技术领域technical field
本发明涉及显示设备技术领域,更具体地说,涉及一种全息衍射光波导镜片和采用该光波导镜片的三维显示装置。The invention relates to the technical field of display equipment, and more specifically, relates to a holographic diffraction optical waveguide lens and a three-dimensional display device using the optical waveguide lens.
背景技术Background technique
随着虚拟现实和增强现实技术的发展,近眼式显示设备得到快速发展,例如谷歌的Google Glass和微软的Hololens。增强现实的近眼式显示是一种将光场成像在现实空间的技术,并且可以同时兼顾虚拟和现实的操作。利用传统光学光波导元件耦合图像光进入人眼的方式已经被采用,包括使用棱镜、反射镜、半透半反光光波导、全息及衍射光栅。光波导显示系统是利用全反射原理实现光波传输,结合衍射元件,实现光线的定向传导,进而将图像光导向人眼,使用户可以看到投影的图像。With the development of virtual reality and augmented reality technologies, near-eye display devices have developed rapidly, such as Google Glass of Google and Hololens of Microsoft. The near-eye display of augmented reality is a technology that images light fields in real space, and can take into account both virtual and real operations. Coupling image light into the human eye using traditional optical waveguide components has been used, including the use of prisms, mirrors, transflective waveguides, holograms, and diffraction gratings. The optical waveguide display system uses the principle of total reflection to realize light wave transmission, combined with diffraction elements to realize directional transmission of light, and then guides the image light to the human eye, so that users can see the projected image.
目前主流的近眼式增强现实的显示设备大多采用光波导原理。例如,Hololens是将LCOS上的图像经过三片全息光栅耦合至光波导,通过三片光波导分别传输,最后在人眼正前方通过相应的全息光栅耦合输出,投影至人眼,并且以多层光波导的方式,实现彩色投影。CN201620173623.3提出一种近眼显示系统及头戴显示设备,光源向导光系统输入照明光束,导光系统将光束进行传输扩展照射到图像显示系统所显示的全息图,以透射方式激活全息图。微软在专利W02014/210349 A1中提出采用滤色进行显示效率优化,通过减少至少一种颜色的色彩带宽并将变窄的色彩带宽与可视光谱中邻近的颜色的带宽耦合到同一层衍射光波导。然而,在实现近眼式彩色显示的效果及成本方面,仍然缺少简单、低成本的实现方式。Most of the current mainstream near-eye augmented reality display devices use the optical waveguide principle. For example, Hololens couples the image on the LCOS to the optical waveguide through three holographic gratings, transmits them separately through the three optical waveguides, and finally couples the image directly in front of the human eye through the corresponding holographic grating and projects it to the human eye. The way of optical waveguide realizes color projection. CN201620173623.3 proposes a near-eye display system and a head-mounted display device. The light source inputs an illumination beam to the light guide system, and the light guide system transmits and expands the light beam to irradiate the hologram displayed by the image display system, and activates the hologram in a transmission manner. In patent W02014/210349 A1, Microsoft proposes to use color filtering to optimize display efficiency by reducing the color bandwidth of at least one color and coupling the narrowed color bandwidth and the bandwidth of adjacent colors in the visible spectrum to the same layer of diffractive optical waveguide . However, in terms of the effect and cost of realizing near-eye color display, there is still a lack of a simple and low-cost implementation.
发明内容Contents of the invention
有鉴于此,本发明提供了一种全息衍射波导镜片和采用该镜片的彩色三维显示装置,通过单层波导上的纳米光栅像素的空间复用,实现简单、低成本近眼式三维显示。In view of this, the present invention provides a holographic diffractive waveguide lens and a color three-dimensional display device using the lens, through spatial multiplexing of nano-grating pixels on a single-layer waveguide, simple and low-cost near-eye three-dimensional display is realized.
为达到上述目的,本发明的技术方案如下:To achieve the above object, the technical scheme of the present invention is as follows:
一种单片全息衍射光波导镜片,包括衍射光波导镜片单元;A single-chip holographic diffractive optical waveguide lens, including a diffractive optical waveguide lens unit;
所述衍射光波导镜片单元包括一层光波导及设置于光波导上表面或下表面的三个功能性区域;The diffractive optical waveguide lens unit includes a layer of optical waveguide and three functional areas arranged on the upper or lower surface of the optical waveguide;
所述三个功能性区域设置于光波导上同一平面空间上的不同位置,分别为第一功能性区域、第二功能性区域和第三功能性区域;三个功能性区域用于传导图像光束输出至人眼,三个功能区域上均设有全息衍射光栅;外部图像光束经第一功能性区域入射,耦合进入光波导,在光波导全反射的作用下,向第二功能性区域传播,经第二功能性区域衍射,在光波导全反射的作用下,继续向第三功能性区域传播,最后经第三功能性区域衍射,向外部空间出射图像光束。The three functional areas are set at different positions on the same plane space on the optical waveguide, and are respectively the first functional area, the second functional area and the third functional area; the three functional areas are used to guide the image beam The output is to the human eye, and the three functional areas are equipped with holographic diffraction gratings; the external image beam is incident on the first functional area, coupled into the optical waveguide, and propagates to the second functional area under the action of total reflection of the optical waveguide. After being diffracted by the second functional area, under the action of the total reflection of the optical waveguide, it continues to propagate to the third functional area, and finally diffracted by the third functional area to emit an image beam to the external space.
与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:
本发明提出了一种采用空间复用的单片全息衍射波导镜片,每层衍射光波导镜片单元仅采用单层波导镜片,创造性的多个功能性区域的设置,使得采用单片波导就可满足近眼三维显示系统的要求,相比多层衍射波导镜片,本方案镜片的厚度显著变薄。使实现简单、低成本构建三维显示系统成为可能。The present invention proposes a single-chip holographic diffractive waveguide lens that adopts spatial multiplexing. Each layer of diffractive optical waveguide lens unit only uses a single-layer waveguide lens. The creative setting of multiple functional areas makes it possible to use a single-chip waveguide. The requirements of the near-eye 3D display system, compared with the multi-layer diffractive waveguide lens, the thickness of the lens of this solution is significantly thinner. It makes it possible to realize simple and low-cost construction of a three-dimensional display system.
进一步的,三个功能性区域均包括多个结构单元像素,每一结构单元像素至少包括三个结构子单元像素,所述结构子单元像素用于与各基色图像光一一分别对应,每一结构子单元像素只与对应基色图像光耦合,通过光波导全反射及三个功能性区域的衍射,光线在第三功能性区域耦合输出至人眼,实现单片全息衍射光波导镜片的彩色显示。Further, each of the three functional areas includes a plurality of structural unit pixels, and each structural unit pixel includes at least three structural subunit pixels, and the structural subunit pixels are used for one-to-one correspondence with each primary color image light, each Structural sub-unit pixels are only optically coupled with the corresponding primary color image, through the total reflection of the optical waveguide and the diffraction of the three functional areas, the light is coupled and output to the human eye in the third functional area, realizing the color display of a single holographic diffraction optical waveguide lens .
本发明提供的技术方案,采用单个衍射光波导镜片单元即可实现彩色显示,并且实现各基色图像光耦合功能性区域互不干扰,输出光合并实现彩色显示。The technical solution provided by the present invention can realize color display by using a single diffractive optical waveguide lens unit, and realize that the optical coupling functional areas of each primary color image do not interfere with each other, and output light is combined to realize color display.
进一步的,结构子单元像素为三个,且三个结构子单元像素分别为红色子单元像素、绿色子单元像素和蓝色子单元像素,红色子单元像素只与红色光波段图像光耦合,绿色图像光子单元像素只与绿色光波段图像光耦合,蓝色图像光子单元像素只与蓝色光波段图像光耦合。Further, there are three structural sub-unit pixels, and the three structural sub-unit pixels are red sub-unit pixels, green sub-unit pixels and blue sub-unit pixels, the red sub-unit pixels are only optically coupled with the red light band image, and the green sub-unit pixels The image photon unit pixels are only optically coupled to the image in the green light band, and the blue image photon unit pixels are only optically coupled to the blue light band image.
