技术领域technical field
本发明属于液流储能钒电池领域,具体地说,涉及一种含有无机钼酸盐的钒电池正极电解液。The invention belongs to the field of liquid flow energy storage vanadium batteries, in particular to a vanadium battery anode electrolyte containing inorganic molybdate.
背景技术Background technique
由于可再生能源(如,太阳能、风能)具有不稳定性和不连续性,为了更高效地利用可再生能源,需大规模的储能技术与之相配套。钒电池因其输出功率和容量相互独立,具有功率和容量大,循环使用寿命长,能量效率高,深度充放电性能好,安全性能高等优点,被认为是最具应用前景之一的大规模储能电池,越来越受到人们的关注。Due to the instability and discontinuity of renewable energy (such as solar energy and wind energy), in order to use renewable energy more efficiently, large-scale energy storage technology is required to match it. Due to its independent output power and capacity, vanadium battery has the advantages of large power and capacity, long cycle life, high energy efficiency, good deep charge and discharge performance, and high safety performance. It is considered to be one of the most promising large-scale storage batteries. Energy-saving batteries are attracting more and more attention.
电解液作为钒电池的关键材料,其在不同温度下的稳定性影响着钒电池的使用温度。目前,钒电池的使用温度范围一般为-30~40℃。这是由于正极钒电池电解液在40℃以上的条件下容易产生沉淀,导致正负极电解液的不匹配和电堆的堵塞,导致钒电池无法正常使用,从而缩短了电解液和电堆的使用寿命。因此,提高正极钒电池电解液的高温稳定性是一个急需解决的问题。Electrolyte is the key material of vanadium batteries, and its stability at different temperatures affects the operating temperature of vanadium batteries. At present, the operating temperature range of vanadium batteries is generally -30-40°C. This is because the positive electrode vanadium battery electrolyte is prone to precipitation at temperatures above 40°C, resulting in a mismatch between the positive and negative electrode electrolytes and the blockage of the stack, resulting in the failure of the vanadium battery to work normally, thus shortening the life of the electrolyte and the stack. service life. Therefore, improving the high-temperature stability of the positive electrode vanadium battery electrolyte is an urgent problem to be solved.
目前,针对提高正极钒电池电解液高温下的稳定性的方法主要是向正极电解液中添加添加剂。其中很多文献报道过添加有机添加剂来提高正极电解液,但有机添加剂容易被五价钒离子氧化,不利于保持正负极电解液的价态平衡。于2013年01月16日公开的中国专利申请文件(公开号为CN102881931A)公开了一种电解液,其中含有正磷酸、偏磷酸、亚磷酸和次磷酸等及其钾盐或钠盐的添加剂的一种或多种,这些添加剂的加入能够实现电解液的稳定性。但由于磷酸根离子的浓度增大时,容易与五价钒离子生成磷酸氧钒沉淀。At present, the method for improving the stability of the electrolyte of the positive vanadium battery at high temperature is mainly to add additives to the electrolyte of the positive electrode. Many literatures have reported adding organic additives to improve the positive electrolyte, but the organic additives are easily oxidized by pentavalent vanadium ions, which is not conducive to maintaining the valence balance of the positive and negative electrolytes. The Chinese patent application document published on January 16, 2013 (the publication number is CN102881931A) discloses an electrolyte solution containing additives such as orthophosphoric acid, metaphosphoric acid, phosphorous acid and hypophosphorous acid, and potassium or sodium salts thereof. One or more, the addition of these additives can achieve the stability of the electrolyte. However, when the concentration of phosphate ions increases, it is easy to form vanadyl phosphate precipitation with pentavalent vanadium ions.
发明内容Contents of the invention
本发明的目的在于解决现有技术存在的上述问题。The object of the present invention is to solve the above-mentioned problems existing in the prior art.
