技术领域technical field
本发明涉及医疗检测领域,尤其涉及一种血流成像方法及系统。The invention relates to the field of medical detection, in particular to a blood flow imaging method and system.
背景技术Background technique
医用超声成像技术已成为临床中广泛应用的一种辅助诊断工具。超声波利用多普勒效应实时探测人体中血流或组织的运动信息,更是一个无法替代的检查手段。Medical ultrasound imaging technology has become an auxiliary diagnostic tool widely used in clinic. Ultrasound uses the Doppler effect to detect blood flow or tissue movement information in the human body in real time, and it is an irreplaceable inspection method.
在超声多普勒检查中,探头发送超声波束射向人体目标部位,在波束运动方向上如果检测到人体内血流或组织的运动速度分量,则可以从回波中提取出这部分运动信息,并用图像或频谱的方式显示出来。在这个过程中,超声波束的发射方向与血流或组织运动速度之间的夹角、决定了得到的运动信息与实际血流或组织运动速度之间的关系。为得到更为准确丰富的运动信息,医生会通过改变超声波束的发射方向等多普勒血流成像参数、以获得灵敏度最佳、内容更丰富的信号。常见的调整多普勒血流成像参数有超声波束发射方向、多普勒取样框ROI(region of interest)位置、多普勒取样线位置、多普勒取样门SV(samplevolume)的宽度、多普勒取样门SV内血流校准角度等。这些参数的调整在线阵探头的使用中更为普遍。In ultrasonic Doppler inspection, the probe sends an ultrasonic beam to the target part of the human body. If the blood flow or tissue movement velocity component in the human body is detected in the direction of the beam movement, this part of the movement information can be extracted from the echo. And display it in the form of image or frequency spectrum. In this process, the angle between the emission direction of the ultrasonic beam and the blood flow or tissue movement velocity determines the relationship between the obtained movement information and the actual blood flow or tissue movement velocity. In order to obtain more accurate and rich motion information, doctors will change the Doppler blood flow imaging parameters such as the emission direction of the ultrasonic beam to obtain signals with the best sensitivity and richer content. Commonly adjusted Doppler blood flow imaging parameters include ultrasonic beam emission direction, Doppler sampling frame ROI (region of interest) position, Doppler sampling line position, Doppler sampling gate SV (sample volume) width, Doppler The blood flow calibration angle in the sampling gate SV, etc. The adjustment of these parameters is more common in the use of line array probes.
在当前的系统设计中,医生需要根据关注目标的不同而调整手柄鼠标等控件实现对多普勒血流成像参数的调节。例如,将取样框位置移动到目标血流信息显示比较完整的位置,调节超声波束发射角度使得血流信息更加丰富灵敏,移动取样门位置到血流信息丰富的部位,调整取样门宽度、手动调节血流角度校正线使得获得的多普勒频谱信号信噪比更高。对医生来说,每更换一个目标部位即需要重设一遍参数,频繁调整加剧了医生的工作量。In the current system design, doctors need to adjust controls such as the handle and mouse according to different targets to adjust the parameters of Doppler blood flow imaging. For example, move the position of the sampling frame to a position where the target blood flow information is relatively complete, adjust the ultrasonic beam emission angle to make the blood flow information richer and more sensitive, move the position of the sampling gate to a part with rich blood flow information, adjust the width of the sampling gate, and manually adjust the The blood flow angle correction line makes the signal-to-noise ratio of the obtained Doppler spectrum signal higher. For doctors, every time a target part is changed, the parameters need to be reset again, and frequent adjustments increase the workload of doctors.
发明内容Contents of the invention
本发明实施例提供一种血流成像方法及系统,实现血流成像参数的快捷设置及成像显示,提高血流成像检测的效率。Embodiments of the present invention provide a blood flow imaging method and system, which realize quick setting and imaging display of blood flow imaging parameters, and improve the efficiency of blood flow imaging detection.
一种血流成像方法,包括以下步骤,A blood flow imaging method, comprising the following steps,
根据血流成像参数发射超声波并接收超声回波,获得的一系列超声图像;A series of ultrasonic images obtained by transmitting ultrasonic waves and receiving ultrasonic echoes according to blood flow imaging parameters;
显示所述一系列超声图像;displaying the series of ultrasound images;
监测是否接收到启动触发信号,当确认接收到所述启动触发信号时:获取在第一时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第一超声图像;获取在第二时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第二超声图像;Monitor whether the activation trigger signal is received, and when the activation trigger signal is confirmed to be received: acquire the first ultrasound image obtained by transmitting ultrasound and receiving the ultrasound echo according to the blood flow imaging parameters at the first moment; acquire the first ultrasound image obtained at the second Transmitting ultrasound according to the blood flow imaging parameters at any moment and receiving a second ultrasound image obtained by ultrasound echoes;
根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子;calculating a difference factor representing a difference between the first ultrasound image and the second ultrasound image based on the first ultrasound image and the second ultrasound image;
确认所述差异因子满足预设条件时,调整所述血流成像参数中的至少一个;When it is confirmed that the difference factor satisfies the preset condition, adjusting at least one of the blood flow imaging parameters;
根据调整后的所述血流成像参数发射超声波并接收超声回波,获得超声图像;Transmitting ultrasound according to the adjusted blood flow imaging parameters and receiving ultrasound echoes to obtain an ultrasound image;
显示根据调整后的所述血流成像参数获得的超声图像。The ultrasonic image obtained according to the adjusted blood flow imaging parameters is displayed.
进一步的,所述启动触发信号每隔预定时间产生、每隔预定帧超声图像产生或者当用户手动调节了所述血流成像参数中的一个或者多个之后产生。Further, the start trigger signal is generated every predetermined time, every predetermined frame of ultrasound images, or when the user manually adjusts one or more of the blood flow imaging parameters.
进一步的,根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子时,进一步包括以下步骤:Further, when calculating the difference factor for representing the difference between the first ultrasonic image and the second ultrasonic image according to the first ultrasonic image and the second ultrasonic image, the following steps are further included:
在所述第一超声图像中选择第一选定区域;selecting a first selected region in the first ultrasound image;
在所述第二超声图像中选择第二选定区域;selecting a second selected region in the second ultrasound image;
根据所述第一选定区域和所述第二选定区域计算所述差异因子。The difference factor is calculated based on the first selected area and the second selected area.
进一步的,根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子包括:Further, calculating the difference factor used to represent the difference between the first ultrasound image and the second ultrasound image according to the first ultrasound image and the second ultrasound image includes:
计算所述第一超声图像与所述第二超声图像的相关系数、所述第一超声图像的像素灰度值与所述第二超声图像的像素灰度值之间的灰度差值和/或所述第一超声图像的像素灰度值均值与所述第二超声图像的像素灰度值均值之间的均值差值;Calculating the correlation coefficient between the first ultrasound image and the second ultrasound image, the grayscale difference between the pixel grayscale value of the first ultrasound image and the pixel grayscale value of the second ultrasound image and/or or the mean difference between the mean pixel grayscale value of the first ultrasound image and the mean pixel grayscale value of the second ultrasound image;
根据所述相关系数、所述灰度差值和/或所述均值差值获得所述差异因子。The difference factor is obtained according to the correlation coefficient, the gray level difference and/or the mean difference.
进一步的,根据所述第一选定区域和所述第二选定区域计算所述差异因子包括:Further, calculating the difference factor according to the first selected area and the second selected area includes:
计算所述第一选定区域与所述第二选定区域的相关系数、所述第一选定区域的像素灰度值与所述第二选定区域的像素灰度值之间的灰度差值和/或所述第一选定区域的像素灰度值均值与所述第二选定区域的像素灰度值均值之间的均值差值;Calculating the correlation coefficient between the first selected area and the second selected area, the gray scale between the pixel gray value of the first selected area and the pixel gray value of the second selected area difference and/or the mean difference between the mean pixel grayscale value of the first selected region and the mean pixel grayscale value of the second selected region;
根据所述相关系数、所述灰度差值和/或所述均值差值获得所述差异因子。The difference factor is obtained according to the correlation coefficient, the gray level difference and/or the mean difference.
进一步的,所述第一选定区域包含所述第一超声图像中与多普勒取样框对应的图像区域;所述第二选定区域包含所述第二超声图像中与多普勒取样框对应的图像区域。Further, the first selected area includes the image area corresponding to the Doppler sampling frame in the first ultrasonic image; the second selected area includes the image area corresponding to the Doppler sampling frame in the second ultrasonic image the corresponding image area.
进一步的,所述预设条件为所述差异因子大于或者小于预设的第一阈值。Further, the preset condition is that the difference factor is greater than or smaller than a preset first threshold.
进一步的,调整所述血流成像参数中的至少一个之后还包括:比较调整后的血流成像参数和调整前的血流成像参数,当调整后的血流成像参数与调整前的血流成像参数之间的差异小于预设的第二阈值时,放弃调整后的血流成像参数。Further, after adjusting at least one of the blood flow imaging parameters, it further includes: comparing the adjusted blood flow imaging parameters with the pre-adjusted blood flow imaging parameters, when the adjusted blood flow imaging parameters are the same as the pre-adjusted blood flow imaging parameters When the difference between the parameters is smaller than the preset second threshold, the adjusted blood flow imaging parameters are discarded.
进一步的,所述血流成像参数包括:所述超声波的发射方向、多普勒取样框的位置、多普勒取样框的角度、多普勒取样线的位置、多普勒取样门的位置、多普勒取样门的角度、多普勒取样门的宽度和/或多普勒取样门内的血流校准角度。Further, the blood flow imaging parameters include: the emission direction of the ultrasound, the position of the Doppler sampling frame, the angle of the Doppler sampling frame, the position of the Doppler sampling line, the position of the Doppler sampling gate, The angle of the Doppler sampling gate, the width of the Doppler sampling gate, and/or the angle of blood flow calibration within the Doppler sampling gate.
进一步的,所述第一超声图像包括第一B型图像,所述第二超声图像包括第二B型图像;Further, the first ultrasound image includes a first B-type image, and the second ultrasound image includes a second B-type image;
或所述第一超声图像包括第一彩色血流图像,所述第二超声图像包括第二彩色血流图像;Or the first ultrasound image includes a first color blood flow image, and the second ultrasound image includes a second color blood flow image;
或所述第一超声图像包括第一B型图像及第一彩色血流图像,所述第二超声图像包括第二B型图像及第二彩色血流图像。Or the first ultrasound image includes a first B-mode image and a first color blood flow image, and the second ultrasound image includes a second B-mode image and a second color blood flow image.
进一步的,调整所述血流成像参数中的至少一个包括:Further, adjusting at least one of the blood flow imaging parameters includes:
获取一段时间内的根据所述血流成像参数向成像目标发射超声波并接收超声回波获得的超声图像;Acquiring ultrasonic images obtained by transmitting ultrasonic waves to the imaging target and receiving ultrasonic echoes according to the blood flow imaging parameters within a period of time;
获取所述超声图像的数据信息;Acquiring data information of the ultrasound image;
根据所述数据信息选取目标血流;selecting a target blood flow according to the data information;
根据所述目标血流调整所述血流成像参数中的至少一个。At least one of the blood flow imaging parameters is adjusted according to the target blood flow.
进一步的,所述数据信息包括血流的血流中心线、血流流速、血流半径、血流长度。Further, the data information includes the centerline of the blood flow, the velocity of the blood flow, the radius of the blood flow, and the length of the blood flow.
一种血流成像方法,包括:A blood flow imaging method, comprising:
获取在第一时刻处根据血流成像参数发射超声波并接收超声回波获得的第一超声图像;Acquiring a first ultrasonic image obtained by transmitting ultrasonic waves and receiving ultrasonic echoes according to blood flow imaging parameters at a first moment;
获取在第二时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第二超声图像;Acquiring a second ultrasonic image obtained by transmitting ultrasonic waves and receiving ultrasonic echoes according to the blood flow imaging parameters at a second moment;
根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子;calculating a difference factor representing a difference between the first ultrasound image and the second ultrasound image based on the first ultrasound image and the second ultrasound image;
确认所述差异因子满足预设条件时,调整所述血流成像参数中的至少一个;When it is confirmed that the difference factor satisfies the preset condition, adjusting at least one of the blood flow imaging parameters;
根据调整后的所述血流成像参数发射超声波并接收超声回波,获得超声图像。Transmitting ultrasonic waves and receiving ultrasonic echoes according to the adjusted blood flow imaging parameters to obtain ultrasonic images.
一种血流成像系统,包括:A blood flow imaging system, comprising:
超声探头,所述超声探头用于向目标区域发射超声波,并接收所述超声波的回波数据;an ultrasonic probe, which is used to transmit ultrasonic waves to the target area and receive echo data of the ultrasonic waves;
信号处理模块,用于接收所述超声波的回波数据以获取超声图像,所述超声图像包括在第一时刻获取的第一超声图像及在第二时刻获取的第二超声图像;A signal processing module, configured to receive the echo data of the ultrasound to acquire an ultrasound image, the ultrasound image including a first ultrasound image acquired at a first moment and a second ultrasound image acquired at a second moment;
比对模块,用于接收所述第一超声图像与所述第二超声图像,并根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子;A comparison module, configured to receive the first ultrasound image and the second ultrasound image, and calculate a method for representing the first ultrasound image and the second ultrasound image according to the first ultrasound image and the second ultrasound image a difference factor for the difference between the two ultrasound images;
调整模块,用于接收所述差异因子,并根据所述差异因子调整血流成像参数;An adjustment module, configured to receive the difference factor, and adjust blood flow imaging parameters according to the difference factor;
控制模块,用于接收所述血流成像参数并控制所述时超声探头的收发模块发送超声波;A control module, configured to receive the blood flow imaging parameters and control the transceiver module of the ultrasound probe to send ultrasound;
显示模块,用于根据所述信号处理模块生成并显示第一超声图像、第二超声图像。A display module, configured to generate and display the first ultrasound image and the second ultrasound image according to the signal processing module.
进一步的,所述信号处理模块包括B型信号处理单元及多普勒信号处理单元,所述B型信号处理单元用于处理所述超声图像中的B型图像;所述多普勒信号处理单元用于处理所述超声图像中的超声图像。Further, the signal processing module includes a B-type signal processing unit and a Doppler signal processing unit, the B-type signal processing unit is used to process the B-type image in the ultrasonic image; the Doppler signal processing unit It is used to process the ultrasound images in the ultrasound images.
本发明通过对获得的超声图像进行分析处理、自动提取出血流运动信息,通过获取并比对差异因子,按需启动血流成型参数的设置,提升设置效率及准确率。The present invention automatically extracts blood flow movement information by analyzing and processing the obtained ultrasonic images, and starts setting blood flow shaping parameters as required by acquiring and comparing difference factors, thereby improving setting efficiency and accuracy.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments. Obviously, the accompanying drawings in the following description are some of the present invention. Embodiments, for those of ordinary skill in the art, other drawings can also be obtained based on these drawings without any creative effort.
图1是本发明第一实施例提供的血流成像方法的流程示意图;FIG. 1 is a schematic flowchart of a blood flow imaging method provided by the first embodiment of the present invention;
图2是本发明的血流成像方法的血流中心线提取示意图;Fig. 2 is a schematic diagram of blood flow centerline extraction in the blood flow imaging method of the present invention;
图3是本发明的血流成像方法于多条血流的目标血流选取目标血流的示意图;3 is a schematic diagram of the blood flow imaging method of the present invention selecting a target blood flow from a plurality of blood flow target blood flows;
图4至图6是本发明的血流成像方法的取样框位置设置示意图;Fig. 4 to Fig. 6 are schematic diagrams of setting the position of the sampling frame in the blood flow imaging method of the present invention;
图7至图8是本发明的血流成像方法在血流信息较少时的取样框位置设置示意图;7 to 8 are schematic diagrams of the position setting of the sampling frame when the blood flow imaging method of the present invention has less blood flow information;
图9至图10是本发明的血流成像方法的血流成像参数调整后的超声图像示意图;9 to 10 are schematic diagrams of ultrasonic images after adjustment of blood flow imaging parameters in the blood flow imaging method of the present invention;
图11是本发明第二实施例提供的血流成像方法的流程示意图;Fig. 11 is a schematic flowchart of a blood flow imaging method provided by the second embodiment of the present invention;
图12是本发明提供的一种血流成像系统的构成示意图。Fig. 12 is a schematic diagram of a blood flow imaging system provided by the present invention.
具体实施例specific embodiment
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
请参阅图1,本发明第一实施例提供一种血流成像方法,包括以下步骤:Please refer to Fig. 1, the first embodiment of the present invention provides a blood flow imaging method, including the following steps:
步骤S101,获取在第一时刻处根据血流成像参数发射超声波并接收超声回波获得的第一超声图像。Step S101 , acquiring a first ultrasonic image obtained by transmitting ultrasonic waves and receiving ultrasonic echoes at a first moment according to blood flow imaging parameters.
在本步骤中,可通过超声探头获取第一超声图像及其数据信息。所述数据信息包括超声图像中的血流中心线、血流流速、血流半径、血流长度等信息。所述血流成像参数包括:所述超声波的发射方向、多普勒取样框的位置、多普勒取样框的角度、多普勒取样线的位置、多普勒取样门的位置、多普勒取样门的角度、多普勒取样门的宽度和/或多普勒取样门内的血流校准角度。在本步骤中可采用多种已知的图像分割方法实现超声图像的血流中心线的获取。如图2所示,可先获取超声图像的轮廓,图2中黑色区域为超声图像,白色直线为拟合获取的血流中心线,白色方块为获取的血流中心点。在本实施例中,采用与血流直径相关的步长从血流一侧边界搜寻到血流另一侧边界(图2中为从左到右),逐点找到当前步长位置处的血流圆心,再利用获得的血流圆心数据进行血流中心线拟合处理。可以理解的是,血流边界的检测获取方法可采用活动轮廓(snake)模型、梯度矢量长(GVF)能量模型、拓扑自适应活动轮廓(T-snake)模型等方式获取。In this step, the first ultrasound image and its data information can be acquired by the ultrasound probe. The data information includes blood flow centerline, blood flow velocity, blood flow radius, blood flow length and other information in the ultrasonic image. The blood flow imaging parameters include: the emission direction of the ultrasound, the position of the Doppler sampling frame, the angle of the Doppler sampling frame, the position of the Doppler sampling line, the position of the Doppler sampling gate, and the position of the Doppler sampling frame. The angle of the sampling gate, the width of the Doppler sampling gate and/or the angle of blood flow calibration within the Doppler sampling gate. In this step, various known image segmentation methods can be used to obtain the blood flow centerline of the ultrasound image. As shown in Figure 2, the contour of the ultrasound image can be obtained first. In Figure 2, the black area is the ultrasound image, the white straight line is the blood flow center line obtained by fitting, and the white square is the blood flow center point obtained. In this embodiment, a step size related to the diameter of the blood flow is used to search from the boundary on one side of the blood flow to the boundary on the other side of the blood flow (from left to right in Figure 2), and the blood at the current step position is found point by point. Then use the obtained data of the blood flow center line to fit the blood flow centerline. It can be understood that the detection and acquisition method of the blood flow boundary can be obtained by adopting a snake model, a gradient vector length (GVF) energy model, a topology adaptive moving contour (T-snake) model, and the like.
为减少血流数据受血流形状的影响,也可采用各类提高血流中心线获取准确率的方法。如,使用超声图像的中间段数据进行血流中心线的提取,或者对血流中心线的拟合采用一次曲线进行处理,通过以上处理可提高对常用的外周血管、颈动脉等长直血流数据的血流中心线提取能力。可以理解的是,所述血流中心线拟合提前方法可按需采用适用的现有技术,在此不再赘述。In order to reduce the influence of the blood flow data by the shape of the blood flow, various methods for improving the accuracy of the blood flow centerline acquisition can also be adopted. For example, use the data in the middle section of the ultrasound image to extract the centerline of blood flow, or process the fitting of the centerline of blood flow with a linear curve. The blood flow centerline extraction capability of the data. It can be understood that the method for fitting the blood flow centerline ahead of time can adopt an applicable existing technology as required, which will not be repeated here.
在本步骤中,所述第一超声图像可为B型图像及/或彩色血流图像。在本实施例中,所述特定区域可以取样框中心点为中心选取一定范围内的图像,或采用其他使用规则进行选取。In this step, the first ultrasound image may be a B-mode image and/or a color blood flow image. In this embodiment, the specific area can be selected from images within a certain range centered on the center point of the sampling frame, or selected using other usage rules.
在本步骤中,当所述第一超声图像包括B型图像与彩色血流图像时,所述B型图像与彩色血流图像对应的区域可为不同大小。In this step, when the first ultrasound image includes a B-type image and a color blood flow image, regions corresponding to the B-type image and the color blood flow image may be of different sizes.
步骤S102,获取在第二时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第二超声图像。与步骤S101类似,本步骤中,通过超声探头获取第二时刻的第二超声图像及相应的图像。所述第二超声图像可为B型图像及/或彩色血流图像。Step S102, acquiring a second ultrasonic image obtained by transmitting ultrasonic waves and receiving ultrasonic echoes according to the blood flow imaging parameters at a second moment. Similar to step S101, in this step, the second ultrasonic image and corresponding images at the second moment are acquired through the ultrasonic probe. The second ultrasound image may be a B-mode image and/or a color blood flow image.
本发明提供的血流成像方法中先后获取超声图像的第一超声图像与第二超声图像,获取所述第一超声图像与获取第二超声图像之间的时间间隔可按需自行设置。In the blood flow imaging method provided by the present invention, the first ultrasonic image and the second ultrasonic image of the ultrasonic image are successively acquired, and the time interval between the acquisition of the first ultrasonic image and the acquisition of the second ultrasonic image can be set as required.
步骤S103,根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子。在本步骤中,可通过比对模块对差异因子进行计算:首先,计算所述第一超声图像与所述第二超声图像的相关系数、所述第一超声图像的像素灰度值与所述第二超声图像的像素灰度值之间的灰度差值和/或所述第一超声图像的像素灰度值均值与所述第二超声图像的像素灰度值均值之间的均值差值。而后,根据所述相关系数、所述灰度差值和/或所述均值差值获得所述差异因子。所述相关系数可包括但不限于血流成像参数。Step S103, calculating a difference factor for representing the difference between the first ultrasonic image and the second ultrasonic image according to the first ultrasonic image and the second ultrasonic image. In this step, the comparison module can be used to calculate the difference factor: first, calculate the correlation coefficient between the first ultrasound image and the second ultrasound image, the pixel gray value of the first ultrasound image and the The grayscale difference between the pixel grayscale values of the second ultrasound image and/or the mean difference between the pixel grayscale value mean of the first ultrasound image and the pixel grayscale value mean of the second ultrasound image . Then, the difference factor is obtained according to the correlation coefficient, the gray level difference and/or the mean difference. The correlation coefficients may include, but are not limited to, blood flow imaging parameters.
在本步骤中,进一步包括以下步骤:In this step, the following steps are further included:
步骤S1031,在所述第一超声图像中选择第一选定区域;所述第一选定区域包含所述第一超声图像中与多普勒取样框对应的图像区域。Step S1031 , selecting a first selected area in the first ultrasound image; the first selected area includes an image area corresponding to a Doppler sampling frame in the first ultrasound image.
步骤S1032,在所述第二超声图像中选择第二选定区域;所述第二选定区域包含所述第二超声图像中与多普勒取样框对应的图像区域。Step S1032, selecting a second selected area in the second ultrasound image; the second selected area includes the image area corresponding to the Doppler sampling frame in the second ultrasound image.
步骤S1033,根据所述第一选定区域和所述第二选定区域计算所述差异因子。在本步骤S1033中,首先,计算所述第一选定区域与所述第二选定区域的相关系数、所述第一选定区域的像素灰度值与所述第二选定区域的像素灰度值之间的灰度差值和/或所述第一选定区域的像素灰度值均值与所述第二选定区域的像素灰度值均值之间的均值差值;而后,根据所述相关系数、所述灰度差值和/或所述均值差值获得所述差异因子。Step S1033, calculating the difference factor according to the first selected area and the second selected area. In this step S1033, firstly, the correlation coefficient between the first selected area and the second selected area, the pixel gray value of the first selected area and the pixel gray value of the second selected area are calculated. the gray difference between the gray values and/or the mean difference between the pixel gray value mean value of the first selected area and the pixel gray value mean value of the second selected area; then, according to The difference factor is obtained by the correlation coefficient, the gray level difference and/or the mean difference.
步骤S104,确认所述差异因子满足预设条件时,调整所述血流成像参数中的至少一个。在本步骤中,设置调整模块,对血流成像参数进行调整。具体的,所述预设条件为所述差异因子大于或者小于预设的第一阈值。可以理解的是,本步骤中可根据需要采用现有技术中任意适用的预设条件,如可设置特定触发条件,当使用者调节血流成像参数后立刻确认触发所述预设条件。Step S104, adjusting at least one of the blood flow imaging parameters when it is confirmed that the difference factor satisfies a preset condition. In this step, an adjustment module is set to adjust blood flow imaging parameters. Specifically, the preset condition is that the difference factor is greater than or smaller than a preset first threshold. It can be understood that, in this step, any suitable preset condition in the prior art can be adopted as required, for example, a specific trigger condition can be set, and the trigger of the preset condition is confirmed immediately after the user adjusts the blood flow imaging parameters.
进一步的,步骤S104可包括以下步骤:Further, step S104 may include the following steps:
步骤S1041,获取一段时间内的根据所述血流成像参数向成像目标发射超声波并接收超声回波获得的超声图像;在本步骤中,可通过超声探头向目标区域发送超声脉冲并接收超声脉冲的回波信息,并生成所述回波信息相对应的超声图像。Step S1041, acquiring an ultrasonic image obtained by transmitting ultrasonic waves to the imaging target and receiving ultrasonic echoes according to the blood flow imaging parameters for a period of time; in this step, the ultrasonic probe can be used to send ultrasonic pulses to the target area and receive echo information, and generate an ultrasonic image corresponding to the echo information.
步骤S1042,获取所述超声图像的数据信息;所述数据信息可包括但不限于血流中心线、流速、血流半径、长度等数据。Step S1042, acquiring data information of the ultrasonic image; the data information may include but not limited to blood flow centerline, flow velocity, blood flow radius, length and other data.
步骤S1043,根据所述数据信息选取目标血流;在本步骤中,于所述超声图像中的多条血流中选取目标血流,获取目标血流的目标点、目标点的血流运动方向及目标点的血流半径。Step S1043, select the target blood flow according to the data information; in this step, select the target blood flow from the multiple blood flows in the ultrasound image, and obtain the target point of the target blood flow and the direction of blood flow movement of the target point and the blood flow radius of the target point.
在本步骤中,当所述超声图像中存在多条血流时,可通过血流中心线、流速、血流半径、长度于多条血流中选择当前超声图像中的目标血流,并取所述目标血流的中心点为目标点。目标血流的选取决策可采用现有技术中的任意适用算法。在本实施例中,如图3所示为多条血流的目标血流选取决策示意图。图中显示为多条血流情况下优化前获得的血流情况。通过血流的流速、血流半径、长度获取目标血流及目标血流的目标点,并在图像中以中心线及正方形中心点的形式表示。In this step, when there are multiple blood flows in the ultrasound image, the target blood flow in the current ultrasound image can be selected from the multiple blood flows through the blood flow centerline, flow velocity, blood flow radius, and length, and take The center point of the target blood flow is the target point. Any suitable algorithm in the prior art may be used for the selection decision of the target blood flow. In this embodiment, as shown in FIG. 3 , it is a schematic diagram of a target blood flow selection decision for multiple blood flows. The figure shows the blood flow obtained before optimization under the condition of multiple blood flows. The target blood flow and the target point of the target blood flow are obtained through the flow velocity, radius and length of the blood flow, and are represented in the image in the form of a center line and a square center point.
在本步骤中,在于所述超声图像中的多条血流中选取确认一条目标血流时,可设置若干归一化参数指标A、B、C、……、N,并分别设置每个归一化参数指标对应的权重系数分别为a_coef、b_coef、c_coef、……、n_coef。则,血流重要性K判断公式为:In this step, when selecting and confirming a target blood flow among multiple blood flows in the ultrasound image, a number of normalized parameter indexes A, B, C, ..., N can be set, and each normalized The weight coefficients corresponding to the normalized parameter indicators are a_coef, b_coef, c_coef, ..., n_coef respectively. Then, the blood flow importance K judgment formula is:
K=A*a_coef+B*b_coef+C*c-coef+……+N*n_coefK=A*a_coef+B*b_coef+C*c-coef+...+N*n_coef
对多条血流分别计算,获取各个血流的K值,以K值最高的血流为目标血流。Multiple blood flows are calculated separately to obtain the K value of each blood flow, and the blood flow with the highest K value is taken as the target blood flow.
具体的,假设当前使用的参数有两个,分别为流速A、长度B,分别对应的权重系数为a_coef=0.4和b_coef=0.6。在取样框内找到两根血流1和2,分别有系数a1,a2(流速)和b1,b2(长度)。对流速和长度进行归一化可得Specifically, it is assumed that there are two parameters currently used, namely flow velocity A and length B, and the corresponding weight coefficients are a_coef=0.4 and b_coef=0.6. Find two blood streams 1 and 2 in the sampling frame, respectively having coefficients a1 , a2 (flow velocity) and b1 , b2 (length). Normalizing the velocity and length gives
a1_nor=a1/max(a1,a2)a1 _nor=a1 /max(a1 , a2 )
a2_nor=a2/max(a1,a2)a2 _nor=a2 /max(a1 , a2 )
b1_nor,=b1/max(b1,b2)b1 _nor,=b1 /max(b1 , b2 )
b2_nor=b2/max(b1,b2)b2 _nor=b2 /max(b1 , b2 )
则,计算得到的重要性分别为Then, the calculated importance is
K1=a1_nor*a_coef+b1_nor*b_coefK1 =a1 _nor*a_coef+b1 _nor*b_coef
K2=a2_nor*a_coef+b2_nor*b-coefK2 =a2 _nor*a_coef+b2 _nor*b-coef
由此,如果K1>K2,则目标血流为血流1;反之,目标血流为血流2。Therefore, if K1 >K2 , the target blood flow is blood flow 1; otherwise, the target blood flow is blood flow 2.
步骤S1044,根据所述目标血流调整所述血流成像参数中的至少一个。如图9及图10所示,在本步骤中,可根据所述取样框中心、取样门中心、取样门内血流角度、取样门宽度等血流成像参数控制所述超声探头的扫描范围及扫描角度进行调整,并可进一步重新加以显示。Step S1044, adjusting at least one of the blood flow imaging parameters according to the target blood flow. As shown in Figures 9 and 10, in this step, the scanning range and the range of the ultrasonic probe can be controlled according to blood flow imaging parameters such as the center of the sampling frame, the center of the sampling gate, the blood flow angle in the sampling gate, and the width of the sampling gate. The scan angle is adjusted and further re-displayed.
例如,当目标血流位置处于超声图像左侧或右侧的角度盲区时,可通过设置取样框,调整选择目标血流适当的角度与位置。For example, when the position of the target blood flow is in the angle blind area on the left or right side of the ultrasound image, the appropriate angle and position of the target blood flow can be adjusted and selected by setting a sampling frame.
如图4所示,在超声图像左侧出现目标血流,其中A为目标点的位置,B为目标点的角度。假设以A的位置为优化后的取样框中心点位置,在该位置上从垂直发射到逐级增大取样框角度至角度B。随着角度的增加,取样框中心偏离初始位置A越来越多,表现为优化前显示的血流数据随着角度的增大越来越少。在最佳位置与最佳角度二者不可兼得的情况下,可采用角度优先或位置优先的原则对取样框的角度及位置进行调整优化。在角度优先的情况下,优化效果如6所示;在位置优先的情况下,优化效果如5所示。As shown in Figure 4, the target blood flow appears on the left side of the ultrasound image, where A is the position of the target point, and B is the angle of the target point. Assuming that the position of A is the position of the center point of the optimized sampling frame, the angle of the sampling frame is increased step by step from the vertical emission to the angle B at this position. As the angle increases, the center of the sampling frame deviates more and more from the initial position A, which means that the displayed blood flow data before optimization decreases as the angle increases. In the case that the best position and the best angle cannot be obtained at the same time, the angle and position of the sampling frame can be adjusted and optimized by adopting the principle of angle priority or position priority. In the case of angle priority, the optimization effect is shown in 6; in the case of position priority, the optimization effect is shown in 5.
进一步的,在本步骤中,当采用角度优先时,当经过角度优先调整后血流取样框无法再覆盖原目标血流时,提示使用者移动超声探头将目标血流移动至超声图像中央进行显示。通过设置提示,从而避免数据优化后出现目标血流移出血流取样框的情况。可以理解的是,目标血流的角度与位置的调整优化可采用适用的现有技术实现,在此不再赘述。Further, in this step, when the angle priority is adopted, when the blood flow sampling frame can no longer cover the original target blood flow after angle priority adjustment, the user is prompted to move the ultrasound probe to move the target blood flow to the center of the ultrasound image for display . By setting prompts, it is possible to avoid the situation that the target blood flow moves out of the blood flow sampling frame after data optimization. It can be understood that the adjustment and optimization of the angle and position of the target blood flow can be implemented using applicable existing technologies, and details will not be repeated here.
进一步的,当超声图像内的血流信息很少时,可在无法判断血流运动方向情况下实现目标点选择。如图7及图8所示,当当前取样框内血流信息很少时的目标血流决策示意图。如图7所示为超声图像中目标区域内获得的血流信息,可知该数据信息量太少以至于无法判断血流方向。如图8所示,可在不改变超声波发射方向的腔体下移动取样框中心。此情况多见于当取样框内仅显示了血流的极少部分、无法判断血流运动方向的情况。Furthermore, when there is little blood flow information in the ultrasound image, the target point selection can be realized without judging the direction of blood flow movement. As shown in FIG. 7 and FIG. 8 , a schematic diagram of target blood flow decision-making when there is little blood flow information in the current sampling frame. As shown in Figure 7, the blood flow information obtained in the target area in the ultrasound image, it can be seen that the amount of information in the data is too small to judge the direction of blood flow. As shown in Figure 8, the center of the sampling frame can be moved without changing the cavity of the ultrasonic emission direction. This situation is often seen when only a very small part of the blood flow is displayed in the sampling frame, and the direction of the blood flow movement cannot be judged.
在本步骤中,还可根据所述目标血流的目标点、目标点的血流运动方向调整超声探头的取样框中心点及取样框角度,并获取调整后的目标血流的目标点的彩色血流图像或多普勒图像。比较调整前后的彩色血流图像或多普勒图像的充盈度,并选取较高充盈度对应的取样框中心点及取样框角度为最终取样框。In this step, the center point of the sampling frame and the angle of the sampling frame of the ultrasonic probe can also be adjusted according to the target point of the target blood flow and the direction of blood flow movement of the target point, and the color of the adjusted target point of the blood flow can be obtained. Blood flow images or Doppler images. Compare the filling degree of the color blood flow image or Doppler image before and after adjustment, and select the center point of the sampling frame and the angle of the sampling frame corresponding to the higher filling degree as the final sampling frame.
在本步骤中,可根据取样框设置情况获取相对应的血流成像参数。具体的,可将目标点位置作为取样框中心、取样门中心,根据目标点位置上的目标血流的流动方向取超声探头的超声波束发射方向与多普勒取样门内血流角度,根据目标点上的目标血流的血流半径取取样门宽度。例如,当目标血流半径为R,取样门宽度系数R_coef=0.6,那么取样门宽度为R*R_coef。如图7所示为调整优化前的血流取样框、取样线的效果示意图。如图8所示为调整优化后的血流取样框及取样线参数同时优化的效果示意图。In this step, the corresponding blood flow imaging parameters can be obtained according to the setting of the sampling frame. Specifically, the position of the target point can be used as the center of the sampling frame and the center of the sampling gate, and the ultrasonic beam emission direction of the ultrasonic probe and the blood flow angle in the Doppler sampling gate can be obtained according to the flow direction of the target blood flow at the position of the target point. The blood flow radius of the target blood flow at the point is sampled by the gate width. For example, when the target blood flow radius is R and the sampling gate width coefficient R_coef=0.6, then the sampling gate width is R*R_coef. FIG. 7 is a schematic diagram of the effect of the blood flow sampling frame and sampling line before adjustment and optimization. FIG. 8 is a schematic diagram showing the effect of simultaneous optimization of the adjusted and optimized blood flow sampling frame and sampling line parameters.
步骤S105,比较调整后的血流成像参数和调整前的血流成像参数,当调整后的血流成像参数与调整前的血流成像参数之间的差异小于预设的第二阈值时,放弃调整后的血流成像参数。可以理解的是,步骤S105也可省略,即执行步骤S104后直接进入步骤S106。Step S105, comparing the adjusted blood flow imaging parameters with the pre-adjusted blood flow imaging parameters, when the difference between the adjusted blood flow imaging parameters and the unadjusted blood flow imaging parameters is smaller than the preset second threshold, give up Adjusted blood flow imaging parameters. It can be understood that step S105 can also be omitted, that is, step S106 is directly entered after step S104 is executed.
步骤S106,根据调整后的所述血流成像参数发射超声波并接收超声回波,获得超声图像。Step S106 , transmitting ultrasound according to the adjusted blood flow imaging parameters and receiving ultrasound echoes to obtain ultrasound images.
请参见图11,本发明的第二实施例提供一种血流成像方法,包括以下步骤:Please refer to FIG. 11 , the second embodiment of the present invention provides a blood flow imaging method, including the following steps:
步骤S201,根据血流成像参数发射超声波并接收超声回波,获得的一系列超声图像;在本步骤中,通过超声探头向目标区域发送超声脉冲并接收超声脉冲的回波信息,并生成所述回波信息相对应的超声图像。在本步骤中,通过超声探头获取一段时间内的超声图像,并进一步获取并保留该时间段内的血流速度极值点。可以理解的是,所述一段时间的时间长短可根据需要自行设置,即在本步骤中可取任意时长的预设时间内的超声图像。进一步的,在本步骤中,可获取该时间段内的血流速度极值点,从而提升血流获取困难部位的分析准确率。可以理解的是,在生成超声图像时,可进行放大、数模转换、波束合成等数据处理,其实现过程为现有技术,在此不再赘述。进一步的,在本步骤中,所述超声图像可为经过信号处理形成的B型图像、多普勒图像、彩色血流图像或以上各种图像的合并显示图像。Step S201, transmitting ultrasound according to blood flow imaging parameters and receiving ultrasound echoes to obtain a series of ultrasound images; in this step, sending ultrasound pulses to the target area through the ultrasound probe and receiving the echo information of the ultrasound pulses, and generating the Ultrasound images corresponding to the echo information. In this step, the ultrasound image is acquired for a period of time by the ultrasound probe, and the extreme points of the blood flow velocity within the period of time are further acquired and retained. It can be understood that the length of the period of time can be set according to needs, that is, in this step, ultrasound images within a preset time of any length can be taken. Further, in this step, the extreme point of the blood flow velocity within the time period can be obtained, thereby improving the analysis accuracy of the part where the blood flow is difficult to obtain. It can be understood that, when generating an ultrasound image, data processing such as amplification, digital-to-analog conversion, and beamforming may be performed, and the implementation process thereof belongs to the prior art, and will not be repeated here. Further, in this step, the ultrasound image may be a B-mode image, a Doppler image, a color blood flow image, or a combined display image formed by signal processing.
步骤S202,超声图像预处理。在本步骤中,对一段时间内获取的超声图像进行图像预处理,从而便于图像的识别及使用。Step S202, ultrasonic image preprocessing. In this step, image preprocessing is performed on the ultrasonic images acquired within a period of time, so as to facilitate image recognition and use.
在本实施例中,本步骤中的图像预处理可采用多种方式进行,如可实现对因脉冲重复频率(radar pulse repetition frequency,PRF)不足造成的血流颜色反转进行简单校正处理,提高分析的准确率;还可通过对阈值的设置实现多条血流的区分。具体的,在实际进行检测的血管中,血流速度从血管壁到血管中央是从低速到高速的一个变化过程,血流相对超声探头运动方向不同(流向超声探头和远离超声探头)在实际图像中用偏红和偏蓝两类颜色表示。如果脉冲重复频率不足,血管中高速的血流数据将发生颜色反转,从偏红变为偏蓝或者从偏蓝变为偏红。通过颜色反转校正功能,对于颜色突变超过阈值的部分进行校正,可以将这部分发生反转的颜色校正回正确的方向。对于多根同向血流数据而言,在某些数据过于充盈的帧内,将发生多根血流数据连在一起无法区分的问题。通过设置较高的阈值数据,将阈值较低的血流数据删除,保留流速较大的数据,可以有效区分多根同向血流。可以理解的是,此步骤可按需实施或取消。可以理解的是,步骤S202可省略。In this embodiment, the image preprocessing in this step can be performed in various ways, for example, a simple correction process can be performed on the color inversion of the blood flow caused by insufficient pulse repetition frequency (radar pulse repetition frequency, PRF) to improve The accuracy of the analysis; the distinction of multiple blood streams can also be realized by setting the threshold. Specifically, in the blood vessel that is actually detected, the blood flow velocity from the vessel wall to the center of the vessel is a change process from low speed to high speed, and the direction of blood flow relative to the ultrasonic probe is different (flowing toward the ultrasonic probe and away from the ultrasonic probe) in the actual image In the middle, it is represented by two kinds of colors, reddish and blue. If the pulse repetition frequency is insufficient, the high-speed blood flow data in the blood vessel will undergo color inversion, from reddish to bluish or from bluish to reddish. Through the color inversion correction function, the part where the color mutation exceeds the threshold is corrected, and the reversed color of this part can be corrected back to the correct direction. For multiple blood flow data in the same direction, in some frames where the data is too full, there will be a problem that multiple blood flow data cannot be distinguished when they are connected together. By setting a higher threshold data, deleting the blood flow data with a lower threshold, and retaining the data with a higher flow velocity, multiple blood flows in the same direction can be effectively distinguished. It is understood that this step can be implemented or eliminated as desired. It can be understood that step S202 can be omitted.
步骤S203,显示所述一系列超声图像;Step S203, displaying the series of ultrasound images;
步骤S204,监测是否接收到启动触发信号,当确认接收到所述启动触发信号时:获取在第一时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第一超声图像;获取在第二时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第二超声图像;Step S204, monitoring whether the activation trigger signal is received, and when it is confirmed that the activation trigger signal is received: acquire the first ultrasound image obtained by transmitting ultrasound and receiving ultrasound echoes at the first moment according to the blood flow imaging parameters; acquiring Transmitting ultrasound according to the blood flow imaging parameters at a second moment and receiving a second ultrasound image obtained by ultrasound echoes;
所述启动触发信号每隔预定时间产生、每隔预定帧超声图像产生或者当用户手动调节了所述血流成像参数中的一个或者多个之后产生。如可采用时间计数器或帧数计数器实现,从而在每隔一段时间或获取一定帧数后即执行获取所述特定区域的超声图像的操作。可以理解的是,步骤S204的具体实现过程可与第一实施例中的S101、S102相同。The start trigger signal is generated every predetermined time, every predetermined frame of ultrasound images, or when the user manually adjusts one or more of the blood flow imaging parameters. For example, a time counter or a frame number counter can be used, so that the operation of acquiring the ultrasound image of the specific region is performed at intervals or after acquiring a certain number of frames. It can be understood that the specific implementation process of step S204 may be the same as that of S101 and S102 in the first embodiment.
步骤S205,根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子;可以理解的是,本步骤的具体实现过程可与第一实施例中的S103相同。Step S205, calculating a difference factor representing the difference between the first ultrasonic image and the second ultrasonic image according to the first ultrasonic image and the second ultrasonic image; it can be understood that the The specific implementation process may be the same as that of S103 in the first embodiment.
步骤S206,确认所述差异因子满足预设条件时,调整所述血流成像参数中的至少一个;可以理解的是,本步骤的具体实现过程可与第一实施例中的S104相同。Step S206, adjusting at least one of the blood flow imaging parameters when it is confirmed that the difference factor satisfies the preset condition; it can be understood that the specific implementation process of this step may be the same as that of S104 in the first embodiment.
步骤S207,根据调整后的所述血流成像参数发射超声波并接收超声回波,获得超声图像;Step S207, transmitting ultrasound according to the adjusted blood flow imaging parameters and receiving ultrasound echoes to obtain ultrasound images;
步骤S208,显示根据调整后的所述血流成像参数获得的超声图像。Step S208, displaying the ultrasonic image obtained according to the adjusted blood flow imaging parameters.
如图12所示,本发明还提供一种血流成像系统,包括:As shown in Figure 12, the present invention also provides a blood flow imaging system, including:
超声探头11,所述超声探头11用于向目标区域发射超声波,并接收所述超声波的回波数据。An ultrasonic probe 11, the ultrasonic probe 11 is used to transmit ultrasonic waves to the target area and receive echo data of the ultrasonic waves.
信号处理模块13,用于接收所述超声波的回波数据以获取超声图像;所述超声图像包括在第一时刻获取的第一超声图像及在第二时刻获取的第二超声图像;所述信号处理模块13包括B型信号处理单元131及多普勒信号处理单元133,所述B型信号处理单元131用于处理所述超声图像中的B型图像;所述多普勒信号处理单元133用于处理所述超声图像中的超声图像。The signal processing module 13 is configured to receive the echo data of the ultrasound to acquire an ultrasound image; the ultrasound image includes a first ultrasound image acquired at a first moment and a second ultrasound image acquired at a second moment; the signal The processing module 13 includes a B-type signal processing unit 131 and a Doppler signal processing unit 133, and the B-type signal processing unit 131 is used to process the B-type image in the ultrasonic image; the Doppler signal processing unit 133 uses for processing ultrasound images in the ultrasound images.
比对模块15,用于接收所述第一超声图像与所述第二超声图像,并根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子。The comparison module 15 is configured to receive the first ultrasonic image and the second ultrasonic image, and calculate the The difference factor for the difference between the second ultrasound images.
调整模块17,用于接收所述差异因子,并根据所述差异因子调整血流成像参数;所述血流成像参数包括取样框中心、取样门中心、取样门内血流角度、取样门宽度。The adjustment module 17 is configured to receive the difference factor, and adjust the blood flow imaging parameters according to the difference factor; the blood flow imaging parameters include the center of the sampling frame, the center of the sampling gate, the angle of blood flow in the sampling gate, and the width of the sampling gate.
控制模块18,用于接收所述血流成像参数并控制所述时超声探头11的收发模块发射超声波。当通过控制模块18对超声探头11进行控制时,可采用调整超声探头的扫描范围、扫描角度、扫描功率等参数,从而便于撷取相应的超声图像。The control module 18 is configured to receive the blood flow imaging parameters and control the transceiving module of the ultrasonic probe 11 to emit ultrasonic waves. When the ultrasonic probe 11 is controlled by the control module 18, parameters such as the scanning range, scanning angle, and scanning power of the ultrasonic probe can be adjusted, so as to facilitate the acquisition of corresponding ultrasonic images.
显示模块19,用于根据所述信号处理模块13生成并显示第一超声图像、第二超声图像。The display module 19 is configured to generate and display the first ultrasound image and the second ultrasound image according to the signal processing module 13 .
本发明的血流成像方法及系统通过对获得的超声图像进行分析处理、提取出血流运动信息,从而实现对血流成像参数的优化调整。本发明的血流成像方法的优化调整方便便捷,实现血流取样框角度和位置,取样线角度、位置、采样容积宽度及血流校正角度等参数的快速优化,可按需开启实施以实现最优化显示。且本发明的血流成像方法及系统通过获取并比对差异因子,按需启动血流成型参数的设置,提升设置效率及准确率。The blood flow imaging method and system of the present invention realize the optimization and adjustment of blood flow imaging parameters by analyzing and processing the obtained ultrasonic images and extracting blood flow movement information. The optimization and adjustment of the blood flow imaging method of the present invention is convenient and convenient, and realizes the rapid optimization of parameters such as the angle and position of the blood flow sampling frame, the angle and position of the sampling line, the width of the sampling volume, and the angle of blood flow correction, and can be opened and implemented on demand to achieve the best results. Optimized display. Moreover, the blood flow imaging method and system of the present invention start the setting of blood flow shaping parameters as needed by acquiring and comparing the difference factors, thereby improving the setting efficiency and accuracy.
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。What is disclosed above is only a preferred embodiment of the present invention, and of course it cannot limit the scope of rights of the present invention. Those of ordinary skill in the art can understand all or part of the process for realizing the above embodiments, and according to the rights of the present invention The equivalent changes required still belong to the scope covered by the invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910980657.1ACN110801246B (en) | 2015-05-07 | 2015-05-07 | Blood flow imaging method and system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2015/078449WO2016176855A1 (en) | 2015-05-07 | 2015-05-07 | Blood flow imaging method and system |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910980657.1ADivisionCN110801246B (en) | 2015-05-07 | 2015-05-07 | Blood flow imaging method and system |
| Publication Number | Publication Date |
|---|---|
| CN106028947Atrue CN106028947A (en) | 2016-10-12 |
| CN106028947B CN106028947B (en) | 2019-11-12 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910980657.1AActiveCN110801246B (en) | 2015-05-07 | 2015-05-07 | Blood flow imaging method and system |
| CN201580009018.0AActiveCN106028947B (en) | 2015-05-07 | 2015-05-07 | Blood flow imaging method and system |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910980657.1AActiveCN110801246B (en) | 2015-05-07 | 2015-05-07 | Blood flow imaging method and system |
| Country | Link |
|---|---|
| CN (2) | CN110801246B (en) |
| WO (1) | WO2016176855A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018086003A1 (en)* | 2016-11-09 | 2018-05-17 | Edan Instruments, Inc. | Systems and methods for temporal persistence of doppler spectrum |
| CN108245194A (en)* | 2017-12-21 | 2018-07-06 | 四川省人民医院 | Ultrasonoscopy heart flow field method for estimating based on cuckoo optimisation strategy |
| CN109615624A (en)* | 2018-12-05 | 2019-04-12 | 北京工业大学 | An automatic identification method of blood flow velocity waveform based on ultrasound images |
| CN109674493A (en)* | 2018-11-28 | 2019-04-26 | 深圳蓝韵医学影像有限公司 | Method, system and the equipment of medical supersonic automatic tracing carotid artery vascular |
| WO2020041986A1 (en)* | 2018-08-28 | 2020-03-05 | 深圳迈瑞生物医疗电子股份有限公司 | Ultrasound vector blood flow imaging method and device, and storage medium |
| CN110967506A (en)* | 2018-09-30 | 2020-04-07 | 深圳迈瑞生物医疗电子股份有限公司 | Sample analyzer, sample transfer system and identification method thereof |
| CN111184533A (en)* | 2018-11-15 | 2020-05-22 | 三星麦迪森株式会社 | Ultrasound imaging apparatus and method of operating the same |
| CN112120733A (en)* | 2020-08-31 | 2020-12-25 | 深圳市德力凯医疗设备股份有限公司 | Method for acquiring cerebral blood flow velocity, storage medium and terminal device |
| CN112930145A (en)* | 2018-10-25 | 2021-06-08 | 皇家飞利浦有限公司 | Ultrasonic control unit |
| CN113164160A (en)* | 2020-05-18 | 2021-07-23 | 深圳迈瑞生物医疗电子股份有限公司 | Ultrasound contrast imaging method, apparatus and storage medium |
| CN113171124A (en)* | 2020-07-30 | 2021-07-27 | 深圳市理邦精密仪器股份有限公司 | Blood flow measurement method, device and storage medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111281424B (en)* | 2018-12-07 | 2024-12-27 | 深圳迈瑞生物医疗电子股份有限公司 | A method for adjusting ultrasonic imaging range and related equipment |
| CN110604591A (en)* | 2018-12-29 | 2019-12-24 | 深圳迈瑞生物医疗电子股份有限公司 | Method for adjusting Doppler parameter value and ultrasonic equipment |
| CN110584710B (en)* | 2019-09-03 | 2022-05-31 | 杭州晟视科技有限公司 | Blood flow imaging method and device and storage medium |
| CN113925528B (en)* | 2020-06-29 | 2023-11-03 | 青岛海信医疗设备股份有限公司 | Doppler imaging method and ultrasonic equipment |
| CN112826535B (en)* | 2020-12-31 | 2022-09-09 | 青岛海信医疗设备股份有限公司 | Method, device and equipment for automatically positioning blood vessel in ultrasonic imaging |
| CN113081050A (en)* | 2021-02-24 | 2021-07-09 | 杰杰医疗科技(苏州)有限公司 | Automatic color Doppler positioning and adjusting system and method |
| CN116433793A (en)* | 2023-04-17 | 2023-07-14 | 明峰医疗系统股份有限公司 | A Graphical Data Processing and Display Method for Ultrasonic CT Detection |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1097674A2 (en)* | 1999-11-05 | 2001-05-09 | General Electric Company | Method and apparatus for adapting imaging system operation based on pixel intensity histogram |
| CN101252886A (en)* | 2005-06-29 | 2008-08-27 | 艾可瑞公司 | Dynamic Tracking of Soft Tissue Targets Using Ultrasound Images Without Fiducial Markers |
| CN101313856A (en)* | 2007-06-01 | 2008-12-03 | 深圳迈瑞生物医疗电子股份有限公司 | Method and apparatus related with colorful bloodstream frame |
| CN101647715A (en)* | 2007-08-28 | 2010-02-17 | 深圳迈瑞生物医疗电子股份有限公司 | Method and device for automatically optimizing Doppler imaging parameters |
| CN101884551A (en)* | 2009-05-15 | 2010-11-17 | 深圳迈瑞生物医疗电子股份有限公司 | Method for increasing self-adjusting performance of ultrasonic Doppler imaging and ultrasonic system thereof |
| US20120150039A1 (en)* | 2010-12-09 | 2012-06-14 | Ge Medical Systems Global Technology Company, Llc | Ultrasound volume probe navigation and control method and device |
| CN102772227A (en)* | 2012-04-09 | 2012-11-14 | 飞依诺科技(苏州)有限公司 | Self-adaptive ultrasonic color blood flow imaging method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5363849A (en)* | 1994-01-26 | 1994-11-15 | Cardiovascular Imaging Systems, Inc. | Enhancing intravascular ultrasonic blood vessel image |
| JPH09122126A (en)* | 1995-10-31 | 1997-05-13 | Toshiba Corp | Ultrasound diagnostic equipment |
| US6464641B1 (en)* | 1998-12-01 | 2002-10-15 | Ge Medical Systems Global Technology Company Llc | Method and apparatus for automatic vessel tracking in ultrasound imaging |
| WO2005115248A1 (en)* | 2004-05-26 | 2005-12-08 | Hitachi Medical Corporation | Ultrasonographic device |
| KR100863745B1 (en)* | 2005-08-18 | 2008-10-16 | 주식회사 메디슨 | Ultrasound Image Processing System and Method in Ultrasound Image Diagnosis System |
| JP4960162B2 (en)* | 2007-07-17 | 2012-06-27 | 株式会社東芝 | Ultrasonic diagnostic equipment |
| KR101002079B1 (en)* | 2009-11-10 | 2010-12-17 | 한국표준과학연구원 | Blood Vessel Measurement Method |
| CN102370499B (en)* | 2010-08-26 | 2014-05-07 | 深圳迈瑞生物医疗电子股份有限公司 | Method and system for simultaneously displaying Doppler image, B-type image and colored blood flow image |
| CN102551791B (en)* | 2010-12-17 | 2016-04-27 | 深圳迈瑞生物医疗电子股份有限公司 | A kind of ultrasonic imaging method and device |
| CN102551811B (en)* | 2010-12-30 | 2015-11-25 | 深圳迈瑞生物医疗电子股份有限公司 | A kind of method of color flow gain adjustment and device |
| JP5743329B2 (en)* | 2012-01-19 | 2015-07-01 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | Ultrasonic diagnostic apparatus and control program therefor |
| US10357228B2 (en)* | 2012-04-19 | 2019-07-23 | Samsung Electronics Co., Ltd. | Image processing method and apparatus |
| JP6274517B2 (en)* | 2013-03-12 | 2018-02-07 | キヤノンメディカルシステムズ株式会社 | Ultrasonic diagnostic apparatus and ultrasonic image processing program |
| US20140303499A1 (en)* | 2013-04-09 | 2014-10-09 | Konica Minolta, Inc. | Ultrasound diagnostic apparatus and method for controlling the same |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1097674A2 (en)* | 1999-11-05 | 2001-05-09 | General Electric Company | Method and apparatus for adapting imaging system operation based on pixel intensity histogram |
| CN101252886A (en)* | 2005-06-29 | 2008-08-27 | 艾可瑞公司 | Dynamic Tracking of Soft Tissue Targets Using Ultrasound Images Without Fiducial Markers |
| CN101313856A (en)* | 2007-06-01 | 2008-12-03 | 深圳迈瑞生物医疗电子股份有限公司 | Method and apparatus related with colorful bloodstream frame |
| CN101647715A (en)* | 2007-08-28 | 2010-02-17 | 深圳迈瑞生物医疗电子股份有限公司 | Method and device for automatically optimizing Doppler imaging parameters |
| CN101884551A (en)* | 2009-05-15 | 2010-11-17 | 深圳迈瑞生物医疗电子股份有限公司 | Method for increasing self-adjusting performance of ultrasonic Doppler imaging and ultrasonic system thereof |
| US20120150039A1 (en)* | 2010-12-09 | 2012-06-14 | Ge Medical Systems Global Technology Company, Llc | Ultrasound volume probe navigation and control method and device |
| CN102772227A (en)* | 2012-04-09 | 2012-11-14 | 飞依诺科技(苏州)有限公司 | Self-adaptive ultrasonic color blood flow imaging method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109414246A (en)* | 2016-11-09 | 2019-03-01 | 深圳市理邦精密仪器股份有限公司 | System and method for Doppler frequency spectrum time duration |
| CN109414246B (en)* | 2016-11-09 | 2021-09-14 | 深圳市理邦精密仪器股份有限公司 | System and method for Doppler spectrum time duration |
| WO2018086003A1 (en)* | 2016-11-09 | 2018-05-17 | Edan Instruments, Inc. | Systems and methods for temporal persistence of doppler spectrum |
| CN108245194A (en)* | 2017-12-21 | 2018-07-06 | 四川省人民医院 | Ultrasonoscopy heart flow field method for estimating based on cuckoo optimisation strategy |
| CN108245194B (en)* | 2017-12-21 | 2020-06-19 | 四川省人民医院 | Motion estimation method of cardiac flow field in ultrasound images based on cuckoo optimization strategy |
| WO2020041986A1 (en)* | 2018-08-28 | 2020-03-05 | 深圳迈瑞生物医疗电子股份有限公司 | Ultrasound vector blood flow imaging method and device, and storage medium |
| CN110967506A (en)* | 2018-09-30 | 2020-04-07 | 深圳迈瑞生物医疗电子股份有限公司 | Sample analyzer, sample transfer system and identification method thereof |
| CN112930145A (en)* | 2018-10-25 | 2021-06-08 | 皇家飞利浦有限公司 | Ultrasonic control unit |
| CN111184533A (en)* | 2018-11-15 | 2020-05-22 | 三星麦迪森株式会社 | Ultrasound imaging apparatus and method of operating the same |
| CN109674493A (en)* | 2018-11-28 | 2019-04-26 | 深圳蓝韵医学影像有限公司 | Method, system and the equipment of medical supersonic automatic tracing carotid artery vascular |
| CN109674493B (en)* | 2018-11-28 | 2021-08-03 | 深圳蓝韵医学影像有限公司 | Method, system and equipment for medical ultrasonic automatic tracking of carotid artery blood vessel |
| CN109615624A (en)* | 2018-12-05 | 2019-04-12 | 北京工业大学 | An automatic identification method of blood flow velocity waveform based on ultrasound images |
| CN109615624B (en)* | 2018-12-05 | 2022-03-22 | 北京工业大学 | Blood flow velocity waveform automatic identification method based on ultrasonic image |
| CN113164160A (en)* | 2020-05-18 | 2021-07-23 | 深圳迈瑞生物医疗电子股份有限公司 | Ultrasound contrast imaging method, apparatus and storage medium |
| WO2021232192A1 (en)* | 2020-05-18 | 2021-11-25 | 深圳迈瑞生物医疗电子股份有限公司 | Ultrasound contrast imaging method and apparatus, and storage medium |
| CN113164160B (en)* | 2020-05-18 | 2022-09-16 | 深圳迈瑞生物医疗电子股份有限公司 | Ultrasound contrast imaging method, apparatus and storage medium |
| CN113171124A (en)* | 2020-07-30 | 2021-07-27 | 深圳市理邦精密仪器股份有限公司 | Blood flow measurement method, device and storage medium |
| CN112120733A (en)* | 2020-08-31 | 2020-12-25 | 深圳市德力凯医疗设备股份有限公司 | Method for acquiring cerebral blood flow velocity, storage medium and terminal device |
| Publication number | Publication date |
|---|---|
| CN110801246A (en) | 2020-02-18 |
| CN106028947B (en) | 2019-11-12 |
| WO2016176855A1 (en) | 2016-11-10 |
| CN110801246B (en) | 2022-08-02 |
| Publication | Publication Date | Title |
|---|---|---|
| CN106028947A (en) | Blood flow imaging method and system | |
| CN105559828B (en) | Blood flow imaging method and system | |
| EP1832894B1 (en) | System and method for automatic gain compensation based on image processing | |
| US9895138B2 (en) | Ultrasonic diagnostic apparatus | |
| US20210186467A1 (en) | Ultrasound diagnostic apparatus, method of controlling ultrasound diagnostic apparatus, and non-transitory computer-readable recording medium storing therein computer-readable program for controlling ultrasound diagnostic apparatus | |
| EP4390841A1 (en) | Image acquisition method | |
| EP1793343A1 (en) | Image processing system and method of enhancing the quality of an ultrasound image | |
| US20150359507A1 (en) | Ultrasound diagnosis apparatus and ultrasound image processing method | |
| JP2014528266A (en) | Ultrasound system with automatic Doppler blood flow setting | |
| JP2005152648A (en) | Method and system for motion-adaptive type spatial synthesis | |
| EP3820374B1 (en) | Methods and systems for performing fetal weight estimations | |
| KR101097607B1 (en) | Ultrasound system and method for setting scan angle, scan depth and scan speed | |
| US7738685B2 (en) | Image processing system and method for controlling gains for color flow images | |
| CN110074818B (en) | Ultrasonic blood flow calculation and display method and system | |
| CN112654304A (en) | Fat layer identification using ultrasound imaging | |
| US9474510B2 (en) | Ultrasound and system for forming an ultrasound image | |
| JP2010259799A (en) | Proper vector setting method for filtering clutter signal and ultrasonic system using this | |
| CN101137914A (en) | Method and device for automatic gain adjustment in spectral doppler | |
| US20190298298A1 (en) | Ultrasound imaging method | |
| EP3586758A1 (en) | Methods and systems for performing transvalvular pressure quantification | |
| US20240404066A1 (en) | System and method for segmenting an anatomical structure | |
| US20150201908A1 (en) | Method and system for adaptive blood flow visualization based on regional flow characteristics | |
| EP1006369B1 (en) | Method and apparatus for adaptive filtering by counting acoustic sample zeroes in ultrasound imaging | |
| US9877701B2 (en) | Methods and systems for automatic setting of color flow steering angle | |
| EP4159139A1 (en) | System and method for segmenting an anatomical structure |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |