技术领域technical field
本发明涉及半导体照明领域,具体的说是用于植物照明的发光二极管及其制作方法。The invention relates to the field of semiconductor lighting, in particular to a light-emitting diode used for plant lighting and a manufacturing method thereof.
背景技术Background technique
植物照明应用的LED波长主要为深蓝光(450nm) 、超红光(~660nm)与远红光(~730nm),其中深蓝光和超红光提供光合作用所需光线,远红光可控制植物从发芽到营养生长再到开花的整个过程。The LED wavelengths for plant lighting applications are mainly deep blue light (450nm), ultra-red light (~660nm) and far-red light (~730nm), among which deep blue light and ultra-red light provide the light required for photosynthesis, and far-red light can control plants The entire process from germination to vegetative growth to flowering.
目前,市场的使用方式多为将深蓝光、超红光及远红光LED芯片单一波长逐一封装,再将个别封装体按各种排列方式组装于灯版上,如图1所示。然而受控于空间有限与成本问题,未来所使用的LED颗数越少越好,尺寸越小越好。At present, most of the usage methods in the market are to package the single wavelengths of deep blue, ultra-red and far-red LED chips one by one, and then assemble the individual packages on the light board according to various arrangements, as shown in Figure 1. However, due to limited space and cost issues, the fewer the number of LEDs used in the future, the better, and the smaller the size, the better.
发明内容Contents of the invention
针对前述问题,本发明提出一种用于植物照明的发光二极管及其制作方法,其使用超红光与远红光叠层外延生长方式搭配芯片制程,减少封装数目及植物照明灯板面积,降低成本。In view of the aforementioned problems, the present invention proposes a light-emitting diode for plant lighting and its manufacturing method, which uses super-red light and far-red light stacked epitaxial growth method with chip manufacturing process, reduces the number of packages and the area of plant lighting lamp boards, and reduces cost.
根据本发明的第一个方面,用于植物照明的发光二极管外延片,从下到上依次包括:生长衬底、第一红光发光外延叠层、DBR半导体叠层及第二红光发光外延叠层,其中第一红光发光外延叠层包含第一N型欧姆接触层、第一N型覆盖层、第一发光层、第一P型覆盖层及第一P型欧姆接触层,所述第二红光发光外延叠层包含第二N型欧姆接触层、第二N型覆盖层、第二发光层、第二P型覆盖层及第二P型欧姆接触层。According to the first aspect of the present invention, the light-emitting diode epitaxial wafer used for plant lighting comprises, from bottom to top: a growth substrate, a first red light-emitting epitaxial stack, a DBR semiconductor stack, and a second red light-emitting epitaxial stack stack, wherein the first red-light emitting epitaxial stack includes a first N-type ohmic contact layer, a first N-type cladding layer, a first light-emitting layer, a first P-type cladding layer, and a first P-type ohmic contact layer, the The second red light emitting epitaxial stack includes a second N-type ohmic contact layer, a second N-type cladding layer, a second light emitting layer, a second P-type cladding layer and a second P-type ohmic contact layer.
优选地,所述DBR半导体叠层的掺杂溶度不大于5E17,形成一高阻值界面。Preferably, the doping solubility of the DBR semiconductor stack is not greater than 5E17, forming a high-resistance interface.
优选地,所述第一发光层的发光波长为710nm~750nm,所述第二发光层的发光波长为640~680nm。Preferably, the luminescent wavelength of the first luminescent layer is 710nm-750nm, and the luminescent wavelength of the second luminescent layer is 640-680nm.
优选地,所述第一发光层的发光波长为730nm,所述第二发光层的发光波长为660nm。Preferably, the light emitting wavelength of the first light emitting layer is 730nm, and the light emitting wavelength of the second light emitting layer is 660nm.
优选地,所述DBR半导体叠层与第二红光发光外延叠层之间还设有一蚀刻截止层。Preferably, an etch stop layer is further provided between the DBR semiconductor stack and the second red light-emitting epitaxial stack.
