技术领域technical field
本发明属于信息加密与储存技术领域,具体涉及一种基于具有复合信号的纳米材料和二进制的双秘钥加密方法。The invention belongs to the technical field of information encryption and storage, and in particular relates to a double-key encryption method based on nanomaterials with composite signals and binary.
背景技术Background technique
信息的加密是以某种特殊的算法处理原有的信息数据,使得未授权的用户即使获得了已加密的信息,但因不知解密的方法,仍然无法了解信息的内容的手段,在军事、计算机等领域均有应用。其中解密的方法是一种参数时被称为密钥。它是在明文转换为密文或将密文转换为明文的算法中输入的参数。而双秘钥加密技术具有一对密钥,仅获得其中一个秘钥并不能将隐藏的信息解读出来,比单秘钥加密具有更好的保密性。因此,建立一种新型的双秘钥加密技术具有广泛的意义和应用前景。The encryption of information is a means of processing the original information data with a special algorithm, so that even if an unauthorized user obtains the encrypted information, he still cannot understand the content of the information because he does not know the decryption method. There are applications in other fields. Where the method of decryption is a parameter is called a key. It is a parameter entered in an algorithm that converts plaintext to ciphertext or ciphertext to plaintext. The double-key encryption technology has a pair of keys, and only obtaining one of the keys cannot decipher the hidden information, which has better confidentiality than single-key encryption. Therefore, establishing a new type of double-key encryption technology has broad significance and application prospects.
发明内容Contents of the invention
本发明的目的是提供一种信息双秘钥加密方法。该加密方法运用了二进制和纳米材料的复合信号。The purpose of the present invention is to provide an information double-key encryption method. The encryption method uses a composite signal of binary and nanomaterials.
本发明所提供的加密方法,包括如下步骤:The encryption method provided by the present invention comprises the following steps:
1)将0-9中的每个数字均转化为4位二进制数字,依次分为两个位数相等的二进制数字,将A-Z中的每个字母均转化为6位二进制数字,依次分为两个位数相等的二进制数字;其中,0-9中的每个数字中不够4位二进制数字的,在原二进制数字前补加0,直至达到4位二进制数字为至;A-Z中的每个字母中不够6位二进制数字的,在原二进制数字前补加0,直至达到6位二进制数字为至;1) Convert each number in 0-9 into a 4-digit binary number, and then divide it into two binary numbers with the same number of digits, convert each letter in A-Z into a 6-bit binary number, and divide it into two binary numbers in turn. Binary numbers with equal single digits; among them, if there are not enough 4 binary digits in each number of 0-9, add 0 before the original binary digit until it reaches 4 binary digits; in each letter of A-Z If there are not enough 6 binary digits, add 0 before the original binary digit until it reaches 6 binary digits;
2)根据步骤1),将待加密的信息转化为相应的两组二进制数字,一组作为二进制密码一,另一组作为二进制密码二;2) According to step 1), the information to be encrypted is converted into corresponding two groups of binary numbers, one group is used as binary code one, and the other group is used as binary code two;
3)将磁性金属离子修饰的稀土上转换发光纳米材料和化合物反应,得到反应所得物,测其光(L)、热(H)和磁(M)信号变化,若信号变化为正向变化,则记该信号为1,若信号变化为不变或负向变化,则记该信号为0,其中,所述化合物为可与所述磁性金属离子修饰的稀土上转换发光纳米材料的表面上的磁性金属离子发生络合和/或氧化还原反应的物质。3) React the rare earth up-conversion luminescent nanomaterials modified with magnetic metal ions and the compound to obtain the reaction product, and measure the changes in the light (L), heat (H) and magnetic (M) signals. If the signal changes are positive, The signal is recorded as 1, and if the signal change is unchanged or negatively changed, the signal is recorded as 0, wherein the compound is the compound on the surface of the rare earth up-conversion luminescent nanomaterial that can be modified with the magnetic metal ion. Substances in which magnetic metal ions undergo complexation and/or redox reactions.
4)将步骤2)中的二进制密码一和二进制密码二均与步骤3)中的光(L)、热(H)或磁(M)的信号变化、化合物建立对应关系,分别得到秘钥一和秘钥二,即得到加密后的密码。4) Establish a corresponding relationship between the binary code 1 and the binary code 2 in step 2) and the signal change and compound of light (L), heat (H) or magnetism (M) in step 3), and obtain the secret key 1 respectively and secret key 2 to get the encrypted password.
上述加密方法中,步骤3)中,所述磁性金属离子修饰的稀土上转换发光纳米材料中磁性金属离子选自Fe3+,Co3+和Ni3+中的至少一种,该磁性金属离子具有氧化性。In the above encryption method, in step 3), the magnetic metal ion in the magnetic metal ion-modified rare earth up-conversion luminescent nanomaterial is selected from at least one of Fe3+ , Co3+ and Ni3+ , and the magnetic metal ion Oxidizing.
所述磁性金属离子修饰的稀土上转换发光纳米材料中稀土上转换发光纳米材料选自掺杂元素与稀土元素形成的氟化物盐、氧化物、氟氧化物、氟卤化物、磷酸盐、钒酸盐和钨酸盐中的至少一种,The rare earth upconversion luminescence nanomaterial modified by magnetic metal ions is selected from fluoride salts, oxides, oxyfluorides, fluorine halides, phosphates, and vanadic acid formed by doping elements and rare earth elements. at least one of salt and tungstate,
其中,所述稀土元素选自镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)、钪(Sc)和钇(Y)中的至少一种;Wherein, the rare earth element is selected from lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium ( At least one of Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), scandium (Sc) and yttrium (Y);
所述掺杂元素选自铒(Er)、钬(Ho)、铥(Tm)、镱(Yb)、铒(Er)、镱(Yb)、钬(Ho)、镱(Yb)和铥(Tm)中的至少一种。The doping element is selected from erbium (Er), holmium (Ho), thulium (Tm), ytterbium (Yb), erbium (Er), ytterbium (Yb), holmium (Ho), ytterbium (Yb) and thulium (Tm ) at least one of.
此外,所述氟化物盐、磷酸盐、钒酸盐或钨酸盐中还可含有锂(Li+)、钠(Na+)、钾(K+)、铷(Rb+)、铯(Cs+)、铍(Be2+)、镁(Mg2+)、钙(Ca2+)、锶(Sr2+)、钡(Ba2+)、硼(B3+)、铝(Al3+)、镓(Ga3+)、铟(In3+)、锡(Sn2+)、铅(Pb2+)和铵(NH4+)中的至少一种阳离子。In addition, the fluoride salt, phosphate, vanadate or tungstate may also contain lithium (Li+ ), sodium (Na+ ), potassium (K+ ), rubidium (Rb+ ), cesium (Cs+ ), Beryllium (Be2+ ), Magnesium (Mg2+ ), Calcium (Ca2+ ), Strontium (Sr2+ ), Barium (Ba2+ ), Boron (B3+ ), Aluminum (Al3+ ) , gallium (Ga3+ ), indium (In3+ ), tin (Sn2+ ), lead (Pb2+ ), and ammonium (NH4+ ) cations.
进一步,所述磁性金属离子修饰的稀土上转换发光纳米材料中稀土上转换发光纳米材料还可掺杂其他金属元素,如锰(Mn)、锂(Li)、锌(Zn)、铬(Cr)、铅(Pb)、铋(Bi)。Further, the rare earth upconversion luminescent nanomaterial in the magnetic metal ion modified rare earth upconversion luminescent nanomaterial can also be doped with other metal elements, such as manganese (Mn), lithium (Li), zinc (Zn), chromium (Cr) , lead (Pb), bismuth (Bi).
所述磁性金属离子修饰的稀土上转换发光纳米材料可为纳米颗粒和/或纳米棒,所述纳米颗粒的直径为5nm–999nm,所述纳米棒的长度为6nm–20μm,直径为5nm–999nm。The rare earth upconversion luminescent nanomaterial modified by magnetic metal ions can be nanoparticles and/or nanorods, the diameter of the nanoparticles is 5nm-999nm, the length of the nanorods is 6nm-20μm, and the diameter is 5nm-999nm .
所述磁性金属离子修饰的稀土上转换发光纳米材料具体可为Fe3+修饰的NaLuF4:Yb,Er,Gd纳米颗粒或Ni3+修饰的NaGdF4:Yb,Er,Tm纳米颗粒,其中,所述Fe3+修饰的NaLuF4:Yb,Er,Gd纳米颗粒中Gd的质量分数为30-50%,具体可为40%;所述Ni3+修饰的NaGdF4:Yb,Er,Tm纳米颗粒中Gd的质量分数为70-90%,具体可为80%。The rare earth upconversion luminescent nanomaterial modified by magnetic metal ions can specifically be Fe3+ modified NaLuF4 : Yb, Er, Gd nanoparticles or Ni3+ modified NaGdF4 : Yb, Er, Tm nanoparticles, wherein, The mass fraction of Gd in the Fe3+ modified NaLuF4 : Yb, Er, Gd nanoparticles is 30-50%, specifically 40%; the Ni3+ modified NaGdF4 : Yb, Er, Tm nanoparticles The mass fraction of Gd in the particles is 70-90%, specifically 80%.
所述磁性金属离子修饰的稀土上转换发光纳米材料可通过常规方法制备,如固相法、液相法、气相法等。The rare earth up-conversion luminescent nanomaterial modified with magnetic metal ions can be prepared by conventional methods, such as solid-phase method, liquid-phase method, gas-phase method and the like.
所述化合物具体可选自对苯二酚(HQ)、抗坏血酸(AA)、双氧水(H2O2)、铁离子(Fe3+)和六氰合亚铁络合离子([Fe(CN)6]4-)。Said compound can be specifically selected from hydroquinone (HQ), ascorbic acid (AA), hydrogen peroxide (H2 O2 ), iron ion (Fe3+ ) and hexacyanoferrous complex ion ([Fe(CN)6 ]4- ).
通过测试可得知:当加入所述对苯二酚(HQ)时,所述反应所得物的光(L)、热(H)和磁(M)信号变化均为正向变化,分别记为1、1和1,即对苯二酚(HQ)对应L=1、H=1和M=1;It can be known by testing that: when the hydroquinone (HQ) is added, the light (L), heat (H) and magnetic (M) signal changes of the reaction product are all positive changes, which are respectively denoted as 1, 1 and 1, that is, hydroquinone (HQ) corresponds to L=1, H=1 and M=1;
同理,抗坏血酸(AA)对应L=1、H=0和M=0;双氧水(H2O2)对应L=0、H=0和M=0;铁离子(Fe3+)对应L=0、H=0和M=1;六氰合亚铁络合离子([Fe(CN)6]4-)对应L=0、H=1和M=1。Similarly, ascorbic acid (AA) corresponds to L=1, H=0 and M=0; hydrogen peroxide (H2 O2 ) corresponds to L=0, H=0 and M=0; iron ion (Fe3+ ) corresponds to L= 0, H=0 and M=1; hexacyanoferrous complex ion ([Fe(CN)6 ]4- ) corresponds to L=0, H=1 and M=1.
上述加密方法中,步骤3)中,所述磁性金属离子修饰的稀土上转换发光纳米材料是以水溶液的形式存在,其摩尔浓度为0.1mM-10mM,所述化合物是以水溶液或固体的形式存在,当所述化合物是以水溶液形式存在时,其摩尔浓度为5mM-50mM。In the above encryption method, in step 3), the magnetic metal ion-modified rare earth upconversion luminescent nanomaterial exists in the form of an aqueous solution, and its molar concentration is 0.1mM-10mM, and the compound exists in the form of an aqueous solution or a solid , when the compound exists in aqueous solution, its molar concentration is 5mM-50mM.
当所述化合物的浓度大于5mM时,信号变化的趋势不变,只是信号的强度有较小的变化。When the concentration of the compound is greater than 5 mM, the trend of signal change remains unchanged, but the intensity of the signal changes slightly.
所述磁性金属离子修饰的稀土上转换发光纳米材料和所述化合物的体积比具体可为1:(0.2-5)。The volume ratio of the magnetic metal ion-modified rare earth up-conversion luminescent nanomaterial to the compound may specifically be 1:(0.2-5).
所述反应的反应温度为15-40℃,反应时间不小于5min,具体可为5-60min。The reaction temperature of the reaction is 15-40° C., and the reaction time is not less than 5 minutes, specifically 5-60 minutes.
所述反应具体可先将所述化合物置于平板上,再向其中滴加所述磁性金属离子修饰的稀土上转换发光纳米材料进行反应,所述平板为可独立容纳固体或液体的平面板状固体,所述平面板状固体的厚度不小于0.5cm。Specifically, the reaction can be carried out by first placing the compound on a flat plate, and then dropwise adding the magnetic metal ion-modified rare earth up-conversion luminescent nanomaterial therein for the reaction, and the flat plate is a planar plate that can independently accommodate solids or liquids Solid, the thickness of the planar solid is not less than 0.5cm.
上述加密方法中,步骤3)中,所述测其光(L)、热(H)和磁(M)信号变化具体可通过如下方法进行:用980nm近红外激光照射所述反应所得物,并进行拟彩处理,得到光(L)变化信号,若为光斑,则光(L)变化信号为正向变化,反之(即空白),则光(L)变化信号为不变或负向变化;In the above encryption method, in step 3), the measurement of the light (L), heat (H) and magnetic (M) signal changes can be specifically carried out by the following method: irradiate the reaction product with a 980nm near-infrared laser, and Perform pseudo-color processing to obtain the light (L) change signal, if it is a light spot, the light (L) change signal is a positive change, otherwise (that is, blank), then the light (L) change signal is constant or negative change;
用808nm近红外激光照射所述反应所得物,并进行拟彩处理,得到热(H)变化信号,若为光斑,则热(H)变化信号为正向变化,反之(即空白),则热(H)变化信号为不变或负向变化;Use 808nm near-infrared laser to irradiate the reaction product, and perform pseudo-color treatment to obtain the heat (H) change signal. If it is a light spot, the heat (H) change signal is a positive change. (H) The change signal is unchanged or negatively changed;
用磁共振成像对所述反应所得物进行成像处理,并进行拟彩处理,得到磁(M)变化信号,若为光斑,则磁(M)变化信号为正向变化,反之(即空白),则磁(M)变化信号为不变或负向变化。Using magnetic resonance imaging to perform imaging processing on the reaction product, and performing pseudo-color processing to obtain a magnetic (M) change signal, if it is a light spot, the magnetic (M) change signal is a positive change, otherwise (ie blank), Then the magnetic (M) change signal is unchanged or negatively changed.
其中,所述拟彩处理是通过Image J软件对成像的灰度图进行色彩处理,使信号较强和较弱的地方显现出不同的颜色,从而增强信号较强地方与较弱地方的对比度。Wherein, the pseudo-color processing is to perform color processing on the imaged grayscale image by Image J software, so that the places with stronger and weaker signals show different colors, thereby enhancing the contrast between the places with stronger signals and the places with weaker signals.
上述加密方法中,步骤3)中,所述光(L)、热(H)和磁(M)的正向信号变化分别为荧光强度增强、温度升高的程度高和磁共振信号的增强;所述光(L)、热(H)和磁(M)的反向信号变化分别为荧光强度减弱、温度升高的程度低和磁共振信号的减弱,其中,所述温度升高的程度高和温度升高的程度低均是相对于水的升高的温度而言,远高于水的认为温度升高的程度高,与水近似的认为温度升高的程度低。In the above encryption method, in step 3), the positive signal changes of the light (L), heat (H) and magnetic (M) are respectively the enhancement of the fluorescence intensity, the high degree of temperature rise and the enhancement of the magnetic resonance signal; The reverse signal changes of the light (L), heat (H) and magnetism (M) are respectively the weakening of fluorescence intensity, the low degree of temperature rise and the weakening of magnetic resonance signal, wherein the degree of temperature rise is high The degree of temperature rise and the degree of temperature increase are both relative to the temperature increase of water. The degree of temperature increase is considered to be high if it is much higher than that of water, and the degree of temperature increase is considered to be low if it is close to water.
所述正向变化和负向变化为光、热或磁信号的一对反向变化:光的增强和减弱,温度升高程度高与升高程度低,或磁共振信号的增强和减弱。The positive and negative changes are a pair of opposite changes of light, heat or magnetic signals: enhancement and weakening of light, high and low degrees of temperature rise, or enhancement and weakening of magnetic resonance signals.
所述光(L)、热(H)和磁(M)的信号变化为不变是指没有正向信号和负向信号的产生,或者正向信号或负向信号产生得弱,即正向信号的变化量与正向信号之比小于1%,负向信号的变化量与负向信号之比小于1%。The signal changes of light (L), heat (H) and magnetism (M) are unchanged, which means that there is no positive signal and negative signal, or the positive signal or negative signal is generated weakly, that is, positive The ratio of the variation of the signal to the positive signal is less than 1%, and the ratio of the variation of the negative signal to the negative signal is less than 1%.
上述加密方法中,步骤4)中,所述对应关系可通过如下方法建立:将二进制密码一和二进制密码二均转化为相应所述化合物下的光(L)、热(H)和磁(M)对应的种类和顺序即可。In the above-mentioned encryption method, in step 4), the corresponding relationship can be established by the following method: binary code one and binary code two are all converted into light (L), heat (H) and magnetic (M) under the corresponding compound ) corresponding to the type and order.
所述光(L)、热(H)和磁(M)对应的种类选自光热复合信号(L-H),光磁复合信号(L-M),热磁复合信号(H-M)或光热磁复合信号(L-H-M)中的至少一种。The types corresponding to the light (L), heat (H) and magnetism (M) are selected from photothermal composite signal (L-H), photomagnetic composite signal (L-M), thermomagnetic composite signal (H-M) or photothermomagnetic composite signal At least one of (L-H-M).
所述光(L)、热(H)和磁(M)对应的顺序选自(L,H)、(H,L)、(L,M)、(M,L)、(H,M)、(M,H)、(L,M,H)、(L,H,M)、(H,L,M)、(H,M,L)、(M,H,L)和(M,L,H)中的至少一种。The corresponding order of light (L), heat (H) and magnetism (M) is selected from (L, H), (H, L), (L, M), (M, L), (H, M) , (M, H), (L, M, H), (L, H, M), (H, L, M), (H, M, L), (M, H, L) and (M, At least one of L, H).
上述加密方法中,步骤4)中,对所述加密后的密码的解密可按如下步骤进行:将所述秘钥一和秘钥二(含有光(L)、热(H)和磁(M)信号的种类及其对应的顺序)所对应的所述化合物与所述磁性金属离子修饰的稀土上转换发光纳米材料进行反应,得到反应所得物,测其光(L)、热(H)和磁(M)信号变化,若信号变化为正向变化,则记该信号为1,若信号变化为不变或负向变化,则记该信号为0,从而将所述秘钥一和秘钥二均转化为二进制数字,分别得到二进制密码一和二进制密码二,最后将二进制密码一和二进制密码二转化为数字和/或字母,即得到原信息。In the above-mentioned encryption method, in step 4), the decryption of the encrypted password can be carried out as follows: the secret key one and the secret key two (containing light (L), heat (H) and magnetic (M) ) signal type and its corresponding sequence), the compound corresponding to the rare earth up-conversion luminescent nanomaterial modified by the magnetic metal ion reacts to obtain the reaction product, and the light (L), heat (H) and If the magnetic (M) signal changes, if the signal changes positively, record the signal as 1, if the signal changes unchanged or negatively change, record the signal as 0, so that the secret key 1 and the secret key Both are converted into binary numbers to obtain binary code 1 and binary code 2 respectively, and finally convert binary code 1 and binary code 2 into numbers and/or letters to obtain the original information.
本发明将信息(数字和/或字母)转化为二进制数字,通过秘钥一和秘钥二改变二进制数字的次序,使用特定的所述化合物代替数字或字母。The present invention converts information (numbers and/or letters) into binary numbers, changes the sequence of binary numbers through key 1 and key 2, and uses specific compounds to replace numbers or letters.
本发明方法中使用的材料较为简单,并且能够同时通过多种信号达到加密的效果。由于存在两组秘钥,因此可以实现双秘钥加密,更有利于信息的保密。The materials used in the method of the present invention are relatively simple, and can achieve the effect of encryption through multiple signals at the same time. Since there are two sets of secret keys, double-key encryption can be realized, which is more conducive to the confidentiality of information.
附图说明Description of drawings
图1为实施例中各化合物溶液和对应的信号变化。Fig. 1 is each compound solution and the corresponding signal change in the embodiment.
图2为本发明中各数字(0-9)对应的二进制数字。Fig. 2 is the binary number corresponding to each number (0-9) in the present invention.
图3为实施例1中未加密的数字信息段、经过加密的数字信息段、化合物名称、秘钥一和秘钥二。Fig. 3 shows the unencrypted digital information segment, encrypted digital information segment, compound name, secret key 1 and secret key 2 in Example 1.
图4为实施例1中的在980nm近红外激光照射下的加入磁性金属离子修饰的稀土上转换发光纳米材料后的加密数字信息段照片。Fig. 4 is a photo of the encrypted digital information section in Example 1 under the irradiation of 980nm near-infrared laser light after adding rare earth up-conversion luminescent nanomaterials modified with magnetic metal ions.
图5为实施例1中的在808nm近红外激光照射下的加入磁性金属离子修饰的稀土上转换发光纳米材料后的加密数字信息段照片。Fig. 5 is a photo of the encrypted digital information section in Example 1 under the irradiation of 808nm near-infrared laser light after adding rare earth up-conversion luminescent nanomaterials modified with magnetic metal ions.
图6为实施例1中的在T1磁共振成像模式下的加入磁性金属离子修饰的稀土上转换发光纳米材料后的加密数字信息段照片。Fig. 6 is a photograph of the encrypted digital information section in Example 1 in the T1 magnetic resonance imaging mode after adding rare earth up-conversion luminescent nanomaterials modified with magnetic metal ions.
图7为实施例1中的按照秘钥一解出的密码、按照秘钥二解出的密码、解密出的数字信息段、原密码和原数字信息段的对比图片。Fig. 7 is a comparison picture of the password decrypted according to the first key, the password decrypted according to the second key, the decrypted digital information segment, the original password and the original digital information segment in embodiment 1.
图8为本发明中各字母(A-Z)对应的二进制数字。Fig. 8 is the binary number corresponding to each letter (A-Z) in the present invention.
图9为实施例2中未加密的字母信息段、经过加密的字母信息段、化合物名称、秘钥一和秘钥二。Fig. 9 shows the unencrypted letter information segment, encrypted letter information segment, compound name, secret key 1 and secret key 2 in Example 2.
图10为实施例2中的在980nm近红外激光照射下的加入氧化性磁性金属离子修饰的稀土上转换发光纳米材料后的加密字母信息段照片。Fig. 10 is a photo of the encrypted letter information segment after adding rare earth up-conversion luminescent nanomaterials modified with oxidative magnetic metal ions under the irradiation of 980nm near-infrared laser in Example 2.
图11为实施例2中的在808nm近红外激光照射下的加入氧化性磁性金属离子修饰的稀土上转换发光纳米材料后的加密字母信息段照片。Fig. 11 is a photo of the encrypted letter information segment after adding the rare earth up-conversion luminescent nanomaterial modified with oxidative magnetic metal ions under the irradiation of 808nm near-infrared laser in Example 2.
图12为实施例2中的在T1磁共振成像模式下的加入氧化性磁性金属离子修饰的稀土上转换发光纳米材料后的加密字母信息段照片。Fig. 12 is a photo of the encrypted letter information segment after adding the rare earth up-conversion luminescent nanomaterial modified with oxidative magnetic metal ions in the T1 magnetic resonance imaging mode in Example2 .
图13为实施例2中的按照秘钥一解出的密码、按照秘钥二解出的密码、解密出的字母信息段、原密码和原字母信息段的对比图片。Fig. 13 is a comparison picture of the password decrypted according to the first key, the password decrypted according to the second key, the decrypted alphabet information segment, the original password and the original alphabet information segment in embodiment 2.
具体实施方式detailed description
下面通过具体实施例对本发明的方法进行说明,但本发明并不局限于此。The method of the present invention will be described below through specific examples, but the present invention is not limited thereto.
下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。The experimental methods described in the following examples, unless otherwise specified, are conventional methods; the reagents and materials, unless otherwise specified, can be obtained from commercial sources.
下述实施例1中所使用的含有40%Gd的NaLuF4:Yb,Er,Gd的纳米材料是按照下述方法制备得到的:首先,将0.40mmol LuCl3,0.40mmol GdCl3,0.18mmol YbCl3和0.02mmol ErCl3加入到100mL的三口瓶中,再加入6mL油酸和15mL十八烯。然后在氮气的保护下,将混合溶液加热到120℃使稀土氯化物完全溶解,形成透明的澄清溶液后,停止加热,冷却至室温。之后,向溶液中加入6mL NaOH(2.5mmol)和NH4F(4mmol)的甲醇溶液,氮气保护下加热至80℃除甲醇,约30min后,升温至120℃抽真空除水除氧,最后在氮气氛围下反应1h。反应结束后,自然冷却至室温,然后加入适量的环己烷和乙醇,离心分离,去掉上清液;向固体中加入适量环己烷后超声分散,再加入适量乙醇后,再离心分离;重复以上步骤,继续用环己烷和乙醇洗涤几次后,即可得到40%Gd的NaLuF4:Yb,Er,Gd的纳米材料(纳米颗粒,直径为7-9nm)。The NaLuF4 :Yb, Er, Gd nanomaterials containing 40% Gd used in the following example 1 were prepared according to the following method: first, 0.40mmol LuCl3 , 0.40mmol GdCl3 , 0.18mmol YbCl3 and 0.02mmol ErCl3 were added to a 100mL three-necked flask, and then 6mL oleic acid and 15mL octadecene were added. Then, under the protection of nitrogen, the mixed solution was heated to 120° C. to completely dissolve the rare earth chloride, and after forming a transparent clear solution, the heating was stopped and cooled to room temperature. After that, add 6mL NaOH (2.5mmol) and NH4 F (4mmol) methanol solution to the solution, heat to 80°C under nitrogen protection to remove methanol, after about 30min, raise the temperature to 120°C to remove water and oxygen under vacuum, and finally in The reaction was carried out under nitrogen atmosphere for 1 h. After the reaction, cool down to room temperature naturally, then add an appropriate amount of cyclohexane and ethanol, centrifuge and remove the supernatant; add an appropriate amount of cyclohexane to the solid and then ultrasonically disperse, then add an appropriate amount of ethanol, and then centrifuge; repeat After the above steps are continued to be washed several times with cyclohexane and ethanol, the nanomaterial (nanoparticles with a diameter of 7-9 nm) of 40% Gd NaLuF4 :Yb, Er, Gd can be obtained.
下述实施例1中所用的Fe3+修饰的含有40%Gd的NaLuF4:Yb,Er,Gd的纳米材料是按照如下方法制备得到:The Fe3+ modified NaLuF4 : Yb, Er, Gd nanomaterial containing 40% Gd used in the following Example 1 was prepared according to the following method:
将含有40%Gd的NaLuF4:Yb,Er,Gd的纳米材料溶液与NOBF4以质量比1:1混合超声处理,处理的温度为20℃,时间为5min,洗去表面的油溶性配体,然后分别用CH2Cl2和无水乙醇洗涤两遍,再分散在质量分数为20%的柠檬酸钠的去离子水中,在20℃下搅拌处理1h。经过柠檬酸处理后,加入等体积的0.5mM的FeCl3溶液,继续搅拌1h,离心分离,用去离子水洗涤三次,得到Fe3+修饰的含有40%Gd的纳米材料NaLuF4:Yb,Er,Gd。Mix the NaLuF4 : Yb, Er, Gd nanomaterial solution containing 40% Gd with NOBF4 at a mass ratio of 1:1 and sonicate at a temperature of 20°C for 5 minutes to wash off the oil-soluble ligands on the surface , and then washed twice with CH2 Cl2 and absolute ethanol, and then dispersed in deionized water with a mass fraction of 20% sodium citrate, and stirred at 20° C. for 1 h. After citric acid treatment, add an equal volume of 0.5mM FeCl3 solution, continue to stir for 1h, centrifuge, wash with deionized water three times to obtain Fe3+ modified nanomaterial NaLuF4 :Yb,Er containing 40%Gd , Gd.
下述实施例2中所使用的含有80%Gd的NaGdF4:Yb,Er,Tm的纳米材料是按照下述方法制备得到的:取1.5mL去离子水,5mL油酸,10mL乙醇于100mL烧瓶中充分搅拌均匀,加入0.3g NaOH搅拌至完全溶解;然后加入GdCl3(0.80mmol),YbCl3(0.16mmol),ErCl3(0.02mmol)和TmCl3(0.02mmol)充分搅拌;将NaF(4mmol)溶解于2mL去离子水中,并将其缓慢加入上述溶液中,搅拌约15min后转移到高压反应釜,200℃保持10h;冷却后用乙醇、环己烷离心、洗涤,样品在环己烷中密封保存,备用,得到含有80%Gd的NaGdF4:Yb,Er,Tm的纳米材料(纳米颗粒,直径为20-25nm)。The NaGdF4 used in the following example 2 containing 80% Gd: Yb, Er, Tm nanomaterials are prepared according to the following method: get 1.5mL deionized water, 5mL oleic acid, 10mL ethanol in a 100mL flask Stir well in the medium, add 0.3g NaOH and stir until completely dissolved; then add GdCl3 (0.80mmol), YbCl3 (0.16mmol), ErCl3 (0.02mmol) and TmCl3 (0.02mmol) and stir well; NaF (4mmol ) was dissolved in 2 mL of deionized water, and slowly added to the above solution, stirred for about 15 minutes, then transferred to an autoclave, and kept at 200°C for 10 hours; after cooling, centrifuged and washed with ethanol and cyclohexane, and the sample was dissolved in cyclohexane Store in a sealed container for future use, and obtain NaGdF4 :Yb, Er, Tm nanomaterials (nanoparticles, 20-25nm in diameter) containing 80% Gd.
下述实施例2中所使用的Ni3+修饰的含有80%Gd的NaGdF4:Yb,Er,Tm的纳米材料是按照下述方法制备得到的:将NaLuF4:Yb,Er,Tm的纳米材料分散在质量分数为20%柠檬酸钠的去离子水中,在20℃下搅拌处理1h。经过柠檬酸处理后,加入等体积的0.5mM的NiCl3,继续搅拌1h,离心分离,用去离子水洗涤三次,得到Ni3+修饰的含有80%Gd的NaGdF4:Yb,Er,Tm的纳米材料。The Ni3+ modified NaGdF4 : Yb, Er, Tm nanomaterial containing 80% Gd used in the following example 2 was prepared according to the following method: NaLuF4 : Yb, Er, Tm nano The material was dispersed in deionized water with a mass fraction of 20% sodium citrate, and stirred at 20° C. for 1 h. After citric acid treatment, add an equal volume of 0.5mM NiCl3 , continue to stir for 1 hour, centrifuge, and wash three times with deionized water to obtain Ni3+ modified NaGdF4 :Yb, Er, Tm containing 80% Gd nanomaterials.
图1是通过如下方法绘制得到的:Figure 1 is drawn by the following method:
将摩尔浓度为1mM的Fe3+修饰的40%Gd的NaLuF4:Yb,Er,Gd的纳米颗粒的水溶液分别与摩尔浓度均为5mM的对苯二酚(HQ)的水溶液、抗坏血酸(AA)的水溶液、双氧水(H2O2)的水溶液、铁离子(Fe3+)的水溶液和六氰合亚铁络合离子([Fe(CN)6]4-)的水溶液以体积比为1:1在厚度不小于0.5cm的平板上混合于20℃下反应5min,分别以980nm近红外激光、808nm近红外激光和T1磁共振成像模式下拍摄图片,经过拟彩处理后,分别测得各反应所得物的光(L)、热(H)和磁(M)的信号变化,若出现光斑,则信号变化为正向变化,记该信号为1;若未出现光斑,则信号变化为不变或负向变化,则记该信号为0,得到图1;The aqueous solution of NaLuF4 : Yb, Er, Gd nanoparticles with a molar concentration of 1 mM Fe3+ modified 40% Gd was mixed with an aqueous solution of hydroquinone (HQ) and ascorbic acid (AA) with a molar concentration of 5 mM respectively. The aqueous solution of hydrogen peroxide (H2 O2 ), the aqueous solution of ferric ion (Fe3+ ) and the aqueous solution of ferrous hexacyano complex ion ([Fe(CN)6 ]4- ) are in a volume ratio of 1: 1 Mix on a flat plate with a thickness of not less than 0.5cm and react at 20°C for 5 minutes, take pictures with 980nm near-infrared laser, 808nm near- infrared laser and T1 magnetic resonance imaging mode respectively, after pseudo-color processing, measure each The light (L), heat (H) and magnetic (M) signal changes of the reaction product, if there is a light spot, the signal change is a positive change, and the signal is recorded as 1; if there is no light spot, the signal change is no change or negative change, record the signal as 0, and get Figure 1;
实施例1、基于具有复合信号的纳米材料和二进制的新型双秘钥加密方法:Embodiment 1, based on nanomaterials with composite signals and a binary novel double-key encryption method:
1、加密部分:先列出需要加密的数字信息段为1234,将数字信息段1234按图2转化为两组二进制数字,如图3所示,分别为二进制密码一:00 00 00 01,二进制密码二:01 10 11 00,再根据图1将二进制密码一和二进制密码二转化为相应的无色化合物溶液,即二进制密码一所使用的化合物和对应的秘钥一如图3所示,二进制密码二所使用的化合物和对应的秘钥二如图3所示,即对需要加密的数字信息段为1234进行了加密。1. Encryption part: first list the digital information segment that needs to be encrypted as 1234, and convert the digital information segment 1234 into two sets of binary numbers according to Figure 2, as shown in Figure 3, which are binary password 1: 00 00 00 01, binary Password 2: 01 10 11 00, and then convert binary code 1 and binary code 2 into corresponding colorless compound solutions according to Figure 1, that is, the compounds used in binary code 1 and the corresponding secret key 1 are shown in Figure 3, binary The compound used in password two and the corresponding secret key two are shown in Figure 3, that is, the digital information segment to be encrypted is 1234 encrypted.
2、破解部分:将摩尔浓度为1mM的Fe3+修饰的40%Gd的NaLuF4:Yb,Er,Gd的纳米颗粒的水溶液分别与摩尔浓度均为5mM的双氧水(H2O2)的水溶液、铁离子(Fe3+)的水溶液和六氰合亚铁络合离子([Fe(CN)6]4-)的水溶液以体积比为1:1在厚度不小于0.5cm的平板上混合于20℃下反应5min,分别以980nm近红外激光、808nm近红外激光和T1磁共振成像模式下拍摄图片,经过拟彩处理,使信号较强和较弱的地方显现出不同的颜色,从而增强信号较强地方与较弱地方的对比度,分别测得各反应所得物的光(L)、热(H)和磁(M)的信号变化,测试结果分别如图4、图5和图6。从而将所述秘钥一和秘钥二均转化为二进制数字,分别得到二进制密码一和二进制密码二,最后将二进制密码一和二进制密码二转化为数字,即得到原信息。相应的解密结果如图7所示。2. Cracking part: the aqueous solution of 40% Gd NaLuF4 :Yb, Er, Gd nanoparticles modified by Fe3+ with a molar concentration of 1mM and the aqueous solution of hydrogen peroxide (H2 O2 ) with a molar concentration of 5mM respectively , the aqueous solution of iron ion (Fe3+ ) and the aqueous solution of ferrous hexacyano complex ion ([Fe(CN)6 ]4- ) are mixed on a plate with a thickness of not less than 0.5cm at a volume ratio of 1:1. React at 20°C for 5 minutes, take pictures with 980nm near-infrared laser, 808nm near-infrared laser, and T1 magnetic resonance imaging mode, and undergo pseudo-color processing to make the places with stronger and weaker signals show different colors, thereby enhancing The contrast between the stronger signal and the weaker place, respectively measured the light (L), heat (H) and magnetic (M) signal changes of each reaction product, and the test results are shown in Figure 4, Figure 5 and Figure 6 respectively. Thus, both the secret key 1 and the secret key 2 are converted into binary numbers to obtain binary code 1 and binary code 2 respectively, and finally the binary code 1 and binary code 2 are converted into numbers to obtain the original information. The corresponding decryption results are shown in Figure 7.
实施例2、基于具有复合信号的纳米材料和二进制的新型双秘钥加密方法:Embodiment 2, based on nanomaterials with composite signals and a binary novel double-key encryption method:
1、加密部分:先列出需要加密的字母信息段为ZHOU,将字母信息段为ZHOU按图8转化为两组二进制数字,如图9所示,分别为二进制密码一和二进制密码二,再根据图1将二进制密码一和二进制密码二转化为相应的无色化合物溶液,即二进制密码一所使用的化合物和对应的秘钥一如图9所示,二进制密码二所使用的化合物和对应的秘钥二如图9所示,即对需要加密的字母信息段为ZHOU进行了加密。1. Encryption part: first list the letter information segment that needs to be encrypted as ZHOU, and convert the letter information segment as ZHOU into two sets of binary numbers according to Figure 8, as shown in Figure 9, which are binary code 1 and binary code 2 respectively, and then Binary code 1 and binary code 2 are converted into corresponding colorless compound solutions according to Figure 1, namely the compound used in binary code 1 and the corresponding secret key 1 as shown in Figure 9, the compound used in binary code 2 and the corresponding The second secret key is shown in Figure 9, that is, the letter information segment to be encrypted is encrypted by ZHOU.
2、破解部分:将摩尔浓度为1mM的Ni3+修饰的含有80%Gd的NaGdF4:Yb,Er,Tm的水溶液分别与摩尔浓度均为5mM的对苯二酚(HQ)的水溶液、抗坏血酸(AA)的水溶液、双氧水(H2O2)的水溶液和六氰合亚铁络合离子([Fe(CN)6]4-)的水溶液以体积比为1:1在厚度不小于0.5cm的平板上混合于20℃下反应5min,分别以980nm近红外激光、808nm近红外激光和T1磁共振成像模式下拍摄图片,经过拟彩处理后,分别测得各反应所得物的光(L)、热(H)和磁(M)的信号变化,测试结果分别如图10、图11和图12。从而将所述秘钥一和秘钥二均转化为二进制数字,分别得到二进制密码一和二进制密码二,最后将二进制密码一和二进制密码二转化为字母,即得到原信息。相应的解密结果如图13所示。2. Cracking part: the aqueous solution of NaGdF4 :Yb, Er, Tm containing 80% Gd modified by Ni3+ with a molar concentration of 1mM and the aqueous solution of hydroquinone (HQ) and ascorbic acid with a molar concentration of 5mM respectively (AA) aqueous solution, hydrogen peroxide (H2 O2 ) aqueous solution and hexacyanoferrous complex ion ([Fe(CN)6 ]4- ) aqueous solution with a volume ratio of 1:1 in a thickness not less than 0.5cm mixed on a flat plate and reacted at 20°C for 5 minutes, and took pictures with 980nm near-infrared laser, 808nm near- infrared laser and T1 magnetic resonance imaging mode respectively. After pseudo-color treatment, the light (L ), thermal (H) and magnetic (M) signal changes, the test results are shown in Figure 10, Figure 11 and Figure 12, respectively. Thus, both the secret key 1 and the secret key 2 are converted into binary numbers to obtain binary code 1 and binary code 2 respectively, and finally the binary code 1 and binary code 2 are converted into letters to obtain the original information. The corresponding decryption results are shown in Figure 13.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510416930.XACN106355102B (en) | 2015-07-15 | 2015-07-15 | Based on nano material and binary double code key symmetric encryption methods with composite signal |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510416930.XACN106355102B (en) | 2015-07-15 | 2015-07-15 | Based on nano material and binary double code key symmetric encryption methods with composite signal |
| Publication Number | Publication Date |
|---|---|
| CN106355102Atrue CN106355102A (en) | 2017-01-25 |
| CN106355102B CN106355102B (en) | 2019-04-02 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510416930.XAExpired - Fee RelatedCN106355102B (en) | 2015-07-15 | 2015-07-15 | Based on nano material and binary double code key symmetric encryption methods with composite signal |
| Country | Link |
|---|---|
| CN (1) | CN106355102B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106867539A (en)* | 2017-03-08 | 2017-06-20 | 盐城工学院 | A kind of super-small hexagonal phase nanomatrix material and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040217298A1 (en)* | 1998-09-18 | 2004-11-04 | Bawendi Moungi G. | Inventory control |
| US20100114555A1 (en)* | 2008-11-05 | 2010-05-06 | Sun Microsystems, Inc. | Handling mutex locks in a dynamic binary translation across heterogenous computer systems |
| CN102483810A (en)* | 2009-04-02 | 2012-05-30 | 锡克拜控股有限公司 | Identification and authentication using polymeric liquid crystal material marking |
| CN103684761A (en)* | 2013-12-25 | 2014-03-26 | 广西宝恒电子科技有限公司 | Coding and decoding method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040217298A1 (en)* | 1998-09-18 | 2004-11-04 | Bawendi Moungi G. | Inventory control |
| US20100114555A1 (en)* | 2008-11-05 | 2010-05-06 | Sun Microsystems, Inc. | Handling mutex locks in a dynamic binary translation across heterogenous computer systems |
| CN102483810A (en)* | 2009-04-02 | 2012-05-30 | 锡克拜控股有限公司 | Identification and authentication using polymeric liquid crystal material marking |
| CN103684761A (en)* | 2013-12-25 | 2014-03-26 | 广西宝恒电子科技有限公司 | Coding and decoding method |
| Title |
|---|
| LUOYUAN LI,YUXIN LIU, ET AL: "PEDOT nanocomposites mediated dual-modal photodynamic and photothermal targeted sterilization in both NIR I and II window", <BIOMATERIALS>* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106867539A (en)* | 2017-03-08 | 2017-06-20 | 盐城工学院 | A kind of super-small hexagonal phase nanomatrix material and preparation method thereof |
| Publication number | Publication date |
|---|---|
| CN106355102B (en) | 2019-04-02 |
| Publication | Publication Date | Title |
|---|---|---|
| Rinkel et al. | Synthesis of 10 nm β‐NaYF4: Yb, Er/NaYF4 core/shell upconversion nanocrystals with 5 nm particle cores | |
| Wang et al. | NaMgF3: Tb3+@ NaMgF3 nanoparticles containing deep traps for optical information storage | |
| Du et al. | Mechanically excited multicolor luminescence in lanthanide ions | |
| Cheng et al. | Er3+ sensitized photon upconversion nanocrystals | |
| Zhou et al. | Enabling photon upconversion and precise control of donor–acceptor interaction through interfacial energy transfer | |
| Yang et al. | Optical temperature sensing behavior of high‐efficiency upconversion: Er3+–Yb3+ co‐doped NaY (MoO4) 2 phosphor | |
| Terraschke et al. | SrAl2O4: Eu2+ (, Dy3+) Nanosized Particles: Synthesis and Interpretation of Temperature‐Dependent Optical Properties | |
| Miranda de Carvalho et al. | Microwave-assisted preparation of luminescent inorganic materials: A fast route to light conversion and storage phosphors | |
| Liu et al. | Enhancing emission intensity and thermal stability by charge compensation in Sr2Mg3P4O15: Eu3+ | |
| Qian et al. | Synthesis and downconversion emission property of Yb2O3: Eu3+ nanosheets and nanotubes | |
| Jacobsohn et al. | Fluoride nanoscintillators | |
| KR20130112600A (en) | Method for preparing transition metal pnictide magnetocaloric material with boron doped | |
| Luo et al. | Phase formation evolution and upconversion luminescence properties of LaOF: Yb3+/Er3+ prepared via a two-step reaction | |
| Korzhik et al. | First Observation of the Scintillation Cascade in Tb3+‐Doped Quaternary Garnet Ceramics | |
| Guan et al. | Preparation, structure, and up‐conversion luminescence of Yb3+/Er3+ codoped SrIn2O4 phosphors | |
| Wang et al. | Direct crystallization of sulfate‐type layered hydroxide, derivation of (Gd, Tb) 2O3 green phosphor, and photoluminescence | |
| Satheesh Kumar et al. | Synthesis and photoluminescence properties of Sm3+‐doped YAl3 (BO3) 4 phosphor | |
| Li et al. | Tailorable multicolor up‐conversion emissions in Tm3+/Ho3+/Yb3+ co‐doped LiLa (MoO4) 2 | |
| CN106355102A (en) | Double-secret-key symmetrical encryption method based on nano-material with composite signals and binary system | |
| Lu et al. | Fabrication and characterization of transparent (Y0. 98− xTb0. 02Eux) 2O3 ceramics with color‐tailorable emission | |
| Voncken | Applications of the rare earths | |
| Lu et al. | Heterovalent Co‐Doped LiLuF4 Composite Flexible Films as Persistent Luminescence Scintillator for X‐Ray High‐Resolution Extension Imaging | |
| Qin et al. | Ultralong room-temperature phosphorescence of boron carbon oxynitride nanodots encapsulated in pyrophosphate in dry and wet states for fingerprint detection and information protection | |
| Li et al. | A novel strategy to achieve NaGdF4: Eu3+ nanofibers with color‐tailorable luminescence and paramagnetic performance | |
| Guan et al. | Luminescence properties of Eu3+‐doped MgAl2O4 nanopowders synthesized by micro‐emulsion method |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20190402 |