本发明的目的之一在于提高正极钒电池电解液的高温稳定性,以拓宽钒电池运行的温度范围。One of the purposes of the present invention is to improve the high-temperature stability of the electrolyte solution of the positive vanadium battery, so as to widen the operating temperature range of the vanadium battery.
为了实现上述目的,本发明的一方面提供了一种含无机钼酸盐的钒电池电解液,所述钒电池电解液包含:钒离子、硫酸和无机钼酸盐添加剂,其中,所述无机钼酸盐添加剂的浓度为0.01M~0.25M,优选浓度为0.05M~0.1M。In order to achieve the above object, one aspect of the present invention provides a vanadium battery electrolyte containing inorganic molybdate, the vanadium battery electrolyte includes: vanadium ions, sulfuric acid and inorganic molybdate additives, wherein the inorganic molybdenum The concentration of the acid salt additive is 0.01M-0.25M, preferably 0.05M-0.1M.
在本发明的一个示例性实施例中,所述无机钼酸盐为钼酸钠、钼酸铵、钼酸钾、钼酸锂、钼酸镁、钼酸锌和钼酸钙中的一种或两种以上的组合。In an exemplary embodiment of the present invention, the inorganic molybdate is one of sodium molybdate, ammonium molybdate, potassium molybdate, lithium molybdate, magnesium molybdate, zinc molybdate and calcium molybdate or A combination of two or more.
在本发明的一个示例性实施例中,所述无机钼酸盐添加剂的浓度为0.05M~0.10M。In an exemplary embodiment of the present invention, the concentration of the inorganic molybdate additive is 0.05M˜0.10M.
在本发明的一个示例性实施例中,所述钒电池电解液中的钒离子的价态为四价和/或五价。In an exemplary embodiment of the present invention, the valence state of the vanadium ions in the vanadium battery electrolyte is tetravalent and/or pentavalent.
在本发明的一个示例性实施例中,所述含无机钼酸盐的钒电池电解液作为钒电池的正极电解液。In an exemplary embodiment of the present invention, the vanadium battery electrolyte containing inorganic molybdate is used as the anode electrolyte of the vanadium battery.
本发明另一方面提供了一种钒电池,所述钒电池的正极电解液包含钒离子、硫酸和无机钼酸盐添加剂,其中,所述无机钼酸盐添加剂的浓度为0.01M~0.25M。Another aspect of the present invention provides a vanadium battery. The anode electrolyte of the vanadium battery contains vanadium ions, sulfuric acid and an inorganic molybdate additive, wherein the concentration of the inorganic molybdate additive is 0.01M-0.25M.
在本发明的另一个示例性实施例中,所述无机钼酸盐为钼酸钠、钼酸铵、钼酸钾、钼酸锂、钼酸镁、钼酸锌和钼酸钙中的一种或两种以上的组合。In another exemplary embodiment of the present invention, the inorganic molybdate is one of sodium molybdate, ammonium molybdate, potassium molybdate, lithium molybdate, magnesium molybdate, zinc molybdate and calcium molybdate or a combination of two or more.
与现有技术相比,本申请的有益技术效果包括:本发明使用了无机钼酸盐作为正极电解液添加剂,提高了正极电解液的稳定性,拓宽了钒电池的运行温度范围。本发明制备工艺操作简单、成本低、同时易于实现钒电池的高温稳定运行。Compared with the prior art, the beneficial technical effects of the present application include: the present invention uses inorganic molybdate as the positive electrode electrolyte additive, improves the stability of the positive electrode electrolyte, and widens the operating temperature range of the vanadium battery. The preparation process of the invention has simple operation and low cost, and at the same time, it is easy to realize the stable operation of the vanadium battery at high temperature.
具体实施方式detailed description
在下文中,将结合示例性实施例来详细说明本发明的含无机钼酸盐的钒电池电解液。Hereinafter, the electrolytic solution for vanadium batteries containing inorganic molybdates of the present invention will be described in detail with reference to exemplary embodiments.
本发明的含无机钼酸盐的钒电池电解液可以包含:钒离子、硫酸和无机钼酸盐添加剂。其中,无机钼酸盐添加剂的浓度可以为0.01M-0.25M,优选浓度可以为0.05M~0.10M,更加优选的浓度可以为0.1M~0.20M。The vanadium battery electrolytic solution containing inorganic molybdate of the present invention may comprise: vanadium ions, sulfuric acid and inorganic molybdate additives. Wherein, the concentration of the inorganic molybdate additive may be 0.01M-0.25M, the preferred concentration may be 0.05M-0.10M, and the more preferred concentration may be 0.1M-0.20M.
在根据本发明的含无机钼酸盐的钒电池电解液中,钒离子可以为较高价态(四、五价)的钒离子,钒离子的浓度可以为0.5M~5M;硫酸的浓度可以为1.5M~7M。In the vanadium battery electrolyte containing inorganic molybdate according to the present invention, vanadium ion can be the vanadium ion of higher valence state (quaternary, pentavalent), and the concentration of vanadium ion can be 0.5M~5M; The concentration of sulfuric acid can be 1.5M~7M.
在根据本发明的含无机钼酸盐的钒电池电解液中,无机钼酸盐可以为钼酸钠、钼酸铵、钼酸钾、钼酸锂、钼酸镁、钼酸锌和钼酸钙中的一种或两种以上的组合。In the vanadium battery electrolyte containing inorganic molybdate according to the present invention, the inorganic molybdate can be sodium molybdate, ammonium molybdate, potassium molybdate, lithium molybdate, magnesium molybdate, zinc molybdate and calcium molybdate one or a combination of two or more.
在根据本发明的含无机钼酸盐的钒电池电解液中,含无机钼酸盐的钒电池电解液可以作为钒电池的正极电解液。In the vanadium battery electrolyte containing inorganic molybdate according to the present invention, the vanadium battery electrolyte containing inorganic molybdate can be used as the anode electrolyte of the vanadium battery.
本发明的钒电池,其中,钒电池的正极电解液中可以包含钒离子、硫酸和无机钼酸盐添加剂,而无机钼酸盐添加剂的浓度可以为0.01M~0.25M。In the vanadium battery of the present invention, the anode electrolyte of the vanadium battery may contain vanadium ions, sulfuric acid and inorganic molybdate additives, and the concentration of the inorganic molybdate additives may be 0.01M-0.25M.
在根据本发明的钒电池中,机钼酸盐可以为钼酸钠、钼酸铵、钼酸钾、钼酸锂、钼酸镁、钼酸锌和钼酸钙中的一种或两种以上的组合。In the vanadium battery according to the present invention, the organic molybdate may be one or more of sodium molybdate, ammonium molybdate, potassium molybdate, lithium molybdate, magnesium molybdate, zinc molybdate and calcium molybdate The combination.
下面将结合具体示例来进一步详细描述本发明的示例性实施例。Exemplary embodiments of the present invention will be further described in detail below with reference to specific examples.
向体积为100mL组成为1.7M V(V)+3M H2SO4的钒电池正极电解液中,分别加入不同浓度的钼酸钠、钼酸铵、钼酸钾、钼酸锂、钼酸镁、钼酸锌、钼酸钙(见表1)。Addsodium molybdate,ammonium molybdate, potassium molybdate, lithium molybdate, magnesium molybdate, Zinc molybdate, calcium molybdate (see Table 1).
将待测电解液置于50℃的烘箱中,并与不含任何添加剂的空白样进行对比。观察并记录溶液产生沉淀的时间。从表1中可以看出,与空白样电解液相比,在无机钼酸盐的作用下,五价钒电解液的高温稳定性有了大幅的提高。说明钼酸盐能够有效的抑制V(V)的水解。因此钼酸盐作为正极钒电解液的添加剂可以显著地提高电解液的高温稳定性。Place the electrolyte solution to be tested in an oven at 50°C, and compare it with a blank sample without any additives. Observe and record the time when the solution precipitates. It can be seen from Table 1 that, compared with the blank electrolyte, the high temperature stability of the pentavalent vanadium electrolyte has been greatly improved under the action of inorganic molybdate. It shows that molybdate can effectively inhibit the hydrolysis of V(V). Therefore, molybdate as an additive to positive vanadium electrolyte can significantly improve the high temperature stability of the electrolyte.
表1不同添加剂的钒电池正极电解液在50℃下产生沉淀的时间Table 1 The time for the positive electrode electrolyte of vanadium battery with different additives to produce precipitation at 50°C
综上所述,本发明的有益效果包括:本发明使用了无机钼酸盐作为正极电解液添加剂,提高了正极电解液的稳定性,拓宽了钒电池的运行温度范围。本发明制备工艺操作简单、成本低、同时易于实现钒电池的高温稳定运行。尽管上面已经结合示例性实施例描述了本发明,但是本领域普通技术人员应该清楚,在不脱离权利要求的精神和范围的情况下,可以对上述实施例进行各种修改。In summary, the beneficial effects of the present invention include: the present invention uses inorganic molybdate as the positive electrode electrolyte additive, improves the stability of the positive electrode electrolyte, and broadens the operating temperature range of the vanadium battery. The preparation process of the invention has simple operation and low cost, and at the same time, it is easy to realize the stable operation of the vanadium battery at high temperature. Although the invention has been described above in conjunction with exemplary embodiments, it will be apparent to those skilled in the art that various modifications may be made to the above embodiments without departing from the spirit and scope of the claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610992604.8ACN106299434A (en) | 2016-11-11 | 2016-11-11 | A kind of electrolyte of vanadium redox battery containing inorganic molybdate and vanadium cell |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610992604.8ACN106299434A (en) | 2016-11-11 | 2016-11-11 | A kind of electrolyte of vanadium redox battery containing inorganic molybdate and vanadium cell |
| Publication Number | Publication Date |
|---|---|
| CN106299434Atrue CN106299434A (en) | 2017-01-04 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610992604.8APendingCN106299434A (en) | 2016-11-11 | 2016-11-11 | A kind of electrolyte of vanadium redox battery containing inorganic molybdate and vanadium cell |
| Country | Link |
|---|---|
| CN (1) | CN106299434A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108199068A (en)* | 2018-01-09 | 2018-06-22 | 中国工程物理研究院电子工程研究所 | A kind of low temperature all-vanadium redox flow battery electrolyte and preparation method thereof |
| CN111162245A (en)* | 2018-11-08 | 2020-05-15 | 四川理工学院 | Magnesium air battery cathode surface modification method and electrolyte |
| WO2023001273A1 (en)* | 2021-07-23 | 2023-01-26 | 瑞海泊(青岛)能源科技有限公司 | Aqueous battery |
| CN118970128A (en)* | 2024-10-12 | 2024-11-15 | 杭州德海艾科能源科技有限公司 | A low-temperature stable negative electrode electrolyte for vanadium battery |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105322207A (en)* | 2014-07-30 | 2016-02-10 | 中国科学院大连化学物理研究所 | Phosphorous heteropoly acid all-vanadium redox flow battery positive electrolyte and application thereof |
| CN106876767A (en)* | 2015-12-13 | 2017-06-20 | 中国科学院大连化学物理研究所 | An all-vanadium redox flow battery cathode electrolyte containing additives |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105322207A (en)* | 2014-07-30 | 2016-02-10 | 中国科学院大连化学物理研究所 | Phosphorous heteropoly acid all-vanadium redox flow battery positive electrolyte and application thereof |
| CN106876767A (en)* | 2015-12-13 | 2017-06-20 | 中国科学院大连化学物理研究所 | An all-vanadium redox flow battery cathode electrolyte containing additives |
| Title |
|---|
| 陈勇: "全钒液流电池电解液的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108199068A (en)* | 2018-01-09 | 2018-06-22 | 中国工程物理研究院电子工程研究所 | A kind of low temperature all-vanadium redox flow battery electrolyte and preparation method thereof |
| CN108199068B (en)* | 2018-01-09 | 2020-05-05 | 中国工程物理研究院电子工程研究所 | Low-temperature all-vanadium redox flow battery electrolyte and preparation method thereof |
| CN111162245A (en)* | 2018-11-08 | 2020-05-15 | 四川理工学院 | Magnesium air battery cathode surface modification method and electrolyte |
| CN111162245B (en)* | 2018-11-08 | 2021-08-20 | 四川理工学院 | A kind of magnesium-air battery negative electrode surface modification method and electrolyte |
| WO2023001273A1 (en)* | 2021-07-23 | 2023-01-26 | 瑞海泊(青岛)能源科技有限公司 | Aqueous battery |
| CN115692718A (en)* | 2021-07-23 | 2023-02-03 | 瑞海泊(青岛)能源科技有限公司 | Aqueous battery |
| CN118970128A (en)* | 2024-10-12 | 2024-11-15 | 杭州德海艾科能源科技有限公司 | A low-temperature stable negative electrode electrolyte for vanadium battery |
| Publication | Publication Date | Title |
|---|---|---|
| Jaiswal et al. | A brief review on ceria based solid electrolytes for solid oxide fuel cells | |
| CN107078330B (en) | All sulfate vanadic acid redox flow battery system | |
| CN102354762B (en) | A kind of preparation method of high-purity vanadium battery electrolyte | |
| WO2016078491A1 (en) | Zinc-bromine flow battery having extended service life | |
| KR101180770B1 (en) | Redox flow battery electrolyte and production method thereof and redox flow battery produced thereby | |
| JP2016527678A (en) | All vanadium redox flow battery and operation method thereof | |
| CN104979577B (en) | A kind of vanadium/chloride electrolyte and the redox flow batteries using the electrolyte | |
| CN106299434A (en) | A kind of electrolyte of vanadium redox battery containing inorganic molybdate and vanadium cell | |
| CN102881931A (en) | Phosphorus-containing all-vanadium redox flow battery anode electrolyte | |
| US20210184233A1 (en) | Zinc Iodine Flow Battery | |
| CN105742656A (en) | Zinc-iodine flow battery | |
| CN112830521B (en) | F-doped P2-Na0.7MnO2Electrode material and preparation method thereof | |
| CN104577173B (en) | The method that electrolyte for vanadium cell is directly prepared using vanadic anhydride | |
| CN109888350A (en) | An electrolyte for a medium temperature all-vanadium redox flow battery | |
| CN105322207B (en) | A kind of phosphorous heteropoly acid positive electrolyte for all-vanadiumredox flow battery and its application | |
| CN106876767B (en) | A kind of positive electrolyte for all-vanadiumredox flow battery containing additive | |
| CN108123159B (en) | A method for improving the stability of the negative electrode electrolyte of an all-vanadium redox flow battery | |
| CN105280943A (en) | Total-manganese flow battery | |
| CN105322186B (en) | A kind of method for reducing all-vanadium flow battery activation polarization | |
| CN106299432A (en) | Mineral acid is as improving V electrolyte concentration and the application of stability additive | |
| CN109411797A (en) | The method for adjusting sulfuric acid system V electrolyte Vanadium valence | |
| CN109360997A (en) | The regeneration method of sulfuric acid system failure V electrolyte | |
| CN104300168A (en) | Inorganic ammonium phosphate-containing positive electrode electrolyte for whole vanadium flow battery | |
| CN108550884A (en) | A kind of flow battery | |
| Kanti Hazra et al. | Lithium‐free redox flow batteries: challenges and future prospective for safe and efficient energy storage |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20170104 | |
| RJ01 | Rejection of invention patent application after publication |