根据本发明的第二个方面,用于植物照明的发光二极管芯片,从上至下包括:第一红光发光外延叠层、DBR半导体叠层、第二红光发光外延叠层及导电基板;所述第一红光发光外延叠层包含第一N型欧姆接触层、第一N型覆盖层、第一发光层、第一P型覆盖层及第一P型欧姆接触层;所述第二红光发光外延叠层包含第二N型欧姆接触层、第二N型覆盖层、第二发光层、第二P型覆盖层及第二P型欧姆接触层;所述第二红光发光外延叠层所述第一红光发光外延叠层的发光面积小于所述第二红光发光外延叠层的发光面积;所述第一N型欧姆接触层上设有第一电极,所述第一P型欧姆接触层与所述第二N型欧姆接触层之间设有电连接结构,第二P型欧姆接触层上设有第二电极。According to the second aspect of the present invention, the light emitting diode chip for plant lighting comprises from top to bottom: a first red light emitting epitaxial stack, a DBR semiconductor stack, a second red light emitting epitaxial stack and a conductive substrate; The first red light-emitting epitaxial stack includes a first N-type ohmic contact layer, a first N-type cladding layer, a first light-emitting layer, a first P-type cladding layer, and a first P-type ohmic contact layer; the second The red light-emitting epitaxial stack includes a second N-type ohmic contact layer, a second N-type cladding layer, a second light-emitting layer, a second P-type cladding layer, and a second P-type ohmic contact layer; the second red light-emitting epitaxy The light emitting area of the first red light emitting epitaxial stack is smaller than the light emitting area of the second red light emitting epitaxial stack; the first N-type ohmic contact layer is provided with a first electrode, and the first An electrical connection structure is provided between the P-type ohmic contact layer and the second N-type ohmic contact layer, and a second electrode is provided on the second P-type ohmic contact layer.
优选地,所述第一发光层的发光波长为710nm~750nm,所述第二发光层的发光波长为640~680nm。Preferably, the luminescent wavelength of the first luminescent layer is 710nm-750nm, and the luminescent wavelength of the second luminescent layer is 640-680nm.
优选地,所述DBR半导体叠层的掺杂溶度不大于5E17,形成一高阻值界面。Preferably, the doping solubility of the DBR semiconductor stack is not greater than 5E17, forming a high-resistance interface.
优选地,所述第二红光发光外延叠层的表面预设为发光区和非发光区,所述DBR半导体叠层形成于所述第二红光发光外延叠层的非发光区之上。Preferably, the surface of the second red light-emitting epitaxial stack is preset as a light-emitting area and a non-light-emitting area, and the DBR semiconductor stack is formed on the non-light-emitting area of the second red light-emitting epitaxial stack.
优选地,所述DBR半导体叠层的面积小于所述第二红光发光外延叠层的发光面积,但大于所述第一红光发光外延叠层的发光面积。Preferably, the area of the DBR semiconductor stack is smaller than the light emitting area of the second red light emitting epitaxial stack, but larger than the light emitting area of the first red light emitting epitaxial stack.
优选地,所述第二N型欧姆接触层表面上的非发光区设有电扩散结构。Preferably, the non-light-emitting region on the surface of the second N-type ohmic contact layer is provided with an electric diffusion structure.
优选地,所述DBR半导体叠层与第二红光发光外延叠层之间还设有一蚀刻截止层。Preferably, an etch stop layer is further provided between the DBR semiconductor stack and the second red light-emitting epitaxial stack.
根据本发明的第三个方面,用于植物照明的发光二极管芯片的制作方法,包括步骤:1)外延生长:提供一生长衬底,在其表面上形成前述任意一种用于植物照明的发光二极管外延片;2)衬底转移:在前述形成的外延片表面上粘结导电基板,并去除生长衬底,裸露出所述外延片的第一N型欧姆接触层表面;3)定义发光区:在所述外延片的表面上定义第一发光区和第二发光区,去除第二发光区的第一N型欧姆接触层、第一N型覆盖层、第一发光层、第一P型覆盖层,裸露出所述第一P型欧姆接触层;4)制作电极:去除所述第二发光区的DBR半导体叠层,裸露出第二N型欧姆接触层的表面,在所述第一N型欧姆接触层的表面上制作N型电极,并制作电连接结构,电性连接所述第一P型欧姆接触层和第二N型欧姆接触层。According to a third aspect of the present invention, the method for manufacturing a light-emitting diode chip for plant lighting includes the steps: 1) Epitaxial growth: providing a growth substrate on which any one of the aforementioned light-emitting diode chips for plant lighting is formed. Diode epitaxial wafer; 2) Substrate transfer: Bond a conductive substrate on the surface of the epitaxial wafer formed above, and remove the growth substrate to expose the surface of the first N-type ohmic contact layer of the epitaxial wafer; 3) Define the light emitting area : define a first light-emitting region and a second light-emitting region on the surface of the epitaxial wafer, and remove the first N-type ohmic contact layer, the first N-type cladding layer, the first light-emitting layer, and the first P-type light-emitting region of the second light-emitting region Covering layer, exposing the first P-type ohmic contact layer; 4) Fabrication of electrodes: removing the DBR semiconductor stack in the second light emitting region, exposing the surface of the second N-type ohmic contact layer, on the first An N-type electrode is made on the surface of the N-type ohmic contact layer, and an electrical connection structure is made to electrically connect the first P-type ohmic contact layer and the second N-type ohmic contact layer.