在实际应用中,图像光一般由红绿蓝三基色图像光组成,当外部器件(如图像生成装置)产生的图像光耦合进第一功能性区域,蓝色及绿色图像光入射至红色图像光子单元像素时,衍射角不满足光波导内全反射要求,从而无法继续在光波导内传输;红色及绿色图像光入射至蓝色图像光子单元像素时,衍射角不满足光波导内全反射要求,从而无法继续在光波导内传输;蓝色及红色图像光入射至绿色图像光子单元像素时,衍射角不满足光波导内全反射要求,从而无法继续在光波导内传输;因此每个结构子单元像素有对应的颜色图像光,不会形成光线干扰,通过光波导全反射及功能性区域衍射,光线在第三功能性区域耦合输出至人眼,实现单片全息衍射光波导镜片单元的彩色显示。单片衍射光波导镜片单元的三个功能性区域均含有结构单元像素,其单元像素中的衍射光栅互不干扰,红色图像光通过对应红色图像光的结构子单元像素实现全反射,绿色图像光通过对应绿色图像光的结构子单元像素实现全反射,由于全反射效应,蓝色图像光通过对应红色图像光的结构子单元产生的衍射角不满足全反射要求,透射出波导,因此不存在光线之间的干扰。In practical applications, the image light is generally composed of red, green and blue primary color image light. When the image light generated by an external device (such as an image generating device) is coupled into the first functional area, the blue and green image light is incident on the red image photon When the unit pixel is used, the diffraction angle does not meet the requirements of total reflection in the optical waveguide, so it cannot continue to be transmitted in the optical waveguide; when the red and green image light is incident on the blue image photon unit pixel, the diffraction angle does not meet the requirements of total reflection in the optical waveguide. Therefore, it cannot continue to transmit in the optical waveguide; when the blue and red image light is incident on the pixel of the green image photonic unit, the diffraction angle does not meet the requirements of total reflection in the optical waveguide, so it cannot continue to transmit in the optical waveguide; therefore, each structural subunit The pixels have corresponding color image light, which will not cause light interference. Through the total reflection of the optical waveguide and the diffraction of the functional area, the light is coupled to the human eye in the third functional area, and the color display of the single-chip holographic diffraction optical waveguide lens unit is realized. . The three functional areas of the single-piece diffractive optical waveguide lens unit all contain structural unit pixels, and the diffraction gratings in the unit pixels do not interfere with each other. The red image light is totally reflected through the structural sub-unit pixels corresponding to the red image light, and the green image light Total reflection is achieved through the structural subunit pixels corresponding to the green image light. Due to the total reflection effect, the diffraction angle generated by the blue image light passing through the structural subunit corresponding to the red image light does not meet the requirements of total reflection, and it is transmitted out of the waveguide, so there is no light interference between.
同理,如果外部器件产生的图像光由四基色或其它数量及不同光波段的光构成时,只需要构建对应数量及衍射关系的结构子单元像素即可,各光波段的图像光在光波导内传播时互不干扰,最终在人眼合成彩色图像显示。Similarly, if the image light generated by the external device is composed of four primary colors or other quantities and different light bands, it is only necessary to construct structural subunit pixels corresponding to the number and diffraction relationship. They do not interfere with each other during internal propagation, and finally display a composite color image in the human eye.
进一步的,所述第一功能性区域的结构单元像素由具有波长选择性的光栅组成。Further, the structural unit pixels in the first functional region are composed of gratings with wavelength selectivity.
进一步的,所述具有波长选择性的光栅包括全息体光栅或斜光栅。Further, the wavelength-selective grating includes a holographic volume grating or an oblique grating.
进一步的,所述全息衍射光栅为纳米衍射光栅,所述全息衍射光栅的周期及取向由入射光线的波长、入射角、衍射光线的衍射角和衍射方位角决定。Further, the holographic diffraction grating is a nano-diffraction grating, and the period and orientation of the holographic diffraction grating are determined by the wavelength of the incident light, the incident angle, the diffraction angle and the diffraction azimuth of the diffracted light.
进一步的,所述结构子单元像素的尺寸为5微米-200微米。Further, the size of the structural subunit pixel is 5 microns-200 microns.
进一步的,上述单片全息衍射光波导镜片由一个衍射光波导镜片单元构成。Further, the above-mentioned single-piece holographic diffractive optical waveguide lens is composed of one diffractive optical waveguide lens unit.
本发明还提供一种三维显示装置,包括图像显示装置,和左、右两个前述的单片全息衍射光波导镜片;左、右单片全息衍射光波导镜片分别对应左眼和右眼,用于传输光线至左右眼;所述图像显示装置包括光源、投影光学系统及图像信息装置,用于向左、右两个单片全息衍射光波导镜片输出图像光。The present invention also provides a three-dimensional display device, including an image display device, and two left and right single-chip holographic diffractive optical waveguide lenses; the left and right single-chip holographic diffractive optical waveguide lenses correspond to the left eye and right eye respectively, To transmit light to the left and right eyes; the image display device includes a light source, a projection optical system and an image information device for outputting image light to the left and right single-chip holographic diffractive optical waveguide lenses.
进一步的,所述图像显示装置包括左眼图像光生成装置和右眼图像光生成装置,分别生成左眼图像光和右眼图像光,所述左眼图像光耦合至左单片全息衍射光波导镜片,输出耦合光至左眼;右眼图像光耦合至右单片全息衍射光波导镜片,输出耦合光至右眼,左右眼同时接收到输出图像光,在人眼前方远处呈现彩色三维显示。Further, the image display device includes a left-eye image light generating device and a right-eye image light generating device, which respectively generate left-eye image light and right-eye image light, and the left-eye image light is coupled to the left single-chip holographic diffraction optical waveguide The lens outputs coupled light to the left eye; the right eye image light is coupled to the right single-chip holographic diffractive optical waveguide lens, and the coupled light is output to the right eye, and the left and right eyes receive the output image light at the same time, presenting a color three-dimensional display in the distance in front of the human eye .
附图说明Description of drawings
为了更清楚地说明本发明实施例技术中的技术方案,下面将对实施例技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the following will briefly introduce the accompanying drawings that need to be used in the technical description of the embodiments. Obviously, the accompanying drawings in the following description are only some implementations of the present invention For example, those of ordinary skill in the art can also obtain other drawings based on these drawings on the premise of not paying creative efforts.
图1是本发明的单片全息衍射光波导镜片的剖面结构示意图;Fig. 1 is the sectional structure schematic diagram of the monolithic holographic diffractive optical waveguide lens of the present invention;
图2是图1所示的单片全息衍射光波导镜片的平面结构示意图;Fig. 2 is a schematic plan view of the monolithic holographic diffractive optical waveguide lens shown in Fig. 1;
图3a-图3c是本发明的单片衍射波导镜片的功能性区域的平面结构示意图;Fig. 3a-Fig. 3c are the planar structure diagrams of the functional area of the single diffractive waveguide lens of the present invention;
图4a和图4b分别示出了XZ平面和XY平面的光束传播示意图;Fig. 4a and Fig. 4b respectively show the schematic diagrams of beam propagation in the XZ plane and the XY plane;
图4c是本发明的第一功能性区域的XZ平面的倾斜光栅剖面示意图;Fig. 4c is a schematic cross-sectional view of an inclined grating on the XZ plane of the first functional region of the present invention;
图5是本发明的第一功能性区域至第二功能性区域的剖面光束传播示意图;Fig. 5 is a schematic diagram of cross-sectional beam propagation from the first functional area to the second functional area of the present invention;
图6是本发明的第二功能性区域至第三功能性区域的剖面光束传播示意图;Fig. 6 is a schematic diagram of cross-sectional light beam propagation from the second functional area to the third functional area of the present invention;
图7是本发明的第二功能性区域至第三功能性区域的彩色剖面结构示意图;Fig. 7 is a schematic diagram of the color cross-sectional structure of the second functional area to the third functional area of the present invention;
图8是本发明的优化的单片全息衍射波导镜片实现彩色的剖面结构示意图;Fig. 8 is a schematic cross-sectional structure diagram of the optimized single-piece holographic diffractive waveguide lens of the present invention to realize color;
图9是本发明的彩色滤光片的平面结构示意图;9 is a schematic plan view of the color filter of the present invention;
图10是本发明的一种三维显示装置的平面结构示意图;10 is a schematic plan view of a three-dimensional display device of the present invention;
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
一种单片全息衍射光波导镜片,包括:包括衍射光波导镜片单元;所述衍射光波导镜片单元包括一层光波导130及设置于光波导上表面或下表面的三个功能性区域;如图2所示;所述三个功能性区域设置于光波导上同一平面空间上的不同位置,分别为第一功能性区域201、第二功能性区域202和第三功能性区域203;三个功能性区域用于传导图像光束输出至人眼,三个功能区域上均设有全息衍射光栅;在实际应用中,将外部图像光束(例如图像生成装置发出的带图像信息的图像光)经第一功能性区域201入射,耦合进入光波导130,在光波导130全反射的作用下,向第二功能性区域202传播,经第二功能性区域202衍射,在光波导130全反射的作用下,继续向第三功能性区203域传播,最后经第三功能性区域203衍射,向外部空间出射图像光束。A single-piece holographic diffractive optical waveguide lens, comprising: a diffractive optical waveguide lens unit; the diffractive optical waveguide lens unit includes a layer of optical waveguide 130 and three functional areas arranged on the upper or lower surface of the optical waveguide; As shown in Fig. 2; the three functional areas are arranged at different positions on the same plane space on the optical waveguide, which are respectively the first functional area 201, the second functional area 202 and the third functional area 203; three The functional area is used to guide the image beam output to the human eye, and the three functional areas are equipped with holographic diffraction gratings; in practical applications, the external image beam (such as the image light with image information emitted by the image generating device) A functional area 201 is incident, coupled into the optical waveguide 130, under the action of total reflection of the optical waveguide 130, propagates to the second functional area 202, diffracted by the second functional area 202, and under the action of total reflection of the optical waveguide 130 , continue to propagate toward the third functional area 203, and finally diffract through the third functional area 203, and output the image beam to the external space.
与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:
本发明提出了一种采用空间复用的单片全息衍射波导镜片,创造性的多个功能性区域的设置,使得采用单片波导就可满足近眼三维显示系统的要求,相比多层衍射波导镜片,本方案镜片的厚度显著变薄。使实现简单、低成本构建三维显示系统成为可能。单个衍射光波导镜片单元可以作为基础的三维显示装置的部件独立生产销售,也可以用以生产三维显示装置。The present invention proposes a single-chip holographic diffractive waveguide lens that uses space multiplexing, and the creative setting of multiple functional areas makes it possible to meet the requirements of a near-eye three-dimensional display system by using a single-chip waveguide. Compared with multi-layer diffractive waveguide lenses , the thickness of the lens of this solution is significantly thinner. It makes it possible to realize simple and low-cost construction of a three-dimensional display system. A single diffractive optical waveguide lens unit can be independently produced and sold as a component of a basic three-dimensional display device, and can also be used to produce a three-dimensional display device.
在一些实施例中,为了实现彩色三维显示,三个功能性区域均包括多个结构单元像素,每一结构单元像素至少包括三个结构子单元像素,所述结构子单元像素用于与各基色图像光一一分别对应,每一结构子单元像素只与对应基色图像光耦合,通过光波导全反射及三个功能性区域的衍射,光线在第三功能性区域耦合输出至人眼,实现单片全息衍射光波导镜片的彩色显示。In some embodiments, in order to realize color three-dimensional display, each of the three functional areas includes a plurality of structural unit pixels, and each structural unit pixel includes at least three structural subunit pixels, and the structural subunit pixels are used to communicate with each primary color The image light corresponds to one by one, and each structural subunit pixel is only coupled with the corresponding primary color image light. Through the total reflection of the optical waveguide and the diffraction of the three functional areas, the light is coupled and output to the human eye in the third functional area, realizing a single A color display of a holographic diffractive optical waveguide lens.
本发明提供的技术方案,采用单个衍射光波导镜片单元即可实现彩色显示,并且实现各基色图像光耦合功能性区域互不干扰,输出光合并实现彩色显示。The technical solution provided by the present invention can realize color display by using a single diffractive optical waveguide lens unit, and realize that the optical coupling functional areas of each primary color image do not interfere with each other, and output light is combined to realize color display.
例如,结构子单元像素为三个,且三个结构子单元像素分别为红色子单元像素、绿色子单元像素和蓝色子单元像素,红色子单元像素只与红色光波段图像光耦合,绿色图像光子单元像素只与绿色光波段图像光耦合,蓝色图像光子单元像素只与蓝色光波段图像光耦合。For example, there are three structural sub-unit pixels, and the three structural sub-unit pixels are red sub-unit pixels, green sub-unit pixels and blue sub-unit pixels, the red sub-unit pixels are only optically coupled with the red light band image, and the green image The photon unit pixel is only optically coupled with the green light band image, and the blue image photon unit pixel is only optically coupled with the blue light band image.
在实际应用中,图像光一般由红绿蓝三基色图像光组成,当外部器件(如图像生成装置)产生的图像光耦合进第一功能性区域,蓝色及绿色图像光入射至红色图像光子单元像素时,衍射角不满足光波导内全反射要求,从而无法继续在光波导内传输;红色及绿色图像光入射至蓝色图像光子单元像素时,衍射角不满足光波导内全反射要求,从而无法继续在光波导内传输;蓝色及红色图像光入射至绿色图像光子单元像素时,衍射角不满足光波导内全反射要求,从而无法继续在光波导内传输;因此每个结构子单元像素有对应的颜色图像光,不会形成光线干扰,通过光波导全反射及功能性区域衍射,光线在第三功能性区域耦合输出至人眼,实现单片全息衍射光波导镜片单元的彩色显示。单片衍射光波导镜片单元的三个功能性区域均含有结构单元像素,其单元像素中的衍射光栅互不干扰,红色图像光通过对应红色图像光的结构子单元像素实现全反射,绿色图像光通过对应绿色图像光的结构子单元像素实现全反射,由于全反射效应,蓝色图像光通过对应红色图像光的结构子单元产生的衍射角不满足全反射要求,透射出波导,因此不存在光线之间的干扰。In practical applications, the image light is generally composed of red, green and blue primary color image light. When the image light generated by an external device (such as an image generating device) is coupled into the first functional area, the blue and green image light is incident on the red image photon When the unit pixel is used, the diffraction angle does not meet the requirements of total reflection in the optical waveguide, so it cannot continue to be transmitted in the optical waveguide; when the red and green image light is incident on the blue image photon unit pixel, the diffraction angle does not meet the requirements of total reflection in the optical waveguide. Therefore, it cannot continue to transmit in the optical waveguide; when the blue and red image light is incident on the pixel of the green image photonic unit, the diffraction angle does not meet the requirements of total reflection in the optical waveguide, so it cannot continue to transmit in the optical waveguide; therefore, each structural subunit The pixels have corresponding color image light, which will not cause light interference. Through the total reflection of the optical waveguide and the diffraction of the functional area, the light is coupled to the human eye in the third functional area, and the color display of the single-chip holographic diffraction optical waveguide lens unit is realized. . The three functional areas of the single-piece diffractive optical waveguide lens unit all contain structural unit pixels, and the diffraction gratings in the unit pixels do not interfere with each other. The red image light is totally reflected through the structural sub-unit pixels corresponding to the red image light, and the green image light Total reflection is achieved through the structural subunit pixels corresponding to the green image light. Due to the total reflection effect, the diffraction angle generated by the blue image light passing through the structural subunit corresponding to the red image light does not meet the requirements of total reflection, and it is transmitted out of the waveguide, so there is no light interference between.
同理,如果外部器件产生的图像光由四基色或其它数量及不同光波段的光构成时,只需要构建对应数量及衍射关系的结构子单元像素即可,各光波段的图像光在光波导内传播时互不干扰,最终在人眼合成彩色图像显示。Similarly, if the image light generated by the external device is composed of four primary colors or other quantities and different light bands, it is only necessary to construct structural subunit pixels corresponding to the number and diffraction relationship. They do not interfere with each other during internal propagation, and finally display a composite color image in the human eye.
在一些实施例中,所述光波导镜片的三个功能性区域的形状方位不同,第一功能性区域形状为圆形或者矩形,第二功能性区域形状为三角形或者矩形,第三功能性区域为矩形。In some embodiments, the shape and orientation of the three functional regions of the optical waveguide lens are different. The first functional region is circular or rectangular in shape, the second functional region is triangular or rectangular in shape, and the third functional region is is a rectangle.
在一些实施例中,所述第一功能性区域的结构单元像素包括全息光栅或斜光栅,具有波长选择性。可采用斜光栅进行分光,通过控制斜光栅的倾斜角度及周期,实现不同颜色波段的光通过对应结构子单元。In some embodiments, the structural unit pixels of the first functional region include a holographic grating or an oblique grating with wavelength selectivity. The oblique grating can be used for light splitting, and by controlling the inclination angle and period of the oblique grating, light of different color bands can pass through the corresponding structural subunits.
在实际应用中,所述全息衍射光栅可制作为纳米衍射光栅,纳米衍射光栅的周期及取向由入射光线的波长、入射角、衍射光线的衍射角和衍射方位角决定。In practical applications, the holographic diffraction grating can be made as a nano-diffraction grating, and the period and orientation of the nano-diffraction grating are determined by the wavelength of the incident light, the incident angle, the diffraction angle and the diffraction azimuth of the diffracted light.
在实际应用中,所述结构子单元像素的尺寸为5微米-200微米,可根据需要选择该数值区间中包含5微米和200微米在内的任一数值。In practical applications, the size of the pixel of the structural subunit is 5 microns to 200 microns, and any value between 5 microns and 200 microns can be selected according to needs.
在实际应用中,前述单片全息衍射光波导镜片可由一个衍射光波导镜片单元构成。本发明创造性的设置多个(仅以三个为例)功能性区域,对应于图像光或照明光源的入射耦合、光在波导内部的传播角度的改变、出射光并在人眼前的空间中会聚层虚拟三维图像,这样既可实现单片波导结构的三维显示应用。In practical applications, the aforementioned single-chip holographic diffractive optical waveguide lens can be composed of one diffractive optical waveguide lens unit. The present invention creatively sets multiple (only three as an example) functional areas, corresponding to the in-coupling of image light or illumination light source, the change of the propagation angle of light inside the waveguide, and the convergence of outgoing light in the space in front of the human eye. Layer virtual three-dimensional image, so that the three-dimensional display application of the monolithic waveguide structure can be realized.
本发明还提供一种三维显示装置,包括图像显示装置,和左、右两个上述的单片全息衍射光波导镜片;左、右单片全息衍射光波导镜片分别对应左眼和右眼,用于传输光线至左右眼;所述图像显示装置包括光源、投影光学系统及图像信息装置,用于向左、右两个单片全息衍射光波导镜片输出图像光。The present invention also provides a three-dimensional display device, including an image display device, and two left and right single-chip holographic diffractive optical waveguide lenses; the left and right single-chip holographic diffractive optical waveguide lenses correspond to the left eye and right eye respectively, To transmit light to the left and right eyes; the image display device includes a light source, a projection optical system and an image information device for outputting image light to the left and right single-chip holographic diffractive optical waveguide lenses.
在一些实施例中,所述显示装置的光源包括红、绿、蓝三基色点光源或者平行光源;或者为,白光点光源或平行光源。In some embodiments, the light source of the display device includes a red, green, and blue primary color point light source or a parallel light source; or a white light point light source or a parallel light source.
在一些实施例中,所述图像信息装置设置为至少一片显示元件,所述显示元件包括LCOS显示屏和DMD数字微镜阵列。In some embodiments, the image information device is configured as at least one display element, and the display element includes an LCOS display screen and a DMD digital micromirror array.
在一些实施例中,所述图像显示装置包括左眼图像光生成装置和右眼图像光生成装置,分别生成左眼图像光和右眼图像光,所述左眼图像光耦合至左单片全息衍射光波导镜片,输出耦合光至左眼;右眼图像光耦合至右单片全息衍射光波导镜片,输出耦合光至右眼,左右眼同时接收到输出图像光,在人眼前方远处呈现三维显示。In some embodiments, the image display device includes a left-eye image light generating device and a right-eye image light generating device for respectively generating left-eye image light and right-eye image light, and the left-eye image light is coupled to the left single-chip holographic Diffractive optical waveguide lens, output coupled light to the left eye; right eye image light is coupled to the right single-chip holographic diffractive optical waveguide lens, output coupled light to the right eye, the left and right eyes receive the output image light at the same time, and present in the distance in front of the human eye 3D display.
当采用可实现彩色显示的单片全息衍射波导镜片时,可实现彩色三维显示。When using a single holographic diffractive waveguide lens that can realize color display, it can realize color three-dimensional display.
例如,一种全息衍射光波导镜片和图像生成装置组合构成的三维显示装置,全息衍射光波导镜片由一个衍射光波导镜片单元构成,参考图1,图1为衍射光波导镜片单元的剖面结构示意图,图像光102从作为图像生成装置的显示屏101发出,具备一定扩散角,经过透镜110聚焦成耦合光束103,耦合光束103包括红绿蓝三色图像光(当然不局限于红绿蓝三基色,根据实际需要,也可以是其他色彩组合),包含彩色图像信息。耦合光束103以一定扩散角耦合进入光波导130,光波导130上表面或下表面(图未画出)具有功能性结构区域,光束耦合至光波导,通过全反射及衍射作用,定向输出图像光(140、141和142)至人眼150。图1中,120为第一功能区的全息光栅,121为第三功能区的全息光栅。For example, a three-dimensional display device composed of a holographic diffractive optical waveguide lens and an image generating device, the holographic diffractive optical waveguide lens is composed of a diffractive optical waveguide lens unit, refer to Figure 1, Figure 1 is a schematic cross-sectional structure diagram of a diffractive optical waveguide lens unit , the image light 102 is emitted from the display screen 101 as an image generating device, has a certain diffusion angle, and is focused into a coupled beam 103 through a lens 110. The coupled beam 103 includes red, green, and blue image light (of course not limited to the three primary colors of red, green, and blue) , according to actual needs, it can also be other color combinations), including color image information. The coupling beam 103 is coupled into the optical waveguide 130 at a certain spread angle. The upper surface or the lower surface (not shown) of the optical waveguide 130 has a functional structure area. (140, 141 and 142) to the human eye 150. In FIG. 1 , 120 is a holographic grating in the first functional area, and 121 is a holographic grating in the third functional area.
参考图2,图2为图1所示的衍射光波导镜片单元的平面结构示意图;光波导130上表面存在三个不同位置形状的功能性区域(第一功能性区域201、第二功能性区域202和第三功能性区域203),耦合光束103先投射到第一功能性区域201,根据其作用,第一功能性区域201也可称作耦合功能性区域201,耦合光束103经第一功能性区域201入射进入光波导130后,经光波导130全反射作用,耦合光束进入第二功能性区域202,空间上改变光束走向,最后经第二功能性区域202的作用,将光束导向第三功能性区域203,第三功能性区域203也称为输出功能性区域,其以一定方向输出光束。With reference to Fig. 2, Fig. 2 is the plane structure schematic diagram of the diffractive optical waveguide lens unit shown in Fig. 1; There are three functional regions (the first functional region 201, the second functional region 201, the second functional region 202 and the third functional area 203), the coupling beam 103 is first projected onto the first functional area 201, according to its function, the first functional area 201 can also be called the coupling functional area 201, the coupling beam 103 passes through the first functional area After the functional region 201 is incident into the optical waveguide 130, the coupled light beam enters the second functional region 202 through the total reflection of the optical waveguide 130, and the direction of the light beam is changed spatially. Finally, the light beam is guided to the third The functional area 203, the third functional area 203 is also referred to as the output functional area, which outputs light beams in a certain direction.
具体地,图3a-图3c均是是图2所示的第一功能性区域201的平面结构示意图(三种不同的实施方式示例);这些示例中仅画出第一功能性区域201的详细平面结构示意图,第二功能性区域202和第三功能性区域203的未画出,其具体分布可参考第一功能性区域201;在图3a-图3c中,第一功能性区域201包括多个结构单元301(又称为结构单元像素),结构单元301包括多个结构子单元(又称为结构子单元像素),在图3a所示的示例中,每个结构单元包括三个结构子单元,这三个结构子单元分别为红色图像光子单元302a,绿色图像光子单元302b和蓝色图像光子单元302c。需要注意的是,本实施例只例举了1*3横向排布方式。也可以有其他多种排布方式,如图3c所示,图3c中结构单元像素301中也包含三个结构子单元像素,如其中虚线标示出的结构子单元302a,图3c与图3a的区别在于全息光栅与横坐标之间角度不同。图3b中,结构单元301中的三个结构子单元呈品字形排列,其中虚线标示出了结构子单元302a。依据上述原理,结构单元像素及结构子单元像素可以根据需要做任何排列,只要其符合三维显示的实际技术要求。Specifically, FIG. 3a-FIG. 3c are all schematic diagrams of the planar structure of the first functional area 201 shown in FIG. 2 (three different implementation examples); only the details of the first functional area 201 are drawn in these examples. Schematic diagram of the plane structure, the second functional area 202 and the third functional area 203 are not shown, and their specific distribution can refer to the first functional area 201; in Fig. 3a-Fig. 3c, the first functional area 201 includes multiple A structural unit 301 (also called a structural unit pixel), the structural unit 301 includes a plurality of structural subunits (also called a structural subunit pixel), in the example shown in Figure 3a, each structural unit includes three structural subunits The three structural subunits are red image photon unit 302a, green image photon unit 302b and blue image photon unit 302c. It should be noted that this embodiment only exemplifies the 1*3 horizontal arrangement. There may also be other arrangements. As shown in FIG. 3c, the structural unit pixel 301 in FIG. The difference is that the angle between the holographic grating and the abscissa is different. In FIG. 3 b , the three structural subunits in the structural unit 301 are arranged in a zigzag shape, and the dotted line marks the structural subunit 302 a. According to the above principles, the structural unit pixels and structural subunit pixels can be arranged in any arrangement as required, as long as they meet the actual technical requirements of three-dimensional display.
本实施例中,与本全息衍射光波导镜片单元进行匹配组合成三维显示装置的图像生成装置的光源包括红、绿、蓝三基色点光源或者平行光源,或者白光点光源或平行光源。光波导130的三个功能性区域的形状方位不同,第一功能性区域201形状可为圆形或者方形,第二功能性区域202形状可为三角形或者方形,第三功能性区域203可为方形,且不局限于所述形状。所述功能性区域可位于镜片130上表面或下表面,各功能性区域的结构单元均包括衍射光栅,具备衍射及指向功能。上述衍射光栅可为纳米衍射光栅,可采用全息干涉技术、光刻技术或纳米压印技术制备而成。In this embodiment, the light source of the image generating device that is matched and combined with the holographic diffractive optical waveguide lens unit to form a three-dimensional display device includes red, green, and blue primary color point light sources or parallel light sources, or white light point light sources or parallel light sources. The shape and orientation of the three functional regions of the optical waveguide 130 are different. The shape of the first functional region 201 can be circular or square, the shape of the second functional region 202 can be triangular or square, and the shape of the third functional region 203 can be square. , and is not limited to the shape described. The functional areas can be located on the upper surface or the lower surface of the lens 130, and the structural units of each functional area include diffraction gratings, which have diffraction and pointing functions. The above-mentioned diffraction grating can be a nano-diffraction grating, which can be prepared by holographic interference technology, photolithography technology or nano-imprinting technology.
图像光从光波导镜片130第一功能性区域201传输至第二功能性区域202,沿第二功能性区域202方向扩展光束;图像光从光波导层130第二功能性区域202传输至第三功能性区域203,沿第三功能性区域203方向扩展光束。The image light is transmitted from the first functional area 201 of the optical waveguide lens 130 to the second functional area 202, and the light beam is expanded along the direction of the second functional area 202; the image light is transmitted from the second functional area 202 of the optical waveguide layer 130 to the third The functional area 203 expands the light beam along the direction of the third functional area 203 .
另外,红色图像光子单元302a,绿色图像光子单元302b和蓝色图像光子单元302c包括全息衍射光栅,且三个子单元全息衍射光栅的周期和取向角由入射角、入射方位角、衍射角和衍射方位角决定。根据第一功能性区域302a的结构子单元的分布,进一步决定302b和302c的结构子单元的分布。In addition, the red image photon unit 302a, the green image photon unit 302b and the blue image photon unit 302c include a holographic diffraction grating, and the period and orientation angle of the three subunit holographic diffraction gratings are determined by the incident angle, incident azimuth angle, diffraction angle and diffraction azimuth Angle decision. According to the distribution of the structural subunits in the first functional region 302a, the distribution of the structural subunits in 302b and 302c is further determined.
纳米全息衍射光栅为纳米级尺寸的纳米光栅,所述每一个纳米光栅即为一个纳米光栅像素,每个视角图像由多个纳米光栅像素会聚而成,各视角图像对应的纳米光栅像素通过互相嵌套的方式排列在结构单元上;The nano-holographic diffraction grating is a nano-grating with a nanoscale size. Each nano-grating is a nano-grating pixel. Each viewing angle image is formed by converging multiple nano-grating pixels. The nano-grating pixels corresponding to each viewing angle image are embedded in each other. Sets are arranged on the structural unit;
根据光栅方程,纳米光栅像素的周期、取向角满足以下关系:According to the grating equation, the period and orientation angle of the nano-grating pixel satisfy the following relationship:
(1)tanφ1=sinφ/(cosφ-n sinθ(Λ/λ))(1) tanφ1 = sinφ/(cosφ-n sinθ(Λ/λ))
(2)sin2(θ1)=(λ/Λ)2+(n sinθ)2-2n sinθcosφ(λ/Λ)(2) sin2 (θ1 )=(λ/Λ)2 +(n sinθ)2 -2n sinθcosφ(λ/Λ)
其中,光线以一定的角度入射到XY平面,θ1和φ1依次表示衍射光的衍射角和衍射光的方位角,θ和λ依次表示光源的入射角和波长,£和φ依次表示纳米衍射光栅的周期和取向角,n表示光波在介质中的折射率,其中,衍射角为衍射光线与z轴正方向夹角;方位角为衍射光线与x轴正方向夹角;入射角为入射光线与z轴正方向夹角;取向角为槽型方向与y轴正方向夹角。Among them, the light is incident on the XY plane at a certain angle, θ1 and φ1 represent the diffraction angle of the diffracted light and the azimuth angle of the diffracted light in turn, θ and λ represent the incident angle and wavelength of the light source in turn, and£ and φ represent the nano- diffraction in turn The period and orientation angle of the grating, n represents the refractive index of the light wave in the medium, where the diffraction angle is the angle between the diffracted light and the positive direction of the z-axis; the azimuth angle is the angle between the diffracted light and the positive direction of the x-axis; the incident angle is the angle of the incident light The included angle with the positive direction of the z-axis; the orientation angle is the included angle between the groove direction and the positive direction of the y-axis.
在本实施例中,光波导镜片130的功能性区域的结构单元的衍射光栅互不干扰,红色图像光通过对应红色图像光的结构子单元302a实现全反射,蓝色图像光通过对应蓝色图像光的结构子单元302c实现全反射,绿色图像光通过对应绿色图像光的结构子单元302b实现全反射,由于全反射效应,蓝色图像光通过对应红色图像光的结构302a子单元产生的衍射角不满足全反射要求,透射出光波导130;绿色色图像光通过对应红色图像光的结构302a子单元产生的衍射角不满足全反射要求,透射出光波导130,同理,绿色图像光和红色图像光通过蓝色图像光子单元302c及红色图像光和蓝色图像光通过绿色图像光子单元302b也不产生额外作用,不存在光线之间的干扰。In this embodiment, the diffraction gratings of the structural units in the functional regions of the optical waveguide lens 130 do not interfere with each other, the red image light passes through the structural subunit 302a corresponding to the red image light to achieve total reflection, and the blue image light passes through the corresponding blue image light The structure subunit 302c of light realizes total reflection, and the green image light realizes total reflection through the structure subunit 302b corresponding to the green image light, and due to the total reflection effect, the diffraction angle generated by the blue image light passing through the structure 302a subunit corresponding to the red image light Does not meet the requirement of total reflection, and is transmitted out of the optical waveguide 130; the diffraction angle generated by the green image light passing through the structure 302a subunit corresponding to the red image light does not meet the requirement of total reflection, and is transmitted out of the optical waveguide 130, similarly, the green image light and the red image light The blue image photon unit 302c and the red image light and the blue image light pass through the green image photon unit 302b do not produce additional effects, and there is no interference between light rays.
因此,本发明提供了一种全息衍射光波导镜片单元,仅采用单层光波导空间复用,三色图像光耦合功能性区域互不干扰,输出光合并实现彩色显示,制备技术较容易。Therefore, the present invention provides a holographic diffractive optical waveguide lens unit, which only uses a single-layer optical waveguide for spatial multiplexing, the three-color image optical coupling functional areas do not interfere with each other, and the output light is combined to realize color display, and the preparation technology is relatively easy.
图4a和图4b分别示出了XZ平面和XY平面的光束传播示意图。光线以θ(x)角度入射功能性区域201,以β(x)角度耦合进入光波导130,衍射角满足光波导内全反射要求,φ(x)为衍射方位角,用于改变光波导内光线方向。光线(光束)从第一功能性区域201传播,经过第二功能性区域202,从第三功能性区域203传播出去,三个功能性区域位相之和为0,不存在相位改变。功能性区域的衍射光栅子单元设计依据前述光栅方程,通过设计光栅周期及取向,进行光线定向传导。Fig. 4a and Fig. 4b respectively show schematic diagrams of beam propagation in the XZ plane and the XY plane. The light enters the functional area 201 at an angle of θ(x), and is coupled into the optical waveguide 130 at an angle of β(x). The diffraction angle meets the requirement of total reflection in the optical waveguide. direction of light. Light (beam) propagates from the first functional area 201, passes through the second functional area 202, and propagates out from the third functional area 203. The sum of the phases of the three functional areas is 0, and there is no phase change. The design of the diffraction grating subunit in the functional area is based on the aforementioned grating equation, and the light is directional and transmitted by designing the grating period and orientation.
具体地,图4c示出了第一功能性区域的XZ平面的斜光栅的结构示意图;在第一功能性区域,可采用斜光栅进行分光,通过控制斜光栅的倾斜角度及周期,实现不同颜色波段的光通过对应结构子单元。Specifically, Fig. 4c shows a schematic structural diagram of an oblique grating in the XZ plane of the first functional area; in the first functional area, an oblique grating can be used for light splitting, and different colors can be realized by controlling the inclination angle and period of the oblique grating. The light in the wavelength band passes through the corresponding structural subunit.
进一步理解光波导130内光线传导过程,图5和图6分别示出了XZ平面内,光线501和502以不同入射角入射第一功能性区域201,在光波导内传导至第二功能性区域202和在YZ平面内,第二功能性区域输出光601和602传导至第三功能性区域202。To further understand the light transmission process in the optical waveguide 130, FIG. 5 and FIG. 6 respectively show that in the XZ plane, the light rays 501 and 502 enter the first functional area 201 at different incident angles, and are transmitted to the second functional area in the optical waveguide. 202 and in the YZ plane, the second functional area output light 601 and 602 is conducted to the third functional area 202 .
具体地,如图5所示,图像光从显示屏101发出,具备一定扩散角,经过透镜110聚焦耦合光束501和502。光束501和502以一定扩散角耦合光波导130,β1(x)和β2(x)分别是光束502和501经过第一功能性区域201衍射产生的衍射角,光线510和511在光波导内满足全反射,其对应的全反射光束512和513反射至第二功能性区域202;如图6所示,光束沿X方向扩展;γ1(x)和γ2(x)分别是光束502和501经过第二功能性区域202的衍射式反射角,满足光波导130全反射条件,光线601和602全反射光线603和604耦合至第三功能性区域203,光束沿Y轴方向扩展。Specifically, as shown in FIG. 5 , the image light is emitted from the display screen 101 with a certain divergence angle, and is focused and coupled with light beams 501 and 502 through the lens 110 . The light beams 501 and 502 are coupled to the optical waveguide 130 at a certain spread angle, β1(x) and β2(x) are the diffraction angles generated by the diffraction of the light beams 502 and 501 through the first functional region 201 respectively, and the light rays 510 and 511 meet the requirements in the optical waveguide Total reflection, its corresponding total reflection light beams 512 and 513 are reflected to the second functional area 202; as shown in Figure 6, the light beams expand along the X direction; γ1(x) and γ2(x) are the light beams 502 and 501 respectively The diffractive reflection angle of the second functional region 202 satisfies the total reflection condition of the optical waveguide 130 , the light rays 601 and 602 are totally reflected and the light rays 603 and 604 are coupled to the third functional region 203 , and the light beam expands along the Y-axis direction.
在本实施例中,功能性区域的结构子单元的空间复用排布,可巧妙的利用光栅衍射方程,互相之间不干扰,在光波导内有序传导,最终耦合光束至人眼,实现彩色显示。In this embodiment, the spatial multiplexing arrangement of the structural subunits in the functional area can cleverly use the grating diffraction equation without interfering with each other, orderly conduct in the optical waveguide, and finally couple the light beam to the human eye, realizing Display in color.
具体地,图7示出了第二功能性区域202和第三功能性区域203的单片彩色化剖面结构示意图;701、702和703分别是第二功能性区域202空间复用的红绿蓝三色光栅结构子单元,704、705和706分别是第三功能性区域203空间复用的红绿蓝三色光栅结构子单元。通过空间复用结构子单元,实现颜色光空间传播,互不干扰。Specifically, FIG. 7 shows a schematic diagram of the single-chip colorized cross-sectional structure of the second functional area 202 and the third functional area 203; Three-color grating structure subunits, 704 , 705 and 706 are red, green and blue three-color grating structure subunits for spatial multiplexing in the third functional region 203 respectively. Through the spatial multiplexing of structural subunits, the spatial propagation of color light is realized without interfering with each other.
进一步优化彩色效果,图8示出了一种优化的单片全息衍射光波导镜片单元实现彩色的剖面结构示意图;光线102从图像生成装置的显示屏101发出,经过透镜110耦合成光束103,光束103先经过彩色滤光片801,进行空间分色,再耦合至光波导130。通过全反射及衍射作用,定向输出图像光(140、141和142)至人眼150。图8中,120为第一功能区的全息光栅,121为第三功能区的全息光栅。To further optimize the color effect, Fig. 8 shows a cross-sectional schematic diagram of an optimized single-chip holographic diffractive optical waveguide lens unit to realize color; light 102 is emitted from the display screen 101 of the image generating device, and is coupled into a beam 103 through a lens 110, and the beam 103 103 first passes through the color filter 801 for spatial color separation, and then is coupled to the optical waveguide 130 . The output image light (140, 141 and 142) is directed to the human eye 150 by total reflection and diffraction. In FIG. 8 , 120 is the holographic grating of the first functional area, and 121 is the holographic grating of the third functional area.
具体地,图9示出了彩色滤光片801的平面结构示意图;其中,彩色滤光片801由多个结构单元901组成,结构单元包括多个结构子单元(902a、902b和902c),这里可以为红色子单元902a、绿色子单元902b和红色子单元902c;红色子单元902a与红色图像光结构子单元302a对应,绿色子单元902b与绿色图像光结构子单元302b对应,蓝色子单元902c与蓝色图像光结构子单元302c对应;图像光103经过彩色滤光片801后,空间上分色再进入光波导130,使得不同颜色图像光完美匹配功能性区域结构子单元,进一步优化了光线传导,避免光线之间的干扰,对应地,第二功能性区域202和第三功能性区域203也与彩色滤光片801之间结构性匹配。Specifically, FIG. 9 shows a schematic plan view of the color filter 801; wherein, the color filter 801 is composed of a plurality of structural units 901, and the structural units include a plurality of structural subunits (902a, 902b and 902c), where It can be a red subunit 902a, a green subunit 902b, and a red subunit 902c; the red subunit 902a corresponds to the red image light structure subunit 302a, the green subunit 902b corresponds to the green image light structure subunit 302b, and the blue subunit 902c Corresponding to the blue image light structure subunit 302c; after the image light 103 passes through the color filter 801, it is spatially separated and then enters the optical waveguide 130, so that different color image lights perfectly match the functional area structure subunits, further optimizing the light conduction to avoid interference between light rays, and correspondingly, the second functional area 202 and the third functional area 203 are also structurally matched with the color filter 801 .
在构成近眼式三维显示装置时,可采用图像显示装置加上两片上述的衍射波导镜片单元组成左右全息衍射光波导镜片,左右全息衍射光波导镜片分别对应左眼和右眼,用于传输光线至左右眼;所述图像显示装置包括光源、光学系统及图像信息装置,用于输出图像光。其中,图像信息装置设置为至少一片显示元件,显示元件包括LCOS显示屏和DMD数字微镜阵列。显示屏101出射图像光,经过透镜110(光学系统)聚焦,图像光耦合至光波导130,经过光波导及光栅衍射,输出至人眼150。对称设置对应左右眼的彩色显示装置,可同时使人眼接收来自对应全息衍射光波导镜片的耦合图像光,利用双眼视差,实现三维显示。如图10所示。120为第一功能区的全息光栅,121为第三功能区的全息光栅。1001表示对应于左眼的部分装置,图中1001圈示的范围之外的部分装置是对应于右眼的部分装置。When forming a near-eye three-dimensional display device, an image display device plus two above-mentioned diffractive waveguide lens units can be used to form a left and right holographic diffractive optical waveguide lens, and the left and right holographic diffractive optical waveguide lenses correspond to the left eye and right eye respectively for transmitting light to the left and right eyes; the image display device includes a light source, an optical system and an image information device for outputting image light. Wherein, the image information device is configured as at least one display element, and the display element includes an LCOS display screen and a DMD digital micromirror array. The display screen 101 emits image light, which is focused by the lens 110 (optical system), and the image light is coupled to the optical waveguide 130 , diffracted by the optical waveguide and the grating, and output to the human eye 150 . The color display devices corresponding to the left and right eyes are arranged symmetrically, so that the human eyes can simultaneously receive the coupled image light from the corresponding holographic diffractive optical waveguide lens, and realize three-dimensional display by using binocular parallax. As shown in Figure 10. 120 is the holographic grating of the first functional area, and 121 is the holographic grating of the third functional area. 1001 represents some devices corresponding to the left eye, and some devices outside the range circled by 1001 in the figure are part devices corresponding to the right eye.
上述示例中,即已经阐明全息衍射光波导镜片的结构原理,也阐明了如何结合图像显示装置构建三维显示装置,本领域的研究人员完全可以根据上述内容进行近眼式三维显示装置的工业设计和生产,本发明公开的全息衍射光波导镜片也可以单独进行工业化生产及及作为三维显示装置的部件销售。In the above example, the structural principle of the holographic diffractive optical waveguide lens has been clarified, and how to combine the image display device to construct a three-dimensional display device has also been clarified. Researchers in the field can completely carry out industrial design and production of near-eye three-dimensional display devices according to the above content The holographic diffractive optical waveguide lens disclosed in the present invention can also be industrially produced and sold as a component of a three-dimensional display device.
本实施例提供的三维显示装置,光线直接在单层彩色全息衍射光波导镜片单元中耦合传导,无需采用复杂的光波导的结构,并且采用空间复用方式分配结构子单元,无需采用双层甚至多层光波导来分色导光实现彩色,在制备工艺及技术成本上面更有优势。In the three-dimensional display device provided by this embodiment, the light is directly coupled and transmitted in the single-layer color holographic diffractive optical waveguide lens unit, without using a complicated optical waveguide structure, and adopts a spatial multiplexing method to distribute structural subunits, without using double-layer or even Using multi-layer optical waveguides to separate and guide light to achieve color has more advantages in terms of manufacturing process and technical cost.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相似部分互相参见即可。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制与本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the similar parts of each embodiment can be referred to each other. The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610983962.2ACN106338832A (en) | 2016-11-09 | 2016-11-09 | Single holographic diffraction optical waveguide lens and 3D display device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610983962.2ACN106338832A (en) | 2016-11-09 | 2016-11-09 | Single holographic diffraction optical waveguide lens and 3D display device |
| Publication Number | Publication Date |
|---|---|
| CN106338832Atrue CN106338832A (en) | 2017-01-18 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610983962.2APendingCN106338832A (en) | 2016-11-09 | 2016-11-09 | Single holographic diffraction optical waveguide lens and 3D display device |
| Country | Link |
|---|---|
| CN (1) | CN106338832A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106908953A (en)* | 2017-03-28 | 2017-06-30 | 陈超平 | A kind of binocular near-eye display device of integrated vision correction |
| CN107390380A (en)* | 2017-05-12 | 2017-11-24 | 上海誉沛光电科技有限公司 | A kind of display device, light guide panel and multilayer suspension display device |
| CN107797287A (en)* | 2017-11-28 | 2018-03-13 | 苏州苏大维格光电科技股份有限公司 | Fiber waveguide eyeglass and display device |
| CN107994082A (en)* | 2017-12-22 | 2018-05-04 | 彭仲林 | A kind of light is redirected film and photovoltaic cell component |
| WO2018157713A1 (en)* | 2017-02-28 | 2018-09-07 | 华为技术有限公司 | Information display device and information display method |
| WO2018220266A1 (en)* | 2017-06-02 | 2018-12-06 | Dispelix Oy | Diffractive element with doubly periodic gratings |
| WO2019010857A1 (en)* | 2017-07-11 | 2019-01-17 | 苏州苏大维格光电科技股份有限公司 | Holographic waveguide lens and augmented reality display device |
| CN109407313A (en)* | 2018-10-29 | 2019-03-01 | 北京枭龙科技有限公司 | A kind of diffraction waveguide display device |
| CN110146989A (en)* | 2019-05-21 | 2019-08-20 | 京东方科技集团股份有限公司 | Optical waveguide element and display method thereof, display device and display method thereof |
| CN110300912A (en)* | 2017-02-15 | 2019-10-01 | 奇跃公司 | Projector architecture including artifact mitigation |
| WO2019185973A1 (en)* | 2018-03-28 | 2019-10-03 | Dispelix Oy | Exit pupil expander |
| US10466499B2 (en) | 2018-01-22 | 2019-11-05 | Shanghai Tianma Micro-electronics Co., Ltd. | Display device |
| CN110537136A (en)* | 2017-04-28 | 2019-12-03 | 索尼公司 | Optical device, image display device, and display device |
| CN111158149A (en)* | 2020-01-21 | 2020-05-15 | 奥提赞光晶(山东)显示科技有限公司 | Display system and portable 3D display intelligent glasses |
| CN111175976A (en)* | 2020-01-17 | 2020-05-19 | 歌尔股份有限公司 | Optical waveguide component, display system, augmented reality device and display method |
| CN111665625A (en)* | 2019-03-07 | 2020-09-15 | 苏州苏大维格科技集团股份有限公司 | Biplate waveguide lens and three-dimensional display device |
| CN112088328A (en)* | 2018-05-01 | 2020-12-15 | 脸谱科技有限责任公司 | 2D Pupil Expander Using Holographic Bragg Gratings |
| CN112083569A (en)* | 2019-06-13 | 2020-12-15 | 苏州苏大维格科技集团股份有限公司 | Nano waveguide lens, three-dimensional display device and glasses |
| CN112083568A (en)* | 2019-06-13 | 2020-12-15 | 苏州苏大维格科技集团股份有限公司 | Augmented reality display device and augmented reality glasses |
| CN112180593A (en)* | 2019-07-01 | 2021-01-05 | 苏州苏大维格科技集团股份有限公司 | Apparatus for presenting image and system for implementing augmented reality display |
| CN112213855A (en)* | 2019-07-11 | 2021-01-12 | 苏州苏大维格科技集团股份有限公司 | Display device and optical waveguide lens |
| CN112236708A (en)* | 2018-06-15 | 2021-01-15 | 大陆汽车有限责任公司 | Optical waveguides for display devices |
| CN112285926A (en)* | 2019-07-12 | 2021-01-29 | 苏州苏大维格科技集团股份有限公司 | Mixing type monolithic waveguide lens and three-dimensional display device |
| CN112394510A (en)* | 2019-08-14 | 2021-02-23 | 苏州苏大维格科技集团股份有限公司 | Apparatus for presenting image and system for implementing augmented reality display |
| CN112415742A (en)* | 2019-08-21 | 2021-02-26 | 苏州苏大维格科技集团股份有限公司 | An AR display system with adjustable field of view |
| CN112415744A (en)* | 2019-08-22 | 2021-02-26 | 苏州苏大维格科技集团股份有限公司 | Augmented reality display system |
| CN112415656A (en)* | 2019-08-22 | 2021-02-26 | 苏州苏大维格科技集团股份有限公司 | A holographic diffractive waveguide lens and an augmented reality color display device |
| CN113130723A (en)* | 2020-01-15 | 2021-07-16 | 重庆康佳光电技术研究院有限公司 | Pixel unit of LED display |
| CN113448087A (en)* | 2020-03-27 | 2021-09-28 | 深圳光峰科技股份有限公司 | Augmented reality display optical device, optical system, glasses and HUD display system |
| TWI754010B (en)* | 2017-02-22 | 2022-02-01 | 以色列商魯姆斯有限公司 | Light guide optical assembly |
| CN114839765A (en)* | 2022-03-09 | 2022-08-02 | 深圳市光舟半导体技术有限公司 | Optical pupil expanding device with large field angle, display device and method |
| CN116413909A (en)* | 2021-12-30 | 2023-07-11 | 比亚迪股份有限公司 | Display device, vehicle and vehicle control method |
| TWI811224B (en)* | 2017-07-13 | 2023-08-11 | 盧森堡商喜瑞爾工業公司 | Enlarged field of view display device and method for generating large field of view |
| JP2024507501A (en)* | 2021-03-04 | 2024-02-20 | ビュージックス コーポレーション | Imaging light guide with multi-wavelength in-coupling diffractive optical element |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102033319A (en)* | 2010-10-25 | 2011-04-27 | 北京理工大学 | Oxyopter type display device using holographic elements |
| WO2014073093A1 (en)* | 2012-11-09 | 2014-05-15 | パイオニア株式会社 | Optical element, head-up display, and optical element manufacturing method |
| CN103995354A (en)* | 2014-05-16 | 2014-08-20 | 北京理工大学 | Waveguide display system for eliminating chromatic aberration and based on based holographic diffraction optical element |
| CN104040410A (en)* | 2011-08-29 | 2014-09-10 | 伊奎蒂公司 | Controllable waveguide for near-eye display applications |
| US20160062120A1 (en)* | 2014-08-29 | 2016-03-03 | Google Inc. | Compact architecture for near-to-eye display system |
| CN105388609A (en)* | 2015-11-16 | 2016-03-09 | 厦门灵境信息科技有限公司 | Optical eyepiece lens and head-mounted display device |
| CN105511078A (en)* | 2015-12-31 | 2016-04-20 | 北京小鸟看看科技有限公司 | Ocular lens, head-mounted display optical system and head-mounted equipment |
| CN105807348A (en)* | 2016-05-23 | 2016-07-27 | 东南大学 | Reflection volume holographic grating waveguiding structure |
| CN105938318A (en)* | 2016-05-30 | 2016-09-14 | 苏州大学 | Color holographic three-dimensional display method and system based on time division multiplexing |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102033319A (en)* | 2010-10-25 | 2011-04-27 | 北京理工大学 | Oxyopter type display device using holographic elements |
| CN104040410A (en)* | 2011-08-29 | 2014-09-10 | 伊奎蒂公司 | Controllable waveguide for near-eye display applications |
| WO2014073093A1 (en)* | 2012-11-09 | 2014-05-15 | パイオニア株式会社 | Optical element, head-up display, and optical element manufacturing method |
| CN103995354A (en)* | 2014-05-16 | 2014-08-20 | 北京理工大学 | Waveguide display system for eliminating chromatic aberration and based on based holographic diffraction optical element |
| US20160062120A1 (en)* | 2014-08-29 | 2016-03-03 | Google Inc. | Compact architecture for near-to-eye display system |
| CN105388609A (en)* | 2015-11-16 | 2016-03-09 | 厦门灵境信息科技有限公司 | Optical eyepiece lens and head-mounted display device |
| CN105511078A (en)* | 2015-12-31 | 2016-04-20 | 北京小鸟看看科技有限公司 | Ocular lens, head-mounted display optical system and head-mounted equipment |
| CN105807348A (en)* | 2016-05-23 | 2016-07-27 | 东南大学 | Reflection volume holographic grating waveguiding structure |
| CN105938318A (en)* | 2016-05-30 | 2016-09-14 | 苏州大学 | Color holographic three-dimensional display method and system based on time division multiplexing |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110300912A (en)* | 2017-02-15 | 2019-10-01 | 奇跃公司 | Projector architecture including artifact mitigation |
| US12066622B2 (en) | 2017-02-15 | 2024-08-20 | Magic Leap, Inc. | Projector architecture incorporating artifact mitigation |
| TWI754010B (en)* | 2017-02-22 | 2022-02-01 | 以色列商魯姆斯有限公司 | Light guide optical assembly |
| JP2023171872A (en)* | 2017-02-22 | 2023-12-05 | ルムス エルティーディー. | light guide optical assembly |
| US11128847B2 (en) | 2017-02-28 | 2021-09-21 | Huawei Technologies Co., Ltd. | Information display device and information display method |
| WO2018157713A1 (en)* | 2017-02-28 | 2018-09-07 | 华为技术有限公司 | Information display device and information display method |
| CN106908953A (en)* | 2017-03-28 | 2017-06-30 | 陈超平 | A kind of binocular near-eye display device of integrated vision correction |
| CN110537136A (en)* | 2017-04-28 | 2019-12-03 | 索尼公司 | Optical device, image display device, and display device |
| US11231586B2 (en) | 2017-04-28 | 2022-01-25 | Sony Corporation | Optical apparatus, image display apparatus, and display apparatus |
| CN107390380B (en)* | 2017-05-12 | 2021-08-10 | 上海誉沛光电科技有限公司 | Display device, light guide panel and multilayer suspension display equipment |
| CN107390380A (en)* | 2017-05-12 | 2017-11-24 | 上海誉沛光电科技有限公司 | A kind of display device, light guide panel and multilayer suspension display device |
| US12242088B2 (en) | 2017-06-02 | 2025-03-04 | Dispelix Oy | Diffractive element with doubly periodic gratings |
| WO2018220266A1 (en)* | 2017-06-02 | 2018-12-06 | Dispelix Oy | Diffractive element with doubly periodic gratings |
| WO2019010857A1 (en)* | 2017-07-11 | 2019-01-17 | 苏州苏大维格光电科技股份有限公司 | Holographic waveguide lens and augmented reality display device |
| TWI811224B (en)* | 2017-07-13 | 2023-08-11 | 盧森堡商喜瑞爾工業公司 | Enlarged field of view display device and method for generating large field of view |
| CN107797287A (en)* | 2017-11-28 | 2018-03-13 | 苏州苏大维格光电科技股份有限公司 | Fiber waveguide eyeglass and display device |
| CN107994082B (en)* | 2017-12-22 | 2024-10-01 | 彭仲林 | Photovoltaic cell assembly |
| CN107994082A (en)* | 2017-12-22 | 2018-05-04 | 彭仲林 | A kind of light is redirected film and photovoltaic cell component |
| US10466499B2 (en) | 2018-01-22 | 2019-11-05 | Shanghai Tianma Micro-electronics Co., Ltd. | Display device |
| CN111656257B (en)* | 2018-03-28 | 2022-04-12 | 迪斯帕列斯有限公司 | Exit pupil expander |
| CN111656257A (en)* | 2018-03-28 | 2020-09-11 | 迪斯帕列斯有限公司 | Exit Pupil Expander |
| WO2019185973A1 (en)* | 2018-03-28 | 2019-10-03 | Dispelix Oy | Exit pupil expander |
| US11892623B2 (en) | 2018-03-28 | 2024-02-06 | Dispelix Oy | Exit pupil expander |
| CN115421304A (en)* | 2018-05-01 | 2022-12-02 | 元平台技术有限公司 | 2D pupil expander using holographic Bragg gratings |
| CN112088328B (en)* | 2018-05-01 | 2022-09-09 | 元平台技术有限公司 | 2D pupil expander using holographic Bragg gratings |
| CN112088328A (en)* | 2018-05-01 | 2020-12-15 | 脸谱科技有限责任公司 | 2D Pupil Expander Using Holographic Bragg Gratings |
| CN112236708A (en)* | 2018-06-15 | 2021-01-15 | 大陆汽车有限责任公司 | Optical waveguides for display devices |
| CN109407313A (en)* | 2018-10-29 | 2019-03-01 | 北京枭龙科技有限公司 | A kind of diffraction waveguide display device |
| CN111665625A (en)* | 2019-03-07 | 2020-09-15 | 苏州苏大维格科技集团股份有限公司 | Biplate waveguide lens and three-dimensional display device |
| CN110146989A (en)* | 2019-05-21 | 2019-08-20 | 京东方科技集团股份有限公司 | Optical waveguide element and display method thereof, display device and display method thereof |
| US12253673B2 (en) | 2019-05-21 | 2025-03-18 | Boe Technology Group Co., Ltd. | Optical waveguide element and control method thereof, display device and display method thereof |
| CN112083568A (en)* | 2019-06-13 | 2020-12-15 | 苏州苏大维格科技集团股份有限公司 | Augmented reality display device and augmented reality glasses |
| CN112083569A (en)* | 2019-06-13 | 2020-12-15 | 苏州苏大维格科技集团股份有限公司 | Nano waveguide lens, three-dimensional display device and glasses |
| WO2020248539A1 (en)* | 2019-06-13 | 2020-12-17 | 苏州苏大维格科技集团股份有限公司 | Nanowaveguide lens, three-dimensional display device, and eyeglasses |
| CN112180593A (en)* | 2019-07-01 | 2021-01-05 | 苏州苏大维格科技集团股份有限公司 | Apparatus for presenting image and system for implementing augmented reality display |
| CN112213855B (en)* | 2019-07-11 | 2022-07-12 | 苏州苏大维格科技集团股份有限公司 | Display device and optical waveguide lens |
| CN112213855A (en)* | 2019-07-11 | 2021-01-12 | 苏州苏大维格科技集团股份有限公司 | Display device and optical waveguide lens |
| CN112285926A (en)* | 2019-07-12 | 2021-01-29 | 苏州苏大维格科技集团股份有限公司 | Mixing type monolithic waveguide lens and three-dimensional display device |
| CN112394510A (en)* | 2019-08-14 | 2021-02-23 | 苏州苏大维格科技集团股份有限公司 | Apparatus for presenting image and system for implementing augmented reality display |
| CN112415742A (en)* | 2019-08-21 | 2021-02-26 | 苏州苏大维格科技集团股份有限公司 | An AR display system with adjustable field of view |
| CN112415656A (en)* | 2019-08-22 | 2021-02-26 | 苏州苏大维格科技集团股份有限公司 | A holographic diffractive waveguide lens and an augmented reality color display device |
| CN112415744A (en)* | 2019-08-22 | 2021-02-26 | 苏州苏大维格科技集团股份有限公司 | Augmented reality display system |
| CN113130723A (en)* | 2020-01-15 | 2021-07-16 | 重庆康佳光电技术研究院有限公司 | Pixel unit of LED display |
| CN111175976B (en)* | 2020-01-17 | 2022-02-22 | 歌尔股份有限公司 | Optical waveguide component, display system, augmented reality device and display method |
| CN111175976A (en)* | 2020-01-17 | 2020-05-19 | 歌尔股份有限公司 | Optical waveguide component, display system, augmented reality device and display method |
| CN111158149A (en)* | 2020-01-21 | 2020-05-15 | 奥提赞光晶(山东)显示科技有限公司 | Display system and portable 3D display intelligent glasses |
| WO2021190060A1 (en)* | 2020-03-27 | 2021-09-30 | 深圳光峰科技股份有限公司 | Augmented reality display optical device, optical system, glasses and hud display system |
| CN113448087A (en)* | 2020-03-27 | 2021-09-28 | 深圳光峰科技股份有限公司 | Augmented reality display optical device, optical system, glasses and HUD display system |
| JP2024507501A (en)* | 2021-03-04 | 2024-02-20 | ビュージックス コーポレーション | Imaging light guide with multi-wavelength in-coupling diffractive optical element |
| CN116413909A (en)* | 2021-12-30 | 2023-07-11 | 比亚迪股份有限公司 | Display device, vehicle and vehicle control method |
| CN114839765A (en)* | 2022-03-09 | 2022-08-02 | 深圳市光舟半导体技术有限公司 | Optical pupil expanding device with large field angle, display device and method |
| Publication | Publication Date | Title |
|---|---|---|
| CN106338832A (en) | Single holographic diffraction optical waveguide lens and 3D display device | |
| US11774823B2 (en) | Display system with variable power reflector | |
| JP7429727B2 (en) | Ultra-high refractive index eyepiece substrate-based viewing optics assembly architecture | |
| US11619827B2 (en) | Polarizing beam splitter with low light leakage | |
| US8885997B2 (en) | NED polarization system for wavelength pass-through | |
| CN106773057A (en) | A kind of monolithic hologram diffraction waveguide three-dimensional display apparatus | |
| CN109521506B (en) | Nano lens, near-eye display method and near-eye display device | |
| CN108885310A (en) | Light guide is imaged in binary channels with dichroism reflector | |
| CN105487239A (en) | Directive color filter and naked eye 3D display device | |
| CN206431369U (en) | A kind of monolithic hologram diffraction waveguide three-dimensional display apparatus | |
| EP4031927A1 (en) | Optical device for coupling a high field of view of incident light | |
| CN113946054B (en) | a display device | |
| WO2023226142A1 (en) | Optical waveguide structure, optical module, and head-mounted display device | |
| CN115485605A (en) | Waveguide display with cross-polarized eye pupil expander | |
| WO2021191132A1 (en) | Waveguide display system with wide field of view | |
| CN113219672A (en) | an AR glasses | |
| WO2023061919A1 (en) | Full color eye-pupil-expanders with high vertical field of view | |
| CN111665625A (en) | Biplate waveguide lens and three-dimensional display device | |
| WO2021016761A1 (en) | Light field display system based on control over splitting-combination of outcoupling light exit pupil of optical waveguide | |
| CN113703164B (en) | Optical Waveguide Pointing Backlight Holographic Display Module | |
| CN209821502U (en) | A double waveguide lens and a three-dimensional display device | |
| CN115398284A (en) | Unpolarized grating input coupler | |
| WO2025060258A1 (en) | Diffractive optical waveguide and display module |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20170118 |