Movatterモバイル変換


[0]ホーム

URL:


CN106208046B - A kind of tidal current energy generating field unit layout method considering power generation settings cost - Google Patents

A kind of tidal current energy generating field unit layout method considering power generation settings cost
Download PDF

Info

Publication number
CN106208046B
CN106208046BCN201610647754.5ACN201610647754ACN106208046BCN 106208046 BCN106208046 BCN 106208046BCN 201610647754 ACN201610647754 ACN 201610647754ACN 106208046 BCN106208046 BCN 106208046B
Authority
CN
China
Prior art keywords
tidal current
power
layout scheme
generator
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610647754.5A
Other languages
Chinese (zh)
Other versions
CN106208046A (en
Inventor
任洲洋
代溢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing UniversityfiledCriticalChongqing University
Priority to CN201610647754.5ApriorityCriticalpatent/CN106208046B/en
Publication of CN106208046ApublicationCriticalpatent/CN106208046A/en
Application grantedgrantedCritical
Publication of CN106208046BpublicationCriticalpatent/CN106208046B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明的目的是针对现有潮汐流能发电场机组布局优化方法的不足,公开一种考虑发电环境成本的潮汐流能发电场机组布局方法,该模型把机组布局规划和电网运行相结合,利用遗传算法,以发电场单位发电量成本和电网内火电机组单位发电环境成本综合最优为目标,计及了潮汐流速的日规律性,并利用一种简单的潮汐流能尾流解析模型分析相互之间的影响,该方法为评估整个系统规划和运行成本提供良好的基础。

The purpose of the present invention is to address the deficiencies of existing tidal current power plant unit layout optimization methods, and disclose a tidal current energy power plant unit layout method considering the environmental cost of power generation. The genetic algorithm aims at the comprehensive optimization of the unit power generation cost of the power plant and the unit power generation environment cost of the thermal power unit in the power grid. The method provides a good basis for evaluating the overall system planning and operating costs.

Description

Translated fromChinese
一种考虑发电环境成本的潮汐流能发电场机组布局方法A tidal current power plant unit layout method considering the environmental cost of power generation

技术领域technical field

本发明属于潮汐流能发电场布局优化技术领域,具体涉及考虑发电环境成本的潮汐流能发电场机组布局方法。The invention belongs to the technical field of tidal current energy power plant layout optimization, and in particular relates to a tidal current energy power plant unit layout method considering the environmental cost of power generation.

背景技术Background technique

潮汐流能具有环保、可靠、可预测性强的优点,近年来赢得了许多科研院校和公司广泛的关注。在未来,潮汐流能发电作为一种重要的发电形式,将替代一部分传统的发电单元,有效缓解化石能源消耗带来的环境压力。Tidal current energy has the advantages of environmental protection, reliability, and strong predictability, and has won extensive attention from many scientific research institutions and companies in recent years. In the future, tidal current power generation, as an important form of power generation, will replace some traditional power generation units and effectively alleviate the environmental pressure brought about by the consumption of fossil energy.

潮汐流能发电机是将潮汐流动的动能转换成电能的装置,一部分潮汐流能发电机放置在一起组成了一定规模的发电场。由于尾流效应的存在,上游发电机对流速的阻挡会对下游发电机的流速产生较大影响,从而影响整个发电场的出力和经济性。因此,在潮汐流能发电场规划的过程中,需要通过优化潮汐流能发电机的排列减小尾流效应的不利影响。潮汐流能发电机输出功率与流速的3次方成正比。由于流速的实时变化,潮汐流能发电也随之变化,接入电网后,会影响整个系统的运行状态。潮汐流能发电与潮汐流速水平和潮汐流能机组布局密切相关。因此,机组布局优化必然会对整个系统的运行成本产生深刻影响。A tidal current energy generator is a device that converts the kinetic energy of tidal flow into electrical energy. Some tidal current energy generators are placed together to form a certain-scale power plant. Due to the existence of the wake effect, the obstruction of the flow velocity by the upstream generator will have a greater impact on the flow velocity of the downstream generator, thereby affecting the output and economy of the entire power plant. Therefore, in the process of tidal current energy power plant planning, it is necessary to reduce the adverse effects of the wake effect by optimizing the arrangement of tidal current energy generators. The output power of the tidal current energy generator is proportional to the third power of the flow velocity. Due to real-time changes in flow velocity, tidal current power generation also changes accordingly. After being connected to the grid, it will affect the operation status of the entire system. Tidal current energy power generation is closely related to the level of tidal flow velocity and the layout of tidal current energy units. Therefore, the optimization of unit layout will inevitably have a profound impact on the operating cost of the entire system.

目前,在潮汐流能发电场机组优化布局方面,现有技术公开的方法是:以一段时间内潮汐流能发电场发电量最大为目标,首先,随机产生种群粒子表征机组的布局方案;其次,针对每一个布局方案,考虑机组之间的尾流效应,计算发电场的发电量;然后,计算每一个布局方案的适应度值,依据粒子群算法更新布局方案,再次计算目标函数;最后,比较前后两次目标函数值,相同则停止迭代计算,否则继续迭代计算。该方法的主要缺点是:1)利用风机尾流效应模型来计算,忽略了海洋环境中潮汐变化的特点;2)忽略了潮汐流能机组优化布局对电网内发电机组运行成本的影响。At present, in terms of optimizing the layout of tidal current energy power generation units, the method disclosed in the prior art is: aiming at the maximum power generation of tidal current energy generation within a period of time, firstly, randomly generating population particles to represent the layout scheme of the unit; secondly, For each layout scheme, consider the wake effect between units, and calculate the power generation of the power plant; then, calculate the fitness value of each layout scheme, update the layout scheme according to the particle swarm optimization algorithm, and calculate the objective function again; finally, compare If the objective function values before and after are the same, stop the iterative calculation, otherwise continue the iterative calculation. The main disadvantages of this method are: 1) using the wind turbine wake effect model to calculate, ignoring the characteristics of tidal changes in the marine environment; 2) ignoring the influence of the optimal layout of tidal current energy units on the operating cost of generating units in the power grid.

发明内容Contents of the invention

本发明的目的是针对现有潮汐流能发电场机组布局优化方法的不足,提出一种考虑发电环境成本的潮汐流能发电场机组布局优化方法,该模型把机组布局规划和电网运行相结合,利用遗传算法,The purpose of the present invention is to address the deficiencies of existing tidal current energy power plant unit layout optimization methods, and propose a tidal current energy power plant unit layout optimization method that considers the environmental cost of power generation. The model combines unit layout planning with power grid operation, Using genetic algorithm,

以发电场单位发电量成本和电网内火电机组单位发电环境成本综合最优为目标,计及了潮汐流速的日规律性,并利用一种简单的潮汐流能尾流解析模型分析机组之间的影响,该方法为评估整个系统规划和运行成本提供良好的基础。Aiming at the comprehensive optimization of the unit power generation cost of the power plant and the unit power generation environment cost of the thermal power unit in the power grid, the diurnal regularity of the tidal flow velocity is taken into account, and a simple tidal current energy wake analysis model is used to analyze the interaction between units. Impact, this approach provides a good basis for evaluating overall system planning and operating costs.

为实现本发明目的而采用的技术方案是这样的,一种考虑发电环境成本的潮汐流能发电场机组布局方法,其特征在于:包括以下步骤:The technical scheme adopted for realizing the object of the present invention is such, a kind of tidal current energy power plant unit layout method that considers power generation environment cost, it is characterized in that: comprise the following steps:

1)输入基础数据1) Enter basic data

输入潮汐流能发电场n天每天24个时段的潮汐流速实测数据样本vdt,其中,d为天数序号,d=1,2…n,t为时段序号,t=1,2…24,例如,潮汐流速第q天的实测数据样本为Vq=[vq1,vq2,...,vq24],q∈{1,2…n};海水密度ρ;输入潮汐流能发电机的切入流速Vin、额定流速Vrated,额定输出功率Prated、获能系数Cp、推力系数CT、叶片直径D、叶片扫过的面积A,潮汐流能发电机的单价CuInput the tidal flow velocity measured data sample vdt of the tidal current power plant n days and 24 time periods per day, where d is the number of days, d=1,2...n, t is the time period number, t=1,2...24, for example , the measured data sample of tidal flow velocity on the qth day is Vq =[vq1 ,vq2 ,...,vq24 ], q∈{1,2...n}; seawater density ρ; Cut-in flow velocity Vin , rated flow velocity Vrated , rated output power Prated , capacitive coefficient Cp , thrust coefficient CT , blade diameter D, blade swept area A, and unit price Cu of the tidal current energy generator;

潮汐流能发电场被划分为满足最小间距约束的N×M个网格,每个网格横向距离3D,纵向距离5D;输入潮汐流能发电场的经济寿命l,年利率r;输入地方电网火电机组的数量ngen;输入各火电机组计算发电环境成本的系数as、bs、cs,s是火电机组的序号;输入各火电机组计算温室气体排放单价的系数γs、βs、αsThe tidal current energy power plant is divided into N×M grids that satisfy the minimum spacing constraint, each grid has a horizontal distance of 3D and a vertical distance of 5D; input the economic life l of the tidal current energy power plant, and the annual interest rate r; input the local power grid The number of thermal power units ngen ; input the coefficients as , bs , cs of each thermal power unit to calculate the environmental cost of power generation, s is the serial number of the thermal power unit; input the coefficients γs , βs , αs ;

2)计算潮汐流速的日均值曲线2) Calculating the daily mean curve of tidal current velocity

利用公式1)依次计算潮汐流速各个时段的均值:Use formula 1) to calculate the mean value of tidal current velocity in each period in turn:

式中,mt为第t个时段潮汐流速的均值,t=1,2…24,n为潮汐流速实测数据的日样本数。根据公式(1)可以得到潮汐流速的日均值曲线为M=[m1,m2,…,m24]。In the formula, mt is the mean value of the tidal current velocity in the tth period, t=1, 2...24, n is the daily sample number of the tidal current velocity measurement data. According to formula (1), the daily mean value curve of tidal current velocity can be obtained as M=[m1 ,m2 ,…,m24 ].

3)产生潮汐流能发电场机组初始布局样本3) Generate a sample of the initial layout of the tidal current power plant unit

3-1)初始化遗传算法的最大迭代次数,迭代计数iteration=13-1) Initialize the maximum number of iterations of the genetic algorithm, iteration count iteration=1

3-2)利用计算机,随机生成Np个初始个体,每个个体是N×M的二进制字符矩阵,表示Np个不同的布局方案,所述二进制字符矩阵中,字符“1”表示网格中有一台潮汐流能发电机,字符“0”表示网格中无潮汐流能发电机,即每个个体均是一种潮汐流能发电机布局方案,令k=1,2…Np,第k个个体表示第k种布局方案,统计第k种布局方案中为“1”的元素有nkg个,表示有nkg台发电机。第k种布局方案中第i台发电机的位置坐标为Gki=(xki,yki),表示第k种布局方案中第i台机组位于第xki行第yki列。i=1,2…nkg,xki=1,2…N,yki=1,2…M。3-2) Use a computer to randomly generate Np initial individuals, each individual is an N×M binary character matrix, representing Np different layout schemes, and in the binary character matrix, the character "1" represents a grid There is a tidal current energy generator in the grid, the character "0" indicates that there is no tidal current energy generator in the grid, that is, each individual is a tidal current energy generator layout scheme, let k=1,2...Np , The k-th individual represents the k-th layout scheme, and there are nkg elements with "1" in the k-th layout scheme according to statistics, indicating that there are nkg generators. The position coordinates of the i generator in the kth layout scheme is Gki = (xki , yki ), which means that the i generator in the kth layout scheme is located in the xki row and the yki List. i=1,2...nkg , xki =1,2...N, yki =1,2...M.

4)计算潮汐流能发电场的日等效投资成本4) Calculate the daily equivalent investment cost of the tidal current power plant

利用公式(2)计算潮汐流能发电场的日等效投资成本:Use the formula (2) to calculate the daily equivalent investment cost of the tidal current power plant:

式中,CkTCT为第k种布局方案日等效投资成本,k=1,2…Np,Np是个体数目,nkg为第k种布局方案中发电机数目;Cu为发电机单价,l为潮汐流能发电场的经济寿命,r为年利率。In the formula, CkTCT is the daily equivalent investment cost of the kth layout scheme, k=1,2…Np , Np is the number of individuals, nkg is the number of generators in the kth layout scheme; Cu is Generator unit price, l is the economic life of the tidal current power plant, r is the annual interest rate.

5)计算潮汐流能发电场的日发电量5) Calculating the daily power generation of the tidal current power plant

利用第2)步计算得到的潮汐流速日均值曲线和第3)步计算得到的潮汐流能发电机的位置坐标,计算潮汐流能发电场日发电量。计算步骤为:Using the tidal current velocity daily average curve calculated in step 2) and the position coordinates of the tidal current energy generator calculated in step 3), calculate the daily power generation of the tidal current energy power plant. The calculation steps are:

5-1)计算各时段潮汐流能发电场内发电机的流速5-1) Calculate the flow velocity of the generator in the tidal current energy power plant at each time period

5-1-1)利用公式(3)计算第k个布局方案中第1行各台发电机的流速:5-1-1) Use the formula (3) to calculate the flow velocity of each generator in row 1 in the kth layout scheme:

式中,vkit表示第k个布局方案中第i台发电机在第t个时段的流速,k=1,2…Np,i=1,2…nkg,t=1,2…24,Np是个体数目,nkg为第k种布局方案中发电机数目;mt为第t个时段潮汐流速的均值。In the formula, vkit represents the flow velocity of the i-th generator in the t-th period in the k-th layout scheme, k=1,2...Np , i=1,2...nkg , t=1,2 …24, Np is the number of individuals, nkg is the number of generators in the kth layout scheme; mt is the mean value of the tidal flow velocity in the tth period.

5-1-2)利用公式(4)和(5)计算第k个布局方案中,除第一行外各发电机单独受上游第j台发电机尾流影响下的流速(上游发电机是指:比目标发电机更靠近来潮方向的发电机):5-1-2) Use formulas (4) and (5) to calculate the flow velocity of each generator except the first row under the influence of the wake of the jth upstream generator alone in the kth layout scheme (the upstream generator is Refers to: the generator that is closer to the incoming tide than the target generator):

式中:vkijt表示第k种布局方案中,第i台发电机在第t个时段单独受上游第j台发电机尾流影响的流速;vkjt表示第k种布局方案中,上游第j台发电机在第t个时段的流速,k=1,2…Np,i=1,2…nkg,t=1,2…24,j是上游发电机的编号,Np是个体数目,nkg为第k种布局方案中发电机数目;CT为潮汐流能发电机的推力系数,(xki,yki)是第k种布局方案中第i台发电机的位置坐标,D是潮汐流能发电机叶片直径,R是叶片半径,Rh是轮毂半径。In the formula: vkijt represents the flow velocity of the i-th generator alone affected by the wake flow of the j-th upstream generator in the k-th layout scheme in the t-th time period; vkjt represents the upstream The flow rate of the jth generator in the tth period, k=1,2...Np , i=1,2...nkg , t=1,2...24, j is the number of the upstream generator, Np is the number of individuals, nkg is the number of generators in the k-th layout scheme; CT is the thrust coefficient of the tidal current energy generator, (xki ,yki ) is the i-th power generator in the k-th layout scheme D is the blade diameter of the tidal current energy generator, R is the blade radius, and Rh is the hub radius.

根据(4)和(5)的计算结果,利用公式(6)计算除第1行外各发电机的流速:According to the calculation results of (4) and (5), use formula (6) to calculate the flow velocity of each generator except row 1:

式中,Nkwi是第k种布局方案第i台发电机上游的机组数量,k=1,2…Np,i=1,2…nkg,Np是个体数目,nkg为第k种布局方案中发电机数目。In the formula, Nkwi is the number of units upstream of generator i in the kth layout scheme, k=1,2...Np , i=1,2...nkg , Np is the number of individuals, nkg is the number of generators in the kth layout scheme.

5-2)计算潮汐流能发电机的输出功率5-2) Calculate the output power of the tidal current energy generator

根据第5-1)计算得到的各发电机的流速,利用公式(7)计算各发电机的输出功率。公式(7)为:According to the flow velocity of each generator calculated in item 5-1), the output power of each generator is calculated by formula (7). Formula (7) is:

式中,pkit为第k种布局方案第i台潮汐流能发电机在第t个时段的输出功率,k=1,2…Np,i=1,2…nkg,t=1,2…24,Np是个体数目,nkg为第k种布局方案中发电机数目;vkit为第k种布局方案第i台潮汐流能发电机在第t个时段的流速值;Cp为潮汐流能发电机的获能系数,ρ为海水密度,A为潮汐流能发电机叶片扫过的面积,Vin是潮汐流能发电机的切入流速,Vrated是潮汐流能发电机的额定流速,Prated是潮汐流能发电机的额定输出功率;In the formula, pkit is the output power of the i tidal current generator in the kth layout scheme in the tth period, k=1,2...Np , i=1,2...nkg , t= 1,2...24, Np is the number of individuals, nkg is the number of generators in the kth layout scheme; vkit is the flow velocity of the i tidal current energy generator in the kth layout scheme in the tth time period value; Cp is the energy capture coefficient of the tidal current energy generator, ρ is the density of seawater, A is the area swept by the blades of the tidal current energy generator, Vin is the cut-in velocity of the tidal current energy generator, and Vrated is the tidal flow The rated flow velocity of the energy generator, Prated is the rated output power of the tidal current energy generator;

5-3)计算潮汐流能发电场的日发电量5-3) Calculate the daily power generation of the tidal current power plant

根据5-2)步计算得到的发电机的输出功率。利用公式(8)计算潮汐流能发电场的输出功率:According to the output power of the generator calculated in step 5-2). Use the formula (8) to calculate the output power of the tidal current power plant:

利用公式(9)计算潮汐流能发电场的日发电量:Use the formula (9) to calculate the daily power generation of the tidal current power plant:

式中,Ptk为第k种布局方案在第t个时段的输出功率,pkit为第k种布局方案第i台发电机在第t个时段的输出功率,Ek为第k种布局方案的日发电量,k=1,2…Np,i=1,2…nkg,Np是个体数目,nkg为第k种布局方案中发电机数目;In the formula, Ptk is the output power of the k-th layout scheme in the t-th period, pkit is the output power of the i-th generator in the t-th period of the k-th layout scheme, and Ek is the k-th The daily power generation of the layout scheme, k=1,2...Np , i=1,2...nkg , Np is the number of individuals, and nkg is the number of generators in the kth layout scheme;

6)计算电网内火电机组的发电环境成本6) Calculate the environmental cost of power generation of thermal power units in the grid

第5)步完成之后,根据第1)步输入的电网内火电机组的数量以及各火电机组计算发电环境成本和温室气体排放单价的系数,和第5-3)步计算得到的潮汐流能发电场的输出功率,建立含潮汐流能发电场的机组组合优化模型。After step 5) is completed, according to the number of thermal power units in the power grid input in step 1) and the coefficients for calculating the environmental cost of power generation and the unit price of greenhouse gas emissions for each thermal power unit, and the tidal current power generation calculated in step 5-3) The output power of the field is established, and the unit combination optimization model of the tidal current energy power plant is established.

含潮汐流能发电场的机组组合优化模型以火电机组发电环境成本最少为目标,建立的目标函数为公式(10):The unit combination optimization model of a power plant with tidal current energy aims to minimize the environmental cost of thermal power unit power generation, and the objective function established is formula (10):

其中:in:

约束条件包括系统功率平衡约束、火电机组出力约束、系统旋转备用约束。约束条件为:Constraints include system power balance constraints, thermal power unit output constraints, and system spinning reserve constraints. The constraints are:

式中:fk是第k种布局方案的发电环境成本,f1(pkgst)是第k种布局方案第s台火电机组在第t个时段的温室气体排放量,ηs是温室气体排放单价;pkgst是在第k种布局方案第s台火电机组第t个时段的有功功率;In the formula: fk is the power generation environmental cost of the k-th layout scheme, f1 (pkgst ) is the greenhouse gas emission of the sth thermal power unit in the k-th layout scheme in the t-th period, and ηs is the greenhouse gas Emission unit price; pkgst is the active power of the sth thermal power unit in the kth layout scheme in the tth time period;

pkTt是第k种布局方案中,潮汐流能发电场在第t个时段的有功功率,k=1,2…Np,t=1,2…24,Np是个体数目;ngen是电网内火电机组的数目,s为火电机组序号,s=1、2…ngen;Lzt表示电网内第z个负荷点第t个时段的负荷值,z=1,2…nL,nL是电网内负荷数量;pmings是第s个火电机组的最小有功功率限制,pmaxgs是第s个火电机组的最大有功功率限制;as、bs、cs是第s个火电机组计算发电环境成本的系数,γs、βs、αs是第s个火电机组计算温室气体排放单价的系数。pkTt is the active power of the tidal current power plant in the tth time period in the kth layout scheme, k=1,2...Np , t=1,2...24, Np is the number of individuals; ngen is the number of thermal power units in the power grid, s is the serial number of thermal power units, s=1, 2...ngen ; Lzt represents the load value of the zth load point in the power grid in the tth time period, z=1,2...nL , nL is the number of loads in the grid; pmings is the minimum active power limit of the sth thermal power unit, pmaxgs is the maximum active power limit of the sth thermal power unit; as , bs , cs are the sth thermal power unit Coefficients for thermal power units to calculate the environmental cost of power generation, γs , βs , and αs are the coefficients for the sth thermal power unit to calculate the unit price of greenhouse gas emissions.

利用二次规划方法求解该模型,计算出各个个体最少发电环境成本。The quadratic programming method is used to solve the model, and the minimum environmental cost of power generation for each individual is calculated.

7)用遗传算法优化潮汐流能发电场机组布局方案7) Optimizing the unit layout scheme of tidal current power plant with genetic algorithm

第6)步完成之后,根据第4)步计算得到的潮汐流能发电场机组的日等效投资成本,第5-3)步计算得到的日发电量和第6)步计算得到的电网内火电机组发电环境成本,利用遗传算法对潮汐流能发电场机组布局方案进行优化。After step 6) is completed, according to the daily equivalent investment cost of the tidal current power plant unit calculated in step 4), the daily power generation calculated in step 5-3) and the power grid internal energy calculated in step 6) The environmental cost of thermal power generation, using genetic algorithm to optimize the unit layout scheme of tidal current power plant.

计算各布局方案的优化目标和适应度值Calculate the optimization objective and fitness value of each layout scheme

整个系统的单位综合成本是潮汐流能发电场机组的日等效投资成本和电网内火电机组发电环境成本之和与日发电量的比值。以单位综合成本最小为优化目标,公式是:The unit comprehensive cost of the whole system is the ratio of the sum of the daily equivalent investment cost of the tidal current power generation unit and the environmental cost of the thermal power generation unit in the power grid to the daily power generation. Taking the minimum unit comprehensive cost as the optimization goal, the formula is:

式中,Fk是第k种布局方案的单位综合成本,CkTCT是第k个布局方案的日等效投资成本,fk是第k种布局方案的发电环境成本,Ek为第k种布局方案的日发电量,k=1,2…Np,Np是个体数目。In the formula, Fk is the unit comprehensive cost of the kth layout scheme, CkTCT is the daily equivalent investment cost of the kth layout scheme, fk is the power generation environment cost of the kth layout scheme, Ek is the kth layout scheme The daily power generation capacity of each layout scheme, k=1,2...Np , where Np is the number of individuals.

利用公式(17)计算各个个体的适应度值:Use the formula (17) to calculate the fitness value of each individual:

式中,fitnessk表示第k种布局方案的适应度值,k=1,2…Np,Np是个体数目。In the formula, fitnessk represents the fitness value of the kth layout scheme, k=1,2...Np , and Np is the number of individuals.

8)迭代终止条件8) Iteration termination condition

判断当前是否达到最大迭代次数,Determine whether the current maximum number of iterations has been reached,

若否,迭代次数iteration+1生成新的布局方案(重新得到Np个N×M的二进制字符矩阵),以更新步骤3-2)中所述Np个不同的布局方案,之后,重复步骤4)~7)。生成新的布局方案的方法可以是:根据第7)步计算出的适应度值,对当前各个个体(各个布局方案)进行选择、交叉和变异运算,生成新的布局方案。If not, the number of iterations iteration+1 generates a new layout scheme (re-obtaining Np binary character matrices of N×M), to update the Np different layout schemes described in step 3-2), after that, repeat the steps 4) ~ 7). The method for generating a new layout scheme may be: according to the fitness value calculated in step 7), perform selection, crossover and mutation operations on each current individual (each layout scheme) to generate a new layout scheme.

若是,则最优的机组布局方式是第7)步中优化目标最小的一个个体。If yes, the optimal unit layout is the individual with the smallest optimization objective in step 7).

本发明采用上述技术方案后,主要有以下效果:After the present invention adopts above-mentioned technical scheme, mainly have following effect:

1、本发明方法充分计及了潮汐流速的日变化规律和潮汐流能发电机组间的尾流效应,能够同时考虑潮汐流能发电场发电机的投资成本和电网内火电机组的发电环境成本,可有效评估潮汐流能发电场机组布局对整个系统经济性的影响。1. The method of the present invention fully takes into account the diurnal variation of the tidal flow rate and the wake effect between the tidal current energy generating units, and can simultaneously consider the investment cost of the tidal current energy power plant generator and the power generation environment cost of the thermal power unit in the power grid, It can effectively evaluate the impact of tidal current power plant unit layout on the economy of the entire system.

2、本发明在优化机组布局时考虑了潮汐流能接入电网的发电环境成本,能提高整个系统的经济性,实用性强,还可推广应用于考虑电网运行成本、可靠性等的机组布局分析,具有较好的扩展性。2. The present invention considers the power generation environment cost of tidal flow energy connected to the power grid when optimizing the unit layout, can improve the economy of the entire system, has strong practicability, and can also be popularized and applied to unit layouts that consider power grid operating costs, reliability, etc. Analysis, with good scalability.

本发明可广泛应用于考虑发电环境成本的潮汐流能发电场机组布局规划,能够为与潮汐流能发电系统相关的规划和运行问题分析提供有益的参考。The invention can be widely applied to the layout planning of tidal current energy power plant units considering the cost of power generation environment, and can provide beneficial reference for the planning and operation problem analysis related to the tidal current energy power generation system.

附图说明Description of drawings

图1为本发明方法的程序流程框图;Fig. 1 is a program flow diagram of the inventive method;

图2为本发明方法针对我国X地区电网的机组最优布局示意图。Fig. 2 is a schematic diagram of the optimal layout of units for the power grid in region X of my country by the method of the present invention.

具体实施方式Detailed ways

下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。The present invention will be further described below in conjunction with the examples, but it should not be understood that the scope of the subject of the present invention is limited to the following examples. Without departing from the above-mentioned technical ideas of the present invention, various replacements and changes made according to common technical knowledge and conventional means in this field shall be included in the protection scope of the present invention.

如图1所示,在我国X沿海地区附近海域建设一座潮汐流能发电场,产生的电能接入该地区电网,考虑发电环境成本的潮汐流能发电场机组布局方法的具体步骤如下:As shown in Figure 1, a tidal current energy power plant is built in the sea area near the X coastal area of my country, and the generated electric energy is connected to the power grid in this area. The specific steps of the unit layout method of the tidal current energy power plant considering the environmental cost of power generation are as follows:

1)输入基础数据1) Enter basic data

输入潮汐流能发电场90天每天24个时段的潮汐流速实测数据样本vdt,其中潮汐流速第d天的实测数据样本为Vi=[vi1,vi2,...,vi24],d=1,2...n,t=1,2...24,n=90,海水密度ρ=1025kg/m3;输入潮汐流能发电机的切入流速Vin=0.7m/s、额定流速Vrated=3m/s,额定输出功率Prated=1.2MW、获能系数CP=0.45、推力系数CT=0.7、叶片直径D=18m、轮毂半径Rh,叶片扫过的面积A=254.34m2,发电机单价Cu=799712$;潮汐流能发电场被划分为满足最小机组间距约束的10×10个网格,每个网格横向距离3D=54m,纵向距离5D=90m,潮汐流能发电场的经济寿命l=20,年利率r=0.01,X地区电网内的火电机组数据(参数)如表1所示。Input the tidal flow velocity measured data sample vdt of the tidal current energy power plant in 24 periods every day for 90 days, wherein the measured data sample of the tidal flow velocity on day d is Vi =[vi1 , vi2 ,..., vi24 ], d=1, 2...n, t=1, 2...24, n=90, seawater density ρ=1025kg/m3 ; the cut-in velocity Vin input into the tidal current energy generator =0.7m/s, Rated flow velocity Vrated = 3m/s, rated output power Prated = 1.2MW, energy capture coefficient CP = 0.45, thrust coefficient CT = 0.7, blade diameter D = 18m, hub radius Rh , blade swept area A =254.34m2 , the unit price of generator Cu =799712$; the tidal current power plant is divided into 10×10 grids satisfying the minimum unit spacing constraints, and the horizontal distance of each grid is 3D=54m, and the vertical distance 5D=90m , the economic life of the tidal current power plant is l=20, the annual interest rate is r=0.01, and the data (parameters) of thermal power units in the power grid in X region are shown in Table 1.

表1火电机组参数Table 1 Parameters of thermal power units

sthe spnaxgspnaxgspmingspmingsγsgammaβsbetasαsasasasbsbscscs1120020030300.01260.0126-0.90-0.9022.98322.9830.003750.003752.02.00022808020200.02000.0200-0.10-0.1025.31325.3130.017500.017501.71.70033505010100.02700.0270-0.01-0.0125.50525.5050.062500.062501.01.00044353510100.02910.0291-0.005-0.00524.90024.9000.008340.008343.253.250055303010100.02900.0290-0.004-0.00424.70024.7000.025000.025003.03.00066404010100.02710.0271-0.0055-0.005525.30025.3000.025000.025003.03.000

2)计算潮汐流速的日均值曲线2) Calculating the daily mean curve of tidal current velocity

根据输入的潮汐流速实测数据,利用公式(1)依次计算潮汐流速各个时段的均值:According to the input measured data of tidal current velocity, the mean value of tidal current velocity in each time period is calculated sequentially by formula (1):

式中,mt为第t个时段潮汐流速的均值,t=1,2,...,24,n=90为潮汐流速实测数据的日样本数。根据公式(1)可以得到潮汐流速的日均值曲线为M=[m1,m2,…,m24]。In the formula, mt is the mean value of tidal current velocity in the tth period, t=1, 2,...,24, n=90 is the daily sample number of tidal current velocity measurement data. According to formula (1), the daily mean value curve of tidal current velocity can be obtained as M=[m1 ,m2 ,…,m24 ].

计算结果:M=[1.7084,1.7159,1.64,1.4865,1.3427,1.1919,1.0889,1.0487,1.0387,1.082,1.1789,1.3,1.401,1.4831,1.516,1.4989,1.4922,1.4986,1.4863,1.46,1.4385,1.439,1.5118,1.6257]。计算结果:M=[1.7084,1.7159,1.64,1.4865,1.3427,1.1919,1.0889,1.0487,1.0387,1.082,1.1789,1.3,1.401,1.4831,1.516,1.4989,1.4922,1.4986,1.4863,1.46,1.4385,1.439, 1.5118, 1.6257].

3)产生潮汐流能发电场机组初始布局样本3) Generate a sample of the initial layout of the tidal current power plant unit

3-1)初始化遗传算法的最大迭代次数为1200次,迭代计数iteration=1。3-1) The maximum number of iterations of the genetic algorithm is initialized to 1200, and the iteration count iteration=1.

3-2)利用计算机,随机生成Np=50个初始个体,每个个体是10×10的二进制字符矩阵。统计第k个个体中为“1”的元素有nkg个,表示有nkg台发电机。第k个个体中第i台发电机的位置坐标为Gki=(xki,yki),表示第k个个体(第k个布局方案)第i台机组位于第xki行第yki列。k=1,2…50,i=1,2…nkg,xki=1,2…10,yki=1,2…10。3-2) Using a computer, randomly generate Np =50 initial individuals, each individual being a 10×10 binary character matrix. Statistically, there are nkg elements with "1" in the kth individual, which means that there are nkg generators. The position coordinates of the i-th generator in the k-th individual are Gki =(xki ,yki ), which means that the k-th individual (the k-th layout scheme) the i-th generator is located in the xki -th row Column yki . k=1,2...50, i=1,2...nkg , xki =1,2...10, yki =1,2...10.

4)计算潮汐流能发电场机组的日等效投资成本4) Calculating the daily equivalent investment cost of the tidal current power plant unit

根据统计得到的发电机数量,利用公式(2)计算潮汐流能发电场的日等效投资成本:According to the number of generators obtained from the statistics, the daily equivalent investment cost of the tidal current energy power plant is calculated by formula (2):

式中,CkTCT为第k个个体发电机的日等效投资成本,k=1,2…50,nkg为第k个布局方案中发电机数量;Cu=799712$为发电机单价,l=20为潮汐流能发电场的经济寿命,r=0.01为年利率。In the formula, CkTCT is the daily equivalent investment cost of the kth individual generator, k=1,2...50, nkg is the number of generators in the kth layout scheme; Cu =799712$ is the generator Unit price, l=20 is the economic life of the tidal current power plant, r=0.01 is the annual interest rate.

5)计算潮汐流能发电场的日发电量5) Calculation of the daily power generation of the tidal current power plant

利用计算得到的潮汐流速日均值曲线和计算得到的潮汐流能发电机的位置坐标,计算潮汐流能发电场日发电量。计算步骤为:Using the calculated daily mean value curve of the tidal current velocity and the calculated position coordinates of the tidal current energy generator to calculate the daily power generation of the tidal current energy power plant. The calculation steps are:

5-1)计算各时段潮汐流能发电场内发电机的流速5-1) Calculate the flow velocity of the generator in the tidal current energy power plant at each time period

5-1-1)利用公式(3)计算第1行各台机组各个时段的流速:5-1-1) Use the formula (3) to calculate the flow velocity of each unit in the first row at each time period:

式中,vkit表示第k个布局方案中第i台发电机在第t个时段的流速,k=1,2…Np,i=1,2…nkg,t=1,2…24,Np=50是个体数目,nkg为第k个个体中发电机数目;mt为第t个时段潮汐流速的均值。In the formula, vkit represents the flow velocity of the i-th generator in the t-th period in the k-th layout scheme, k=1,2...Np , i=1,2...nkg , t=1,2 …24, Np =50 is the number of individuals, nkg is the number of generators in the kth individual; mt is the mean value of the tidal current velocity in the tth period.

5-1-2)利用公式(4)和(5)计算除第一行外各发电机单独受上游一台发电机尾流影响下的流速:5-1-2) Use the formulas (4) and (5) to calculate the flow velocity of each generator except the first row under the influence of the wake flow of an upstream generator alone:

式中,vkijt表示第k个个体中第i台发电机在第t个时段单独受上游第j台发电机尾流影响的流速,vkjt表示第k个个体中上游第j台发电机在第t个时段的流速,k=1,2…Np,i=1,2…nkg,t=1,2…24,j是第i台发电机上游发电机的编号,Np=50是个体数目,nkg为第k个个体中发电机数目;CT=0.7为潮汐流能发电机的推力系数,(xki,yki)是第k个个体中第i台发电机的位置坐标,D=18m是潮汐流能发电机叶片直径,R=9m是叶片半径,Rh=1.35m是轮毂半径。In the formula, vkijt represents the flow velocity of the i-th generator in the k-th individual independently affected by the wake flow of the j-th upstream generator in the t-th period, and vkjt represents the power generation of the j-th upstream generator in the k-th individual The flow velocity of the machine in the tth time period, k=1,2...Np , i=1,2...nkg , t=1,2...24, j is the number of the upstream generator of the i-th generator, Np =50 is the number of individuals, nkg is the number of generators in the kth individual; CT =0.7 is the thrust coefficient of the tidal current energy generator, (xki ,yki ) is the number of generators in the kth individual For the position coordinates of the i generator, D=18m is the blade diameter of the tidal current energy generator, R=9m is the blade radius, and Rh =1.35m is the hub radius.

根据(4)和(5)的计算结果,利用公式(6)计算除第1行外各发电机的流速:According to the calculation results of (4) and (5), use formula (6) to calculate the flow velocity of each generator except row 1:

式中,Nkwi是第k个个体第i台发电机上游的机组数量,k=1,2…Np,i=1,2…nkg,Np=50是个体数目,nkg为第k个个体中发电机数目。In the formula, Nkwi is the number of units upstream of the i-th generator of the k-th individual, k=1,2...Np , i=1,2...nkg , Np =50 is the number of individuals, nkg is the number of generators in the kth individual.

5-2)计算潮汐流能发电机的输出功率5-2) Calculate the output power of the tidal current energy generator

根据计算得到的各发电机的流速,利用公式(7)计算各发电机的输出功率。公式(7)为:According to the calculated flow velocity of each generator, use the formula (7) to calculate the output power of each generator. Formula (7) is:

式中,pkit为第k个个体第i台潮汐流能发电机在第t个时段的输出功率,vkit为第k个个体第i台潮汐流能发电机在第t个时段的流速值,k=1,2…Np,i=1,2…nkg,t=1,2…24,Np=50是个体数目,nkg为第k个个体中发电机数目;Cp=0.45为潮汐流能发电机的获能系数,ρ=1025kg/m3为海水密度,A=254.35m2为潮汐流能发电机叶片扫过的面积,Vin=0.7m/s是潮汐流能发电机的切入流速,Vrated=3m/s是潮汐流能发电机的额定流速,Prated=1.2MW是潮汐流能发电机的额定输出功率。In the formula, pkit is the output power of the i-th tidal current energy generator of the k-th individual in the t-th period, and vkit is the output power of the i-th tidal current energy generator of the k-th individual in the t-th period Flow velocity value, k=1,2...Np , i=1,2...nkg , t=1,2...24, Np =50 is the number of individuals, nkg is the number of generators in the kth individual ; Cp =0.45 is the energy gain coefficient of the tidal current energy generator, ρ=1025kg/m3 is the seawater density, A=254.35m2 is the area swept by the blades of the tidal current energy generator, Vin =0.7m/s is the cut-in velocity of the tidal current energy generator, Vrated =3m/s is the rated flow velocity of the tidal current energy generator, and Prated =1.2MW is the rated output power of the tidal current energy generator.

5-3)计算潮汐流能发电场的日发电量5-3) Calculating the daily power generation of the tidal current power plant

根据计算得到的发电机的输出功率。利用公式(8)计算潮汐流能发电场的输出功率:According to the calculated output power of the generator. Use the formula (8) to calculate the output power of the tidal current power plant:

利用公式(9)计算潮汐流能发电场的日发电量:Use the formula (9) to calculate the daily power generation of the tidal current power plant:

式中,Ptk为第k个个体在第t个时段的输出功率,pkit为第k个个体第i台发电机在第t个时段的输出功率,Ek为第k个个体的日发电量,k=1,2…Np,i=1,2…nkg,Np=50是个体数目,nkg为第k个个体中发电机数目。In the formula, Ptk is the output power of the k-th individual in the t-th period, pkit is the output power of the i-th generator of the k-th individual in the t-th period, Ek is the output power of the k-th individual Daily power generation, k=1,2...Np , i=1,2...nkg , Np =50 is the number of individuals, nkg is the number of generators in the kth individual.

6)计算电网内各发电机组的发电环境成本6) Calculate the power generation environmental cost of each generator set in the grid

根据输入的电网内火电机组参数和计算得到的各个个体各时段的输出功率,建立含潮汐流能发电场的机组组合优化模型。According to the input parameters of thermal power units in the power grid and the calculated output power of each individual at each time period, an optimization model of unit combination for power plants with tidal current energy is established.

含潮汐流能发电场的机组组合优化模型以火电机组发电环境成本最少为目标。目标函数为(10):The unit combination optimization model for power plants with tidal current energy aims to minimize the environmental cost of thermal power units. The objective function is (10):

约束条件包括系统功率平衡约束、火电机组出力约束、系统旋转备用约束。约束条件为:Constraints include system power balance constraints, thermal power unit output constraints, and system spinning reserve constraints. The constraints are:

式中:fk是第k个个体的发电环境成本,f2(pkgst)是在第k个个体第s台火电机组在第t个时段的温室气体排放量,ηs是温室气体排放单价;pkgst是第k个个体第s台火电机组第t个时段的有功功率;pkTt是第k个个体,潮汐流能发电场在第t个时段的有功功率,k=1,2…Np,s=1,2,…ngen,t=1,2…24,Np=50是个体数目,ngen是电网内火电机组的数目;Lzt表示电网内第z个负荷第t个时段的负荷值,z=1,2…nL,nL=6表示电网内负荷数量;pmings表示第s个火电机组的最小有功功率限制,pmaxgs表示第s个火电机组的最大有功功率限制,as、bs、cs和γs、βs、αs是第s个火电机组的参数,如表1中所示。In the formula: fk is the power generation environmental cost of the kth individual, f2 (pkgst ) is the greenhouse gas emission of the sth thermal power unit of the kth individual in the tth period, andηs is the greenhouse gas emission Unit price; pkgst is the active power of the k-th individual thermal power unit s in the t-th time period; pkTt is the active power of the k-th individual, the tidal current power plant in the t-th time period, k=1, 2...Np , s=1,2,...ngen , t=1,2...24, Np =50 is the number of individuals, ngen is the number of thermal power units in the grid; Lzt represents the zth load in the grid The load value of the tth time period, z=1,2...nL , nL =6 means the number of loads in the grid; pmings means the minimum active power limit of the sth thermal power unit, pmaxgs means the sth thermal power unit The maximum active power limit of the unit, as , bs , cs and γs , βs , αs are the parameters of the sth thermal power unit, as shown in Table 1.

然后利用二次规划方法求解该模型,计算出各个个体最少发电环境成本。Then, the quadratic programming method is used to solve the model, and the minimum environmental cost of power generation for each individual is calculated.

7)用遗传算法优化潮汐流能发电场布局方案7) Optimizing the layout scheme of tidal current power plant with genetic algorithm

根据计算得到的潮汐流能发电场机组的日等效投资成本,计算得到的日发电量和计算得到的电网内火电机组发电环境成本,利用遗传算法对潮汐流能发电场机组布局方案进行优化。According to the calculated daily equivalent investment cost of tidal current energy generating units, the calculated daily power generation and the calculated environmental cost of thermal power generating units in the power grid, the genetic algorithm is used to optimize the layout scheme of tidal current energy generating units.

计算各布局方案的优化目标和适应度值Calculate the optimization objective and fitness value of each layout scheme

整个系统的单位综合成本是潮汐流能发电场机组的日等效投资成本和电网内火电机组发电环境成本之和与日发电量的比值。以单位综合成本最小为优化目标,计算公式是:The unit comprehensive cost of the whole system is the ratio of the sum of the daily equivalent investment cost of the tidal current power generation unit and the environmental cost of the thermal power generation unit in the power grid to the daily power generation. Taking the minimum unit comprehensive cost as the optimization goal, the calculation formula is:

式中,Fk表示第k个个体的综合成本,CkTCT为第k个布局方案的日等效投资成本,fk是第k个个体的发电环境成本,Ek为第k个个体的日发电量,k=1,2...Np,Np=50是个体数目。In the formula, Fk represents the comprehensive cost of the k-th individual, CkTCT is the daily equivalent investment cost of the k-th layout scheme, fk is the power generation environmental cost of the k-th individual, Ek is the k-th individual’s Daily power generation, k=1, 2...Np , where Np =50 is the number of individuals.

利用公式(17)计算各个个体的适应度值:Use the formula (17) to calculate the fitness value of each individual:

式中,fitnessk表示第k个体的适应度值,k=1,2...Np,Np=50是个体数目。In the formula, fitnessk represents the fitness value of the kth individual, k=1, 2...Np , and Np =50 is the number of individuals.

进一步的,可根据计算出的适应度值,对当前各个个体进行选择、交叉和变异运算,生成新的布局方案。Further, according to the calculated fitness value, selection, crossover and mutation operations can be performed on each current individual to generate a new layout scheme.

8)迭代终止条件8) Iteration termination condition

判断当前是否达到最大迭代次数,若是,则最佳的机组布局方式是第7)步中目标函数最小的一个个体;否则,迭代次数iteration+1,返回步骤4)。Judging whether the maximum number of iterations is currently reached, if so, the best unit layout is the individual with the smallest objective function in step 7); otherwise, the number of iterations + 1, return to step 4).

最终优化得到的布局结果如附图2所示。The final optimized layout results are shown in Figure 2.

参与比较的方法如下:Here's how to participate in the comparison:

M0:本发明方法M0: the method of the present invention

M1:不考虑电网内发电环境成本,其余机组布局优化过程与本发明一致M1: Regardless of the environmental cost of power generation in the power grid, the optimization process of the rest of the unit layout is consistent with the present invention

试验效果:Experimental results:

采用方法M0-M1计算得到的单位综合成本、潮汐流能发电场单位日等效成本(日等效成本/日发电量)和单位日发电环境成本(发电环境成本/日发电量)如表2所示。The unit comprehensive cost, unit daily equivalent cost (daily equivalent cost/daily power generation) and unit daily power generation environmental cost (power generation environment cost/daily power generation) calculated by using method M0-M1 are shown in Table 2 shown.

表2方法M0-M1计算结果对比Table 2 Comparison of calculation results of methods M0-M1

方法methodM0M0M1M1差值difference单位综合成本unit comprehensive cost80.235680.2356170.3214170.321490.085890.0858单位日等效成本Unit Day Equivalent Cost8.12568.12565.37345.3734-2.7522-2.7522单位日发电环境成本Environmental cost of power generation per unit day72.109972.1099164.9479164.947992.83892.838

Claims (1)

Translated fromChinese
1.一种考虑发电环境成本的潮汐流能发电场机组布局方法,其特征在于:包括以下步骤:1. a tidal current energy power plant unit layout method considering power generation environment cost, it is characterized in that: comprise the following steps:1)输入基础数据1) Enter basic data输入潮汐流能发电场F天每天24个时段的潮汐流速实测数据样本vdt,其中,d为天数序号,t为时段序号;海水密度ρ;输入潮汐流能发电机的切入流速Vin、额定流速Vrated,额定输出功率Prated、获能系数Cp、推力系数CT、叶片直径D、叶片扫过的面积A,潮汐流能发电机的单价CuInput tidal current energy power plant F day 24 tidal flow velocity measured data samples vdt in 24 periods per day, where d is the number of days, t is the period number; seawater density ρ; input tidal current energy generator cut-in velocity Vin , rated Flow velocity Vrated , rated output power Prated , capacitive coefficient Cp , thrust coefficient CT , blade diameter D, blade swept area A, and unit price Cu of the tidal current energy generator;潮汐流能发电场被划分为满足最小间距约束的N×M个网格,每个网格横向距离3D,纵向距离5D;输入潮汐流能发电场的经济寿命l,年利率r;输入地方电网火电机组的数量ngen;输入各火电机组计算发电环境成本的系数as、bs、cs,s是火电机组的序号;输入各火电机组计算温室气体排放单价的系数γs、βs、αsThe tidal current energy power plant is divided into N×M grids that satisfy the minimum spacing constraint, each grid has a horizontal distance of 3D and a vertical distance of 5D; input the economic life l of the tidal current energy power plant, and the annual interest rate r; input the local power grid The number of thermal power units ngen ; input the coefficients as , bs , cs of each thermal power unit to calculate the environmental cost of power generation, s is the serial number of the thermal power unit; input the coefficients γs , βs , αs ;2)计算潮汐流速的日均值曲线2) Calculating the daily mean curve of tidal current velocity利用公式(1)依次计算潮汐流速各个时段的均值:Use the formula (1) to calculate the average value of the tidal current velocity in each period in turn:式中,mt为第t个时段潮汐流速的均值,t=1,2…24,n为潮汐流速实测数据的日样本数;根据公式(1)可以得到潮汐流速的日均值曲线为M=[m1,m2,…,m24];In the formula, mt is the mean value of the tidal flow velocity in the t-th period, t=1,2...24, n is the number of daily samples of the tidal flow velocity measured data; according to the formula (1), the daily mean value curve of the tidal flow velocity can be obtained as M= [m1 ,m2 ,...,m24 ];3)产生潮汐流能发电场机组初始布局样本3) Generate a sample of the initial layout of the tidal current power plant unit3-1)初始化遗传算法的最大迭代次数,迭代计数iteration=13-1) Initialize the maximum number of iterations of the genetic algorithm, iteration count iteration=13-2)随机生成Np个初始个体,每个个体是N×M的二进制字符矩阵,所述二进制字符矩阵中,字符“1”表示网格中有一台潮汐流能发电机,字符“0”表示网格中无潮汐流能发电机,即每个个体均是一种潮汐流能发电机布局方案,令k=1,2…Np,统计第k种布局方案中为“1”的元素有nkg个,表示有nkg台发电机;第k种布局方案中第i台发电机的位置坐标为Gki=(xki,yki),表示第k种布局方案中第i台机组位于第xki行第yki列;i=1,2…nkg,xki=1,2…N,yki=1,2…M;3-2) Randomly generate Np initial individuals, and each individual is an N×M binary character matrix. In the binary character matrix, the character "1" indicates that there is a tidal current energy generator in the grid, and the character "0 " means that there is no tidal current energy generator in the grid, that is, each individual is a layout scheme of tidal current energy generator, let k=1,2...Np , count the ones with "1" in the kth layout scheme There are nkg elements, which means that there are nkg generators; the position coordinate of the i-th generator in the k-th layout scheme is Gki = (xki , yki ), which means the k-th layout In the scheme, the i-th unit is located in the xki row and the yki column; i=1,2...nkg , xki =1,2...N, yki =1,2...M;4)计算潮汐流能发电场的日等效投资成本4) Calculate the daily equivalent investment cost of the tidal current power plant利用公式(2)计算潮汐流能发电场的日等效投资成本:Use the formula (2) to calculate the daily equivalent investment cost of the tidal current power plant:式中,CkTCT为第k种布局方案日等效投资成本,k=1,2…Np,Np是个体数目,nkg为第k种布局方案中发电机数目;Cu为发电机单价,l为潮汐流能发电场的经济寿命,r为年利率;In the formula, CkTCT is the daily equivalent investment cost of the kth layout scheme, k=1,2…Np , Np is the number of individuals, nkg is the number of generators in the kth layout scheme; Cu is Generator unit price, l is the economic life of the tidal current power plant, r is the annual interest rate;5)计算潮汐流能发电场的日发电量5) Calculation of the daily power generation of the tidal current power plant5-1)计算各时段潮汐流能发电场内发电机的流速5-1) Calculate the flow velocity of the generator in the tidal current energy power plant at each time period5-1-1)利用公式(3)计算第k个布局方案中第1行各台发电机的流速:5-1-1) Use the formula (3) to calculate the flow velocity of each generator in row 1 in the kth layout scheme:式中,vkit表示第k个布局方案中第i台发电机在第t个时段的流速,k=1,2…Np,i=1,2…nkg,t=1,2…24,Np是个体数目,nkg为第k种布局方案中发电机数目;mt为第t个时段潮汐流速的均值;In the formula, vkit represents the flow velocity of the i-th generator in the t-th period in the k-th layout scheme, k=1,2...Np , i=1,2...nkg , t=1,2 …24, Np is the number of individuals, nkg is the number of generators in the kth layout scheme; mt is the mean value of the tidal flow velocity in the tth period;5-1-2)利用公式(4)和(5)计算第k个布局方案中,除第一行外各发电机单独受上游第j台发电机尾流影响下的流速:5-1-2) Use the formulas (4) and (5) to calculate the flow velocity of each generator except the first row under the influence of the wake of the jth upstream generator alone in the kth layout scheme:式中:vkijt表示第k种布局方案中,第i台发电机在第t个时段单独受上游第j台发电机尾流影响的流速;vkjt表示第k种布局方案中,上游第j台发电机在第t个时段的流速,k=1,2…Np,i=1,2…nkg,t=1,2…24,j是上游发电机的编号,Np是个体数目,nkg为第k种布局方案中发电机数目;CT为潮汐流能发电机的推力系数,D是潮汐流能发电机叶片直径,R是叶片半径,Rh是轮毂半径;In the formula: vkijt represents the flow velocity of the i-th generator alone affected by the wake flow of the j-th upstream generator in the k-th layout scheme in the t-th time period; vkjt represents the upstream The flow rate of the jth generator in the tth period, k=1,2...Np , i=1,2...nkg , t=1,2...24, j is the number of the upstream generator, Np is the number of individuals, nkg is the number of generators in the kth layout scheme; CT is the thrust coefficient of the tidal current energy generator, D is the blade diameter of the tidal current energy generator, R is the blade radius, and Rh is the hub radius ;利用公式(6)计算除第1行外各潮汐流能发电机的流速:Use formula (6) to calculate the flow velocity of each tidal current energy generator except row 1:式中,Nkwi是第k种布局方案第i台发电机上游的机组数量,k=1,2…Np,i=1,2…nkg,Np是个体数目,nkg为第k种布局方案中发电机数目;In the formula, Nkwi is the number of units upstream of generator i in the kth layout scheme, k=1,2...Np , i=1,2...nkg , Np is the number of individuals, nkg is the number of generators in the kth layout scheme;5-2)计算潮汐流能发电机的输出功率5-2) Calculate the output power of the tidal current energy generator利用公式(7)计算各发电机的输出功率;公式(7)为:Use formula (7) to calculate the output power of each generator; formula (7) is:式中,pkit为第k种布局方案第i台潮汐流能发电机在第t个时段的输出功率,k=1,2…Np,i=1,2…nkg,t=1,2…24,Np是个体数目,nkg为第k种布局方案中发电机数目;vkit为第k种布局方案第i台潮汐流能发电机在第t个时段的流速值;Cp为潮汐流能发电机的获能系数,ρ为海水密度,A为潮汐流能发电机叶片扫过的面积,Vin是潮汐流能发电机的切入流速,Vrated是潮汐流能发电机的额定流速,Prated是潮汐流能发电机的额定输出功率;In the formula, pkit is the output power of the i tidal current generator in the kth layout scheme in the tth period, k=1,2...Np , i=1,2...nkg , t= 1,2...24, Np is the number of individuals, nkg is the number of generators in the kth layout scheme; vkit is the flow velocity of the i tidal current energy generator in the kth layout scheme in the tth time period value; Cp is the energy capture coefficient of the tidal current energy generator, ρ is the density of seawater, A is the area swept by the blades of the tidal current energy generator, Vin is the cut-in velocity of the tidal current energy generator, and Vrated is the tidal flow The rated flow velocity of the energy generator, Prated is the rated output power of the tidal current energy generator;5-3)计算潮汐流能发电场的日发电量5-3) Calculating the daily power generation of the tidal current power plant利用公式(8)计算潮汐流能发电场的输出功率:Use the formula (8) to calculate the output power of the tidal current power plant:利用公式(9)计算潮汐流能发电场的日发电量:Use the formula (9) to calculate the daily power generation of the tidal current power plant:式中,Ptk为第k种布局方案在第t个时段的输出功率,pkit为第k种布局方案第i台发电机在第t个时段的输出功率,Ek为第k种布局方案的日发电量,k=1,2…Np,i=1,2…nkg,Np是个体数目,nkg为第k种布局方案中发电机数目;In the formula, Ptk is the output power of the k-th layout scheme in the t-th period, pkit is the output power of the i-th generator in the t-th period of the k-th layout scheme, and Ek is the k-th The daily power generation of the layout scheme, k=1,2...Np , i=1,2...nkg , Np is the number of individuals, and nkg is the number of generators in the kth layout scheme;6)计算电网内火电机组的发电环境成本6) Calculate the environmental cost of power generation of thermal power units in the grid建立的目标函数为公式(10):The established objective function is formula (10):其中:in:约束条件为:The constraints are:式中:fk是第k种布局方案的发电环境成本,f1(pkgst)是第k种布局方案第s台火电机组在第t个时段的温室气体排放量,ηs是温室气体排放单价;pkgst是在第k种布局方案第s台火电机组第t个时段的有功功率;In the formula: fk is the power generation environmental cost of the k-th layout scheme, f1 (pkgst ) is the greenhouse gas emission of the sth thermal power unit in the k-th layout scheme in the t-th period, and ηs is the greenhouse gas Emission unit price; pkgst is the active power of the sth thermal power unit in the kth layout scheme in the tth time period;pkTt是第k种布局方案中,潮汐流能发电场在第t个时段的有功功率,k=1,2…Np,t=1,2…24,Np是个体数目;ngen是电网内火电机组的数目,s为火电机组序号,s=1、2……ngen;Lzt表示电网内第z个负荷点第t个时段的负荷值,z=1,2…nL,nL是电网内负荷数量;pmings是第s个火电机组的最小有功功率限制,pmaxgs是第s个火电机组的最大有功功率限制;pkTt is the active power of the tidal current power plant in the tth time period in the kth layout scheme, k=1,2...Np , t=1,2...24, Np is the number of individuals; ngen is the number of thermal power units in the power grid, s is the serial number of thermal power units, s=1, 2...ngen ; Lzt represents the load value of the zth load point in the power grid in the tth time period, z=1,2...nL , nL is the number of loads in the grid; pmings is the minimum active power limit of the sth thermal power unit, pmaxgs is the maximum active power limit of the sth thermal power unit;利用二次规划方法求解该模型,计算出各个个体最少发电环境成本;Solve the model by using the quadratic programming method, and calculate the minimum environmental cost of power generation for each individual;7)用遗传算法优化潮汐流能发电场机组布局方案7) Optimizing the unit layout scheme of tidal current power plant with genetic algorithm计算各布局方案的优化目标和适应度值Calculate the optimization objective and fitness value of each layout scheme以单位综合成本最小为优化目标,公式是:Taking the minimum unit comprehensive cost as the optimization goal, the formula is:式中,Fk是第k种布局方案的单位综合成本,CkTCT是第k个布局方案的日等效投资成本,fk是第k种布局方案的发电环境成本,Ek为第k种布局方案的日发电量,k=1,2…Np,Np是个体数目;In the formula, Fk is the unit comprehensive cost of the kth layout scheme, CkTCT is the daily equivalent investment cost of the kth layout scheme, fk is the power generation environment cost of the kth layout scheme, Ek is the kth layout scheme The daily power generation capacity of a layout scheme, k=1,2...Np , where Np is the number of individuals;利用公式(17)计算各个个体的适应度值:Use the formula (17) to calculate the fitness value of each individual:式中,fitnessk表示第k种布局方案的适应度值,k=1,2…Np,Np是个体数目;In the formula, fitnessk represents the fitness value of the kth layout scheme, k=1,2...Np , and Np is the number of individuals;8)迭代终止条件8) Iteration termination condition判断当前是否达到最大迭代次数,Determine whether the current maximum number of iterations has been reached,若否,迭代次数iteration+1,生成新的布局方案,以更新步骤3-2)中所述Np个不同的布局方案,之后,重复步骤4)~7);If not, the number of iterations is iteration+1 to generate a new layout scheme to update the Np different layout schemes described in step 3-2), and then repeat steps 4) to 7);若是,则最优的机组布局方式是第7)步中优化目标最小的一个布局方案。If yes, the optimal unit layout is the layout scheme with the smallest optimization objective in step 7).
CN201610647754.5A2016-08-092016-08-09A kind of tidal current energy generating field unit layout method considering power generation settings costExpired - Fee RelatedCN106208046B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201610647754.5ACN106208046B (en)2016-08-092016-08-09A kind of tidal current energy generating field unit layout method considering power generation settings cost

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201610647754.5ACN106208046B (en)2016-08-092016-08-09A kind of tidal current energy generating field unit layout method considering power generation settings cost

Publications (2)

Publication NumberPublication Date
CN106208046A CN106208046A (en)2016-12-07
CN106208046Btrue CN106208046B (en)2018-11-27

Family

ID=57514713

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201610647754.5AExpired - Fee RelatedCN106208046B (en)2016-08-092016-08-09A kind of tidal current energy generating field unit layout method considering power generation settings cost

Country Status (1)

CountryLink
CN (1)CN106208046B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN107681655B (en)*2017-09-082020-07-17重庆大学Tidal current energy power generation field coordination planning method
CN108736472B (en)*2018-06-012021-05-11重庆大学Tidal current energy power generation field planning method considering reef influence
CN109255361B (en)*2018-06-012022-02-22重庆大学Tidal current energy power generation field unit layout method considering infeasible area
CN109543287B (en)*2018-11-202023-04-07深能南京能源控股有限公司Wind turbine generator basic size optimization method based on genetic algorithm
CN109740975B (en)*2019-03-112020-09-15重庆大学Tidal current energy power generation field planning method considering tidal resource assessment and flow velocity direction
CN111342451A (en)*2020-03-122020-06-26四川大学Park comprehensive energy system economic configuration method for promoting renewable energy consumption
CN111400925B (en)*2020-03-252024-02-13重庆大学Three-dimensional tidal current energy power generation field planning system considering complex topography
CN112943509B (en)*2021-01-282023-06-02中国石油大学(华东)Array optimization method and system for float type wave energy power generation device
CN115663923B (en)*2022-12-262023-05-16国网浙江省电力有限公司宁波供电公司Sea area power grid control method, system and equipment based on energy storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103778478A (en)*2013-12-242014-05-07国家电网公司Method for forecasting optimal operation mode of circulating water in combination with tidal characteristic of sea water
US8742620B1 (en)*2012-07-102014-06-03Geneva Holdings, LLCElectrical cogeneration system and method
CN105631599A (en)*2015-12-302016-06-01国网甘肃省电力公司电力科学研究院Multi-target operation scheduling method of virtual power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8742620B1 (en)*2012-07-102014-06-03Geneva Holdings, LLCElectrical cogeneration system and method
CN103778478A (en)*2013-12-242014-05-07国家电网公司Method for forecasting optimal operation mode of circulating water in combination with tidal characteristic of sea water
CN105631599A (en)*2015-12-302016-06-01国网甘肃省电力公司电力科学研究院Multi-target operation scheduling method of virtual power plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
潮汐发电研究与分析;尹志国;《电器工业》;20050831(第8期);第58-60页*

Also Published As

Publication numberPublication date
CN106208046A (en)2016-12-07

Similar Documents

PublicationPublication DateTitle
CN106208046B (en)A kind of tidal current energy generating field unit layout method considering power generation settings cost
Wu et al.Optimization of the wind turbine layout and transmission system planning for a large-scale offshore windfarm by AI technology
CN107681655B (en)Tidal current energy power generation field coordination planning method
CN107612016B (en)Planning method of distributed power supply in power distribution network based on maximum voltage correlation entropy
CA2864463C (en)Computing method for continuous power flow based on wind power fluctuation rules
CN109063276B (en)Wind power plant dynamic equivalent modeling method suitable for long-time domain wind speed fluctuation
CN108258724A (en)A kind of wind power plant unit is laid out Multipurpose Optimal Method
CN110909911B (en)Aggregation method of multidimensional time series data considering space-time correlation
CN103942608B (en)A kind of wind energy turbine set Optimization Scheduling based on wake model
CN102142103A (en)Real-coded genetic algorithm-based optimizing method for micrositing of wind power station
CN104578157A (en)Load flow calculation method of distributed power supply connection power grid
CN106682282A (en)Wind farm multi-type wind driven generator arrangement optimization method based on genetic algorithm nested in particle swarm optimization
CN108711878B (en) Capacity allocation method for multi-type modules of photovoltaic power station considering output characteristics
CN105184683A (en)Probability clustering method based on wind electric field operation data
CN117455033B (en)Double-section type comprehensive energy system optimization method based on information fusion
CN107404118A (en)Electrical interconnection system probability optimal load flow computational methods based on stochastic response surface
CN107563564A (en)A kind of efficiency estimation method of wind power plant scheduling process
Song et al.Stochastic processes in renewable power systems: From frequency domain to time domain
CN104700156B (en)A kind of wind power forecasting method based on support vector machines selection variables
CN115189402B (en) A probabilistic modeling method for combined output of solar thermal-photovoltaic-wind power
Duan et al.Modified genetic algorithm for layout optimization of multi-type wind turbines
CN114243766B (en)Regional multi-energy system optimal configuration method and system
Liu et al.Offshore wind farm layout optimization using adapted genetic algorithm: A different perspective
CN106026103A (en) A probabilistic power flow calculation method for wind farm connection
CN115358160A (en) A micro-site selection method for wind farms in complex terrain based on improved genetic algorithm

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20181127

CF01Termination of patent right due to non-payment of annual fee

[8]ページ先頭

©2009-2025 Movatter.jp