优选地,所述步骤3)中,所述外延片的表面还定义有隔离区,其位于所述第一发光区和第二发光区之间。Preferably, in the step 3), an isolation region is further defined on the surface of the epitaxial wafer, which is located between the first light emitting region and the second light emitting region.
优选地,所述步骤3)中,去除第二发光区和隔离区的第一N型欧姆接触层、第一N型覆盖层、第一发光层、第一P型覆盖层。Preferably, in step 3), the first N-type ohmic contact layer, the first N-type cladding layer, the first light-emitting layer, and the first P-type cladding layer of the second light emitting region and the isolation region are removed.
优选地,完成所述步骤4)后,所述DBR层的面积大于所述第一发光区的面积,但小于所述第二发光区的面积。Preferably, after the step 4) is completed, the area of the DBR layer is larger than the area of the first light-emitting region, but smaller than the area of the second light-emitting region.
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
附图说明Description of drawings
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。The accompanying drawings are used to provide a further understanding of the present invention, and constitute a part of the description, and are used together with the embodiments of the present invention to explain the present invention, and do not constitute a limitation to the present invention. In addition, the drawing data are descriptive summaries and are not drawn to scale.
图1为现有的一种植物照明应用的LED灯版示意图。FIG. 1 is a schematic diagram of an existing LED lamp panel for plant lighting applications.
图2为根据本发明实施的一种用于植物照明的发光二极管芯片的侧面剖视图。Fig. 2 is a side sectional view of a light emitting diode chip for plant lighting implemented according to the present invention.
图3为图2所示发光二极管芯片的俯视图。FIG. 3 is a top view of the LED chip shown in FIG. 2 .
图4~13根据本发明实施的一种用于植物照明的LED芯片的制作过程剖视图。4-13 are cross-sectional views of the manufacturing process of an LED chip for plant lighting according to the present invention.
图中:In the picture:
100:植物照明用LED灯版,110:封装体;120:深蓝光LED芯片;130:超红光LED芯片;140:远红光LED芯片;200:生长衬底;210:远红光发光外延叠层;211:第一N型蚀刻截止层;212:第一N型欧姆接触层;213:第一N型电极扩散层;214:第一N型覆盖层;215:第一发光层;216:第一P型覆盖层;217:第一P型欧姆接触层;220:DBR半导体叠层;230:超红光发光外延叠层;231:第二N型蚀刻截止层;232:第二N型欧姆接触层、233:第二N型电极扩散层;234:第二N型覆盖层;235:第二发光层;236:第二P型覆盖层;237:P型转换过渡层;238:第二P型欧姆接触层;240:镜面结构;250:导电粘结层;260:导电基板;271:N型电极;272:BeAu金属层;273:电连接结构;274:电极扩展条;275:P型电极。100: LED light board for plant lighting, 110: package body; 120: deep blue LED chip; 130: ultra-red LED chip; 140: far-red LED chip; 200: growth substrate; 210: far-red light-emitting epitaxy stack; 211: first N-type etch stop layer; 212: first N-type ohmic contact layer; 213: first N-type electrode diffusion layer; 214: first N-type cladding layer; 215: first light-emitting layer; 216 : first P-type cladding layer; 217: first P-type ohmic contact layer; 220: DBR semiconductor stack; 230: ultra-red light-emitting epitaxial stack; 231: second N-type etching stop layer; 232: second N Type ohmic contact layer, 233: second N-type electrode diffusion layer; 234: second N-type cladding layer; 235: second light-emitting layer; 236: second P-type cladding layer; 237: P-type conversion transition layer; 238: The second P-type ohmic contact layer; 240: mirror structure; 250: conductive bonding layer; 260: conductive substrate; 271: N-type electrode; 272: BeAu metal layer; 273: electrical connection structure; 274: electrode extension strip; 275 : P-type electrode.
具体实施方式detailed description
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。The implementation of the present invention will be described in detail below in conjunction with the accompanying drawings and examples, so as to fully understand and implement the process of how to apply technical means to solve technical problems and achieve technical effects in the present invention.
下面实施例公开了一种植物照明用的发光二极管,其利用叠层外延在单个芯片实现植物照明所需超红光(~660nm)与远红光(~730nm)。The following embodiment discloses a light-emitting diode for plant lighting, which uses stacked epitaxy to realize ultra-red light (~660nm) and far-red light (~730nm) required for plant lighting on a single chip.
请参看图2,根据本发明实施的一种垂直型发光二极管芯片,包括:远红光发光外延叠层210、DBR半导体叠层220、超红光外延叠层230、镜面结构240、导电粘结层250、导电基板260及N型电极271、P型电极275等。Please refer to FIG. 2, a vertical light-emitting diode chip implemented according to the present invention, including: a far-red light-emitting epitaxial stack 210, a DBR semiconductor stack 220, an ultra-red epitaxial stack 230, a mirror structure 240, and a conductive adhesive Layer 250, conductive substrate 260, N-type electrode 271, P-type electrode 275, etc.
其中,远红光发光外延叠层210的发光波长为710nm~750nm,较佳为~730nm,远红光发光外延叠层210的发光波长为640~680nm,较佳为~660nm。进一步地,远红光发光外延叠层210的发光面积210a小于或等于超红光发光外延叠层230的发光面积230a,较佳的,远红光发光外延叠层210的发光面积210a为超红光发光外延叠层230的发光面积230a的三分之一。Wherein, the emission wavelength of the far-red light-emitting epitaxial stack 210 is 710nm-750nm, preferably ~730nm, and the light-emitting wavelength of the far-red light-emitting epitaxial stack 210 is 640-680nm, preferably ~660nm. Further, the light-emitting area 210a of the far-red light-emitting epitaxial stack 210 is less than or equal to the light-emitting area 230a of the super-red light-emitting epitaxial stack 230. Preferably, the light-emitting area 210a of the far-red light-emitting epitaxial stack 210 is ultra-red One third of the light emitting area 230 a of the light emitting epitaxial stack 230 .
DBR半导体叠层220位于远红光发光外延叠层210与超红光发光外延叠层230之间,一方面用于反射远红光发光外延叠层210发射的远红光,避免远红光发光外延叠层210发射的远红光被超红光发光外延叠层230吸收,另一方面形成一高阻值界面,作为电流阻挡层功能,让电流尽量流向上方无远红光发光外延叠层210的超红光发光外延叠层230发光区,提升亮度。因此,DBR半导体叠层220的掺杂浓度为不高于5E17为佳,较佳值为4.00E17。The DBR semiconductor stack 220 is located between the far-red light-emitting epitaxial stack 210 and the ultra-red light-emitting epitaxial stack 230. On the one hand, it is used to reflect the far-red light emitted by the far-red light-emitting epitaxial stack 210 to avoid far-red light emission. The far-red light emitted by the epitaxial stack 210 is absorbed by the ultra-red light-emitting epitaxial stack 230, on the other hand, a high-resistance interface is formed, which functions as a current blocking layer, allowing the current to flow as far as possible to the top without the far-red light-emitting epitaxial stack 210 The ultra-red light-emitting epitaxial stack 230 light-emitting area improves brightness. Therefore, the doping concentration of the DBR semiconductor stack 220 is preferably not higher than 5E17, preferably 4.00E17.
远红光发光外延叠层210和超红光发光外延叠层230均可采用AlGaInP系材料,其中远红光发光外延叠层210从上至下可以包含N型欧姆接触层212、第一N型电极扩散层213、第一N型覆盖层214、第一发光层215、第一P型覆盖层216和第一P型欧姆接触层217,超红光发光外延叠层230从上至下可以包含第二N型欧姆接触层232、第二N型电极扩散层233、第二N型覆盖层234、第二发光层235、第二P型覆盖层236、P型转换过渡层237和第二P型欧姆接触层238。在超红光发光外延叠层230与DBR半导体叠层220之间还可以设有N型蚀刻截止层231。Both the far-red light-emitting epitaxial stack 210 and the ultra-red light-emitting epitaxial stack 230 can use AlGaInP-based materials, wherein the far-red light-emitting epitaxial stack 210 can include an N-type ohmic contact layer 212, a first N-type The electrode diffusion layer 213, the first N-type cladding layer 214, the first light-emitting layer 215, the first P-type cladding layer 216, and the first P-type ohmic contact layer 217, and the ultra-red light-emitting epitaxial stack 230 may include from top to bottom The second N-type ohmic contact layer 232, the second N-type electrode diffusion layer 233, the second N-type cladding layer 234, the second light emitting layer 235, the second P-type cladding layer 236, the P-type conversion transition layer 237 and the second P type ohmic contact layer 238 . An N-type etch stop layer 231 may also be provided between the ultra-red light-emitting epitaxial stack 230 and the DBR semiconductor stack 220 .
远红光发光外延叠层210和超红光发光外延叠层230之间具有台阶状结构,用于制作电连接结构271,其中一端连接远红光发光外延叠层210的欧姆接触层261,另一端连接超红光发光外延叠层230的欧姆接触层237。较佳的,由于超红光发光外延叠层230的发光面积230a大于远红光发光外延叠层210的发光面积210a,因此在超红光发光外延叠层230的欧姆接触层237上还可设有扩展条274,确保发光层发光均匀,如图3所示。There is a stepped structure between the far-red light-emitting epitaxial stack 210 and the ultra-red light-emitting epitaxial stack 230 for making an electrical connection structure 271, one end of which is connected to the ohmic contact layer 261 of the far-red light-emitting epitaxial stack 210, and the other One end is connected to the ohmic contact layer 237 of the super red light emitting epitaxial stack 230 . Preferably, since the light-emitting area 230a of the super-red light-emitting epitaxial stack 230 is larger than the light-emitting area 210a of the far-red light-emitting epitaxial stack 210, an ohmic contact layer 237 of the super-red light-emitting epitaxial stack 230 can also be provided There are extension strips 274 to ensure that the light-emitting layer emits light evenly, as shown in FIG. 3 .
下面结合附图4-13及制作方法对上述发光二极管芯片的具体结构进行详细说明,其主要包括以下几个大步骤:(一)外延生长;(二)衬底转移;(三)定义发光区;(四)电极制作。The specific structure of the above light-emitting diode chip will be described in detail below in conjunction with the accompanying drawings 4-13 and the manufacturing method, which mainly includes the following major steps: (1) epitaxial growth; (2) substrate transfer; (3) defining the light-emitting area ; (4) Electrode production.
(一)外延生长(1) Epitaxial growth
在生长衬底上形成一外延结构,如图4所示,其结构最主要重点依序在GaAs衬底上成长如下表所示外延层。需注意的是,关于外延结构的各层的材料在下表仅列出一种较为典型的材料,并不代表各层仅能使用表中列的材料,其还可以根据具体的应用选择所需其他材料。An epitaxial structure is formed on the growth substrate, as shown in Figure 4. The main focus of the structure is to grow the epitaxial layers shown in the table below on the GaAs substrate in sequence. It should be noted that the material of each layer of the epitaxial structure is only listed in the following table as a relatively typical material, which does not mean that each layer can only use the materials listed in the table, and other materials can be selected according to specific applications. Material.
表一:Table I:
(二)衬底转移(2) Substrate transfer
在本步骤中,粘接导电基板260,再去除生长衬底。为达到足够的发光,一般还可在导电基板260与外延结构之间设计镜面结构。在下面实施例中,先制作镜面结构再进行衬底转移,具体如下。In this step, the conductive substrate 260 is bonded, and then the growth substrate is removed. In order to achieve sufficient light emission, generally a mirror structure can also be designed between the conductive substrate 260 and the epitaxial structure. In the following embodiments, the mirror structure is fabricated first and then the substrate is transferred, as follows.
首先,在前述形成的外延结构的外延表面第二P型欧姆接触层238表面上依序镀上透光性介电层、将介电层部分做开孔去除后镀上P型金属欧姆接触层(如AuZn)及金属镜面层(如Au),形成镜面结构240。作为另一种变形,也可在第二P型欧姆接触层238表面上依序沉积透明导层(如ITO)与金属镜面层(如Ag),形成另一种镜面结构。Firstly, on the surface of the second P-type ohmic contact layer 238 on the epitaxial surface of the epitaxial structure formed above, a light-transmitting dielectric layer is sequentially plated, and a P-type metal ohmic contact layer is plated after the dielectric layer is opened and removed. (such as AuZn) and a metal mirror layer (such as Au), forming a mirror structure 240 . As another variation, a transparent conductive layer (such as ITO) and a metal mirror layer (such as Ag) may also be deposited sequentially on the surface of the second P-type ohmic contact layer 238 to form another mirror structure.
接着,在镜面结构240上镀上键合层250,并与带有一键合层的导电基板260做键合制程,完成金属键合制程,其结构如图5所示。其中,金属键合层250的材料可为Au/Au、Au/In、Au/Sn、Ni/Sn等金属。Next, a bonding layer 250 is plated on the mirror structure 240, and a bonding process is performed with a conductive substrate 260 with a bonding layer to complete the metal bonding process. The structure is shown in FIG. 5 . Wherein, the material of the metal bonding layer 250 can be Au/Au, Au/In, Au/Sn, Ni/Sn and other metals.
然后,采用碱性溶液将GaAs衬底去,并使用盐酸系列酸性溶液将第一N型蚀刻截止层211去除,裸露出第一N型欧姆接触层212,完成衬底转换制程,如图6所示。Then, the GaAs substrate is removed with an alkaline solution, and the first N-type etch stop layer 211 is removed with a hydrochloric acid series acidic solution, exposing the first N-type ohmic contact layer 212, and the substrate conversion process is completed, as shown in FIG. 6 Show.
(三)定义发光区(3) Define the light-emitting area
在前述外延结构的第一N型欧姆接触层212表面预设远红光发光区210a,去除远红光发光区210的第一N型欧姆接触层212、第一N型电流扩散层213、第一N型覆盖层214、第一发光层215、第一P型覆盖层216,裸露出第一P型欧姆接触层217,如图7所示。其中,远红光发光区210a可参考图3所示。The far-red light emitting region 210a is preset on the surface of the first N-type ohmic contact layer 212 of the aforementioned epitaxial structure, and the first N-type ohmic contact layer 212, the first N-type current diffusion layer 213, and the first N-type current diffusion layer 213 of the far-red light emitting region 210 are removed. An N-type cladding layer 214 , a first light-emitting layer 215 , and a first P-type cladding layer 216 , exposing a first P-type ohmic contact layer 217 , as shown in FIG. 7 . Wherein, the far-red light emitting region 210a can be referred to as shown in FIG. 3 .
(四)制作电极(4) Making electrodes
首先,第一P型欧姆接触层217的表面上制作BeAu金属层272,经过退火与第一P型欧姆接触层217形成欧姆接触,如图8所示。First, a BeAu metal layer 272 is formed on the surface of the first P-type ohmic contact layer 217, and an ohmic contact is formed with the first P-type ohmic contact layer 217 after annealing, as shown in FIG. 8 .
接着,在裸露出的第一P型欧姆接触层217表面上预设超红光发光区230a,去除超红光发光区230a的第一P型欧姆接触层217、DBR半导体叠层220及第二N型蚀刻截止层231,裸露出第二N型欧姆接触层232,如图9所示。其中使用磷酸系列酸性溶液去除第一P型欧姆接触层217和DBR半导体叠层220去除,再使用盐酸系列酸性溶液去除第二N型蚀刻截止层231。Next, a super red light emitting region 230a is preset on the exposed surface of the first P-type ohmic contact layer 217, and the first P-type ohmic contact layer 217, the DBR semiconductor stack 220 and the second super red light emitting region 230a are removed. The N-type etching stop layer 231 exposes the second N-type ohmic contact layer 232 , as shown in FIG. 9 . A phosphoric acid series acid solution is used to remove the first P-type ohmic contact layer 217 and the DBR semiconductor stack 220 , and then a hydrochloric acid series acid solution is used to remove the second N-type etch stop layer 231 .
然后,使用黄光制程与磷酸系列酸性溶液将第二N型欧姆接触层232部分去除,仅留下欧姆接触区,形成一图形化,如图10所示。其中保留的区域可参考图3所示的电连接结构273及电极扩展条274对应的区域。Then, the second N-type ohmic contact layer 232 is partially removed by using a yellow light process and a phosphoric acid series acid solution, leaving only the ohmic contact area to form a pattern, as shown in FIG. 10 . For the reserved area, refer to the area corresponding to the electrical connection structure 273 and the electrode extension bar 274 shown in FIG. 3 .
接着,在第一N型欧姆接触层212上蒸镀GeAu金属作为N型电极271,在第二N型欧姆接触层232上形成 GeAu金属并连接至第一P型欧姆接触层217表面上的BeAu金属层272,作为电连接结构273和电极扩展条274,进行退火形成欧姆接触,如图11所示。Next, GeAu metal is vapor-deposited on the first N-type ohmic contact layer 212 as an N-type electrode 271, and GeAu metal is formed on the second N-type ohmic contact layer 232 and connected to the BeAu on the surface of the first P-type ohmic contact layer 217. The metal layer 272, serving as the electrical connection structure 273 and the electrode extension strip 274, is annealed to form an ohmic contact, as shown in FIG. 11 .
接着,进行芯片单一化处理,使用蚀刻去除部分第二N型电极扩散层233、第二N型覆盖层234、第二发光层235、第二P型覆盖层236和P型转换过渡层237,至第二P型欧姆接触层238,形成一图形化,如图12所示。Next, perform a chip singulation process, use etching to remove part of the second N-type electrode diffusion layer 233, the second N-type cladding layer 234, the second light-emitting layer 235, the second P-type cladding layer 236 and the P-type conversion transition layer 237, To the second P-type ohmic contact layer 238, a pattern is formed, as shown in FIG. 12 .
较佳的,可以使用盐酸系列酸性溶液在第一N型电极扩散层213和第二N型电极扩散层233表面上形成增光结构,如图13所示。Preferably, a hydrochloric acid series acidic solution may be used to form a light enhancing structure on the surfaces of the first N-type electrode diffusion layer 213 and the second N-type electrode diffusion layer 233 , as shown in FIG. 13 .
最后,在导电基板260的背面上形成P型电极275,完成植物照明应用的垂直型发光二级管芯片。Finally, a P-type electrode 275 is formed on the back of the conductive substrate 260 to complete the vertical light-emitting diode chip for plant lighting applications.
很明显地,本发明的说明不应理解为仅仅限制在上述实施例,而是包括利用本发明构思的所有可能的实施方式。Obviously, the description of the present invention should not be construed as being limited to the above-mentioned examples only, but includes all possible implementations utilizing the inventive idea.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610757136.6ACN106328787B (en) | 2016-08-30 | 2016-08-30 | Light emitting diode and preparation method thereof for plant illumination |
| US15/594,617US10154626B2 (en) | 2013-03-07 | 2017-05-14 | LED for plant illumination |
| US16/194,287US10716262B2 (en) | 2013-03-07 | 2018-11-16 | LED for plant illumination |
| US16/900,879US10874057B2 (en) | 2013-03-07 | 2020-06-13 | LED for plant illumination |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610757136.6ACN106328787B (en) | 2016-08-30 | 2016-08-30 | Light emitting diode and preparation method thereof for plant illumination |
| Publication Number | Publication Date |
|---|---|
| CN106328787Atrue CN106328787A (en) | 2017-01-11 |
| CN106328787B CN106328787B (en) | 2019-05-17 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610757136.6AActiveCN106328787B (en) | 2013-03-07 | 2016-08-30 | Light emitting diode and preparation method thereof for plant illumination |
| Country | Link |
|---|---|
| CN (1) | CN106328787B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020181859A1 (en)* | 2019-03-13 | 2020-09-17 | 京东方科技集团股份有限公司 | Inorganic light emitting diode chip, preparation method thereof and display substrate |
| CN114284407A (en)* | 2021-12-22 | 2022-04-05 | 天津三安光电有限公司 | Light-emitting diodes and light-emitting devices |
| CN115295695A (en)* | 2022-07-22 | 2022-11-04 | 天津三安光电有限公司 | Light-emitting diode and method of making the same |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004014965A (en)* | 2002-06-11 | 2004-01-15 | Matsushita Electric Ind Co Ltd | Semiconductor light emitting device |
| CN103390704A (en)* | 2012-05-08 | 2013-11-13 | 华夏光股份有限公司 | Light-emitting diode device and manufacturing method thereof |
| CN103633246A (en)* | 2012-08-29 | 2014-03-12 | 海洋王照明科技股份有限公司 | Red light organic electroluminescent device and preparation method thereof |
| CN205177879U (en)* | 2015-09-04 | 2016-04-20 | 李欣澄 | A LED encapsulates integrated optical source for plant illumination |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004014965A (en)* | 2002-06-11 | 2004-01-15 | Matsushita Electric Ind Co Ltd | Semiconductor light emitting device |
| CN103390704A (en)* | 2012-05-08 | 2013-11-13 | 华夏光股份有限公司 | Light-emitting diode device and manufacturing method thereof |
| CN103633246A (en)* | 2012-08-29 | 2014-03-12 | 海洋王照明科技股份有限公司 | Red light organic electroluminescent device and preparation method thereof |
| CN205177879U (en)* | 2015-09-04 | 2016-04-20 | 李欣澄 | A LED encapsulates integrated optical source for plant illumination |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020181859A1 (en)* | 2019-03-13 | 2020-09-17 | 京东方科技集团股份有限公司 | Inorganic light emitting diode chip, preparation method thereof and display substrate |
| US11522101B2 (en) | 2019-03-13 | 2022-12-06 | Boe Technology Group Co., Ltd. | Inorganic light-emitting diode chip, method for preparing the same, and display substrate |
| CN114284407A (en)* | 2021-12-22 | 2022-04-05 | 天津三安光电有限公司 | Light-emitting diodes and light-emitting devices |
| CN114284407B (en)* | 2021-12-22 | 2025-03-25 | 天津三安光电有限公司 | Light emitting diode and light emitting device |
| CN115295695A (en)* | 2022-07-22 | 2022-11-04 | 天津三安光电有限公司 | Light-emitting diode and method of making the same |
| Publication number | Publication date |
|---|---|
| CN106328787B (en) | 2019-05-17 |
| Publication | Publication Date | Title |
|---|---|---|
| CN103222073B (en) | Light-emitting diode chip, light-emitting diode package structure, and method for forming the above | |
| CN105552180B (en) | A kind of production method of novel high-pressure LED | |
| CN102270633B (en) | High-power flip-chip array LED chip and manufacturing method thereof | |
| CN104409466B (en) | Upside-down mounting baroluminescence device and preparation method thereof | |
| CN102509731A (en) | Alternating current vertical light emitting element and manufacture method thereof | |
| CN102263120A (en) | Semiconductor light-emitting elements, light-emitting devices, lighting devices, display devices, signal lamps, and road information devices | |
| CN102148318B (en) | Light emitting device package, method of manufacturing the same, and lighting system | |
| CN102299228A (en) | Flip-chip plug-in type light-emitting diode chip structure and manufacturing method thereof | |
| CN102117875B (en) | Light emitting device and light emitting device package | |
| CN103219352A (en) | LED (Light Emitting Diode) combined chip in array structure and manufacturing method thereof | |
| US9728670B2 (en) | Light-emitting diode and manufacturing method therefor | |
| JP2013034010A (en) | Vertical light-emitting device | |
| TW201407760A (en) | Light-emitting diode array | |
| CN106328787A (en) | Light-emitting diode for plant illumination and manufacturing method thereof | |
| JP5403832B2 (en) | Light emitting device | |
| CN103647010A (en) | Manufacturing method of high power LED chip | |
| CN101540314A (en) | Light emitting diode element and method of forming the same | |
| CN106876547A (en) | Thin-film type light-emitting diode and preparation method thereof | |
| KR101221643B1 (en) | Flip chip Light-emitting device and Method of manufacturing the same | |
| CN107611232B (en) | Light-emitting diode and method of making the same | |
| CN102544266B (en) | Manufacture method of high-lighting-effect white-light light-emitting diode (LED) inversion chip | |
| TW201203611A (en) | Light emitting device and its manufacturing method | |
| CN106531859B (en) | Exempt to encapsulate high brightness LED chip structure and preparation method thereof | |
| CN111180379B (en) | Micro light-emitting diode epitaxial wafer, display array and fabrication method thereof | |
| TWI704687B (en) | Light-emitting diode |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |