技术领域technical field
本发明公开一种指纹辨识装置,尤其涉及一种电容式指纹辨识装置。The invention discloses a fingerprint recognition device, in particular to a capacitive fingerprint recognition device.
背景技术Background technique
图5提供现有电容式指纹辨识装置的剖视示意图,其中包含有多数层导体层40,相邻导体层40之间设有介电层50,最上层的导体层40上另覆盖有保护层400。图5所示结果设置于一半导体基板(图中未示)上,该半导体基板中用以制作半导体元件,例如晶体管等以供制作如放大器等电路元件,较上方的两层导体层40分别用以制作感应电极401及静电防护电极402,感应电极401用以进行指纹检测,静电防护电极402用以提供静电防护的作用。传输信号所需的导线403,可以利用较下方的导体层40来制作。5 provides a schematic cross-sectional view of an existing capacitive fingerprint recognition device, which includes multiple layers of conductor layers 40, a dielectric layer 50 is provided between adjacent conductor layers 40, and a protective layer is additionally covered on the uppermost conductor layer 40. 400. The results shown in Figure 5 are set on a semiconductor substrate (not shown in the figure), which is used to make semiconductor elements, such as transistors, etc., for making circuit elements such as amplifiers, and the upper two layers of conductor layers 40 are used respectively The sensing electrode 401 and the static protection electrode 402 are fabricated. The sensing electrode 401 is used for fingerprint detection, and the static protection electrode 402 is used for providing static protection. The wires 403 required for signal transmission can be fabricated using the lower conductor layer 40 .
在现有技术中,各导体层40的厚度均大致相同,各介电层50的厚度也大致相同。理想的电容式指纹辨识装置具有较佳的静电防护能力,以及较少的杂讯及其他因素干扰感应电极的感测结果。现有的电容式指纹辨识装置仍有待改善。In the prior art, the thicknesses of the conductive layers 40 are approximately the same, and the thicknesses of the dielectric layers 50 are also approximately the same. An ideal capacitive fingerprint recognition device has better electrostatic protection capability, and less noise and other factors interfere with the sensing results of the sensing electrodes. The existing capacitive fingerprint recognition device still needs to be improved.
又,现有技术的介电层50中,设置有导电通孔61以电连接相邻导电层40。在现有电容式指纹辨识装置通常以铝沉积在导电通孔61中。Moreover, in the dielectric layer 50 of the prior art, a conductive via 61 is provided to electrically connect adjacent conductive layers 40 . In the existing capacitive fingerprint recognition device, aluminum is usually deposited in the conductive via 61 .
发明内容Contents of the invention
有鉴于前述的种种现有技术的缺点,本发明的目的包括提高感测准确度、增加静电宣泄效果、减少杂讯(噪声)或静电影响感应电极、以及缩小尺寸,改善导电效果等等。In view of the aforementioned shortcomings of the prior art, the objectives of the present invention include improving sensing accuracy, increasing static discharge effect, reducing noise (noise) or static electricity affecting sensing electrodes, reducing size, improving conductive effect, and so on.
为达到上述的目的,本发明提供一种指纹辨识装置,包括:In order to achieve the above object, the present invention provides a fingerprint identification device, comprising:
一第一导体层,其包括多个感应电极,所述感应电极用以进行指纹检测;A first conductor layer, which includes a plurality of sensing electrodes, and the sensing electrodes are used for fingerprint detection;
一第一介电层,位于该第一导体层下方;以及a first dielectric layer located below the first conductor layer; and
一元件层信号处理层,位于该第一介电层下方,该信号处理层其包括一第二导体层及、一第三导体层、以及一第二介电层,该第二导体层在该第三导体层上方,该第二介电层位于该第二导体层与该第三导体层之间,该元件层信号处理层用以接收及处理所述感应电极的感测信号;A component layer signal processing layer, located below the first dielectric layer, the signal processing layer includes a second conductor layer, a third conductor layer, and a second dielectric layer, the second conductor layer is on the Above the third conductor layer, the second dielectric layer is located between the second conductor layer and the third conductor layer, and the component layer signal processing layer is used for receiving and processing the sensing signal of the sensing electrode;
其中,该第一介电层位于该第一导体层与该第二导体层之间,并具有至少一第一导电钨插栓,该第一导体层与该第二导体层经由所述第一导电钨插栓形成电连接。Wherein, the first dielectric layer is located between the first conductor layer and the second conductor layer, and has at least one first conductive tungsten plug, and the first conductor layer and the second conductor layer pass through the first Conductive tungsten plugs form the electrical connections.
本发明的优点在于,用于制作感应电极的第一导体层的厚度增加,有助于提升各感应电极的均匀度;再者,通过第一介电层的厚度大于第二介电层的厚度,有助于改善来自信号处理层的杂讯影响位于第一导体层的感应电极;利用导电钨插栓来形成第一导体层与第二导体层之间的电连接,导电钨插栓的优点为导电效果佳,且尺寸小,有助于缩小电容式指纹辨识装置的尺寸,并且提高良率。The advantage of the present invention is that the thickness of the first conductor layer used to make the sensing electrodes is increased, which helps to improve the uniformity of the sensing electrodes; moreover, the thickness of the first dielectric layer is greater than the thickness of the second dielectric layer , helps to improve the influence of noise from the signal processing layer on the sensing electrode located in the first conductor layer; the use of conductive tungsten plugs to form the electrical connection between the first conductor layer and the second conductor layer, the advantages of conductive tungsten plugs The conductive effect is good and the size is small, which helps to reduce the size of the capacitive fingerprint identification device and improve the yield rate.
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention.
附图说明Description of drawings
图1为本发明第一实施例的侧视放大剖视示意图;Fig. 1 is a side view enlarged cross-sectional schematic diagram of the first embodiment of the present invention;
图2为本发明第二实施例的侧视放大剖视示意图;Fig. 2 is a side view enlarged cross-sectional schematic diagram of a second embodiment of the present invention;
图3为本发明第三实施例的侧视放大剖视示意图;Fig. 3 is a side view enlarged cross-sectional schematic diagram of a third embodiment of the present invention;
图4为本发明第四实施例的侧视放大剖视示意图;4 is a side view enlarged cross-sectional schematic diagram of a fourth embodiment of the present invention;
图5为现有技术的侧视放大剖视示意图。Fig. 5 is a side view enlarged cross-sectional schematic diagram of the prior art.
其中,附图标记Among them, reference signs
100、100A保护层 L信号处理层100, 100A protection layer L signal processing layer
10、10A、10B、10C第一导体层10, 10A, 10B, 10C first conductor layer
11、11A、11B、11C第二导体层11, 11A, 11B, 11C second conductor layer
12、12A、12B、12C第三导体层12, 12A, 12B, 12C third conductor layer
13A、13C第四导体层 14B、14C第五导体层13A, 13C fourth conductor layer 14B, 14C fifth conductor layer
15B、15C屏蔽电极15B, 15C shielding electrodes
101、101B、101C感应电极 102、102A、1021A静电防护电极101, 101B, 101C induction electrodes 102, 102A, 1021A electrostatic protection electrodes
20、20A、20B、20C第一介电层20, 20A, 20B, 20C first dielectric layer
21、21A、21B、21C第二介电层21, 21A, 21B, 21C second dielectric layer
22A、22C第三介电层 23B、23C第四介电层22A, 22C third dielectric layer 23B, 23C fourth dielectric layer
30、30A导线 31、32、33A、34B导电钨插栓30, 30A wire 31, 32, 33A, 34B conductive tungsten plug
400保护层 40导体层400 protective layer 40 conductor layer
401感应电极 402静电防护电极401 induction electrode 402 electrostatic protection electrode
403导线 50介电层403 wires 50 dielectric layers
61导电通孔 611导电薄膜61 Conductive vias 611 Conductive film
具体实施方式detailed description
以下配合附图及本发明的实施例,进一步阐述本发明的技术手段。The technical means of the present invention will be further described below in conjunction with the accompanying drawings and the embodiments of the present invention.
图1显示的第一实施例,包含有一第一导体层10、一第一介电层20及一信号处理层L。The first embodiment shown in FIG. 1 includes a first conductor layer 10 , a first dielectric layer 20 and a signal processing layer L. As shown in FIG.
第一导体层10上覆盖有一保护层100。保护层100可以是单层或多层的结构。在进行指纹检测时,使用者将手指放置在保护层100的上表面。第一导体层10包含多个感应电极101,感应电极101用以进行指纹检测。第一导体层10中亦可包含多个静电防护电极102,所述静电防护电极102用以提供静电防护效果,以避免静电破坏感应电极101。另,第一导体层10中亦可包含有导电接垫。换句话说,上述的感应电极101、静电防护电极102及导电接垫可以是用同一层的导体来制作。在一实施例中,静电防护电极102配置在感应电极101的周围,导电接垫则配置在静电防护电极102及感应电极101以外的区域。静电防护电极102可以通过内部的线路配置,连接到接地端(ground)或者一静电防护电路。A protection layer 100 is covered on the first conductive layer 10 . The protective layer 100 may be a single-layer or multi-layer structure. When performing fingerprint detection, the user places a finger on the upper surface of the protective layer 100 . The first conductive layer 10 includes a plurality of sensing electrodes 101, and the sensing electrodes 101 are used for fingerprint detection. The first conductive layer 10 may also include a plurality of static electricity protection electrodes 102 , and the static electricity protection electrodes 102 are used to provide static electricity protection effect to prevent static electricity from damaging the sensing electrodes 101 . In addition, the first conductive layer 10 may also include conductive pads. In other words, the above-mentioned sensing electrodes 101 , static protection electrodes 102 and conductive pads may be made of the same layer of conductors. In one embodiment, the ESD protection electrodes 102 are disposed around the sensing electrodes 101 , and the conductive pads are disposed in areas other than the ESD protection electrodes 102 and the sensing electrodes 101 . The ESD protection electrode 102 can be connected to a ground or an ESD protection circuit through an internal circuit configuration.
第一介电层20,位于第一导体层10的下方。信号处理层L,位于第一介电层20的下方。信号处理层L用以接收及处理感应电极101的感测信号、或将静电防护电极102的静电电荷导出宣泄之。信号处理层L包含有一第二导体层11、一第三导体层12、一第二介电层21、以及下方的半导体基板(图中未示),第二导体层11在第一介电层20的下方,以及第三导体层12的上方,第二介电层21位于第二导体层11与该第三导体层12之间,该第二导体层11及该第三导体层12中包含有导线30,半导体基板(图中未示)在第三导体层12的下方。该半导体基板中设置有半导体元件,例如晶体管等以供制作如放大器等电路元件。在不同实施例中,在第三导体层12与半导体基板之间,可能存在单层或多层的结构。The first dielectric layer 20 is located under the first conductive layer 10 . The signal processing layer L is located under the first dielectric layer 20 . The signal processing layer L is used for receiving and processing the sensing signal of the sensing electrode 101 , or deriving and releasing the electrostatic charge of the electrostatic protection electrode 102 . The signal processing layer L includes a second conductor layer 11, a third conductor layer 12, a second dielectric layer 21, and a semiconductor substrate (not shown) below, the second conductor layer 11 is on the first dielectric layer 20, and above the third conductor layer 12, the second dielectric layer 21 is located between the second conductor layer 11 and the third conductor layer 12, the second conductor layer 11 and the third conductor layer 12 include There are wires 30 , and a semiconductor substrate (not shown in the figure) is under the third conductor layer 12 . The semiconductor substrate is provided with semiconductor elements, such as transistors, for making circuit elements such as amplifiers. In different embodiments, there may be a single-layer or multi-layer structure between the third conductor layer 12 and the semiconductor substrate.
第一介电层20设于该第一导体层10与该第二导体层11之间,且该第一介电层20覆盖该第二导体层11,该第二介电层21覆盖该第三导体层12,第一介电层20设有至少一第一导电钨插栓31,第二介电层21设有至少一第二导电钨插栓32。第一导体层10与该第二导体层11经由第一导电钨插栓31形成电连接,使得感应电极101的感测信号可以经由该第一导电钨插栓31传送到线路30。第二导体层11与第三导体层12经由第二导电钨插栓32形成电连接,使得不同层的线路30之间可以传递信号。该第一及第二导电钨插栓31及32以钨栓塞工艺(tungsten plug process)所成形,钨栓塞工艺为半导体技术领域中的通常知识,故在此不加以赘述。The first dielectric layer 20 is disposed between the first conductor layer 10 and the second conductor layer 11, and the first dielectric layer 20 covers the second conductor layer 11, and the second dielectric layer 21 covers the second conductor layer 11. Three conductive layers 12 , the first dielectric layer 20 is provided with at least one first conductive tungsten plug 31 , and the second dielectric layer 21 is provided with at least one second conductive tungsten plug 32 . The first conductive layer 10 is electrically connected to the second conductive layer 11 via the first conductive tungsten plug 31 , so that the sensing signal of the sensing electrode 101 can be transmitted to the line 30 via the first conductive tungsten plug 31 . The second conductor layer 11 and the third conductor layer 12 are electrically connected through the second conductive tungsten plug 32 , so that the circuits 30 of different layers can transmit signals. The first and second conductive tungsten plugs 31 and 32 are formed by a tungsten plug process. The tungsten plug process is common knowledge in the field of semiconductor technology, so it will not be repeated here.
第一导体层10的厚度大于第二导体层11及第三导体层12的厚度,而第一介电层20的厚度大于第二介电层21的厚度。意即在此实施例中,静电防护电极102或者感应电极101的厚度大于下方其他导体(例如线路30)的厚度,而感应电极101与相邻的一层导体之间的介电层厚度,大于其他相邻的两层导体之间的介电层厚度。在一实施例中,第一导体层10的厚度为2μm至5μm,第二导体层11及第三导体层12的厚度为0.4μm至0.8μm,第一介电层20的厚度为2μm至8μm,第二介电层21的厚度为1μm至1.8μm。也就是说,静电防护电极102或者感应电极101的厚度可以是2μm至5μm,而用于传递信号的导线30的厚度可以为0.4μm至0.8μm。The thickness of the first conductor layer 10 is greater than that of the second conductor layer 11 and the third conductor layer 12 , and the thickness of the first dielectric layer 20 is greater than that of the second dielectric layer 21 . That is to say, in this embodiment, the thickness of the electrostatic protection electrode 102 or the sensing electrode 101 is greater than the thickness of other conductors (such as the circuit 30) below, and the thickness of the dielectric layer between the sensing electrode 101 and the adjacent layer of conductor is greater than The thickness of the dielectric layer between other adjacent two layers of conductors. In one embodiment, the first conductive layer 10 has a thickness of 2 μm to 5 μm, the second conductive layer 11 and the third conductive layer 12 have a thickness of 0.4 μm to 0.8 μm, and the first dielectric layer 20 has a thickness of 2 μm to 8 μm. , the thickness of the second dielectric layer 21 is 1 μm to 1.8 μm. That is to say, the thickness of the electrostatic protection electrode 102 or the sensing electrode 101 may be 2 μm to 5 μm, and the thickness of the wire 30 for transmitting signals may be 0.4 μm to 0.8 μm.
请参阅图2所示为第二实施例,第二实施例与第一实施例差异在于进一步包含一第四导体层13A及一第三介电层22A,该第三介电层22A设于该第一导体层10A上,且该第三介电层22A覆盖该第一导体层10A,该第四导体层13A设于该第三介电层22A上,且该保护层100A覆盖该第四导体层13A,该第四导体层13A中可包含有静电防护电极1021A,而该第一导体层10A中可不包含有静电防护电极、或可包含有相对应的静电防护电极102A,该第四导体层13A中亦可包含有导电接垫。在此实施例中,在第四导体层13A的静电防护电极1021A与在第一导体层10A的静电防护电极102A藉由一第三导电钨插栓33A形成电连接。在图2的实施例中,第四导体层13A的厚度大于第一导体层10A的厚度,并且该第一导体层10A及该第四导体层13A的厚度大于该第二导体层11A及该第三导体层12A的厚度,而该第一介电层20A及该第三介电层22A的厚度大于该第二介电层21A的厚度。也就是说,在这个实施例中,静电防护电极1021A的厚度大于感应电极101A与电极102A的厚度,而且静电防护电极102A与感应电极101A的厚度大于下方其他导体(例如线路30A)的厚度。感应电极101A与静电防护电极1021A之间的厚度以及感应电极101A与相邻的一层导体之间的介电层厚度,大于其他相邻的两层导体之间的介电层厚度。Please refer to FIG. 2 which shows the second embodiment. The difference between the second embodiment and the first embodiment is that it further includes a fourth conductor layer 13A and a third dielectric layer 22A, and the third dielectric layer 22A is arranged on the On the first conductor layer 10A, and the third dielectric layer 22A covers the first conductor layer 10A, the fourth conductor layer 13A is disposed on the third dielectric layer 22A, and the protective layer 100A covers the fourth conductor Layer 13A, the fourth conductor layer 13A may include a static electricity protection electrode 1021A, and the first conductor layer 10A may not include a static electricity protection electrode, or may include a corresponding static electricity protection electrode 102A, the fourth conductor layer 13A may also include conductive pads. In this embodiment, the ESD protection electrode 1021A on the fourth conductor layer 13A is electrically connected to the ESD protection electrode 102A on the first conductor layer 10A through a third conductive tungsten plug 33A. In the embodiment of FIG. 2, the thickness of the fourth conductor layer 13A is greater than the thickness of the first conductor layer 10A, and the thickness of the first conductor layer 10A and the fourth conductor layer 13A are greater than the thickness of the second conductor layer 11A and the first conductor layer 11A. The thickness of the three conductor layers 12A, and the thickness of the first dielectric layer 20A and the third dielectric layer 22A are greater than the thickness of the second dielectric layer 21A. That is to say, in this embodiment, the ESD protection electrode 1021A is thicker than the sensing electrode 101A and the electrode 102A, and the ESD protection electrode 102A and the sensing electrode 101A are thicker than other conductors below (such as the circuit 30A). The thickness between the sensing electrode 101A and the electrostatic protection electrode 1021A and the thickness of the dielectric layer between the sensing electrode 101A and an adjacent layer of conductors are greater than the thickness of the dielectric layer between other adjacent two layers of conductors.
在一实施例中,该第一导体层10A的厚度为1μm至3μm,该第四导体层13A的厚度2μm至5μm,该第二导体层11A及该第三导体层12A的厚度为0.4μm至0.8μm,该第一介电层20A及该第三介电层22A的厚度为2μm至8μm,该第二介电层21A的厚度为1μm至1.8μm。也就是说,较接近保护层100A的静电防护电极1021A的厚度可以是2μm至5μm,下一层的感应电极101A与静电防护电极102A的厚度可以是1μm至3μm,而位于其他层用于传递信号的导线30A的厚度可以为0.4μm至0.8μm。In one embodiment, the first conductor layer 10A has a thickness of 1 μm to 3 μm, the fourth conductor layer 13A has a thickness of 2 μm to 5 μm, and the second conductor layer 11A and the third conductor layer 12A have a thickness of 0.4 μm to 0.4 μm. 0.8 μm, the thickness of the first dielectric layer 20A and the third dielectric layer 22A is 2 μm to 8 μm, and the thickness of the second dielectric layer 21A is 1 μm to 1.8 μm. That is to say, the thickness of the ESD protection electrode 1021A closer to the protective layer 100A can be 2 μm to 5 μm, the thickness of the sensing electrode 101A and the ESD protection electrode 102A in the next layer can be 1 μm to 3 μm, and the other layers are used to transmit signals. The thickness of the conductive wire 30A may be 0.4 μm to 0.8 μm.
请参阅图3所示为第三实施例,第三实施例与第一实施例差异在于进一步包含一第五导体层14B及一第四介电层23B,该第四介电层23B位于该第三导体层12B下方,该第五导体层14B位于该第四介电层23B下方,在这个实施例中,第二导体层11B包括至少一个屏蔽电极15B,屏蔽电极15B的至少一个作用在防止下方电路的杂讯影响到上方的感应电极101B。在一实施例中,每一个感应电极101B下方设置一个屏蔽电极15B,在不同的实施例中,在第二导体层11B中的屏蔽电极15B的配置亦可以有不同的变化,但并不影响感应电极101B的信号传递路径。该第四介电层23B具有至少一第四导电钨插栓34B,该第三导体层12B与该第五导体层14B之间经由所述第四导电插栓34B形成电连接。Please refer to FIG. 3 which shows the third embodiment. The difference between the third embodiment and the first embodiment is that it further includes a fifth conductor layer 14B and a fourth dielectric layer 23B. The fourth dielectric layer 23B is located on the first Below the third conductor layer 12B, the fifth conductor layer 14B is located below the fourth dielectric layer 23B. In this embodiment, the second conductor layer 11B includes at least one shielding electrode 15B, and at least one of the shielding electrodes 15B acts to prevent the lower The noise of the circuit affects the upper sensing electrode 101B. In one embodiment, a shielding electrode 15B is arranged under each sensing electrode 101B. In different embodiments, the configuration of the shielding electrode 15B in the second conductor layer 11B can also be changed, but it does not affect the sensing. The signal transmission path of the electrode 101B. The fourth dielectric layer 23B has at least one fourth conductive tungsten plug 34B, and the third conductive layer 12B is electrically connected to the fifth conductive layer 14B through the fourth conductive plug 34B.
在图3所示的实施例中,第一导体层10B的厚度大于第二导体层11B、第三导体层12B、及第五导体层14B的厚度,而第一介电层20B的厚度大于第二介电层21B及第四介电层23B的厚度。在一实施例中,该第一导体层10B的厚度为2μm至5μm,该第二导体层11B、该第三导体层12B及该第五导体层14B的厚度为0.4μm至0.8μm,该第一介电层20B的厚度为2μm至8μm,该第二介电层21B及该第四介电层23B的厚度为1μm至1.8μm。In the embodiment shown in FIG. 3, the thickness of the first conductor layer 10B is greater than the thickness of the second conductor layer 11B, the third conductor layer 12B, and the thickness of the fifth conductor layer 14B, and the thickness of the first dielectric layer 20B is greater than that of the second conductor layer 11B. The thicknesses of the second dielectric layer 21B and the fourth dielectric layer 23B. In one embodiment, the first conductor layer 10B has a thickness of 2 μm to 5 μm, the second conductor layer 11B, the third conductor layer 12B and the fifth conductor layer 14B have a thickness of 0.4 μm to 0.8 μm, and the first conductor layer 11B has a thickness of 0.4 μm to 0.8 μm. A dielectric layer 20B has a thickness of 2 μm to 8 μm, and the second dielectric layer 21B and the fourth dielectric layer 23B have a thickness of 1 μm to 1.8 μm.
请参阅图4所示为第四实施例。由上而下依序设置为该第四导体层13C、该第三介电层22C、该第一导体层10C、该第一介电层20C、该第二导体层11C、该第二介电层21C、该第三导体层12C、该第四介电层23C及该第五导体层14C。其中信号处理层L包含有该第二导体层11C、该第三导体层12C、第五导体层14C、该第二介电层21C及该第四介电层23C。图4的实施例可以被理解为在图2所示的实施例增加该第四介电层23C及该第五导体层14C。在这个实施例中,第二导体层11C包括至少一个屏蔽电极15C,屏蔽电极15C的至少一个作用在防止下方电路的杂讯影响到上方的感应电极101C。在一实施例中,每一个感应电极101C下方设置一个屏蔽电极15C,在不同的实施例中,在第二导体层11C中的屏蔽电极15C的配置亦可以有不同的变化,但并不影响感应电极101C的信号传递路径。Please refer to Fig. 4 which shows the fourth embodiment. From top to bottom, the fourth conductor layer 13C, the third dielectric layer 22C, the first conductor layer 10C, the first dielectric layer 20C, the second conductor layer 11C, the second dielectric layer layer 21C, the third conductor layer 12C, the fourth dielectric layer 23C and the fifth conductor layer 14C. The signal processing layer L includes the second conductor layer 11C, the third conductor layer 12C, the fifth conductor layer 14C, the second dielectric layer 21C and the fourth dielectric layer 23C. The embodiment of FIG. 4 can be understood as adding the fourth dielectric layer 23C and the fifth conductive layer 14C to the embodiment shown in FIG. 2 . In this embodiment, the second conductor layer 11C includes at least one shielding electrode 15C, and at least one of the shielding electrodes 15C is used to prevent noise from the circuit below from affecting the sensing electrode 101C above. In one embodiment, a shielding electrode 15C is arranged under each sensing electrode 101C. In different embodiments, the configuration of the shielding electrode 15C in the second conductor layer 11C can also be changed, but it does not affect the sensing. The signal transmission path of the electrode 101C.
该第一导体层10C及该第四导体层13C的厚度大于该第二导体层11C、该第三导体层12C、及该第五导体层14C的厚度,而该第一介电层20C及该第三介电层22C的厚度大于该第二介电层21C及该第四介电层23C的厚度。在一实施例中,该第一导体层10C的厚度为1μm至3μm,该第四导体层13C的厚度2μm至5μm,该第二导体层11C、该第三导体层12C及该第五导体层14C的厚度为0.4μm至0.8μm,该第一介电层20C及该第三介电层22C的厚度为2μm至8μm,该第二介电层21C及该第四介电层23C的厚度为1μm至1.8μm。前述各实施例的特色可以简述如下:The thickness of the first conductor layer 10C and the fourth conductor layer 13C is greater than the thickness of the second conductor layer 11C, the third conductor layer 12C, and the fifth conductor layer 14C, and the first dielectric layer 20C and the The thickness of the third dielectric layer 22C is greater than the thickness of the second dielectric layer 21C and the fourth dielectric layer 23C. In one embodiment, the thickness of the first conductor layer 10C is 1 μm to 3 μm, the thickness of the fourth conductor layer 13C is 2 μm to 5 μm, the second conductor layer 11C, the third conductor layer 12C and the fifth conductor layer 14C has a thickness of 0.4 μm to 0.8 μm, the thickness of the first dielectric layer 20C and the third dielectric layer 22C is 2 μm to 8 μm, and the thickness of the second dielectric layer 21C and the fourth dielectric layer 23C is 1μm to 1.8μm. The features of the foregoing embodiments can be briefly described as follows:
1.感应电极101的厚度增加,可以降低因工艺因素造成不同感应电极101的厚度差异占感应电极101的总厚度的比例,进而提升感应电极101的均匀度,降低工艺因素对于量测结果的不利影响。1. The increase in the thickness of the sensing electrodes 101 can reduce the ratio of the thickness difference of different sensing electrodes 101 to the total thickness of the sensing electrodes 101 caused by process factors, thereby improving the uniformity of the sensing electrodes 101 and reducing the adverse effects of process factors on the measurement results influences.
2.感应电极101与相邻导体层之间的距离增加,可增加导体层到感应电极101之间路径的阻抗,进而有效防止感应电极101下方的电路元件的杂讯影响到感应电极101。2. The increased distance between the sensing electrode 101 and the adjacent conductive layer can increase the impedance of the path between the conductive layer and the sensing electrode 101 , thereby effectively preventing the noise of the circuit components below the sensing electrode 101 from affecting the sensing electrode 101 .
3.使用钨插栓工艺制作导电钨插栓31来形成导体层之间的电连接,较不易形成断路,可提升良率。且使用钨插栓工艺制作导电钨插栓31孔径较小,有利于产品的小型化。对于加厚的介电层而言,若采用例如铝等材料制作插栓,在越厚的介电层需要越大的孔径,并且容易产生断裂,影响良率。3. The conductive tungsten plug 31 is manufactured by using the tungsten plug technology to form the electrical connection between the conductor layers, which is less likely to form an open circuit and can improve the yield rate. Moreover, the hole diameter of the conductive tungsten plug 31 made by using the tungsten plug technology is small, which is beneficial to the miniaturization of the product. For a thicker dielectric layer, if the plug is made of a material such as aluminum, the thicker the dielectric layer requires a larger hole diameter, and it is prone to breakage, which affects the yield.
4.增加静电防护电极的厚度,可以降低静电防护电极的的阻抗,有利于电荷宣泄,提升静电防护功能。4. Increasing the thickness of the electrostatic protection electrode can reduce the impedance of the electrostatic protection electrode, which is conducive to the discharge of charges and improves the electrostatic protection function.
5.增加静电防护电极1021A与感应电极101A之间的距离,会使得静电防护电极1021A到感应电极101A的路径的阻抗增加,使得电荷不易由静电防护电极1021A往感应电极101A移动,可以提升保护感应电极的效果。5. Increasing the distance between the static protection electrode 1021A and the sensing electrode 101A will increase the impedance of the path from the static protection electrode 1021A to the sensing electrode 101A, making it difficult for the charge to move from the static protection electrode 1021A to the sensing electrode 101A, which can improve the protection induction The effect of the electrodes.
各附图及其说明,仅为方便说明本发明的各种实施态样,熟习半导体技术领域的人士当了解,一导体层内可能包括多种用途的导体图案,例如在图1的第一导体层10包括了用来进行指纹检测的感应电极101以及提供静电防护功能的静电防护电极102。在一导体层内的各个功能不同的导体元件之间,也是被介电材料隔开,在上述实施例中所提及的介电层厚度相当于是不同层导体之间的垂直距离。The drawings and their descriptions are only for convenience to illustrate various implementation aspects of the present invention. Those familiar with the field of semiconductor technology should understand that a conductor layer may include conductor patterns for multiple purposes, such as the first conductor pattern in FIG. 1 Layer 10 includes sensing electrodes 101 for fingerprint detection and static protection electrodes 102 for static protection. Conductor elements with different functions in a conductor layer are also separated by dielectric materials, and the thickness of the dielectric layer mentioned in the above embodiment is equivalent to the vertical distance between conductors of different layers.
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Certainly, the present invention also can have other multiple embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding Changes and deformations should belong to the scope of protection of the appended claims of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562166017P | 2015-05-25 | 2015-05-25 | |
| US62/166,017 | 2015-05-25 | ||
| TW104131376ATWI553563B (en) | 2015-05-25 | 2015-09-23 | Fingerprint identification device |
| TW104131376 | 2015-09-23 |
| Publication Number | Publication Date |
|---|---|
| CN106203249Atrue CN106203249A (en) | 2016-12-07 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510645118.4APendingCN106203249A (en) | 2015-05-25 | 2015-10-08 | Fingerprint identification device |
| Country | Link |
|---|---|
| KR (1) | KR20160138336A (en) |
| CN (1) | CN106203249A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022001538A1 (en)* | 2020-06-30 | 2022-01-06 | 京东方科技集团股份有限公司 | Ultrasonic sensor, method for preparing ultrasonic sensor, and display apparatus |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1278347A (en)* | 1997-05-16 | 2000-12-27 | 奥森泰克公司 | Fingerprint sensor including antisotropic dielectric coating and associated method |
| CN1217186C (en)* | 2002-03-20 | 2005-08-31 | 富士通株式会社 | Capacitance detection sensor and production method thereof |
| JP2005327898A (en)* | 2004-05-14 | 2005-11-24 | Fujitsu Ltd | Semiconductor device and manufacturing method thereof |
| CN201111087Y (en)* | 2007-09-05 | 2008-09-03 | 飞信半导体股份有限公司 | Touch-sliding type fingerprint identifier package structure |
| CN203882323U (en)* | 2014-05-14 | 2014-10-15 | 力传扬股份有限公司 | Capacitance type fingerprint sensor with electrostatic protection |
| US20150071511A1 (en)* | 2013-09-10 | 2015-03-12 | Image Match Design Inc. | Finger detection device and method of fingerprint recognition integrated circuit |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1278347A (en)* | 1997-05-16 | 2000-12-27 | 奥森泰克公司 | Fingerprint sensor including antisotropic dielectric coating and associated method |
| CN1217186C (en)* | 2002-03-20 | 2005-08-31 | 富士通株式会社 | Capacitance detection sensor and production method thereof |
| JP2005327898A (en)* | 2004-05-14 | 2005-11-24 | Fujitsu Ltd | Semiconductor device and manufacturing method thereof |
| CN201111087Y (en)* | 2007-09-05 | 2008-09-03 | 飞信半导体股份有限公司 | Touch-sliding type fingerprint identifier package structure |
| US20150071511A1 (en)* | 2013-09-10 | 2015-03-12 | Image Match Design Inc. | Finger detection device and method of fingerprint recognition integrated circuit |
| CN203882323U (en)* | 2014-05-14 | 2014-10-15 | 力传扬股份有限公司 | Capacitance type fingerprint sensor with electrostatic protection |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022001538A1 (en)* | 2020-06-30 | 2022-01-06 | 京东方科技集团股份有限公司 | Ultrasonic sensor, method for preparing ultrasonic sensor, and display apparatus |
| Publication number | Publication date |
|---|---|
| KR20160138336A (en) | 2016-12-05 |
| Publication | Publication Date | Title |
|---|---|---|
| CN104051366B (en) | Fingerprint recognition chip-packaging structure and method for packing | |
| TWI567881B (en) | Fingerprint identification chip package structure and packaging method | |
| TWI672749B (en) | Packaging structure and packaging method of fingerprint identification chip | |
| CN104699357B (en) | Electronic equipment, touch display panel and touch display substrate | |
| US20160292487A1 (en) | Array substrate, color film substrate and touch display device | |
| CN105453109B (en) | Connection pads for fingerprint sensing devices | |
| CN104731412A (en) | Array substrate, display panel and display device | |
| TW201505142A (en) | Wafer stack package and method of manufacturing same | |
| CN106865486B (en) | Capacitive fingerprint sensing device and forming method thereof and electronic product | |
| US10795512B2 (en) | Touch substrate having conductive lines and ground conductive pattern between adjacent conductive lines, method for manufacturing the same, and touch panel | |
| CN204029787U (en) | Fingerprint recognition chip-packaging structure | |
| WO2020237683A1 (en) | Chip crack detection apparatus | |
| CN106125424A (en) | A kind of array base palte, display floater and display device | |
| US10984212B1 (en) | Fingerprint detection device | |
| CN103576951B (en) | Contact panel, its manufacture method and display device thereof | |
| CN106203249A (en) | Fingerprint identification device | |
| US10999923B2 (en) | Structure for circuit interconnects | |
| TWI553563B (en) | Fingerprint identification device | |
| CN105205483A (en) | Fingerprint sensing device | |
| CN108962842A (en) | Packaging structure of fingerprint identification chip and manufacturing method thereof | |
| CN207038520U (en) | Capacitor array and integrated chip | |
| JP2017063163A (en) | Wiring board for fingerprint sensor | |
| US10095330B2 (en) | Printed wiring board | |
| CN209087832U (en) | Capacitors and Systems | |
| WO2021057857A1 (en) | Circuit board and communication device |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | Application publication date:20161207 | |
| WD01 | Invention patent application deemed withdrawn after publication |