出端连接角度输出器,经过信号处理角度输出器输出端输出陀螺旋转角度θ。Preferably, the angle output module includes a divider and an angle output device, the input end of the divider is connected to the reference signals EX and EY , the input end collects the voltage signal, the output end is connected to the angle output device, and the angle output through signal processing The output terminal of the device outputs the gyro rotation angle θ.
优选地,所述振幅控制模块包含一个振幅检测器、一个参考振幅、一个自动增益AGC电路、一个乘法器和一个锁相环;其中:Preferably, the amplitude control module includes an amplitude detector, a reference amplitude, an automatic gain AGC circuit, a multiplier and a phase-locked loop; wherein:
参考信号EX和EY输入到振幅检测器中进行振幅检测,然后输出给自动增益AGC电路;参考振幅信号直接输给AGC电路控制振幅大小,然后输出给乘法器,提取稳定的振幅信号反馈回分立电极,并稳定驱动电压信号振幅稳定。The reference signals EX and EY are input to the amplitude detector for amplitude detection, and then output to the automatic gain AGC circuit; the reference amplitude signal is directly input to the AGC circuit to control the amplitude, and then output to the multiplier, and the stable amplitude signal is extracted and fed back. Discrete electrodes, and stable driving voltage signal amplitude stability.
优选地,所述振幅控制模块包括振幅检测器、自动增益AGC电路、第一乘法器和第一锁相环,其中:Preferably, the amplitude control module includes an amplitude detector, an automatic gain AGC circuit, a first multiplier and a first phase-locked loop, wherein:
所述振幅检测器,接收参考信号EX和EY,并对信号EX和EY进行振幅检测,得到振幅检测信号并输出给自动增益AGC电路;The amplitude detector receives the reference signalsEX and EY , and performs amplitude detection on the signalsEX and EY to obtain the amplitude detection signal and output it to the automatic gain AGC circuit;
所述自动增益AGC电路,接收一振幅恒定大小的参考振幅,并接收所述振幅检测器的振幅检测信号,通过AGC电路的自动增益,控制振幅大小,然后输出给第一乘法器;The automatic gain AGC circuit receives a reference amplitude with a constant amplitude, and receives the amplitude detection signal of the amplitude detector, controls the amplitude through the automatic gain of the AGC circuit, and then outputs it to the first multiplier;
所述第一乘法器,接收所述AGC电路的自动增益信号和频率控制模块的频率控制误差信号,通过对两信号相乘处理,产生稳定的振幅信号,然后输出给第一分立电极,以稳定驱动电压信号振幅稳定;The first multiplier receives the automatic gain signal of the AGC circuit and the frequency control error signal of the frequency control module, and generates a stable amplitude signal by multiplying the two signals, and then outputs it to the first discrete electrode to stabilize The amplitude of the driving voltage signal is stable;
所述第一锁相环,接收频率控制模块的频率控制误差信号,通过锁相环信号跟踪,然后输出给第一乘法器。The first phase-locked loop receives the frequency control error signal of the frequency control module, tracks the signal through the phase-locked loop, and outputs the signal to the first multiplier.
优选地,所述频率控制模块包括第一误差量检测器、第二误差量检测器、第二乘法器、第三乘法器、第三信号合成器、第二锁相环;其中:Preferably, the frequency control module includes a first error detector, a second error detector, a second multiplier, a third multiplier, a third signal synthesizer, and a second phase-locked loop; wherein:
所述第一误差量检测器,接收所述参考信号EX,以进行误差信号的检测,然后输出给第二乘法器;the first error amount detector receives the reference signalEx to detect the error signal, and then outputs it to the second multiplier;
所述第二误差量检测器,接收所述参考信号EY,以进行误差信号的检测,然后输出给第三乘法器;the second error amount detector receives the reference signal EY to detect the error signal, and then outputs it to the third multiplier;
所述第二乘法器,接收所述第一误差量检测器的误差检测信号与外接信号发生器产生的信号sin2θ,两信号相乘,然后输出给第三信号合成器;The second multiplier receives the error detection signal of the first error amount detector and the signal sin2θ generated by the external signal generator, multiplies the two signals, and then outputs the signal to the third signal synthesizer;
所述第三乘法器,接收所述第二误差量检测器的误差检测信号与外接信号发生器产生的信号cos2θ,两信号相乘,然后输出给第三信号合成器;The third multiplier receives the error detection signal of the second error amount detector and the signal cos2θ generated by the external signal generator, multiplies the two signals, and then outputs the signal to the third signal synthesizer;
所述第三信号合成器,接收所述第二乘法器和第三乘法器输出信号,进行两信号合成产生频率控制误差,然后输出给第二锁相环;the third signal synthesizer receives the output signals of the second multiplier and the third multiplier, synthesizes the two signals to generate a frequency control error, and outputs the signal to the second phase-locked loop;
所述第二锁相环,接收所述第三信号合成器输出的频率控制误差信号,以进行信号的频率锁定跟踪,然后输出给第一乘法器,产生稳定的驱动电压频率信号。The second phase-locked loop receives the frequency control error signal output by the third signal synthesizer to perform frequency locking and tracking of the signal, and then outputs the signal to the first multiplier to generate a stable driving voltage frequency signal.
优选地,所述正交控制模块包括第一正交量检测器、第二正交量检测器、第四信号合成器、第四乘法器、第五乘法器、第六乘法器、第七乘法器;其中:Preferably, the quadrature control module includes a first quadrature quantity detector, a second quadrature quantity detector, a fourth signal synthesizer, a fourth multiplier, a fifth multiplier, a sixth multiplier, and a seventh multiplier device; of which:
所述第一正交量检测器,接收所述参考信号EX,进行信号的正交检测,产生正交检测信号,然后输出给第四乘法器;The first quadrature quantity detector receives the reference signalEx , performs quadrature detection of the signal, generates a quadrature detection signal, and then outputs it to the fourth multiplier;
所述第二正交量检测器,接收所述参考信号EY,进行信号的正交检测,产生正交检测信号,然后输出给第五乘法器;The second quadrature quantity detector receives the reference signal EY , performs quadrature detection of the signal, generates a quadrature detection signal, and then outputs it to the fifth multiplier;
所述第四乘法器,接收所述第一正交量检测器的正交检测信号与外接信号发生器产生的信号cos2θ,两信号相乘,然后输出给第四信号合成器;the fourth multiplier receives the quadrature detection signal of the first quadrature detector and the signal cos2θ generated by the external signal generator, multiplies the two signals, and then outputs the signal to the fourth signal synthesizer;
所述第五乘法器,接收所述第二正交量检测器的正交检测信号与外接信号发生器产生的信号sin2θ,两信号相乘,然后输出给第四信号合成器;The fifth multiplier receives the quadrature detection signal of the second quadrature quantity detector and the signal sin2θ generated by the external signal generator, multiplies the two signals, and then outputs them to the fourth signal synthesizer;
所述第四信号合成器,接收所述第四乘法器和第五乘法器输出信号,进行两信号合成产生正交控制误差信号,然后输出给第六乘法器和第七乘法器;the fourth signal synthesizer receives the output signals of the fourth multiplier and the fifth multiplier, performs two-signal synthesis to generate a quadrature control error signal, and outputs the signal to the sixth multiplier and the seventh multiplier;
所述第六乘法器,接收所述正交控制误差信号与外接信号发生器产生的信号sin4θ,两信号相乘,然后输出给第一分立电极。The sixth multiplier receives the quadrature control error signal and the signal sin4θ generated by the external signal generator, multiplies the two signals, and outputs the signal to the first discrete electrode.
所述第七乘法器,接收所述正交控制误差信号与外接信号发生器产生的信号-cos4θ,两信号相乘,然后输出给第一分立电极。The seventh multiplier receives the quadrature control error signal and the signal -cos4θ generated by an external signal generator, multiplies the two signals, and outputs the signal to the first discrete electrode.
所述谐振陀螺的第一分立电极驱动谐振陀螺,经过前置级模块输出的参考信号EX和EY经过振幅控制模块和频率控制模块实现对前置级模块输出信号的自动跟踪,其中输出的参考信号包含振幅信号频率与相位信号;经过角度输出模块输出谐振陀螺的进动角θ;经过正交控制模块,消除各轴谐振频率不相等产生的正交漂移,使所得到的变化信号保持稳定;所述变化信号经过正交控制模块反馈到谐振陀螺中。The first discrete electrode of the resonant gyroscope drives the resonant gyroscope, and the reference signals EX and EY output by the pre-stage module realize automatic tracking of the output signal of the pre-stage module through the amplitude control module and the frequency control module. The reference signal includes amplitude signal frequency and phase signal; the precession angle θ of the resonant gyro is output through the angle output module; through the quadrature control module, the quadrature drift caused by the unequal resonance frequencies of each axis is eliminated, so that the obtained change signal remains stable ; The change signal is fed back to the resonant gyroscope through the quadrature control module.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明能够实现谐振陀螺全角度控制;(1) the present invention can realize full angle control of resonant gyro;
(2)本发明与其他陀螺控制系统相比,增加振幅、频率控制模块,所以对全角度的控制精度比较高,响应速度比较快,陀螺系统工作稳定;(2) Compared with other gyro control systems, the present invention increases the amplitude and frequency control modules, so the control accuracy of the full angle is relatively high, the response speed is relatively fast, and the gyro system works stably;
(3)本发明中谐振陀螺信号,经过前置级模块信号处理,通过振幅控制模块、频率控制模块和正交控制模块反馈到谐振陀螺上,构成了一个完整的闭环系统,对信号的响应与反馈的能力比较强,对周围环境的适应能力比较强。(3) In the present invention, the resonant gyro signal is processed by the pre-stage module and fed back to the resonant gyro through the amplitude control module, the frequency control module and the quadrature control module, forming a complete closed-loop system. The ability of feedback is relatively strong, and the ability to adapt to the surrounding environment is relatively strong.
综上,本发明所述系统能够精细准确地得到谐振陀螺的总的角度变化情况,实现了对谐振陀螺总的旋转角度的检测,可随时对输出信号的频率与相位进行自动跟踪。To sum up, the system of the present invention can accurately and accurately obtain the total angle change of the resonant gyroscope, realizes the detection of the total rotation angle of the resonant gyroscope, and can automatically track the frequency and phase of the output signal at any time.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:
图1为本发明一实施例的系统框图;1 is a system block diagram of an embodiment of the present invention;
图2a为本发明一较优实施例的陀螺和电极装配图;2a is an assembly diagram of a gyro and an electrode according to a preferred embodiment of the present invention;
图2b为本发明一较优实施例的电极结构图;FIG. 2b is an electrode structure diagram of a preferred embodiment of the present invention;
图3a为本发明另一较优实施例的陀螺和电极装配图;3a is an assembly diagram of a top and an electrode according to another preferred embodiment of the present invention;
图3b为本发明另一较优实施例的电极结构图;3b is an electrode structure diagram of another preferred embodiment of the present invention;
图中:1为谐振陀螺,2为外侧电极,3为内侧电极,4为前置级模块,5为振幅控制模块,6为频率控制模块,7频率控制模块,8为角度输出模块。In the figure: 1 is the resonant gyro, 2 is the outer electrode, 3 is the inner electrode, 4 is the pre-stage module, 5 is the amplitude control module, 6 is the frequency control module, 7 is the frequency control module, and 8 is the angle output module.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below with reference to specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that, for those skilled in the art, several modifications and improvements can be made without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
如图1和图2a、图2b所示,一种双分立电极分布式全角度信号控制系统,包括:As shown in Figure 1 and Figure 2a and Figure 2b, a dual-discrete electrode distributed full-angle signal control system includes:
一个谐振陀螺1;A
一套外侧电极2;A set of
一套内侧电极3;A set of
一个前置级模块4;A pre-stage module 4;
一个振幅控制模块5;an amplitude control module 5;
一个频率控制模块6;a frequency control module 6;
一个正交控制模块7;a quadrature control module 7;
一个角度输出模块8;An angle output module 8;
所述谐振陀螺1为多环型陀螺,多环型的谐振陀螺1在给定的信号下被激振或被驱动,并产生检测信号;The
所述内侧电极2和外侧电极3均为分立电极;内侧电极3和外侧电极2分布在谐振陀螺1两侧,内侧电极3与前置级模块4和正交控制模块7连接,外侧电极2与正交控制模块7连接;内侧电极3输入端连接稳压电源,采集驱动电压信号,输出给前置级模块;外侧电极2与振幅控制模块连接,该外侧电极2输入端连接振幅控制模块,采集反馈电压信号,输出给振幅控制模块;The
所述前置级模块4处理稳压电源输出的电压信号,得到两参考信号EX和EY,并将两参考信号EX和EY分别输出给角度输出模块8、振幅控制模块5、频率控制模块6和正交控制模块7;The pre-stage module 4 processes the voltage signal output by the regulated power supply, obtains two reference signals EX and EY , and outputs the two reference signals EX and EY to the angle output module 8, the amplitude control module 5, the frequency control module 6 and quadrature control module 7;
所述角度输出模块8,用于输出谐振陀螺的转动角度θ;The angle output module 8 is used to output the rotation angle θ of the resonant gyro;
所述振幅控制模块5,用于稳定驱动电压的振幅信号,使驱动谐振陀螺振动的振幅稳定,最终将稳定的驱动电压振幅信号反馈到谐振陀螺中;The amplitude control module 5 is used to stabilize the amplitude signal of the driving voltage, so as to stabilize the amplitude of the vibration of the driving resonant gyroscope, and finally feed back the stable driving voltage amplitude signal to the resonant gyroscope;
所述频率控制模块6,用于稳定驱动电压的频率信号,使驱动谐振陀螺振动的频率稳定,最终将稳定的驱动电压频率信号反馈到谐振陀螺中,从而使谐振陀螺频率稳定;The frequency control module 6 is used to stabilize the frequency signal of the driving voltage, stabilize the frequency of the vibration of the driving resonant gyroscope, and finally feed back the stable driving voltage frequency signal to the resonant gyroscope, thereby stabilizing the frequency of the resonant gyroscope;
所述正交控制模块7,用于使谐振陀螺各轴谐振频率稳定,减小正交漂移;The quadrature control module 7 is used to stabilize the resonant frequency of each axis of the resonant gyroscope and reduce the quadrature drift;
所述振幅控制模块5和频率控制模块6输出的稳定的振幅和频率信号反馈回第一分立电极,所述正交控制模块7输出的正交控制信号反馈回第二分立电极。The stable amplitude and frequency signals output by the amplitude control module 5 and the frequency control module 6 are fed back to the first discrete electrode, and the quadrature control signal output by the quadrature control module 7 is fed back to the second discrete electrode.
所述谐振陀螺1的角度变化的总和Θ的变化,受到谐振陀螺1本身的不对称性以及刚度和阻尼不对称性的影响,也受到正交误差以及信号传输过程中时间延迟的影响。The change of the sum Θ of the angle changes of the
如图2b所示,在一实施例中,所述前置级模块4包含两个信号合成器,一个信号合成器与外侧电极2中的电极A3、A7、A15、A11相连接,另一个信号合成器与电极A1、A5、A13、A9相连接;其中电极A1到A16均为分立电极,用于采集驱动电压信号。As shown in FIG. 2b, in one embodiment, the pre-stage module 4 includes two signal combiners, one signal combiner is connected to the electrodes A3, A7, A15, A11 in the
其中:电极A1到A16均为分立电极,电极与电极之间相互隔离,形状成叶瓣状,依次分布在微陀螺周边,相邻两个电极之间间隔22.5度,用于采集驱动电压信号,其中A1与A2相邻,A2与A3相邻,依次类推。Among them: electrodes A1 to A16 are all discrete electrodes, and the electrodes are isolated from each other, shaped like lobes, and distributed in turn around the micro-gyroscope. The distance between two adjacent electrodes is 22.5 degrees, which are used to collect driving voltage signals. Where A1 is adjacent to A2, A2 is adjacent to A3, and so on.
如图1所示,在一实施例中,所述角度输出模块8包括一个除法器和一个角度输出器,除法器的输入端连接参考信号EX和EY,输入端采集电压信号,输出端连接角度输出器,经过信号处理角度输出器输出端输出陀螺旋转角度θ。As shown in FIG. 1 , in an embodiment, the angle output module 8 includes a divider and an angle output device, the input end of the divider is connected to the reference signalsEX and E Y, the input end collects the voltage signal, and the output end Connect the angle output device, and output the gyro rotation angle θ through the output end of the angle output device after signal processing.
如图1所示,在一实施例中,所述振幅控制模块5包括振幅检测器、自动增益AGC电路、第一乘法器和第一锁相环,其中:As shown in FIG. 1, in one embodiment, the amplitude control module 5 includes an amplitude detector, an automatic gain AGC circuit, a first multiplier and a first phase-locked loop, wherein:
所述振幅检测器,接收参考信号EX和EY,并对信号EX和EY进行振幅检测,得到振幅检测信号并输出给自动增益AGC电路;The amplitude detector receives the reference signalsEX and EY , and performs amplitude detection on the signalsEX and EY to obtain the amplitude detection signal and output it to the automatic gain AGC circuit;
所述自动增益AGC电路,接收一振幅恒定大小的参考振幅,并接收所述振幅检测器的振幅检测信号,通过AGC电路的自动增益,控制振幅大小,然后输出给第一乘法器;The automatic gain AGC circuit receives a reference amplitude with a constant amplitude, and receives the amplitude detection signal of the amplitude detector, controls the amplitude through the automatic gain of the AGC circuit, and then outputs it to the first multiplier;
所述第一乘法器,接收所述AGC电路的自动增益信号和频率控制模块的频率控制误差信号,通过对两信号相乘处理,产生稳定的振幅信号,然后输出给第一分立电极,以稳定驱动电压信号振幅稳定;The first multiplier receives the automatic gain signal of the AGC circuit and the frequency control error signal of the frequency control module, and generates a stable amplitude signal by multiplying the two signals, and then outputs it to the first discrete electrode to stabilize The amplitude of the driving voltage signal is stable;
所述第一锁相环,接收频率控制模块的频率控制误差信号,通过锁相环信号跟踪,然后输出给第一乘法器。The first phase-locked loop receives the frequency control error signal of the frequency control module, tracks the signal through the phase-locked loop, and outputs the signal to the first multiplier.
参考信号EX和EY输入到振幅检测器中进行振幅检测,然后输出给自动增益AGC电路;参考振幅信号直接输给AGC电路控制振幅大小,然后输出给乘法器,提取稳定的振幅信号反馈回分立电极,并稳定驱动电压信号振幅稳定。The reference signals EX and EY are input to the amplitude detector for amplitude detection, and then output to the automatic gain AGC circuit; the reference amplitude signal is directly input to the AGC circuit to control the amplitude, and then output to the multiplier, and the stable amplitude signal is extracted and fed back. Discrete electrodes, and stable driving voltage signal amplitude stability.
如图1所示,在一实施例中,所述频率控制模块6包括第一误差量检测器、第二误差量检测器、第二乘法器、第三乘法器、第三信号合成器、第二锁相环;其中:As shown in FIG. 1 , in an embodiment, the frequency control module 6 includes a first error detector, a second error detector, a second multiplier, a third multiplier, a third signal synthesizer, a third Two phase-locked loops; where:
所述第一误差量检测器,接收所述参考信号EX,以进行误差信号的检测,然后输出给第二乘法器;the first error amount detector receives the reference signalEx to detect the error signal, and then outputs it to the second multiplier;
所述第二误差量检测器,接收所述参考信号EY,以进行误差信号的检测,然后输出给第三乘法器;the second error amount detector receives the reference signal EY to detect the error signal, and then outputs it to the third multiplier;
所述第二乘法器,接收所述第一误差量检测器的误差检测信号与外接信号发生器产生的信号sin2θ,两信号相乘,然后输出给第三信号合成器;The second multiplier receives the error detection signal of the first error amount detector and the signal sin2θ generated by the external signal generator, multiplies the two signals, and then outputs the signal to the third signal synthesizer;
所述第三乘法器,接收所述第二误差量检测器的误差检测信号与外接信号发生器产生的信号cos2θ,两信号相乘,然后输出给第三信号合成器;The third multiplier receives the error detection signal of the second error amount detector and the signal cos2θ generated by the external signal generator, multiplies the two signals, and then outputs the signal to the third signal synthesizer;
所述第三信号合成器,接收所述第二乘法器和第三乘法器输出信号,进行两信号合成产生频率控制误差,然后输出给第二锁相环;the third signal synthesizer receives the output signals of the second multiplier and the third multiplier, synthesizes the two signals to generate a frequency control error, and outputs the signal to the second phase-locked loop;
所述第二锁相环,接收所述第三信号合成器输出的频率控制误差信号,以进行信号的频率锁定跟踪,然后输出给第一乘法器,产生稳定的驱动电压频率信号。The second phase-locked loop receives the frequency control error signal output by the third signal synthesizer to perform frequency locking and tracking of the signal, and then outputs the signal to the first multiplier to generate a stable driving voltage frequency signal.
参考信号EX和EY分别输出给两个误差量检测器,进行误差信号的检测;然后分别输出给两个乘法器,进行信号提取;最终均输给信号合成器,进行信号合成;最后输给锁相环,进行频率锁定,并最终输出稳定的驱动电压频率信号。The reference signals EX and EY are respectively output to two error detectors for error signal detection; and then respectively output to two multipliers for signal extraction; finally, they are both output to the signal synthesizer for signal synthesis; For the phase-locked loop, frequency locking is performed, and finally a stable driving voltage frequency signal is output.
所述振幅控制模块5和频率控制模块6输出的稳定的振幅和频率信号反馈回内侧电极3。The stable amplitude and frequency signals output by the amplitude control module 5 and the frequency control module 6 are fed back to the
如图1所示,在一实施例中,所述正交控制模块7包括第一正交量检测器、第二正交量检测器、第四信号合成器、第四乘法器、第五乘法器、第六乘法器、第七乘法器;其中:As shown in FIG. 1 , in an embodiment, the quadrature control module 7 includes a first quadrature detector, a second quadrature detector, a fourth signal combiner, a fourth multiplier, and a fifth multiplier multiplier, sixth multiplier, seventh multiplier; where:
所述第一正交量检测器,接收所述参考信号EX,进行信号的正交检测,产生正交检测信号,然后输出给第四乘法器;The first quadrature quantity detector receives the reference signalEx , performs quadrature detection of the signal, generates a quadrature detection signal, and then outputs it to the fourth multiplier;
所述第二正交量检测器,接收所述参考信号EY,进行信号的正交检测,产生正交检测信号,然后输出给第五乘法器;The second quadrature quantity detector receives the reference signal EY , performs quadrature detection of the signal, generates a quadrature detection signal, and then outputs it to the fifth multiplier;
所述第四乘法器,接收所述第一正交量检测器的正交检测信号与外接信号发生器产生的信号cos2θ,两信号相乘,然后输出给第四信号合成器;the fourth multiplier receives the quadrature detection signal of the first quadrature detector and the signal cos2θ generated by the external signal generator, multiplies the two signals, and then outputs the signal to the fourth signal synthesizer;
所述第五乘法器,接收所述第二正交量检测器的正交检测信号与外接信号发生器产生的信号sin2θ,两信号相乘,然后输出给第四信号合成器;The fifth multiplier receives the quadrature detection signal of the second quadrature quantity detector and the signal sin2θ generated by the external signal generator, multiplies the two signals, and then outputs them to the fourth signal synthesizer;
所述第四信号合成器,接收所述第四乘法器和第五乘法器输出信号,进行两信号合成产生正交控制误差信号,然后输出给第六乘法器和第七乘法器;the fourth signal synthesizer receives the output signals of the fourth multiplier and the fifth multiplier, performs two-signal synthesis to generate a quadrature control error signal, and outputs the signal to the sixth multiplier and the seventh multiplier;
所述第六乘法器,接收所述正交控制误差信号与外接信号发生器产生的信号sin4θ,两信号相乘,然后输出给第一分立电极。The sixth multiplier receives the quadrature control error signal and the signal sin4θ generated by the external signal generator, multiplies the two signals, and outputs the signal to the first discrete electrode.
所述第七乘法器,接收所述正交控制误差信号与外接信号发生器产生的信号-cos4θ,两信号相乘,然后输出给第一分立电极。The seventh multiplier receives the quadrature control error signal and the signal -cos4θ generated by an external signal generator, multiplies the two signals, and outputs the signal to the first discrete electrode.
参考信号EX和EY分别输出给两个误差量检测器,进行误差信号的检测;然后分别输出给两个乘法器,进行信号提取;最终均输给信号合成器,进行信号合成,输出正交控制误差信号;正交控制误差信号分别输给两个乘法器,两个乘法器输出的信号反馈回分立电极,进行信号的正交控制。The reference signals EX and EY are respectively output to two error detectors for error signal detection; and then respectively output to two multipliers for signal extraction; finally, they are both output to the signal synthesizer for signal synthesis, and the output is positive. The quadrature control error signal is output to the two multipliers respectively, and the signals output by the two multipliers are fed back to the discrete electrodes for quadrature control of the signal.
所述正交控制模块7输出的正交控制信号反馈回内侧电极3。The quadrature control signal output by the quadrature control module 7 is fed back to the
所述谐振陀螺1的外侧电极2驱动谐振陀螺1,经过前置级模块4,外侧电极3输出的参考信号EX和EY经过振幅控制模块5和频率控制模块6实现对前置级模块4输出信号的自动跟踪,其中输出的参考信号包含振幅信号频率与相位信号;经过角度输出模块8输出谐振陀螺1的进动角θ;经过正交控制模块7,消除各轴谐振频率不相等产生的正交漂移,使所得到的变化信号保持稳定;所述变化信号经过正交控制模块7反馈到谐振陀螺1中。The
所述系统能够较为精细准确地得到谐振陀螺的总的角度变化情况,实现了对谐振陀螺总的旋转角度的检测,可随时对输出信号的频率与相位进行自动跟踪。The system can obtain the total angle change of the resonant gyroscope more precisely and accurately, realizes detection of the total rotation angle of the resonant gyroscope, and can automatically track the frequency and phase of the output signal at any time.
事实上,由于谐振陀螺1的的工艺误差造成的不对称性以及阻尼以及刚度的不对称性,因而谐振陀螺1角度变化的总和,是由实际旋转(-2AgΩ)和由于在衰减时间常数不匹配的错误和共振频率(Δω,ω=2πF)以及由于相位失配误差等综合作用的结果。In fact, due to the asymmetry caused by the process error of the
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the above-mentioned specific embodiments, and those skilled in the art can make various variations or modifications within the scope of the claims, which do not affect the essential content of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610693574.0ACN106370171B (en) | 2016-08-18 | 2016-08-18 | A dual-discrete electrode distributed full-angle signal control system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610693574.0ACN106370171B (en) | 2016-08-18 | 2016-08-18 | A dual-discrete electrode distributed full-angle signal control system |
| Publication Number | Publication Date |
|---|---|
| CN106370171A CN106370171A (en) | 2017-02-01 |
| CN106370171Btrue CN106370171B (en) | 2020-01-07 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610693574.0AActiveCN106370171B (en) | 2016-08-18 | 2016-08-18 | A dual-discrete electrode distributed full-angle signal control system |
| Country | Link |
|---|---|
| CN (1) | CN106370171B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110836665B (en)* | 2019-11-22 | 2023-03-17 | 陕西航天时代导航设备有限公司 | Method for realizing orthogonal control of cup-shaped gyroscope |
| CN119374632B (en)* | 2024-12-30 | 2025-03-21 | 河北美泰电子科技有限公司 | Dynamic Parameters Measurement System of MEMS Gyroscope |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5902930A (en)* | 1997-07-08 | 1999-05-11 | Litton Systems, Inc. | Method for reading out a vibratory rotation sensor |
| CN102109345A (en)* | 2010-12-13 | 2011-06-29 | 谢元平 | Digital signal processing method and device for micro-mechanical gyroscope |
| CN103344228A (en)* | 2013-06-25 | 2013-10-09 | 上海交通大学 | Shaking-quality bulk acoustic wave solid-fluctuation microgyroscope driving and detecting circuit |
| CN104165623A (en)* | 2014-08-08 | 2014-11-26 | 上海交通大学 | Internal-external double-electrode type miniature hemispherical resonance gyroscope and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5902930A (en)* | 1997-07-08 | 1999-05-11 | Litton Systems, Inc. | Method for reading out a vibratory rotation sensor |
| CN102109345A (en)* | 2010-12-13 | 2011-06-29 | 谢元平 | Digital signal processing method and device for micro-mechanical gyroscope |
| CN103344228A (en)* | 2013-06-25 | 2013-10-09 | 上海交通大学 | Shaking-quality bulk acoustic wave solid-fluctuation microgyroscope driving and detecting circuit |
| CN104165623A (en)* | 2014-08-08 | 2014-11-26 | 上海交通大学 | Internal-external double-electrode type miniature hemispherical resonance gyroscope and preparation method thereof |
| Title |
|---|
| 全角模式半球谐振陀螺的信号检测法研究;高胜利等;《传感技术学报》;20060228;第19卷(第1期);第153-156页* |
| 半球谐振陀螺(HRG)信号处理技术;吕志清;《中国惯性技术学报》;20000930;第8卷(第3期);第58-61页* |
| Publication number | Publication date |
|---|---|
| CN106370171A (en) | 2017-02-01 |
| Publication | Publication Date | Title |
|---|---|---|
| CN105547272B (en) | A full-angle control signal detection system for piezoelectric hemispherical resonant gyroscope | |
| US6805007B2 (en) | Vibratory sensor operating as a rate gyro about two axes and as a rate integrating gyro about the third one | |
| CN115451999B (en) | Method and device for generating virtual Coriolis effect of hemispherical resonant gyroscope | |
| EP0141621A2 (en) | Vibratory rotational sensor | |
| CN111412907B (en) | A full-angle measurement and control circuit system of a microelectromechanical multi-ring gyroscope | |
| CN115388910B (en) | Hemispherical resonant gyroscope error self-excitation method and system | |
| CN104197923B (en) | A kind of micro- capacitance top signal detecting method based on carrier wave detection | |
| CN113514080B (en) | Full-angle gyroscope online correction device and automatic trimming method based on virtual electric rotation | |
| CN116929322A (en) | Full-angle mode hemispherical resonator gyro accurate control method and system | |
| Yang et al. | Digital control system for the MEMS tuning fork gyroscope based on synchronous integral demodulator | |
| US8890446B2 (en) | Amplitude control for vibrating resonant sensors | |
| CN106370171B (en) | A dual-discrete electrode distributed full-angle signal control system | |
| CN108663071A (en) | Circuit device, measuring physical, electronic equipment and moving body | |
| CN106017450B (en) | Digital signal processing system of piezoelectric hemispherical resonance micro gyroscope | |
| Miyazaki et al. | A 0.1 DEG/H Module-Level Silicon Mems Rate Integrating Gyroscope Using Virtually Rotated Donut-Mass Structure and Demonstration of the Earth's Rotation Detection | |
| CN105716596A (en) | Digital control detecting system of piezoelectric hemispherical resonant micro-gyroscope | |
| CN105716597B (en) | Using micro- hemispherical reso nance gyroscope control of DSP and FPGA and signal detection system and method | |
| CN106289213B (en) | A Discrete and Ring Double Electrode Distributed Full Angle Control System | |
| CN111595313B (en) | Axisymmetric resonant gyro parameter excitation method based on discrete electrode | |
| Yin et al. | A phase self-correction method for bias temperature drift suppression of MEMS gyroscopes | |
| Nan et al. | Self-calibration for phase shift in Coriolis vibratory gyroscope with whole-angle mode operation | |
| JPH02129514A (en) | angular velocity sensor | |
| Fan et al. | High performance MEMS disk gyroscope with force-to-rebalance operation mode | |
| Sun et al. | A Rate Integrating Hemispherical Resonant Gyro Angular Rate Output Method Based on Frequency Demodulation | |
| CN116592918A (en) | Charge amplifier-based resonant gyroscope feed-through error compensation device and method |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |