Movatterモバイル変換


[0]ホーム

URL:


CN106252634A - Graphene aerogel load CNT and ZIF 67 electrode material of lithium battery preparation method - Google Patents

Graphene aerogel load CNT and ZIF 67 electrode material of lithium battery preparation method
Download PDF

Info

Publication number
CN106252634A
CN106252634ACN201610847675.9ACN201610847675ACN106252634ACN 106252634 ACN106252634 ACN 106252634ACN 201610847675 ACN201610847675 ACN 201610847675ACN 106252634 ACN106252634 ACN 106252634A
Authority
CN
China
Prior art keywords
cnts
zif
gas
add
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610847675.9A
Other languages
Chinese (zh)
Other versions
CN106252634B (en
Inventor
孙炜伟
王勇
李�浩
梁明
蔡昌
杨秦斯
陈思
张文博
尹晓杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and TechnologyfiledCriticalUniversity of Shanghai for Science and Technology
Priority to CN201610847675.9ApriorityCriticalpatent/CN106252634B/en
Publication of CN106252634ApublicationCriticalpatent/CN106252634A/en
Application grantedgrantedCritical
Publication of CN106252634BpublicationCriticalpatent/CN106252634B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开了一种石墨烯气凝胶负载碳纳米管和ZIF‑67锂电池电极材料制备方法,该方法是通过天然石墨粉化学氧化剥离法制备石墨烯氧化物,再加入碳纳米管(CNTs)超声,通过水热法和冷冻干燥法制备多孔石墨烯气凝胶(GAS)与CNTs的复合物(GAS@CNTs),再将其与ZIF‑67溶液搅拌,静置后,制得石墨烯气凝胶(GAS)负载碳纳米管(CNTs)和ZIF‑67锂电池电极材料(GAS@CNTs@ZIF‑67),该方法的关键是,通过水热法和冷冻干燥法制备GAS与CNTs的复合物,再加入ZIF‑67,搅拌均匀分散,真空干燥得到GAS@CNTs@ZIF‑67锂电池电极材料,经电化学测试可知,该新型石墨烯气凝胶负载碳纳米管和ZIF‑67锂电池电极材料相对比容量高,循环稳定性好,具有商业化并能应用于纯电动汽车。

The invention discloses a method for preparing graphene airgel-loaded carbon nanotubes and ZIF-67 lithium battery electrode materials. The method is to prepare graphene oxide through a chemical oxidation stripping method of natural graphite powder, and then add carbon nanotubes (CNTs ) ultrasound, the composite of porous graphene airgel (GAS) and CNTs (GAS@CNTs) was prepared by hydrothermal method and freeze-drying method, and then stirred with ZIF‑67 solution, and graphene was obtained after standing Airgel (GAS) loaded carbon nanotubes (CNTs) and ZIF‑67 lithium battery electrode materials (GAS@CNTs@ZIF‑67), the key to this method is to prepare GAS and CNTs by hydrothermal method and freeze drying method Then add ZIF‑67, stir and disperse evenly, and vacuum dry to get GAS@CNTs@ZIF‑67 lithium battery electrode material. The electrochemical test shows that the new graphene airgel supports carbon nanotubes and ZIF‑67 lithium The battery electrode material has a relatively high specific capacity and good cycle stability, which is commercialized and can be applied to pure electric vehicles.

Description

Translated fromChinese
石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料制备方法Preparation of graphene airgel-loaded carbon nanotubes and ZIF-67 lithium battery electrode materialsmethod

技术领域technical field

本发明涉及一种石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料制备方法,属于锂离子动力电池电极材料制备技术领域。The invention relates to a method for preparing graphene airgel-loaded carbon nanotubes and ZIF-67 lithium battery electrode materials, and belongs to the technical field of lithium ion power battery electrode material preparation.

背景技术Background technique

气凝胶是一类具有发达孔隙结构的整体性材料,该发达孔结构具有密度低、热导电率小、孔隙发达等优点。石墨烯气凝胶(Graphene aerogel,简称为GAS)被称为石墨烯海绵(Graphene sponge)、石墨烯宏观体(Graphene monaolith)或石墨烯泡沫(Graphenefoam)。它不仅具有常规气凝胶的优点、还具有炭气凝胶的导电特性以及独特的三维孔隙结构,而这种独特的结构使其比石墨烯具有更多的电化学反应活性位点,从而极大的提高了它的储锂性能。碳纳米管和石墨烯在电化学和力学等方面有着相似的性质,但由于微观结构的不同,它们也具有各自的性能。为了结合两者的优点,将石墨烯和碳纳米管共同用于复合材料,形成三维多孔结构,通过两者之间的协同效应,使其表现出比其中任意单一材料更加优异的性能。Aerogels are a class of monolithic materials with a well-developed pore structure, which has the advantages of low density, low thermal conductivity, and well-developed pores. Graphene aerogel (GAS for short) is called graphene sponge, graphene monaolith or graphene foam. It not only has the advantages of conventional aerogels, but also has the conductive properties of carbon aerogels and a unique three-dimensional pore structure, and this unique structure makes it have more electrochemically reactive sites than graphene, so it is extremely Greatly improved its lithium storage performance. Carbon nanotubes and graphene have similar properties in terms of electrochemistry and mechanics, but they also have their own properties due to their different microstructures. In order to combine the advantages of both, graphene and carbon nanotubes are used together in composite materials to form a three-dimensional porous structure. Through the synergistic effect between the two, it shows more excellent performance than any single material.

锂离子电池由于其稳定的循环性能和高的能量密度被广泛地应用于手机、笔记本电脑、电动汽车(EV)等领域,但随着时代的进步和科技的发展,以石墨为电极的传统锂离子电池已经很难满足人们对储能设备的要求。石墨烯和碳纳米管因为具有大的表面积、优异的导电性能和机械性能而被认为是最有潜力的电极材料。为了进一步增强石墨烯和碳纳米管及两者复合材料的储锂性能,人们往往会向其中添加其他物质以组成三元或多元复合体系。Lithium-ion batteries are widely used in mobile phones, notebook computers, electric vehicles (EV) and other fields due to their stable cycle performance and high energy density. However, with the progress of the times and the development of technology, traditional lithium batteries with graphite as electrodes Ion batteries have been difficult to meet people's requirements for energy storage devices. Graphene and carbon nanotubes are considered as the most potential electrode materials because of their large surface area, excellent electrical conductivity and mechanical properties. In order to further enhance the lithium storage performance of graphene and carbon nanotubes and their composites, people often add other substances to them to form a ternary or multiple composite system.

金属有机骨架(MOF)结构是以金属离子作为连接点,有机配体作为连接线形成的三维多孔的结构。金属有机骨架中的金属离子在电化学反应过程中可以充当氧化还原反应的活性位点,所以金属有机骨架也常常被用于锂离子电池的电极材料。沸石型咪唑类的金属有机骨架ZIF-67是以二价过渡金属Co2+与咪唑基配体构筑的具有沸石拓扑结构的一种新型多孔晶体材料,其结构中的金属中心Co2+离子能与Li+离子发生可逆转换反应,从而达到储锂要求。如Saravanan Kuppan等人合成了一类具有钻石结构的金属有机骨架结构Zn3(HCOO)6、Co3(HCOO)6和Zn1.5Co1.5(HCOO)6,并通过它们与Li+的转换可逆反应实现储锂性能,其中的结构Co3(HCOO)6在电流密度为60 mA/g的条件下,60圈循环后仍有410 mAh/g的放电比容量,明显优于商业石墨的比容量(J. Mater. Chem. 2010, 20, 8329-8335)。但ZIF-67在脱嵌Li+的过程中金属有机骨架结构会被破坏,将其与石墨烯气凝胶结合可有效缓解结构的破坏,从而表现出优异的电化学循环性。而石墨烯气凝胶比石墨烯具有更多的电化学反应活性位点,从而具有更好的电化学性能。Ren等人通过水热自组装过程在石墨烯片层上成功负载了孔道大小可调的三维分层多孔石墨烯气凝胶,这种复合材料在0.1A/g的电流密度下,放电比容量达到1100 mAh/g,也远远要优于石墨电极(Scientific Reports, 2015,5, 14229)。The metal-organic framework (MOF) structure is a three-dimensional porous structure formed by metal ions as connection points and organic ligands as connection lines. Metal ions in metal organic frameworks can act as active sites for redox reactions during electrochemical reactions, so metal organic frameworks are often used as electrode materials for lithium-ion batteries. The metal-organic framework ZIF-67 of zeolite-type imidazoles is a new type of porous crystal material with zeolite topological structure constructed by divalent transition metal Co2+ and imidazole-based ligands. The metal center Co2+ ions in its structure can A reversible conversion reaction occurs with Li+ ions, so as to meet the requirements of lithium storage. For example, Saravanan Kuppan et al. synthesized a class of metal-organic frameworks Zn3 (HCOO)6 , Co3 (HCOO)6 , and Zn1.5 Co1.5 (HCOO)6 with a diamond structure, and reversible reactions through their conversion with Li+ To achieve lithium storage performance, the structure Co3 (HCOO)6 in it still has a discharge specific capacity of 410 mAh/g after 60 cycles at a current density of 60 mA/g, which is significantly better than that of commercial graphite ( J. Mater. Chem. 2010, 20, 8329-8335). However, the metal-organic framework structure of ZIF-67 will be destroyed during the process of deintercalating Li+ , and combining it with graphene aerogel can effectively alleviate the structural destruction, thus showing excellent electrochemical cycling performance. Graphene aerogels have more electrochemically reactive sites than graphene, resulting in better electrochemical performance. Ren et al. successfully loaded three-dimensional layered porous graphene aerogels with adjustable pore sizes on graphene sheets through a hydrothermal self-assembly process. This composite material has a discharge specific capacity of 0.1A/g at a current density of Reaching 1100 mAh/g is far superior to graphite electrodes (Scientific Reports, 2015, 5, 14229).

总之,设计成具有孔道结构和丰富的电化学反应活性位点的载体,将有利于解决锂离子电池在充放电过程中由于锂离子的反复脱嵌而引发的电极材料结构破坏问题,从而推进锂离子电池电极材料的发展。In short, designing a carrier with a pore structure and abundant electrochemical reaction active sites will help to solve the problem of electrode material structure damage caused by the repeated deintercalation of lithium ions during the charging and discharging process of lithium-ion batteries, thereby advancing the development of lithium-ion batteries. Development of electrode materials for ion batteries.

发明内容Contents of the invention

本发明是以天然石墨粉为原料,通过化学氧化剥离法制备石墨烯氧化物,再加入碳纳米管(CNTs)超声混合后,通过水热法和冷冻干燥法制备多孔石墨烯气凝胶(GAS)与CNTs的复合物(GAS@CNTs),再将GAS@CNTs与金属有机骨架ZIF-67前驱体溶液搅拌混合,静置一段时间后,制得石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料(GAS@CNTs@ZIF-67),该方法关键是要通过水热法和冷冻干燥法制备GAS与CNTs的复合物,在GAS与CNTs的复合物中再加入ZIF-67,通过搅拌均匀分散,真空干燥后得到GAS@CNTs@ZIF-67锂电池电极材料。经过电化学测试可知,该新型石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料,相对比容量高、循环稳定性好、制备方法简单、实验条件温和,具有商业化的可能并可应用于纯电动汽车。The invention uses natural graphite powder as raw material, prepares graphene oxide by chemical oxidation stripping method, adds carbon nanotubes (CNTs) after ultrasonic mixing, and prepares porous graphene airgel (GAS) by hydrothermal method and freeze-drying method. ) and CNTs composites (GAS@CNTs), then GAS@CNTs and metal organic framework ZIF-67 precursor solution were stirred and mixed, and after standing for a period of time, graphene airgel supported carbon nanotubes and ZIF- 67 Lithium battery electrode material (GAS@CNTs@ZIF-67), the key to this method is to prepare the composite of GAS and CNTs by hydrothermal method and freeze-drying method, and then add ZIF-67 to the composite of GAS and CNTs, Disperse evenly by stirring, and obtain GAS@CNTs@ZIF-67 lithium battery electrode material after vacuum drying. After electrochemical tests, it can be seen that the new graphene airgel-loaded carbon nanotubes and ZIF-67 lithium battery electrode materials have high relative specific capacity, good cycle stability, simple preparation method, mild experimental conditions, and commercialization. It can be applied to pure electric vehicles.

本发明是通过以下技术方案实现的。The present invention is achieved through the following technical solutions.

本发明是一种石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料制备方法,其特征在于具有以下的工艺过程和步骤:The present invention is a kind of graphene airgel supported carbon nanotube and ZIF-67 lithium battery electrode material preparation method, it is characterized in that having following process and step:

a. 称取2-2.5g 天然石墨粉倒入1000ml的烧瓶中,加入100-150ml 浓度65%的HNO3,再将烧瓶放在冰水浴中,保持在0℃下缓慢加入100-150ml 浓度98% 的H2SO4,搅拌1-2h后,加入8-15g KMnO4,升温至30-40℃反应2-3h,再升温至70-90℃反应1-2h;冷至室温后加入300-500ml蒸馏水稀释浓酸后得到棕色胶体状物质,再加入30-50ml的 35% H2O2及100-150ml 的10% HCl清洗,得棕黄色溶液;离心水洗至中性;50-60℃下空气中干燥得石墨烯氧化物;a. Weigh 2-2.5g of natural graphite powder and pour it into a 1000ml flask, add 100-150ml of HNO3 with a concentration of 65%, then put the flask in an ice-water bath, and slowly add 100-150ml of a concentration of 98 % H2 SO4 , after stirring for 1-2h, add 8-15g KMnO4 , heat up to 30-40°C for 2-3h, then heat up to 70-90°C for 1-2h; cool to room temperature and add 300- Dilute concentrated acid with 500ml of distilled water to obtain a brown colloidal substance, then add 30-50ml of 35% H2 O2 and 100-150ml of 10% HCl to wash to obtain a brown-yellow solution; centrifuge and wash until neutral; at 50-60°C Drying in air to obtain graphene oxide;

b. 称取0.04g上述石墨烯氧化物,加入20ml的蒸馏水,超声30-60min后,再加入0.02g碳纳米管(CNTs)继续超声分散1-1.5h,在180℃水热反应12h,再冷冻干燥,干燥温度为-30-40℃,制得石墨烯气凝胶(GAS)和碳纳米管(CNTs)的复合物(GAS@CNTs);b. Weigh 0.04g of the above graphene oxide, add 20ml of distilled water, ultrasonic 30-60min, then add 0.02g carbon nanotubes (CNTs) to continue ultrasonic dispersion for 1-1.5h, hydrothermal reaction at 180℃ for 12h, and then Freeze-drying at a drying temperature of -30-40°C to prepare a composite of graphene airgel (GAS) and carbon nanotubes (CNTs) (GAS@CNTs);

c. 称取0.05g步骤(b)得到的石墨烯气凝胶(GAS)和CNTs的复合物(GAS@CNTs)加入25ml甲醇溶液中,超声分散20-30min,加入0.249g Co(NO3)2·6H2O;再滴入25ml 2-甲基咪唑的甲醇溶液,搅拌10-20min,静置24h 后用乙醇离心洗涤6-8次,干燥后即得GAS@CNTs和ZIF-67复合物;c. Weigh 0.05g of the composite of graphene airgel (GAS) and CNTs (GAS@CNTs) obtained in step (b) into 25ml methanol solution, ultrasonically disperse for 20-30min, add 0.249g Co(NO3 )2 6H2 O; add 25ml of methanol solution of 2-methylimidazole dropwise, stir for 10-20min, let stand for 24h, wash with ethanol for 6-8 times, and dry to obtain GAS@CNTs and ZIF-67 complex ;

d. 选取GAS@CNTs@ZIF-67、乙炔黑、PVDF胶黏剂,GAS@CNTs@ZIF-67、乙炔黑、PVDF胶黏剂以8:1:1的质量比混合均匀,然后将混合物加入N-N二甲基吡咯烷酮中,并超声分散,得到胶状黑色液体;用高速内旋式打浆机分散浆液,每次一分钟重复5-10次,得到均一的GAS@CNTs@ZIF-6黑色胶状浆料;d. Select GAS@CNTs@ZIF-67, acetylene black, PVDF adhesive, mix GAS@CNTs@ZIF-67, acetylene black, PVDF adhesive in a mass ratio of 8:1:1, and then add the mixture to N-N dimethylpyrrolidone, and ultrasonically dispersed to obtain a colloidal black liquid; use a high-speed internal rotary beater to disperse the slurry, repeat 5-10 times per minute, and obtain a uniform GAS@CNTs@ZIF-6 black colloid slurry;

e. 将上述黑色胶状浆料均匀的涂布在事先处理好的金属铜集流体上,置于真空烘箱中干燥,温度设定为 60-80℃,干燥时间 12-24h ;最终得到石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料。e. Coat the above-mentioned black colloidal slurry evenly on the pre-treated metal copper current collector, place it in a vacuum oven and dry it, the temperature is set at 60-80°C, and the drying time is 12-24h; finally obtain graphene Aerogel-loaded carbon nanotubes and ZIF-67 lithium battery electrode materials.

与现有技术相比,本方法通过水热法,冷冻干燥法和超声分散,成功制备GAS与CNTs的复合物并将其与ZIF-67有效结合,最终获得石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料,该材料具有丰富的电化学反应活性位点和丰富的孔道结构,从而有相对比容量高、循环稳定性好、制备方法简单、实验条件温和的特点。Compared with the existing technology, this method successfully prepares the composite of GAS and CNTs through hydrothermal method, freeze-drying method and ultrasonic dispersion and effectively combines it with ZIF-67, and finally obtains graphene airgel-supported carbon nanotubes And ZIF-67 lithium battery electrode material, the material has rich electrochemical reaction active sites and rich pore structure, so it has the characteristics of high relative specific capacity, good cycle stability, simple preparation method and mild experimental conditions.

附图说明Description of drawings

图1为石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料的X射线衍射(XRD)图谱;Figure 1 is the X-ray diffraction (XRD) pattern of graphene airgel-loaded carbon nanotubes and ZIF-67 lithium battery electrode materials;

图2为石墨烯气凝胶负载碳纳米管的材料的扫描电镜(SEM)照片;Figure 2 is a scanning electron microscope (SEM) photo of a graphene airgel-loaded carbon nanotube material;

图3为石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料的透射电镜(TEM)照片;Figure 3 is a transmission electron microscope (TEM) photo of graphene airgel-loaded carbon nanotubes and ZIF-67 lithium battery electrode materials;

图4为石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料的小电流(0.1C)充放电的循环性能图。Figure 4 is a graph of graphene airgel-loaded carbon nanotubes and ZIF-67 lithium battery electrode material for low current (0.1C) charge and discharge cycle performance diagram.

具体实施方式detailed description

现将本发明的具体实施案例叙述于后。Now the specific implementation cases of the present invention are described in the following.

实施例1Example 1

一种石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料制备方法,其步骤如下:A kind of graphene airgel supported carbon nanotube and ZIF-67 lithium battery electrode material preparation method, its steps are as follows:

a. 称取2g天然石墨粉倒入烧瓶中,加入100ml浓度65%的HNO3,再将烧瓶放在冰水浴中,保持在0℃下缓慢加入100ml浓度为98% 的H2SO4,搅拌1h后加入10g KMnO4,升温至35℃反应2h ,再升温至75℃反应1h ;冷至室温后加入500ml 蒸馏水稀释浓酸得到棕色胶体状物质,再加入40ml 的35% H2O2及100ml 的10% HCl清洗,得棕黄色溶液;离心水洗至中性;60℃下空气中干燥得石墨烯氧化物;a. Weigh 2g of natural graphite powder and pour it into a flask, add 100ml of HNO3 with a concentration of 65%, then place the flask in an ice-water bath, and slowly add 100ml of H2 SO4 with a concentration of 98% at 0°C, and stir Add 10g KMnO4 after 1h, raise the temperature to 35°C for 2h, then raise the temperature to 75°C for 1h; after cooling to room temperature, add 500ml of distilled water to dilute the concentrated acid to obtain a brown colloidal substance, then add 40ml of 35% H2 O2 and 100ml Wash with 10% HCl to obtain a brownish-yellow solution; centrifuge and wash with water until neutral; dry in air at 60°C to obtain graphene oxide;

b. 称取0.04g上述石墨烯氧化物,加入20ml的蒸馏水,超声30 min后,再加入0.02g 碳纳米管(CNTs)超声分散1h ,在180℃水热反应12h ,再冷冻干燥,干燥温度为-30-40℃,制得石墨烯气凝胶(GAS)和碳纳米管(CNTs)的复合物(GAS@CNTs);b. Weigh 0.04g of the above-mentioned graphene oxide, add 20ml of distilled water, and after ultrasonication for 30 minutes, add 0.02g of carbon nanotubes (CNTs) for ultrasonic dispersion for 1 hour, then hydrothermally react at 180°C for 12 hours, and then freeze-dry. Graphene airgel (GAS) and carbon nanotube (CNTs) composites (GAS@CNTs) were prepared at -30-40°C;

c. 称取0.05g步骤(b)得到的的烯气凝胶(GAS)和CNTs的复合物GAS@CNTs加入25ml甲醇溶液中,超声30 min,加入0.249g Co(NO3)2·6H2O;再滴入25ml 2-甲基咪唑的甲醇溶液,搅拌20min,静置24h 后用乙醇离心洗涤7次,干燥后即得GAS@CNTs@ZIF-67复合物;c. Weigh 0.05g of the compound GAS@CNTs of ene airgel (GAS) and CNTs obtained in step (b) and add it to 25ml methanol solution, sonicate for 30 min, add 0.249g Co(NO3 )2 ·6H2 O; Add 25ml of 2-methylimidazole methanol solution dropwise, stir for 20min, let stand for 24h, wash with ethanol centrifugation for 7 times, and obtain the GAS@CNTs@ZIF-67 complex after drying;

d. 选取GAS@CNTs@ZIF-67、乙炔黑、PVDF胶黏剂,GAS@CNTs@ZIF-67、乙炔黑、PVDF胶黏剂以8:1:1的质量比混合均匀,然后将混合物加入N-N二甲基吡咯烷酮中,并超声分散,得到胶状黑色浆液;用高速内旋式打浆机分散浆液,每次一分钟重复10次,得到均一的GAS@CNTs@ZIF-67黑色胶状浆料;d. Select GAS@CNTs@ZIF-67, acetylene black, PVDF adhesive, mix GAS@CNTs@ZIF-67, acetylene black, PVDF adhesive in a mass ratio of 8:1:1, and then add the mixture to N-N dimethylpyrrolidone, and ultrasonically dispersed to obtain a colloidal black slurry; use a high-speed internal rotary beater to disperse the slurry, repeat 10 times each time for one minute, and obtain a uniform GAS@CNTs@ZIF-67 black colloidal slurry ;

e. 将上述黑色胶状浆料均匀的涂布在事先处理好的金属铜集流体上,置于真空烘箱中干燥,温度设定为80℃,干燥时间24h ;最终得到石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料。e. Coat the above-mentioned black colloidal slurry evenly on the pre-treated metal copper current collector, place it in a vacuum oven and dry it, the temperature is set at 80°C, and the drying time is 24h; the graphene airgel load is finally obtained Carbon nanotubes and ZIF-67 lithium battery electrode materials.

电池的组装及其测试Battery assembly and testing

把上述制备好的待测电极放入自制不锈钢电池模具中测试,以高纯锂片作为负极,聚丙烯多孔膜(Celgard 2400)为隔膜,电解液为1mol/L的三氟甲烷磺酰氯LiTFSI与聚乙二醇(PEG)/二甲醚(DME)(重量比为1:1)的混合溶液。电池的组装在充满高纯氩气的手套箱中进行;测试电流密度为0.1C,其中1C等于1000 mA/g,测试电压范围为1-3V。Put the prepared electrode to be tested above into a self-made stainless steel battery mold for testing, using high-purity lithium sheet as the negative electrode, polypropylene porous membrane (Celgard 2400) as the separator, and the electrolyte as 1mol/L trifluoromethanesulfonyl chloride LiTFSI and A mixed solution of polyethylene glycol (PEG)/dimethyl ether (DME) (1:1 by weight). The assembly of the battery is carried out in a glove box filled with high-purity argon; the test current density is 0.1C, where 1C is equal to 1000 mA/g, and the test voltage range is 1-3V.

附图1所示:经分析得知产物是结晶度较高的金属有机骨架ZIF-67和碳纳米管负载在石墨烯气凝胶上的锂电池电极材料。图2为石墨烯气凝胶负载碳纳米管的扫描SEM照片,可以看出碳纳米管穿插在石墨烯气凝胶中;图3为石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料的透射电镜TEM照片,可以看出石墨烯气凝胶褶皱片层上附着有六边形的ZIF-67颗粒和管状的碳纳米管。在图2和图3中,可以发现碳纳米管和ZIF-67在石墨烯气凝胶上均匀分散,形成一种多级孔道结构的三维多孔复合物。图4为石墨烯气凝胶负载碳纳米管和ZIF-67锂电池电极材料的小电流(0.1C)充放电的循环性能图,从图4中可看出,电池在小电流充放循环50圈后比容量能够保持在600 mAh/g左右。可见该材料比容量高,循环稳定性能好,具有商业化的潜力。As shown in accompanying drawing 1: after analysis, it is known that the product is a metal-organic framework ZIF-67 with higher crystallinity and a lithium battery electrode material in which carbon nanotubes are supported on graphene airgel. Figure 2 is a scanning SEM photo of graphene airgel-loaded carbon nanotubes, it can be seen that carbon nanotubes are interspersed in graphene airgel; Figure 3 is graphene airgel-loaded carbon nanotubes and ZIF-67 lithium battery The transmission electron microscope TEM photo of the electrode material shows that hexagonal ZIF-67 particles and tubular carbon nanotubes are attached to the wrinkled sheet of graphene airgel. In Figure 2 and Figure 3, it can be found that carbon nanotubes and ZIF-67 are uniformly dispersed on the graphene airgel to form a three-dimensional porous composite with a hierarchical pore structure. Figure 4 is the graphene airgel-loaded carbon nanotubes and ZIF-67 lithium battery electrode material low current (0.1C) charge and discharge cycle performance diagram, as can be seen from Figure 4, the battery in the low current charge and discharge cycle 50 After laps, the specific capacity can be maintained at about 600 mAh/g. It can be seen that the material has high specific capacity, good cycle stability, and has commercial potential.

Claims (1)

CN201610847675.9A2016-09-242016-09-24Graphene aerogel loads carbon nanotube and ZIF-67 electrode material of lithium battery preparation methodExpired - Fee RelatedCN106252634B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201610847675.9ACN106252634B (en)2016-09-242016-09-24Graphene aerogel loads carbon nanotube and ZIF-67 electrode material of lithium battery preparation method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201610847675.9ACN106252634B (en)2016-09-242016-09-24Graphene aerogel loads carbon nanotube and ZIF-67 electrode material of lithium battery preparation method

Publications (2)

Publication NumberPublication Date
CN106252634Atrue CN106252634A (en)2016-12-21
CN106252634B CN106252634B (en)2019-06-25

Family

ID=57611709

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201610847675.9AExpired - Fee RelatedCN106252634B (en)2016-09-242016-09-24Graphene aerogel loads carbon nanotube and ZIF-67 electrode material of lithium battery preparation method

Country Status (1)

CountryLink
CN (1)CN106252634B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN109499493A (en)*2018-12-072019-03-22武汉工程大学A kind of polypyrrole/ZIF-67 composite aerogel and preparation method thereof
CN109637835A (en)*2018-12-072019-04-16武汉工程大学A kind of nitrogen-doped carbon nanometer pipe/cobaltosic oxide composite aerogel and preparation method thereof
CN109962218A (en)*2017-12-252019-07-02南京理工大学 Preparation method of ZIF-67/GO composites
CN110350206A (en)*2018-08-272019-10-18哈尔滨工业大学Vertical graphene-supported carbon nano-tube combination electrode material and preparation method thereof and the application in all solid state zinc-air battery
CN111848892A (en)*2020-06-112020-10-30上海大学 Preparation method of carbon nanotube-supported two-dimensional covalent organic framework electrode material
CN112340820A (en)*2020-11-132021-02-09武汉科技大学Preparation and application of composite material for capacitive deionization technology electrode
CN114141992A (en)*2021-11-302022-03-04四川启睿克科技有限公司Self-propagating alloyed lithium negative electrode and preparation method thereof
CN114864293A (en)*2022-04-252022-08-05武汉大学 A three-dimensional CNTs/RGO-metal organic framework hydrogel electrode, its preparation method and application
CN115117349A (en)*2022-06-302022-09-27合肥国轩高科动力能源有限公司Elastic conductive network conductive agent for silicon-carbon cathode of lithium ion battery, preparation method of slurry of conductive agent and lithium ion battery
CN116850756A (en)*2023-08-102023-10-10新疆万方福田农业科技环保有限公司VOCs waste gas treatment method based on ionic liquid absorption and electrolysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN105129927A (en)*2015-09-102015-12-09上海大学Preparing method of graphene/carbon nanotube aerogel composite capacitive type desalting electrode
CN105289695A (en)*2015-12-082016-02-03武汉理工大学Graphene loaded Co-N-C oxygen reduction catalyst and preparation method thereof
CN105590757A (en)*2014-11-182016-05-18中国科学院宁波材料技术与工程研究所Carbon nanotube/graphene composite gel and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN105590757A (en)*2014-11-182016-05-18中国科学院宁波材料技术与工程研究所Carbon nanotube/graphene composite gel and preparation method thereof
CN105129927A (en)*2015-09-102015-12-09上海大学Preparing method of graphene/carbon nanotube aerogel composite capacitive type desalting electrode
CN105289695A (en)*2015-12-082016-02-03武汉理工大学Graphene loaded Co-N-C oxygen reduction catalyst and preparation method thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DONGMING YIN ET AL.: "RGO/Co3O4 Composites Prepared Using GO-MOFs as Precursor for Advanced Lithium-ion Batteries and Supercapacitors Electrodes", 《ELECTROCHIMICA ACTA》*
QUNTING QU ET AL.: "Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries", 《CARBON》*
WENCHAO WAN ET AL.: "Graphene–carbon nanotube aerogel as an ultralight,compressible and recyclable highly efficient absorbent for oil and dyes", 《ENVIRON. SCI.: NANO》*
ZENG FAN ET AL.: "Thermal and electrical properties of graphene/carbon nanotube aerogels", 《COLLOIDS AND SURFACES A: PHYSICOCHEM. ENG. ASPECTS》*
ZHIHUA MA ET AL.: "Preparation of a graphene-based composite aerogel and the effects of carbon nanotubes on preserving the porous structure of the aerogel and improving its capacitor performance", 《J. MATER. CHEM. A》*

Cited By (15)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN109962218A (en)*2017-12-252019-07-02南京理工大学 Preparation method of ZIF-67/GO composites
CN109962218B (en)*2017-12-252022-03-22南京理工大学Preparation method of ZIF-67/GO composite material
CN110350206A (en)*2018-08-272019-10-18哈尔滨工业大学Vertical graphene-supported carbon nano-tube combination electrode material and preparation method thereof and the application in all solid state zinc-air battery
CN110350206B (en)*2018-08-272022-04-26哈尔滨工业大学 Vertical graphene-supported carbon nanotube composite electrode material, preparation method and application in all-solid-state zinc-air battery
CN109499493A (en)*2018-12-072019-03-22武汉工程大学A kind of polypyrrole/ZIF-67 composite aerogel and preparation method thereof
CN109499493B (en)*2018-12-072021-08-13武汉工程大学 A kind of polypyrrole/ZIF-67 composite aerogel and preparation method thereof
CN109637835B (en)*2018-12-072021-08-13武汉工程大学 A kind of nitrogen-doped carbon nanotube/cobalt tetroxide composite aerogel and preparation method thereof
CN109637835A (en)*2018-12-072019-04-16武汉工程大学A kind of nitrogen-doped carbon nanometer pipe/cobaltosic oxide composite aerogel and preparation method thereof
CN111848892A (en)*2020-06-112020-10-30上海大学 Preparation method of carbon nanotube-supported two-dimensional covalent organic framework electrode material
CN112340820A (en)*2020-11-132021-02-09武汉科技大学Preparation and application of composite material for capacitive deionization technology electrode
CN114141992A (en)*2021-11-302022-03-04四川启睿克科技有限公司Self-propagating alloyed lithium negative electrode and preparation method thereof
CN114864293A (en)*2022-04-252022-08-05武汉大学 A three-dimensional CNTs/RGO-metal organic framework hydrogel electrode, its preparation method and application
CN115117349A (en)*2022-06-302022-09-27合肥国轩高科动力能源有限公司Elastic conductive network conductive agent for silicon-carbon cathode of lithium ion battery, preparation method of slurry of conductive agent and lithium ion battery
CN115117349B (en)*2022-06-302023-10-10合肥国轩高科动力能源有限公司Elastic conductive network conductive agent for silicon-carbon negative electrode of lithium ion battery, preparation method of slurry of elastic conductive network conductive agent and lithium ion battery
CN116850756A (en)*2023-08-102023-10-10新疆万方福田农业科技环保有限公司VOCs waste gas treatment method based on ionic liquid absorption and electrolysis

Also Published As

Publication numberPublication date
CN106252634B (en)2019-06-25

Similar Documents

PublicationPublication DateTitle
Zeng et al.N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries
CN106252634B (en)Graphene aerogel loads carbon nanotube and ZIF-67 electrode material of lithium battery preparation method
Wang et al.High-entropy prussian blue analogs with 3D confinement effect for long-life sodium-ion batteries
CN102683647B (en) Preparation method of graphene-like MoS2/graphene composite electrode for lithium ion battery
CN102142538A (en) A lithium ion battery electrode of graphene/MoS2 and amorphous carbon and its preparation method
Xia et al.Enhancing the electrochemical performance of micron-scale SiO@ C/CNTs anode via adding piezoelectric material BaTiO3 for high-power lithium ion battery
Wang et al.High-loading individually dispersed NiCo 2 O 4 anchoring on checkerboard-like C/CNT nanosheets as a binder-free high rate electrode for lithium storage
CN106129377B (en)A kind of preparation method of sesquioxide/graphene composite material, negative electrode of lithium ion battery, lithium ion battery
CN102437314B (en) Three-dimensional structure metal foam/lithium iron phosphate integrated electrode, its preparation method and lithium ion battery using it as positive electrode sheet
CN106941151A (en)A kind of graphene composite graphite negative electrode material and its preparation method and application
Bai et al.LiFePO4/carbon nanowires with 3D nano-network structure as potential high performance cathode for lithium ion batteries
CN102723463A (en) A preparation method of single-layer MoS2/graphene composite electrode for lithium ion battery
CN104124434B (en) Multi-edge MoS2 nanosheet/graphene electrochemical lithium storage composite electrode and preparation method
CN106356555B (en)The preparation method of the sulphur composite positive pole of the dual modification of carbon nano tube/conducting polymer
CN105226244A (en)Three-dimensional porous silicon-nano silver composite material and preparation thereof and the application as lithium ion battery negative material
CN108134055A (en)The synthetic method of sodium titanate nanobelt/titanium carbide nanometer sheet compound
CN107863522A (en)Tin/the preparation method of redox graphene nano composite material, negative electrode of lithium ion battery, lithium ion battery
Zhang et al.Facile synthesis of V2O3@ N-doped carbon nanosheet arrays on nickel foam as free-standing electrode for high performance lithium ion batteries
Ning et al.In-situ construction of interconnected N-doped porous carbon-carbon nanotubes networks derived from melamine anchored with MoS2 for high performance lithium-ion batteries
Zhang et al.Carbon nanotubes anchored SiOx composite anode for high cyclic stability lithium-ion batteries
Wu et al.In situ growth of copper rhodizonate complexes on reduced graphene oxide for high-performance organic lithium-ion batteries
Yang et al.Preparation and electrochemical properties of Si@ C/CNTs composites derived from crosslinked chitosan
CN104577068B (en)A kind of positive composite material of lithium battery and preparation method thereof
CN104103814B (en)Mo0.5W0.5S2Nanometer watt/Graphene electrochemistry storage lithium combination electrode and preparation method
CN104124435B (en) Multi-edge MoS2 nanosheet/graphene electrochemical sodium storage composite electrode and preparation method

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20190625


[8]ページ先頭

©2009-2025 Movatter.jp