技术领域technical field
本发明实施例涉及电子电路技术,尤其涉及一种升压功率变换电路和控制方法。Embodiments of the present invention relate to electronic circuit technology, in particular to a boost power conversion circuit and a control method.
背景技术Background technique
Boost电路不特指一种具体电路,泛指一种升压电路,即通过该电路实现输入一个电压,输出一个更高的电压,实现功率变换,能够输入大于或等于三个电平的称之为多电平Boost电路。Boost circuit does not specifically refer to a specific circuit, but generally refers to a boost circuit, that is, through this circuit, a voltage can be input, a higher voltage can be output, and power conversion can be realized. It can input more than or equal to three levels. It is a multi-level Boost circuit.
图1a为一种飞跨电容多电平Boost电路,图1b为一种飞跨电容多电平Boost电路的控制信号示意图,如图1a、图1b所示,L为电感器,D1、D2、D5、D6为二极管,T1、T2为半导体开关(可以为绝缘栅双极型晶体管(英文:Insulated Gate Bipolar Transistor,简称:IGBT)、金属-氧化层半导体场效晶体管(英文:Metal-Oxide-Semiconductor Field-EffectTransistor,简称:MOSFET)等),C1、C2为电容器,R为电阻负载,Vin为输入电源,Vout为负载电阻的电压。为便于分析,假设电感器L感量无限大(即电感电流保持恒定),电容C1、C2容量无限大(电容容量保持不变)。按照一定规律控制T1、T2管的通断,即可实现输出电压Vout大于输入电压Vin。具体的:0~D*T阶段:T1处于导通状态,T2处于断开状态,此时电感电流经由T1、C1、D6流至负载,此时电感两端的电压VL为Vout-Vc-Vin(D5耐压等于Vc电压0.5*Vout;T2承受电压为Vout减去Vc,为0.5*Vout);D*T~0.5T阶段:T1、T2均处于断开状态,此时电感电流经由D5、D6流至负载,此时电感两端的电压VL为Vout-Vin,(T1耐压等于Vc电压0.5*Vout;T2承受电压为Vout减去Vc,为0.5*Vout);0.5T~D*T+0.5T阶段:T2处于导通状态,T1处于断开状态,此时电感电流经由D5、Vc、T2流至电源,此时电感两端的电压VL为Vc-Vin,(T1耐压等于Vc电压0.5*Vout;D6承受电压为Vout减去Vc,为0.5*Vout);D*T+0.5T~T阶段:T1、T2均处于断开状态,此时电感电流经由D5、D6流至负载,此时电感两端的电压VL为Vout-Vin,T1耐压等于Vc电压0.5*Vout;T2承受电压为Vout减去Vc,为0.5*Vout;综上所述,所有半导体开光管最高耐压均为0.5Vout,其他控制周期可以按照上述过程依次类推。根据电感两端电压伏秒守恒原理,即一个工作周期内,电感两端电压与时间的乘积为0。可得如下公式:(Vout-Vc-Vin)*D*T+(Vout-Vin)*(0.5T-D*T)+(Vc-Vin)*0.2T+(Vout-Vin)*(0.5T-D*T)=0;化简上式可得Vout=Vin/(1-D),即通过对T1和T2的控制,可实现输出电压高于输入电压。Figure 1a is a flying capacitor multi-level Boost circuit, and Figure 1b is a schematic diagram of control signals of a flying capacitor multi-level Boost circuit, as shown in Figure 1a and Figure 1b, L is an inductor, D1, D2, D5 and D6 are diodes, T1 and T2 are semiconductor switches (which can be insulated gate bipolar transistors (English: Insulated Gate Bipolar Transistor, referred to as: IGBT), metal-oxide semiconductor field-effect transistors (English: Metal-Oxide-Semiconductor Field-Effect Transistor, referred to as: MOSFET), etc.), C1 and C2 are capacitors, R is a resistive load, Vin is an input power supply, and Vout is a voltage of a load resistance. For the convenience of analysis, it is assumed that the inductance of the inductor L is infinite (that is, the inductor current remains constant), and the capacity of the capacitors C1 and C2 is infinite (the capacitance remains unchanged). By controlling the on-off of T1 and T2 tubes according to a certain rule, the output voltage Vout can be greater than the input voltage Vin. Specifically: 0~D*T stage: T1 is in the on state and T2 is in the off state. At this time, the inductor current flows to the load through T1, C1, and D6. At this time, the voltage VL at both ends of the inductor is Vout-Vc-Vin( The withstand voltage of D5 is equal to Vc voltage 0.5*Vout; the withstand voltage of T2 is Vout minus Vc, which is 0.5*Vout); D*T~0.5T stage: T1 and T2 are in the off state, and the inductor current passes through D5 and D6 When it flows to the load, the voltage VL at both ends of the inductor is Vout-Vin, (T1 withstand voltage is equal to Vc voltage 0.5*Vout; T2 withstand voltage is Vout minus Vc, which is 0.5*Vout); 0.5T~D*T+0.5 T stage: T2 is in the on state, T1 is in the off state, at this time the inductor current flows to the power supply through D5, Vc, T2, at this time the voltage VL across the inductor is Vc-Vin, (T1 withstand voltage is equal to Vc voltage 0.5* Vout; the withstand voltage of D6 is Vout minus Vc, which is 0.5*Vout); D*T+0.5T~T stage: T1 and T2 are both in the off state, at this time the inductor current flows to the load through D5 and D6, at this time The voltage VL at both ends of the inductor is Vout-Vin, the withstand voltage of T1 is equal to Vc voltage 0.5*Vout; the withstand voltage of T2 is Vout minus Vc, which is 0.5*Vout; in summary, the highest withstand voltage of all semiconductor light-emitting diodes is 0.5Vout , and other control cycles can be deduced according to the above process. According to the principle of volt-second conservation of the voltage across the inductor, that is, within a working cycle, the product of the voltage across the inductor and the time is 0. The following formula can be obtained: (Vout-Vc-Vin)*D*T+(Vout-Vin)*(0.5T-D*T)+(Vc-Vin)*0.2T+(Vout-Vin)*(0.5T-D*T)= 0; simplify the above formula to get Vout=Vin/(1-D), that is, through the control of T1 and T2, the output voltage can be higher than the input voltage.
然而,根据上述分析可知Vout>Vin,所有开关管可选择耐压为0.5Vout;若飞跨电容上不存在电压,即Vc=0,电容电压为0,则电容可以视为短路,即T1管被D1、D5双向短路,此时T2、D2承受输入电压Vin,D6承受耐压Vout-Vin;若Vin<0.5Vout,则T2、D2承受输入电压Vin,Vin<0.5Vout,由于D2、T2耐压为0.5Vout,D2、T2不会过压击穿;D6承受耐压Vout-Vin,Vout-Vin>0.5Vout,超过D6的耐压,D6会过压击穿;若Vin>0.5Vout,则T2、D2承受输入电压Vin,Vin>0.5Vout,超过D2、T2耐压0.5Vout,D2、T2会过压击穿;D6承受耐压Vout-Vin,Vout-Vin<0.5Vout,不超过D6的耐压,D6不会过压击穿;由以上分析可知,若飞跨电容电压Vc为零,则上述方案中的半导体都存被过压击穿的风险。However, according to the above analysis, it can be seen that Vout>Vin, all switching tubes can choose a withstand voltage of 0.5Vout; if there is no voltage on the flying capacitor, that is, Vc=0, and the capacitor voltage is 0, then the capacitor can be regarded as a short circuit, that is, the T1 tube Short-circuited by D1 and D5 in both directions, at this time T2 and D2 bear the input voltage Vin, and D6 bears the withstand voltage Vout-Vin; if Vin<0.5Vout, then T2 and D2 bear the input voltage Vin, Vin<0.5Vout, because D2 and T2 withstand If the voltage is 0.5Vout, D2 and T2 will not break down due to overvoltage; D6 withstands the withstand voltage Vout-Vin, Vout-Vin>0.5Vout, if the withstand voltage exceeds D6, D6 will break down overvoltage; if Vin>0.5Vout, then T2 and D2 withstand the input voltage Vin, Vin>0.5Vout, if the withstand voltage of D2 and T2 exceeds 0.5Vout, D2 and T2 will break down due to overvoltage; D6 withstands the withstand voltage Vout-Vin, Vout-Vin<0.5Vout, not exceeding D6 Withstand voltage, D6 will not be overvoltage breakdown; from the above analysis, if the flying capacitor voltage Vc is zero, the semiconductors in the above schemes are all at risk of being overvoltage breakdown.
发明内容Contents of the invention
本发明实施例提供一种升压功率变换电路和控制方法,用于解决目前的多电平电路中当飞跨电容的电压为零时半导体器件可能被过压击穿的问题。Embodiments of the present invention provide a boost power conversion circuit and a control method, which are used to solve the problem that a semiconductor device may be broken down by overvoltage when the voltage of the flying capacitor is zero in the current multilevel circuit.
本发明第一方面提供一种升压功率变换电路,包括:N个第一开关模块、N个第二开关模块、N-1个第三开关模块、N-1个飞跨电容和N-1个预充电单元;N为大于或等于2的正整数;The first aspect of the present invention provides a boost power conversion circuit, including: N first switch modules, N second switch modules, N-1 third switch modules, N-1 flying capacitors and N-1 A pre-charge unit; N is a positive integer greater than or equal to 2;
所述N个第二开关模块与电感器和输入电源依次串联形成回路;所述N个第一开关模块与负载、所述电感器和所述输入电源依次串联形成回路;第i个第一开关模块和第i+1个第一开关模块之间的第一公共点与第i个第二开关模块和第i+1个第二开关模块之间的第二公共点之间并联一个功能电路;每个功能电路由依次串联的一个飞跨电容和一个第三开关模块组成;i为小于N的正整数;The N second switch modules are connected in series with the inductor and the input power supply in order to form a loop; the N first switch modules are connected in series with the load, the inductor and the input power supply in sequence to form a loop; the ith first switch A functional circuit is connected in parallel between the first common point between the module and the i+1th first switch module and the second common point between the ith second switch module and the i+1th second switch module; Each functional circuit is composed of a flying capacitor and a third switch module connected in series; i is a positive integer smaller than N;
每个飞跨电容的两端并联一个预充电单元;每个预充电单元用于在与其并联的飞跨电容连接的第三开关模块断开、且所述飞跨电容的电压小于预设阈值时,对所述飞跨电容进行预充电。A pre-charging unit is connected in parallel to both ends of each flying capacitor; each pre-charging unit is used to disconnect the third switch module connected to the flying capacitor connected in parallel and the voltage of the flying capacitor is less than a preset threshold , to precharge the flying capacitor.
本方案提供的升压功率变换电路,在每个桥臂上增加开关模块,即上述与每个飞跨电容串联的开关模块,另外给每个飞跨电容并联预充电单元。当使用该升压功率变换电路的系统处于预开机状态,预充电单元检测对应的飞跨电容的电压,若飞跨电容的电压满足设定值范围,则闭合与该飞跨电容串联的第三开关模块,若飞跨电容的电压不满足设定值范围,则通过对应的预充电单元对该飞跨电容进行充电,直至该飞跨电容上的电压达到设定范围时,再闭合该第三开关模块,待该第三开关模块关闭后,其他的第一开关模块和第二开关模块可按照系统指令进行正常的开关动作。In the step-up power conversion circuit provided by this solution, a switch module is added to each bridge arm, that is, the above-mentioned switch module connected in series with each flying capacitor, and a pre-charging unit is connected in parallel to each flying capacitor. When the system using the boost power conversion circuit is in the pre-start state, the pre-charging unit detects the voltage of the corresponding flying capacitor, and if the voltage of the flying capacitor meets the set value range, then closes the third capacitor connected in series with the flying capacitor. In the switch module, if the voltage of the flying capacitor does not meet the set value range, the corresponding pre-charging unit will charge the flying capacitor until the voltage on the flying capacitor reaches the set range, and then close the third For the switch module, after the third switch module is turned off, other first switch modules and second switch modules can perform normal switch actions according to system instructions.
在上述方案的具体实现中,所述第一开关模块包括二极管或者二极管并联逆导型半导体开关;所述第二开关模块包括二极管并联半导体开关。In a specific implementation of the above solution, the first switch module includes a diode or a diode-parallel reverse conduction semiconductor switch; the second switch module includes a diode-parallel semiconductor switch.
所述第三开关模块包括常开型开关和开关控制电路;所述开关控制电路用于控制所述常开型开关闭合或者打开。The third switch module includes a normally open switch and a switch control circuit; the switch control circuit is used to control the normally open switch to close or open.
通过上述在电路中设置与飞跨电容串联的第三开关模块,以及为每个飞跨电容充电的预充电单元,保证在系统任何工作状态时,飞跨电容的电压均不会低至0V,从而避免在高压系统中使用升压功率变换电路时,半导体器件可能被过压击穿的问题。By setting the third switch module connected in series with the flying capacitor in the circuit and the pre-charging unit for charging each flying capacitor, it is ensured that the voltage of the flying capacitor will not be as low as 0V in any working state of the system. Therefore, the problem that the semiconductor device may be broken down by overvoltage when the step-up power conversion circuit is used in the high-voltage system is avoided.
此外,所述升压功率变换电路还包括:N个逆导型开关管;每个第一开关模块的两端并联连接一个逆导型开关管,用于实现同步整流。In addition, the step-up power conversion circuit further includes: N reverse conduction switch tubes; two ends of each first switch module are connected in parallel with one reverse conduction switch tube for realizing synchronous rectification.
可选的,所述逆导型开关管包括金属-氧化层半导体场效晶体管或者逆导型绝缘栅双极型晶体管。Optionally, the reverse conduction switch includes a metal-oxide semiconductor field effect transistor or a reverse conduction insulated gate bipolar transistor.
可选的,所述常开型开关包括继电器、接触器或半导体双向开关。Optionally, the normally open switch includes a relay, a contactor or a semiconductor bidirectional switch.
该方案不仅可以实现多电平技术,而且可以降低输出波形畸变,避免电路中的半导体器件被过压击穿的问题,有效提高系统效率。This scheme can not only realize multi-level technology, but also reduce output waveform distortion, avoid the problem of overvoltage breakdown of semiconductor devices in the circuit, and effectively improve system efficiency.
本发明第二方面提供一种升压功率变换电路的控制方法,应用于升压功率变换电路;所述升压功率变换电路包括:N个第一开关模块、N个第二开关模块、N-1个第三开关模块、N-1个飞跨电容和N-1个预充电单元;N为大于或等于2的正整数;The second aspect of the present invention provides a control method for a boost power conversion circuit, which is applied to a boost power conversion circuit; the boost power conversion circuit includes: N first switch modules, N second switch modules, N- 1 third switch module, N-1 flying capacitors and N-1 pre-charging units; N is a positive integer greater than or equal to 2;
所述N个第二开关模块与电感器和输入电源依次串联形成回路;所述N个第一开关模块与负载、所述电感器和所述输入电源依次串联形成回路;第i个第一开关模块和第i+1个第一开关模块之间的第一公共点与第i个第二开关模块和第i+1个第二开关模块之间的第二公共点之间并联一个功能电路;每个功能电路由依次串联的一个飞跨电容和一个第三开关模块组成;i为小于N的正整数;所述方法包括:The N second switch modules are connected in series with the inductor and the input power supply in order to form a loop; the N first switch modules are connected in series with the load, the inductor and the input power supply in sequence to form a loop; the ith first switch A functional circuit is connected in parallel between the first common point between the module and the i+1th first switch module and the second common point between the ith second switch module and the i+1th second switch module; Each functional circuit is composed of a flying capacitor and a third switch module connected in series; i is a positive integer less than N; the method includes:
当系统处于预开机状态时,通过每个预充电单元检测每个飞跨电容两端的第一电压;When the system is in the pre-start state, each pre-charging unit detects the first voltage across each flying capacitor;
判断每个飞跨电容两端的第一电压是否达到预设阈值;judging whether the first voltage across each flying capacitor reaches a preset threshold;
若存在第一飞跨电容两端的第一电压未达到所述预设阈值,通过与所述第一飞跨电容并联的第一预充电单元对所述第一飞跨电容进行充电,直至所述第一飞跨电容的两端的第一电压达到所述预设阈值,则将与所述第一飞跨电容串联的第三开关模块闭合。If the first voltage across the first flying capacitor does not reach the preset threshold, charge the first flying capacitor through a first pre-charging unit connected in parallel with the first flying capacitor until the When the first voltage across the first flying capacitor reaches the preset threshold, the third switch module connected in series with the first flying capacitor is turned on.
可选的,所述方法还包括:Optionally, the method also includes:
若第一飞跨电容两端的第一电压达到所述预设阈值,则将与所述第一飞跨电容串联的第三开关模块闭合。If the first voltage across the first flying capacitor reaches the preset threshold, a third switch module connected in series with the first flying capacitor is turned on.
可选的,所述方法还包括:Optionally, the method also includes:
若所述N个第二开关模块根据系统指令关断,则将所述N-1个第三开关模块关断。If the N second switch modules are turned off according to the system instruction, then the N−1 third switch modules are turned off.
可选的,所述第一开关模块包括二极管或者二极管并联逆导型半导体开关;所述第二开关模块包括二极管并联半导体开关;Optionally, the first switch module includes a diode or a diode-parallel reverse conducting semiconductor switch; the second switch module includes a diode-parallel semiconductor switch;
所述第三开关模块包括常开型开关和开关控制电路;所述开关控制电路用于控制所述常开型开关闭合或者打开。The third switch module includes a normally open switch and a switch control circuit; the switch control circuit is used to control the normally open switch to close or open.
此外,所述升压功率变换电路还包括:N个逆导型开关管;每个第一开关模块的两端并联连接一个逆导型开关管,用于实现同步整流。In addition, the step-up power conversion circuit further includes: N reverse conduction switch tubes; two ends of each first switch module are connected in parallel with one reverse conduction switch tube for realizing synchronous rectification.
可选的,所述逆导型开关管包括金属-氧化层半导体场效晶体管或者逆导型绝缘栅双极型晶体管。Optionally, the reverse conduction switch includes a metal-oxide semiconductor field effect transistor or a reverse conduction insulated gate bipolar transistor.
可选的,所述常开型开关包括继电器、接触器或半导体双向开关。Optionally, the normally open switch includes a relay, a contactor or a semiconductor bidirectional switch.
本发明提供的升压功率变换电路和控制方法,通过在升压功率变换电路的桥臂上设置与飞跨电容串联的第三开关模块,并为每个飞跨电容并联预充电单元,在飞跨电容的电压小于预设阈值时,断开第三开关模块对飞跨电容进行预充电,当飞跨电容的电压达到预设阈值时,闭合第三开关模块,保证飞跨电容的电压不会低至0V,从而避免在高压系统中使用升压功率变换电路时,半导体器件可能被过压击穿的问题。In the boost power conversion circuit and control method provided by the present invention, a third switch module connected in series with the flying capacitor is provided on the bridge arm of the boost power conversion circuit, and a pre-charging unit is connected in parallel for each flying capacitor. When the voltage across the capacitor is less than the preset threshold, disconnect the third switch module to precharge the flying capacitor, and when the voltage of the flying capacitor reaches the preset threshold, close the third switch module to ensure that the voltage of the flying capacitor will not As low as 0V, so as to avoid the problem that the semiconductor device may be broken down by overvoltage when the boost power conversion circuit is used in the high voltage system.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1a为一种飞跨电容多电平Boost电路;Figure 1a is a flying capacitor multi-level Boost circuit;
图1b为一种飞跨电容多电平Boost电路的控制信号示意图;Fig. 1b is a schematic diagram of control signals of a flying capacitor multi-level Boost circuit;
图2为本发明提供的升压功率变换电路实施例一的原理图;FIG. 2 is a schematic diagram of Embodiment 1 of a step-up power conversion circuit provided by the present invention;
图3为本发明提供的升压功率变换电路一实例的原理图;Fig. 3 is the schematic diagram of an example of the step-up power conversion circuit provided by the present invention;
图4为本发明提供的升压功率变换电路又一实例的原理图;Fig. 4 is the schematic diagram of another example of the step-up power conversion circuit provided by the present invention;
图5为本发明提供的升压功率变换电路再一实例的原理图;5 is a schematic diagram of another example of the boost power conversion circuit provided by the present invention;
图6为本发明提供的升压功率变换电路的另一种连接方式的原理图;6 is a schematic diagram of another connection mode of the boost power conversion circuit provided by the present invention;
图7为本发明提供的升压功率变换电路的控制方法实施例一的流程图。FIG. 7 is a flow chart of Embodiment 1 of the control method of the boost power conversion circuit provided by the present invention.
具体实施方式detailed description
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
图2为本发明提供的升压功率变换电路实施例一的原理图,如图2所示,本发明提供的升压功率变换电路包括:N个第一开关模块、N个第二开关模块、N-1个第三开关模块、N-1个飞跨电容(C1、C2……CN-1)和N-1个预充电单元;N为大于或等于2的正整数;Fig. 2 is a schematic diagram of Embodiment 1 of the step-up power conversion circuit provided by the present invention. As shown in Fig. 2, the step-up power conversion circuit provided by the present invention includes: N first switch modules, N second switch modules, N-1 third switch modules, N-1 flying capacitors (C1 , C2 ... CN-1 ) and N-1 pre-charging units; N is a positive integer greater than or equal to 2;
所述N个第二开关模块与电感器L和输入电源E依次串联形成回路;所述N个第一开关模块与负载(R和C)、所述电感器和所述输入电源依次串联形成回路;第i个第一开关模块和第i+1个第一开关模块之间的第一公共点A(图中的A1、A2等)与第i个第二开关模块和第i+1个第二开关模块之间的第二公共点P(图中的P1、P2等)之间并联一个功能电路(例如:在图中A1和P1之间连接C1和第一个第三开关模块,在图中A2和P2之间连接C2和第二个第三开关模块,以此类推);每个功能电路由依次串联的一个飞跨电容和一个第三开关模块组成;i为小于N的正整数;The N second switch modules are sequentially connected in series with the inductor L and the input power supply E to form a loop; the N first switch modules are connected in series with the load (R and C), the inductor and the input power supply in sequence to form a loop ; The first common point A (A1, A2, etc. in the figure) between the i-th first switch module and the i+1-th first switch module is connected to the i-th second switch module and the i+1-th first switch module A functional circuit is connected in parallel between the second common point P (P1, P2, etc. in the figure) between the two switch modules (for example: connect C1 and the first third switch module between A1 and P1 in the figure, in the figure Connect C2 and the second third switch module between A2 and P2, and so on); each functional circuit is composed of a flying capacitor and a third switch module connected in series; i is a positive integer less than N;
每个飞跨电容的两端并联一个预充电单元;每个预充电单元用于在与其并联的飞跨电容连接的第三开关模块断开、且所述飞跨电容的电压小于预设阈值时,对所述飞跨电容进行预充电。A pre-charging unit is connected in parallel to both ends of each flying capacitor; each pre-charging unit is used to disconnect the third switch module connected to the flying capacitor connected in parallel and the voltage of the flying capacitor is less than a preset threshold , to precharge the flying capacitor.
在该升压功率变换电路中,第一开关模块和第二开关模块可以二极管或二极管并联逆导型半导体开关(MOSFET、逆导型IGBT等),其中,第二开关模块为二极管并联半导体开关管;输入电源与电感器和多个第二开关模块依次串联,输入电源与电感器与多个第一开关模块以及负载电路依次串联组成回路,可知串联的N个第一开关模块和串联的N个第二开关模块之间是并联的,依次串联的第一开关模块之间的节点A1、A2……为第一公共点,依次串联的第二开关模块之间的节点P1、P2……为第二公共点。为了保证第一开关模块和第二开关模块中的半导体器件不被击穿,本方案提供多个第三开关模块和预充电单元。具体的,In the step-up power conversion circuit, the first switch module and the second switch module may be diodes or diode-parallel reverse-conduction semiconductor switches (MOSFET, reverse-conduction IGBT, etc.), wherein the second switch module is a diode-parallel semiconductor switch ; The input power supply is connected in series with the inductor and a plurality of second switch modules in sequence, and the input power supply, the inductor, the plurality of first switch modules and the load circuit are connected in series to form a loop, and it can be seen that the N first switch modules connected in series and the N connected in series The second switch modules are connected in parallel, the nodes A1, A2... between the first switch modules connected in series are the first common point, and the nodes P1, P2... between the second switch modules connected in series are the first common point Two common points. In order to ensure that the semiconductor devices in the first switch module and the second switch module are not broken down, this solution provides a plurality of third switch modules and pre-charging units. specific,
第三开关模块可由常开型的开关以及开关的控制电路组成,常开型开关包括但不限定于继电器、接触器、半导体双向开关等;预充电单元连接在飞跨电容C1……CN-1两端,可实现电容电压检测、对电容电压进行充电等功能;预充电单元可与飞跨电容并联实现。The third switch module can be composed of a normally open switch and a control circuit of the switch. The normally open switch includes but is not limited to a relay, a contactor, a semiconductor bidirectional switch, etc.; the pre-charging unit is connected to the flying capacitor C1 ... CN Both ends of-1 can realize functions such as capacitor voltage detection and charging the capacitor voltage; the pre-charging unit can be connected in parallel with the flying capacitor.
在上述升压功率变换电路具体可以应用在功率转换系统中,具体通过判断该功率转换系统所处的工作状态,共四种状态:①、预开机状态,②、开机后正常工作状态,③、预关机状态,④、关机状态;根据系统所处的不同状态执行不同的动作。The above step-up power conversion circuit can be specifically applied in a power conversion system. Specifically, by judging the working state of the power conversion system, there are four states in total: ①, pre-start state, ②, normal working state after power-on, ③, Pre-shutdown state, ④, shutdown state; perform different actions according to different states of the system.
当系统处于预开机状态,预充电单元检测飞跨电容的电压,若飞跨电容电压满足设定值范围,则闭合第三开关模块;若飞跨电容电压不满足设定值范围,则通过预充电单元将电容电压充电值预设值,再闭合该第三开关模块;当第三开关模块闭合后,第一开关模块和第二开关模块可按照系统指令进行正常的开、管动作,系统进入正常工作状态;When the system is in the pre-start state, the pre-charging unit detects the voltage of the flying capacitor, and if the voltage of the flying capacitor meets the set value range, the third switch module is closed; The charging unit presets the charging value of the capacitor voltage, and then closes the third switch module; when the third switch module is closed, the first switch module and the second switch module can perform normal opening and closing actions according to the system instructions, and the system enters normal working condition;
当系统处于正常工作状态,预充电单元以及第三开关模块维持现有状态,无进一步动作;When the system is in a normal working state, the pre-charging unit and the third switch module maintain the current state without further action;
当系统处于预关断状态,第一开关模块和第二开关模块按照系统指令关断后,第三开关模块关断,预充电单元无进一步动作,系统进入关机状态;When the system is in the pre-shutdown state, after the first switch module and the second switch module are turned off according to the system instruction, the third switch module is turned off, the pre-charging unit has no further action, and the system enters the shutdown state;
当系统进入关机状态,预充电单元以及第三开关模块维持现有状态,无进一步动作。When the system enters the shutdown state, the pre-charging unit and the third switch module maintain the current state without further action.
本实施例提供的升压功率变换电路,通过在升压功率变换电路的桥臂上设置与飞跨电容串联的第三开关模块,并为每个飞跨电容并联预充电单元,在飞跨电容的电压小于预设阈值时,断开第三开关模块对飞跨电容进行预充电,当飞跨电容的电压达到预设阈值时,闭合第三开关模块,保证飞跨电容的电压不会低至0V,从而避免在高压系统中使用升压功率变换电路时,半导体器件可能被过压击穿的问题。The step-up power conversion circuit provided in this embodiment is provided with a third switch module connected in series with the flying capacitor on the bridge arm of the boost power conversion circuit, and a pre-charging unit is connected in parallel for each flying capacitor, and the When the voltage of the flying capacitor is lower than the preset threshold, the third switch module is disconnected to precharge the flying capacitor, and when the voltage of the flying capacitor reaches the preset threshold, the third switch module is closed to ensure that the voltage of the flying capacitor will not drop 0V, so as to avoid the problem that the semiconductor device may be broken down by overvoltage when the boost power conversion circuit is used in the high voltage system.
在上述实施例的具体实现中,所述第一开关模块包括二极管或者二极管并联逆导型半导体开关;所述第二开关模块包括二极管并联半导体开关。所述第三开关模块包括常开型开关和开关控制电路;所述开关控制电路用于控制所述常开型开关闭合或者打开。In a specific implementation of the above embodiment, the first switch module includes a diode or a diode-parallel reverse conduction semiconductor switch; the second switch module includes a diode-parallel semiconductor switch. The third switch module includes a normally open switch and a switch control circuit; the switch control circuit is used to control the normally open switch to close or open.
下面通过几个实例对本发明提供的升压功率变换电路进行说明。The boost power conversion circuit provided by the present invention will be described below through several examples.
图3为本发明提供的升压功率变换电路一实例的原理图;如图3所示,本方案中的第一开关模块为二极管D1、D2……Dn。第二开关模块为二极管并联半导体开关,每个第二开关模块包括一个MOSFET和一个二极管,例如,T1和Dn+1、T2和Dn+2、……,图中的S1、S2……Sn-1相当于N-1个第三开关模块,图中的C1、C2……Cn-1相当于N-1个飞跨电容,每个飞跨电容增加一个具备预充电功能的预充电单元。即在本方案中(n相当于实施例一中的N,为大于等于2的正整数)。Fig. 3 is a schematic diagram of an example of a step-up power conversion circuit provided by the present invention; as shown in Fig. 3, the first switching modules in this solution are diodes D1, D2...Dn. The second switch module is a diode parallel semiconductor switch, and each second switch module includes a MOSFET and a diode, for example, T1 and Dn+1, T2 and Dn+2, ..., S1, S2 ... Sn- in the figure 1 is equivalent to N-1 third switch modules, and C1, C2...Cn-1 in the figure is equivalent to N-1 flying capacitors, and each flying capacitor is added with a pre-charging unit with a pre-charging function. That is, in this scheme (n is equivalent to N in Embodiment 1 and is a positive integer greater than or equal to 2).
在上述实施例的基础上,以N等于2为例,对该升压功率变换电路进行分析说明,图4为本发明提供的升压功率变换电路又一实例的原理图,如图4所示,图中线框3中的部分为本发明的升压功率变换电路,与输入电源、电感器和负载电路一起组成完整的功率转换系统。第一开关模块S1、S2和第二开关模块S3、S4均为半导体开关模块;S1、S2为二极管或二极管并联逆导型半导体开关(MOSFET、逆导型IGBT等),S3、S4为二极管并联半导体开关管;四个半导体开关模块按照S1、S2、S3、S4的顺序依次连接,节点A2为S1、S2的公共点,节点A3为S2、S3的公共点,节点A4为S3、S4的公共点;输入电源和电感器连接在A3和S4未与S3连接的一端。C1为飞跨电容,线框1为预充电单元,并联在该飞跨电容C1的两端;线框2为第三开关模块S。On the basis of the above-mentioned embodiments, taking N equal to 2 as an example, the step-up power conversion circuit is analyzed and explained. FIG. 4 is a schematic diagram of another example of the step-up power conversion circuit provided by the present invention, as shown in FIG. 4 , the part in the line frame 3 in the figure is the boost power conversion circuit of the present invention, which forms a complete power conversion system together with the input power supply, inductor and load circuit. The first switch modules S1, S2 and the second switch modules S3, S4 are semiconductor switch modules; S1, S2 are diodes or diode parallel reverse conduction semiconductor switches (MOSFET, reverse conduction IGBT, etc.), S3, S4 are diode parallel Semiconductor switch tube; four semiconductor switch modules are connected sequentially in the order of S1, S2, S3, and S4, node A2 is the common point of S1 and S2, node A3 is the common point of S2 and S3, and node A4 is the common point of S3 and S4 point; the input power and inductor are connected at the end of A3 and S4 not connected to S3. C1 is a flying capacitor, and the wire frame 1 is a pre-charging unit connected in parallel to both ends of the flying capacitor C1; the wire frame 2 is a third switch module S.
第三开关模块2(即S)由常开型的开关以及开关的控制电路组成,常开型开关包括但不限定于继电器、接触器、半导体双向开关等;预充电单元1连接在飞跨电容C1两端,可实现电容电压检测、对电容电压进行充电等功能;The third switch module 2 (i.e. S) is composed of a normally open switch and a control circuit of the switch. The normally open switch includes but is not limited to a relay, a contactor, a semiconductor bidirectional switch, etc.; the pre-charging unit 1 is connected to the flying capacitor The two ends of C1 can realize the functions of detecting the capacitor voltage and charging the capacitor voltage;
预充电单元与第三开关模块通过串联的方式连接在一起,节点A6为第三开关模块、预充电单元和飞跨电容C1的公共点;预充电单元的另一节点连接至节点A2,第三开关模块的另一节点连接至节点A4;The pre-charging unit and the third switch module are connected together in series, and the node A6 is the common point of the third switch module, the pre-charging unit and the flying capacitor C1; the other node of the pre-charging unit is connected to the node A2, and the third Another node of the switch module is connected to node A4;
电感器的一端连接至节点A3,另一端连接至输入电源的正极;节点A5连接输入电源与输入电源的负端;节点A1连接至输出电源的正端。One end of the inductor is connected to node A3, and the other end is connected to the positive terminal of the input power supply; node A5 is connected to the input power supply and the negative terminal of the input power supply; node A1 is connected to the positive terminal of the output power supply.
在该电路中,系统处于预开机状态,预充电单元检测飞跨电容C1的电压,若飞跨电容C1电压满足设定值范围,则闭合开关S;若飞跨电容电压不满足设定值范围,则通过预充电单元将飞跨电容电压充电值预设值,再闭合开关S(即第三开关模块2);开关S闭合后,开关S1、S2、S3、S4可按照系统指令进行正常的开、管动作,系统进入正常工作状态;In this circuit, the system is in the pre-start state, the pre-charging unit detects the voltage of the flying capacitor C1, if the voltage of the flying capacitor C1 meets the set value range, then close the switch S; if the flying capacitor C1 voltage does not meet the set value range , the charging value of the flying capacitor voltage is preset by the pre-charging unit, and then the switch S (that is, the third switch module 2) is closed; after the switch S is closed, the switches S1, S2, S3, and S4 can perform normal operation according to the system instructions Open and tube actions, the system enters the normal working state;
系统处于正常工作状态,预充电单元以及第三开关模块2维持现有状态,无进一步动作;系统处于预关断状态,S1、S2、S3、S4按照系统指令关断后,第三开关模块2关断,预充电单元无进一步动作,系统进入关机状态;系统进入关机状态,预充电三元以及第三开关模块2维持现有状态,无进一步动作。The system is in the normal working state, the pre-charging unit and the third switch module 2 maintain the current state without further action; the system is in the pre-shutdown state, after S1, S2, S3, and S4 are turned off according to the system instructions, the third switch module 2 Turn off, the pre-charging unit does not take any further action, and the system enters the shutdown state; the system enters the shutdown state, the pre-charging ternary and the third switch module 2 maintain the current state, and there is no further action.
L为电感器,D1、D2、D5、D6为二极管,T1、T2为半导体开关,R为电阻负载,Vin为输入电源,Vout为负载电阻的电压。为便于分析,假设电感器L感量无限大(即电感电流保持恒定),电容C、C1容量无限大(电容容量保持不变),根据图1a所示的电路的分析过程,本方案中也选用耐压为0.5Vout耐压的半导体开关。L is an inductor, D1, D2, D5, and D6 are diodes, T1, T2 are semiconductor switches, R is a resistive load, Vin is the input power supply, and Vout is the voltage of the load resistance. For the convenience of analysis, it is assumed that the inductance of the inductor L is infinite (that is, the inductor current remains constant), and the capacity of the capacitors C and C1 is infinite (the capacitance remains unchanged). According to the analysis process of the circuit shown in Figure 1a, this scheme also Select a semiconductor switch with a withstand voltage of 0.5Vout.
当系统处于预开机状态:第三开关模块2(即S)处于断开状态,假设此时输入电压为Vin,输出电压Vout,Vin<Vout,S3,S4共同承受电压Vin,每个开关管耐压0.5Vin,0.5Vin<0.5Vout,S3,S4不会过压击穿;S1,S2共同承受Vout-Vin,每个管子耐压0.5(Vout-Vin),0.5(Vout-Vin)<0.5Vout,S1,S2同样不会过压损坏,在预开机状态下,所有半导体开关均不会损坏。When the system is in the pre-start state: the third switch module 2 (ie S) is in the disconnected state, assuming that the input voltage is Vin at this time, the output voltage Vout, Vin<Vout, S3 and S4 jointly withstand the voltage Vin, and each switch tube withstands Voltage 0.5Vin, 0.5Vin<0.5Vout, S3, S4 will not overvoltage breakdown; S1, S2 bear Vout-Vin together, each tube withstand voltage 0.5(Vout-Vin), 0.5(Vout-Vin)<0.5Vout , S1, S2 will not be damaged by overvoltage, and all semiconductor switches will not be damaged in the pre-start state.
当系统正常工作时:开关S闭合,若按照图1b所示的控制信号进行控制,T1处于导通状态,T2处于断开状态,此时电感电流经由T1、S(相当于导线)、C1、D6流至负载,此时电感两端的电压VL为Vout-Vc-Vin;T1、T2均处于断开状态,此时电感电流经由D5、D6流至负载,此时电感两端的电压VL为Vout-Vin;T2处于导通状态,T1处于断开状态,此时电感电流经由D5、Vc、T2流至电源,此时电感两端的电压VL为Vc-Vin;T1、T2均处于断开状态,此时电感电流经由D5、D6流至负载,此时电感两端的电压VL为Vout-Vin;本发明电路正常工作,所有半导体开关的耐压不超过0.5Vout,正常工作时,所有半导体同样不会过压击穿。When the system works normally: the switch S is closed. If the control signal is controlled according to the control signal shown in Figure 1b, T1 is in the on state and T2 is in the off state. At this time, the inductor current passes through T1, S (equivalent to the wire), C1, D6 flows to the load, at this time the voltage VL across the inductor is Vout-Vc-Vin; T1 and T2 are both in the disconnected state, at this time the inductor current flows to the load through D5 and D6, and the voltage VL across the inductor is Vout- Vin; T2 is in the conduction state, T1 is in the off state, at this time the inductor current flows to the power supply through D5, Vc, T2, and the voltage VL at both ends of the inductor is Vc-Vin; T1, T2 are both in the off state, this When the inductance current flows to the load through D5 and D6, the voltage VL at both ends of the inductance is Vout-Vin; the circuit of the present invention works normally, and the withstand voltage of all semiconductor switches does not exceed 0.5Vout. Pressure breakdown.
当系统处于预关机状态:因为第三开关模块2(即S)晚于开关S1、S2、S3、S4进行关断,同系统正常工作时,所有半导体同样不会过压击穿。When the system is in the pre-shutdown state: because the third switch module 2 (namely S) is turned off later than the switches S1, S2, S3, and S4, all semiconductors will also not be overvoltage breakdown when the system is working normally.
当系统处于关机状态:第三开关模块2断开,同系统处于预开机状态,所有半导体同样不会过压击穿。When the system is in the shutdown state: the third switch module 2 is disconnected, and the same system is in the pre-startup state, and all semiconductors will not break down due to overvoltage.
由以上分析可知,在系统各种工作状态中,本发明提供的升压功率变换电路均可以避免现有的电路中可能出现的半导体过压击穿问题。It can be seen from the above analysis that in various working states of the system, the boost power conversion circuit provided by the present invention can avoid the semiconductor overvoltage breakdown problem that may occur in the existing circuit.
系统正常工作时,第三开关模块2处于闭合状态,可等效为短路,预充电电路不动作,因此正常工作时,可实现多电平技术,因而使用本发明技术可获得多电平技术带来收益,包括降低输出波形畸变,提高系统效率等。When the system is working normally, the third switch module 2 is in a closed state, which can be equivalent to a short circuit, and the pre-charging circuit does not operate. Therefore, when the system is working normally, the multi-level technology can be realized. Therefore, the technology of the present invention can be used to obtain multi-level technology. To benefit, including reducing output waveform distortion, improving system efficiency, etc.
在上述任一实施例的基础上,该升压功率变换电路还包括:N个逆导型开关管;每个第一开关模块的两端并联连接一个逆导型开关管,用于实现同步整流。On the basis of any of the above-mentioned embodiments, the boost power conversion circuit further includes: N reverse conduction switch tubes; two ends of each first switch module are connected in parallel with a reverse conduction switch tube for realizing synchronous rectification .
图5为本发明提供的升压功率变换电路再一实例的原理图;如图5所示,该,在上述图4所示的方案的基础上,每个第一开关模块并联连接一个具有第三象限导通特性的开关管,即逆导型开关管,即D5、D6管并联具有第三象限导通特性的开关管T5、T6,包括MOSFET以及逆导型IGBT,可实现同步整流多电平boost。Fig. 5 is a schematic diagram of another example of the step-up power conversion circuit provided by the present invention; Switch tubes with three-quadrant conduction characteristics, that is, reverse conduction switch tubes, that is, D5 and D6 are connected in parallel with switch tubes T5 and T6 with third-quadrant conduction characteristics, including MOSFETs and reverse conduction IGBTs, which can realize synchronous rectification and multi-current flat boost.
图6为本发明提供的升压功率变换电路的另一种连接方式的原理图,如图6所示,电感器和D5、D6连接在输入电源的负极,根据二极管的正向导通特性,D5的阴极与电感器连接。对于N电平增大电路,也可以采用该种方式进行连接。Figure 6 is a schematic diagram of another connection mode of the boost power conversion circuit provided by the present invention, as shown in Figure 6, the inductor and D5, D6 are connected to the negative pole of the input power supply, according to the forward conduction characteristics of the diode, D5 The cathode of the inductor is connected. For the N level increasing circuit, this method can also be used for connection.
上述任一实施例提供的升压功率变换电路,通过在飞跨电容一端串接开关,以及给每个飞跨电容增加预充电单元,解决在高压系统中使用低压半导体器件,部分器件存在的不满足耐压要求的问题,并且在实现多电平输出功能的同时,可大幅提高系统效率,减小滤波器的体积。The boost power conversion circuit provided by any of the above-mentioned embodiments solves the problem of using low-voltage semiconductor devices in a high-voltage system and some devices by connecting a switch in series at one end of the flying capacitor and adding a pre-charging unit to each flying capacitor. The problem of meeting the withstand voltage requirements, and while realizing the multi-level output function, can greatly improve the system efficiency and reduce the size of the filter.
图7为本发明提供的升压功率变换电路的控制方法实施例一的流程图,如图7所示,该控制方法应用于图2至图6所示的任一实施例提供的升压功率变换电路,其电路原理和连接请参考前述实施例,在此不再赘述,在具体应用中,该升压功率变换电路的控制方法的具体实现步骤包括:Fig. 7 is a flowchart of Embodiment 1 of the control method of the boost power conversion circuit provided by the present invention. As shown in Fig. 7, the control method is applied to the boost power provided by any embodiment shown in Fig. 2 to Fig. 6 For the conversion circuit, please refer to the aforementioned embodiments for its circuit principle and connection, and will not repeat it here. In a specific application, the specific implementation steps of the control method of the step-up power conversion circuit include:
S101:当系统处于预开机状态时,通过每个预充电单元检测每个飞跨电容两端的第一电压。S101: When the system is in a pre-power-on state, each pre-charging unit detects a first voltage across each flying capacitor.
在本步骤中,该系统指的是使用上述升压功率变换电路的功率变换系统,实时检测系统的状态,在系统的预开机过程中,通过预充电单元检测每个飞跨电容的电压,以图4所示的实施例为例,预充电单元检测飞跨电容C1的电容。In this step, the system refers to the power conversion system using the above-mentioned boost power conversion circuit to detect the state of the system in real time. During the pre-starting process of the system, the voltage of each flying capacitor is detected by the pre-charging unit, so as to The embodiment shown in FIG. 4 is taken as an example, the pre-charging unit detects the capacitance of the flying capacitor C1.
S102:判断每个飞跨电容两端的第一电压是否达到预设阈值。S102: Determine whether the first voltage across each flying capacitor reaches a preset threshold.
在本步骤中,需要预先设置飞跨电容的预设阈值,一般情况下该预设阈值为最小电压,该最小电压为保证电路中的半导体器件不会被过压击穿的最小电压,功率变换系统在获取到飞跨电容的电压之后与设置的预设阈值进行对比,判断飞跨电容的电压是否大于预设阈值。In this step, the preset threshold value of the flying capacitor needs to be set in advance. Generally, the preset threshold value is the minimum voltage, which is the minimum voltage to ensure that the semiconductor devices in the circuit will not be broken down by overvoltage. Power conversion After the system obtains the voltage of the flying capacitor, it compares it with the set preset threshold to determine whether the voltage of the flying capacitor is greater than the preset threshold.
电路中存在多个飞跨电容时,需要将每个飞跨电容的电压与预设阈值进行对比。When there are multiple flying capacitors in the circuit, it is necessary to compare the voltage of each flying capacitor with a preset threshold.
S103:若存在第一飞跨电容两端的第一电压未达到所述预设阈值,通过与所述第一飞跨电容并联的第一预充电单元对所述第一飞跨电容进行充电,直至所述第一飞跨电容的两端的第一电压达到所述预设阈值,则将与所述第一飞跨电容串联的第三开关模块闭合。S103: If the first voltage across the first flying capacitor does not reach the preset threshold, charge the first flying capacitor through a first pre-charging unit connected in parallel with the first flying capacitor until When the first voltage across the first flying capacitor reaches the preset threshold, a third switch module connected in series with the first flying capacitor is turned on.
在本步骤中,如果存在一个或者多个第一飞跨电容的电压,也就是上述的第一电压小于预设阈值,则需要对该第一飞跨电容进行预充电直至第一飞跨电容两端的电压大于或者等于阈值阈值,充电完成后将第三开关模块闭合,以使该功率变换系统正常工作。In this step, if there are one or more voltages of the first flying capacitors, that is, the above-mentioned first voltage is less than the preset threshold, the first flying capacitors need to be precharged until the first flying capacitors are two The voltage at the terminal is greater than or equal to the threshold value, and after the charging is completed, the third switch module is closed to make the power conversion system work normally.
进一步地,若第一飞跨电容两端的第一电压达到所述预设阈值,则将与所述第一飞跨电容串联的第三开关模块闭合。这里的第一飞跨电容泛指电路中的每个飞跨电容,如果电路中每个飞跨电容两端的电压均达到了预设阈值,则可以直接将每个第三开关模块闭合,根据一定的规律控制该升压功率变换电路工作即可。Further, if the first voltage at both ends of the first flying capacitor reaches the preset threshold, the third switch module connected in series with the first flying capacitor is turned on. The first flying capacitor here generally refers to each flying capacitor in the circuit. If the voltage at both ends of each flying capacitor in the circuit reaches a preset threshold, each third switch module can be directly closed, according to a certain It is enough to control the operation of the step-up power conversion circuit according to the law.
另外,若所述N个第二开关模块根据系统指令关断,则将所述N-1个第三开关模块关断。In addition, if the N second switch modules are turned off according to a system instruction, then the N−1 third switch modules are turned off.
在本方案的步骤S101中,判断系统所处的工作状态,一般系统至少包括以下几个状态:①、预开机状态,②、开机后正常工作状态,③、预关机状态,④、关机状态;根据系统所处的不同状态执行不同的动作。当系统处于预开机状态,预充电单元检测飞跨电容的电压,若飞跨电容电压满足设定值范围,则闭合第三开关模块;当飞跨电容电压不满足设定值范围,则通过预充电单元将飞跨电容电压充电值预设值,再闭合第二开关模块;第三开关模块闭合后,其他的开关模块可按照系统指令进行正常的开、关动作,系统进入正常工作状态;系统处于正常工作状态,预充电单元以及第三开关模块维持现有状态;系统处于预关断状态,第一开关模块和第二开关模块按照系统指令关断后,第三开关模块页关断,预充电单元无进一步动作,系统进入关机状态;系统进入关机状态,预充电单元以及第三开关模块维持现有状态。In step S101 of this solution, the working state of the system is judged. Generally, the system includes at least the following states: ①, pre-start state, ②, normal working state after power-on, ③, pre-shutdown state, ④, shutdown state; Perform different actions according to the different states of the system. When the system is in the pre-start state, the pre-charging unit detects the voltage of the flying capacitor, and if the voltage of the flying capacitor meets the set value range, the third switch module is closed; The charging unit presets the charging value of the flying capacitor voltage, and then closes the second switch module; after the third switch module is closed, the other switch modules can perform normal on and off actions according to the system instructions, and the system enters the normal working state; In the normal working state, the pre-charging unit and the third switch module maintain the current state; the system is in the pre-off state, after the first switch module and the second switch module are turned off according to the system command, the third switch module is turned off, and the pre-off state The charging unit has no further action, and the system enters the shutdown state; the system enters the shutdown state, and the pre-charging unit and the third switch module maintain the current state.
本实施例提供的升压功率变换电路的控制方法,通过在升压功率变换电路的桥臂上设置与飞跨电容串联的第三开关模块,并为每个飞跨电容并联预充电单元,在飞跨电容的电压小于预设阈值时,断开第三开关模块对飞跨电容进行预充电,当飞跨电容的电压达到预设阈值时,闭合第三开关模块,保证飞跨电容的电压不会低至0V,从而避免在高压系统中使用升压功率变换电路时,半导体器件可能被过压击穿的问题。In the control method of the boost power conversion circuit provided in this embodiment, a third switch module connected in series with the flying capacitor is provided on the bridge arm of the boost power conversion circuit, and a pre-charging unit is connected in parallel for each flying capacitor. When the voltage of the flying capacitor is lower than the preset threshold, the third switch module is disconnected to precharge the flying capacitor, and when the voltage of the flying capacitor reaches the preset threshold, the third switch module is closed to ensure that the voltage of the flying capacitor is not It will be as low as 0V, so as to avoid the problem that semiconductor devices may be broken down by overvoltage when using a boost power conversion circuit in a high voltage system.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610816131.6ACN106230253B (en) | 2016-09-09 | 2016-09-09 | Boost power conversion circuit and control method |
| PCT/CN2017/100458WO2018045936A1 (en) | 2016-09-09 | 2017-09-05 | Boost power conversion circuit and control method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610816131.6ACN106230253B (en) | 2016-09-09 | 2016-09-09 | Boost power conversion circuit and control method |
| Publication Number | Publication Date |
|---|---|
| CN106230253Atrue CN106230253A (en) | 2016-12-14 |
| CN106230253B CN106230253B (en) | 2019-05-07 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610816131.6AActiveCN106230253B (en) | 2016-09-09 | 2016-09-09 | Boost power conversion circuit and control method |
| Country | Link |
|---|---|
| CN (1) | CN106230253B (en) |
| WO (1) | WO2018045936A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018045936A1 (en)* | 2016-09-09 | 2018-03-15 | 华为技术有限公司 | Boost power conversion circuit and control method |
| CN108258899A (en)* | 2017-12-29 | 2018-07-06 | 华为技术有限公司 | A kind of boost power translation circuit |
| CN108847769A (en)* | 2018-06-22 | 2018-11-20 | 阳光电源股份有限公司 | Three level BOOST devices of one kind and its control method |
| CN108900078A (en)* | 2018-08-03 | 2018-11-27 | 阳光电源股份有限公司 | A kind of striding capacitance type three-level converter and its control method |
| CN108988635A (en)* | 2018-09-13 | 2018-12-11 | 阳光电源股份有限公司 | A kind of more level Boost converters, inversion system and control method |
| CN109617148A (en)* | 2018-10-24 | 2019-04-12 | 华为技术有限公司 | A method and device for charging a flying capacitor |
| CN110429815A (en)* | 2019-07-19 | 2019-11-08 | 华为技术有限公司 | The control method of booster circuit and booster circuit |
| CN110611447A (en)* | 2019-09-26 | 2019-12-24 | 丰郅(上海)新能源科技有限公司 | Pre-charging method for flying capacitor of multi-level inverter |
| CN111566918A (en)* | 2018-01-05 | 2020-08-21 | 华为技术有限公司 | Multilevel Boost Converter |
| CN111800011A (en)* | 2019-04-04 | 2020-10-20 | 富士电机株式会社 | Power conversion device and power supply device |
| CN112383219A (en)* | 2020-12-10 | 2021-02-19 | 深圳科士达科技股份有限公司 | Three-level booster circuit and control method thereof |
| CN112398331A (en)* | 2019-08-16 | 2021-02-23 | 三星电子株式会社 | Inverting switching regulator using charge pump and method of operation |
| CN112448580A (en)* | 2019-08-28 | 2021-03-05 | 台达电子工业股份有限公司 | Flying Capacitor Converter |
| CN112532051A (en)* | 2019-09-18 | 2021-03-19 | 台达电子工业股份有限公司 | Power supply conversion system |
| CN112701913A (en)* | 2019-10-22 | 2021-04-23 | 阳光电源股份有限公司 | Boost power conversion circuit and control method and application device thereof |
| CN112928907A (en)* | 2021-02-26 | 2021-06-08 | 华中科技大学 | Starting control method and system for multi-level bidirectional DC-DC converter |
| CN112953202A (en)* | 2021-03-03 | 2021-06-11 | 华为技术有限公司 | Voltage conversion circuit and power supply system |
| CN113078815A (en)* | 2020-01-03 | 2021-07-06 | 台达电子工业股份有限公司 | power conversion system |
| CN113098253A (en)* | 2021-04-28 | 2021-07-09 | 科华数据股份有限公司 | Power conversion circuit |
| TWI742358B (en)* | 2018-05-04 | 2021-10-11 | 德商伍爾特電子eiSos有限公司 | A power converter and a circuit forming a portion thereof |
| CN113613937A (en)* | 2019-03-20 | 2021-11-05 | 利萨·德雷克塞迈尔有限责任公司 | Switching device, voltage supply system, switching device operating method and manufacturing method |
| US11205958B2 (en) | 2019-09-18 | 2021-12-21 | Delta Electronics, Inc. | Power conversion system |
| US11205963B2 (en) | 2019-09-18 | 2021-12-21 | Delta Electronics, Inc. | Multiphase buck converter with extended duty cycle range using multiple bootstrap capacitors |
| CN114270685A (en)* | 2019-08-21 | 2022-04-01 | 松下知识产权经营株式会社 | DC/DC conversion device |
| US11309878B2 (en) | 2019-09-18 | 2022-04-19 | Delta Electronics, Inc. | Power conversion system |
| CN114640252A (en)* | 2022-03-24 | 2022-06-17 | 苏州罗约科技有限公司 | Hybrid three-level flying capacitor booster circuit |
| CN114640253A (en)* | 2022-03-24 | 2022-06-17 | 苏州罗约科技有限公司 | Hybrid three-level flying capacitor Boost circuit |
| CN114785103A (en)* | 2022-06-21 | 2022-07-22 | 绍兴圆方半导体有限公司 | Method and device for controlling voltage ripple of three-level circuit and electronic equipment |
| US11418114B2 (en) | 2018-12-21 | 2022-08-16 | Huawei Digital Power Technologies Co., Ltd. | Boost power conversion circuit, method, inverter, apparatus, and system |
| US11532428B2 (en) | 2019-09-18 | 2022-12-20 | Delta Electronics, Inc. | Power conversion system and magnetic component thereof |
| CN115694187A (en)* | 2022-11-11 | 2023-02-03 | 株洲中车时代电气股份有限公司 | A boost power conversion circuit and device |
| CN115720049A (en)* | 2021-08-24 | 2023-02-28 | 中兴通讯股份有限公司 | Multi-level capacitor pre-charging circuit and power supply equipment |
| CN115912903A (en)* | 2022-11-30 | 2023-04-04 | 捷蒽迪电子科技(上海)有限公司 | A Buck Converter with Series Capacitor with Precharge Circuit |
| CN117691849A (en)* | 2023-11-02 | 2024-03-12 | 深圳市极测科技有限公司 | Three-level soft start circuit and charging method, charging device and storage medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110677027B (en)* | 2019-09-26 | 2025-02-21 | 特变电工新疆新能源股份有限公司 | A clamped boost power conversion circuit |
| CN111049383A (en)* | 2019-12-20 | 2020-04-21 | 浙江日风电气股份有限公司 | A booster circuit and soft-start method for directly hanging high-voltage power supply |
| CN211656005U (en)* | 2020-02-24 | 2020-10-09 | 上海正泰电源系统有限公司 | Three-level power conversion circuit |
| CN113556029B (en) | 2020-04-23 | 2023-02-28 | 台达电子企业管理(上海)有限公司 | Flying capacitor multi-level port voltage loss protection circuit |
| CN113972836B (en)* | 2020-07-22 | 2024-01-30 | 华为数字能源技术有限公司 | Three-level boost converter and control method |
| CN113794373B (en)* | 2021-08-26 | 2024-03-01 | 华为技术有限公司 | Multi-level direct current converter and power supply system |
| CN115242092A (en)* | 2022-08-18 | 2022-10-25 | 阳光电源股份有限公司 | Flying capacitor three-level DCDC converter, photovoltaic system and control method |
| CN115411921A (en)* | 2022-08-30 | 2022-11-29 | 华为数字能源技术有限公司 | A kind of converter and inverter |
| CN115473417B (en)* | 2022-09-05 | 2024-01-09 | 上能电气股份有限公司 | Converter current control method and device based on hybrid logic driving |
| CN115514219B (en)* | 2022-09-23 | 2025-09-26 | 阳光电源股份有限公司 | Three-level DCDC converter with flying capacitor, system and control method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2234663Y (en)* | 1995-01-18 | 1996-09-04 | 华东冶金学院 | DC loop zero voltage switching device |
| CN103683356A (en)* | 2012-09-20 | 2014-03-26 | 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 | Online uninterruptible power supply topology |
| CN104272576A (en)* | 2012-03-23 | 2015-01-07 | Tq系统有限责任公司 | Electrical circuit and method for operation thereof |
| CN104811075A (en)* | 2014-12-12 | 2015-07-29 | 武汉绿鼎天舒科技发展有限公司 | Control method for combined converter |
| CN104868716A (en)* | 2014-02-20 | 2015-08-26 | 艾默生网络能源有限公司 | Boost converter |
| US20160077536A1 (en)* | 2014-09-16 | 2016-03-17 | Dialog Semiconductor (Uk) Limited | Power Converter |
| CN105610337A (en)* | 2016-03-01 | 2016-05-25 | 北京京仪椿树整流器有限责任公司 | Method for controlling output voltage balancing of L-Boost multi-level circuit through peak current |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106230253B (en)* | 2016-09-09 | 2019-05-07 | 华为技术有限公司 | Boost power conversion circuit and control method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2234663Y (en)* | 1995-01-18 | 1996-09-04 | 华东冶金学院 | DC loop zero voltage switching device |
| CN104272576A (en)* | 2012-03-23 | 2015-01-07 | Tq系统有限责任公司 | Electrical circuit and method for operation thereof |
| CN103683356A (en)* | 2012-09-20 | 2014-03-26 | 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 | Online uninterruptible power supply topology |
| CN104868716A (en)* | 2014-02-20 | 2015-08-26 | 艾默生网络能源有限公司 | Boost converter |
| US20160077536A1 (en)* | 2014-09-16 | 2016-03-17 | Dialog Semiconductor (Uk) Limited | Power Converter |
| CN104811075A (en)* | 2014-12-12 | 2015-07-29 | 武汉绿鼎天舒科技发展有限公司 | Control method for combined converter |
| CN105610337A (en)* | 2016-03-01 | 2016-05-25 | 北京京仪椿树整流器有限责任公司 | Method for controlling output voltage balancing of L-Boost multi-level circuit through peak current |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018045936A1 (en)* | 2016-09-09 | 2018-03-15 | 华为技术有限公司 | Boost power conversion circuit and control method |
| CN108258899A (en)* | 2017-12-29 | 2018-07-06 | 华为技术有限公司 | A kind of boost power translation circuit |
| US11025163B2 (en)* | 2017-12-29 | 2021-06-01 | Huawei Technologies Co., Ltd. | Boost power conversion circuit |
| WO2019129027A1 (en)* | 2017-12-29 | 2019-07-04 | 华为技术有限公司 | Boost power conversion circuit |
| CN111566918A (en)* | 2018-01-05 | 2020-08-21 | 华为技术有限公司 | Multilevel Boost Converter |
| TWI742358B (en)* | 2018-05-04 | 2021-10-11 | 德商伍爾特電子eiSos有限公司 | A power converter and a circuit forming a portion thereof |
| CN108847769B (en)* | 2018-06-22 | 2020-03-24 | 阳光电源股份有限公司 | Three-level BOOST device and control method thereof |
| CN108847769A (en)* | 2018-06-22 | 2018-11-20 | 阳光电源股份有限公司 | Three level BOOST devices of one kind and its control method |
| CN108900078A (en)* | 2018-08-03 | 2018-11-27 | 阳光电源股份有限公司 | A kind of striding capacitance type three-level converter and its control method |
| CN108988635A (en)* | 2018-09-13 | 2018-12-11 | 阳光电源股份有限公司 | A kind of more level Boost converters, inversion system and control method |
| CN108988635B (en)* | 2018-09-13 | 2019-09-20 | 阳光电源股份有限公司 | A kind of more level Boost converters, inversion system and control method |
| US11463009B2 (en) | 2018-10-24 | 2022-10-04 | Huawei Digital Power Technologies Co., Ltd. | Flying capacitor charging method and apparatus |
| WO2020082940A1 (en)* | 2018-10-24 | 2020-04-30 | 华为技术有限公司 | Flying capacitor charging method and device |
| CN109617148A (en)* | 2018-10-24 | 2019-04-12 | 华为技术有限公司 | A method and device for charging a flying capacitor |
| US12088200B2 (en) | 2018-12-21 | 2024-09-10 | Huawei Digital Power Technologies Co., Ltd. | Boost power conversion circuit, method, inverter, apparatus, and system |
| US11418114B2 (en) | 2018-12-21 | 2022-08-16 | Huawei Digital Power Technologies Co., Ltd. | Boost power conversion circuit, method, inverter, apparatus, and system |
| CN113613937A (en)* | 2019-03-20 | 2021-11-05 | 利萨·德雷克塞迈尔有限责任公司 | Switching device, voltage supply system, switching device operating method and manufacturing method |
| CN111800011A (en)* | 2019-04-04 | 2020-10-20 | 富士电机株式会社 | Power conversion device and power supply device |
| WO2021013101A1 (en)* | 2019-07-19 | 2021-01-28 | 华为技术有限公司 | Boost circuit and control method for boost circuit |
| CN110429815A (en)* | 2019-07-19 | 2019-11-08 | 华为技术有限公司 | The control method of booster circuit and booster circuit |
| US12040707B2 (en) | 2019-07-19 | 2024-07-16 | Huawei Digital Power Technologies Co., Ltd. | Step-up circuit and step-up circuit control method |
| CN112398331A (en)* | 2019-08-16 | 2021-02-23 | 三星电子株式会社 | Inverting switching regulator using charge pump and method of operation |
| CN114270685A (en)* | 2019-08-21 | 2022-04-01 | 松下知识产权经营株式会社 | DC/DC conversion device |
| CN112448580A (en)* | 2019-08-28 | 2021-03-05 | 台达电子工业股份有限公司 | Flying Capacitor Converter |
| CN112532051A (en)* | 2019-09-18 | 2021-03-19 | 台达电子工业股份有限公司 | Power supply conversion system |
| US11205958B2 (en) | 2019-09-18 | 2021-12-21 | Delta Electronics, Inc. | Power conversion system |
| US11205963B2 (en) | 2019-09-18 | 2021-12-21 | Delta Electronics, Inc. | Multiphase buck converter with extended duty cycle range using multiple bootstrap capacitors |
| US11532428B2 (en) | 2019-09-18 | 2022-12-20 | Delta Electronics, Inc. | Power conversion system and magnetic component thereof |
| CN112532051B (en)* | 2019-09-18 | 2022-04-05 | 台达电子工业股份有限公司 | power conversion system |
| US11309878B2 (en) | 2019-09-18 | 2022-04-19 | Delta Electronics, Inc. | Power conversion system |
| CN110611447B (en)* | 2019-09-26 | 2021-07-30 | 丰郅(上海)新能源科技有限公司 | Pre-charging method for flying capacitor of multi-level inverter |
| CN110611447A (en)* | 2019-09-26 | 2019-12-24 | 丰郅(上海)新能源科技有限公司 | Pre-charging method for flying capacitor of multi-level inverter |
| CN112701913A (en)* | 2019-10-22 | 2021-04-23 | 阳光电源股份有限公司 | Boost power conversion circuit and control method and application device thereof |
| CN113078815A (en)* | 2020-01-03 | 2021-07-06 | 台达电子工业股份有限公司 | power conversion system |
| US11329569B2 (en) | 2020-01-03 | 2022-05-10 | Delta Electronics, Inc. | Power conversion system |
| CN112383219B (en)* | 2020-12-10 | 2022-03-18 | 深圳科士达科技股份有限公司 | Three-level booster circuit and control method thereof |
| CN112383219A (en)* | 2020-12-10 | 2021-02-19 | 深圳科士达科技股份有限公司 | Three-level booster circuit and control method thereof |
| CN112928907B (en)* | 2021-02-26 | 2022-04-12 | 华中科技大学 | A multi-level bidirectional DC-DC converter startup control method and system |
| CN112928907A (en)* | 2021-02-26 | 2021-06-08 | 华中科技大学 | Starting control method and system for multi-level bidirectional DC-DC converter |
| CN112953202B (en)* | 2021-03-03 | 2023-10-20 | 华为数字能源技术有限公司 | Voltage conversion circuit and power supply system |
| US11757287B2 (en) | 2021-03-03 | 2023-09-12 | Huawei Digital Power Technologies Co., Ltd. | Voltage conversion circuit and power supply system |
| CN112953202A (en)* | 2021-03-03 | 2021-06-11 | 华为技术有限公司 | Voltage conversion circuit and power supply system |
| CN113098253A (en)* | 2021-04-28 | 2021-07-09 | 科华数据股份有限公司 | Power conversion circuit |
| WO2023024848A1 (en)* | 2021-08-24 | 2023-03-02 | 中兴通讯股份有限公司 | Multi-level capacitive pre-charging circuit and power supply device |
| CN115720049A (en)* | 2021-08-24 | 2023-02-28 | 中兴通讯股份有限公司 | Multi-level capacitor pre-charging circuit and power supply equipment |
| CN114640253B (en)* | 2022-03-24 | 2023-03-14 | 苏州罗约科技有限公司 | Hybrid three-level flying capacitor Boost circuit |
| CN114640252B (en)* | 2022-03-24 | 2023-03-14 | 苏州罗约科技有限公司 | Hybrid three-level flying capacitor booster circuit |
| CN114640253A (en)* | 2022-03-24 | 2022-06-17 | 苏州罗约科技有限公司 | Hybrid three-level flying capacitor Boost circuit |
| CN114640252A (en)* | 2022-03-24 | 2022-06-17 | 苏州罗约科技有限公司 | Hybrid three-level flying capacitor booster circuit |
| CN114785103B (en)* | 2022-06-21 | 2022-09-02 | 绍兴圆方半导体有限公司 | Control method and device for voltage ripple of three-level circuit and electronic equipment |
| CN114785103A (en)* | 2022-06-21 | 2022-07-22 | 绍兴圆方半导体有限公司 | Method and device for controlling voltage ripple of three-level circuit and electronic equipment |
| CN115694187A (en)* | 2022-11-11 | 2023-02-03 | 株洲中车时代电气股份有限公司 | A boost power conversion circuit and device |
| CN115912903A (en)* | 2022-11-30 | 2023-04-04 | 捷蒽迪电子科技(上海)有限公司 | A Buck Converter with Series Capacitor with Precharge Circuit |
| CN117691849A (en)* | 2023-11-02 | 2024-03-12 | 深圳市极测科技有限公司 | Three-level soft start circuit and charging method, charging device and storage medium |
| Publication number | Publication date |
|---|---|
| CN106230253B (en) | 2019-05-07 |
| WO2018045936A1 (en) | 2018-03-15 |
| Publication | Publication Date | Title |
|---|---|---|
| CN106230253A (en) | Boost power translation circuit and control method | |
| CN108258899B (en) | A booster power conversion circuit | |
| WO2020082940A1 (en) | Flying capacitor charging method and device | |
| CN212381111U (en) | Three-level power conversion circuit capable of being precharged by flying capacitor | |
| CN111566918A (en) | Multilevel Boost Converter | |
| WO2020125235A1 (en) | Boost power conversion circuit, method, inverter, apparatus and system | |
| CN103368394B (en) | A kind of efficient voltage reducing type DC-DC converter | |
| CN103427618B (en) | A kind of SS (soft start) control circuit | |
| CN109742839A (en) | A charging control circuit and system for a bootstrap capacitor | |
| CN203814013U (en) | LED driving circuit adopting single-end zero crossing detection | |
| WO2021013101A1 (en) | Boost circuit and control method for boost circuit | |
| CN102790543B (en) | A kind of synchronous rectificating device | |
| CN108092493B (en) | SiC MOSFET series circuit | |
| CN109194098A (en) | A kind of synchronous rectification sample circuit | |
| CN102222905A (en) | Plug-in multi-passage current sharing interface circuit | |
| CN117318683A (en) | Driving circuit, load switching circuit and power supply module of power transistor | |
| CN106411120A (en) | Switch assembly and application and control method thereof | |
| CN112769103B (en) | A Transient Support Protection System for Supercapacitors | |
| CN203352444U (en) | High-efficiency step-down DC-DC converter | |
| CN103647448A (en) | Integrated step-down-flyback type high power factor constant current circuit and device | |
| CN114487900A (en) | Short circuit detection device and control method of switched capacitor converter | |
| CN110247540B (en) | Non-coupling input filter capacitor discharge control circuit and control method using same | |
| CN109194126B (en) | Power supply switching circuit | |
| CN107483009B (en) | Optimizer bypass control method of photovoltaic power generation system | |
| CN210468797U (en) | Output series-parallel switching circuit |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |