技术领域technical field
本发明涉及电力传输线的技术领域,更具体地说,本发明涉及一种防覆冰高压线。The invention relates to the technical field of power transmission lines, and more specifically, the invention relates to an ice-coated high-voltage line.
背景技术Background technique
架空输电铝绞线是高压输电的大动脉,但是高压线网在雨雪、低温以及冻雨等天气条件下容易形成覆冰而导致电网负载过重,从而容易发生断线、倒塔等安全事故,严重影响着电网的安全运行。The aluminum stranded wire for overhead power transmission is the main artery of high-voltage power transmission, but the high-voltage wire network is prone to ice coating under weather conditions such as rain, snow, low temperature, and freezing rain, which will cause the grid to be overloaded, and thus prone to safety accidents such as disconnection and tower collapse, which seriously affect the safe operation of the grid.
发明内容Contents of the invention
为了解决现有技术中的上述技术问题,本发明的目的在于提供一种防覆冰高压线。In order to solve the above-mentioned technical problems in the prior art, the object of the present invention is to provide an ice-coated high-voltage line.
为了解决上述技术问题并实现发明目的,本发明提供了以下技术方案:In order to solve the above-mentioned technical problems and realize the object of the invention, the present invention provides the following technical solutions:
一种防覆冰高压线,包括由钢芯组成的钢芯内层,以及保覆在所述内层外的由铝合金线组成的铝合金线外层,其特征在于:所述铝合金线外层表面形成有防覆冰涂膜。An ice-coated high-voltage wire, comprising a steel core inner layer composed of a steel core, and an aluminum alloy wire outer layer composed of an aluminum alloy wire covering the inner layer, characterized in that: the aluminum alloy wire outer layer An anti-icing coating film is formed on the surface of the layer.
其中,所述防覆冰涂膜通过在所述铝合金线外层表面涂覆处理液,并在60~80℃固化处理45~50min形成,所述防覆冰涂膜的厚度为5~50μm。Wherein, the anti-icing coating film is formed by coating the surface of the aluminum alloy wire with a treatment solution, and curing at 60-80°C for 45-50 minutes, and the thickness of the anti-icing coating film is 5-50 μm .
其中,所述处理液由5.0~5.5wt%的甲基丙烯酸酯、3.5~5.0wt%的甲基丙烯酸缩水甘油酯、1.2~1.5wt%的烷基酚醚磺化琥珀酸酯、2.0~2.2wt%的丙烯酰胺、0.8~1.0wt%的改性纳米SiO2单体、1.0~1.2wt%的氢氧化铝和余量的溶剂组成。Wherein, the treatment liquid consists of 5.0-5.5 wt% methacrylate, 3.5-5.0 wt% glycidyl methacrylate, 1.2-1.5 wt% alkylphenol ether sulfosuccinate, 2.0-2.2 It is composed of acrylamide in wt%, 0.8-1.0 wt% of modified nano-SiO2 monomer, 1.0-1.2 wt% of aluminum hydroxide and the balance of solvent.
其中,所述甲基丙烯酸酯选自乙二醇二甲基丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、甲基丙烯酸-2-乙基己酯或甲基丙烯酸羟丙酯中的至少一种。Wherein, the methacrylate is selected from at least one of ethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, 2-ethylhexyl methacrylate or hydroxypropyl methacrylate A sort of.
其中,所述溶剂选自二甲苯、异丙醇、正丁醇、醋酸甲酯、醋酸乙酯、醋酸丁酯、乙二醇乙醚、以及N-甲基吡咯烷酮中的至少两种。Wherein, the solvent is selected from at least two of xylene, isopropanol, n-butanol, methyl acetate, ethyl acetate, butyl acetate, ethylene glycol ether, and N-methylpyrrolidone.
其中,所述改性纳米SiO2单体通过以下方法制备得到:首先,将纳米SiO2和3-氨丙基三乙氧基硅烷在50℃的无水甲苯溶液反应得到氨基改性纳米SiO2,其中3-氨丙基三乙氧基硅烷与纳米SiO2的质量比为1∶5;然后,在N,N-二甲基甲酰胺溶液中加入顺丁烯二酸酐,搅拌溶解完全得到混合溶液;在所述氨基改性纳米SiO2中加入N,N-二甲基甲酰胺搅拌均匀得到分散液;将分散液滴加到所述混合溶液中,然后在70℃搅拌反应完全,得到的反应产物经过洗涤、过滤、干燥后可得所述改性纳米SiO2功能单体,其中,所述顺丁烯二酸酐与纳米SiO2的 质量比为1∶5。Wherein, the modified nano-SiO2 monomer is prepared by the following method: first, react nano-SiO2 and 3-aminopropyltriethoxysilane in anhydrous toluene solution at 50°C to obtain amino-modified nano-SiO2 , wherein the mass ratio of 3-aminopropyltriethoxysilane to nano-SiO2 is 1:5; then, add maleic anhydride to the N,N-dimethylformamide solution, stir and dissolve completely to obtain a mixed solution; add N,N-dimethylformamide to the amino- modified nano-SiO and stir to obtain a dispersion; add the dispersion dropwise to the mixed solution, then stir at 70°C to complete the reaction, and obtain The modified nano-SiO2 functional monomer can be obtained after the reaction product is washed, filtered and dried, wherein the mass ratio of maleic anhydride to nano-SiO2 is 1:5.
其中,所述铝合金线的组成和质量百分比为:0.25~0.30wt%的Si、0.20~0.25wt%的Cu、0.55~0.60wt%的Mg、0.10~0.15wt%的Mn、0.15~0.20wt%的Cr、0.08~0.10wt%的Zr、0.02~0.03wt%的Te、0.03~0.05wt%的Sr,其余为Al和不可避免的杂质。Wherein, the composition and mass percentage of the aluminum alloy wire are: 0.25-0.30wt% Si, 0.20-0.25wt% Cu, 0.55-0.60wt% Mg, 0.10-0.15wt% Mn, 0.15-0.20wt% % Cr, 0.08-0.10wt% Zr, 0.02-0.03wt% Te, 0.03-0.05wt% Sr, and the rest are Al and unavoidable impurities.
其中,所述铝合金线的制造方法包括以下步骤:Wherein, the manufacturing method of the aluminum alloy wire comprises the following steps:
①在760~790℃熔炼铝锭,然后添加在熔铝中添加合金元素,进行精炼、除渣和吹扫,通过取样分析、调整并控制合金元素的含量,浇铸成铝合金铸锭,浇铸温度为695~705℃;①Smelting aluminum ingots at 760-790°C, then adding alloying elements to the molten aluminum, refining, slag removal and purging, through sampling analysis, adjusting and controlling the content of alloying elements, casting into aluminum alloy ingots, casting temperature 695~705℃;
②将所述铝合金铸锭在210~230℃的温度下固溶化处理3.5~4.0小时;② solid solution treating the aluminum alloy ingot at a temperature of 210-230° C. for 3.5-4.0 hours;
③将经过固溶化处理后的铝合金铸锭在轧机上热轧轧制成铝合金杆,进轧温度为490~495℃,终轧温度为275~280℃;然后进行热均化处理,处理温度为180~200℃,时间为8~10小时;③ The aluminum alloy ingot after solution treatment is hot-rolled on a rolling mill to form an aluminum alloy rod, the rolling temperature is 490-495°C, and the final rolling temperature is 275-280°C; The temperature is 180-200°C, and the time is 8-10 hours;
④在铝合金拉线机上,控制拉线速度为8~10米/秒,拉成铝合金线成品。④ On the aluminum alloy wire drawing machine, the wire drawing speed is controlled to be 8-10 m/s, and the aluminum alloy wire is drawn into a finished product.
与现有技术相比,本发明所述的防覆冰高压线具有以下有益效果:Compared with the prior art, the anti-icing high-voltage line of the present invention has the following beneficial effects:
①本发明所述的高压线采用的铝合金线具有良好的抗拉强度、优异的抗蠕变性能。① The aluminum alloy wire used in the high-voltage wire of the present invention has good tensile strength and excellent creep resistance.
②本发明所述的高压线在雨、露、霜和雪等不同气候条件下可有效抑制覆冰形成,具有良好的防闪络性能。②The high-voltage line of the present invention can effectively inhibit the formation of ice coating under different climatic conditions such as rain, dew, frost and snow, and has good anti-flashover performance.
具体实施方式detailed description
以下将通过参考示范性实施例,阐明本发明的目的和功能以及用于实现这些目的和功能的方法。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。The objects and functions of the present invention and methods for achieving the objects and functions will be clarified below by referring to the exemplary embodiments. However, the present invention is not limited to the exemplary embodiments disclosed below; it can be implemented in various forms. The essence of the description is only to help those skilled in the relevant art comprehensively understand the specific details of the present invention.
实施例1Example 1
在本实施例中,防覆冰高压线,包括由钢芯组成的钢芯内层,以及保覆在所述内层外的由铝合金线组成的铝合金线外层。所述铝合金线外层表面通过浸渍、浸涂或旋涂有处理液,涂覆后在60~80℃固化处理45~50min形成,所述防覆冰涂膜的厚度为5~50μm。所述处理液由5.0~5.5wt%的乙二醇二甲基丙烯酸酯、3.5~5.0wt%的甲基丙烯酸缩水甘油酯、1.2~1.5wt%的烷基酚醚磺化琥珀酸酯、2.0~2.2wt%的丙烯酰胺、0.8~1.0wt%的改性纳米SiO2单体、1.0~1.2wt%的氢氧化铝和余量的溶剂组成。所述溶剂选自二甲苯、异丙醇、正丁醇、醋酸甲酯、醋酸乙酯、醋酸丁酯、乙二醇乙醚、以及N-甲基吡咯烷酮中的至少两种。In this embodiment, the anti-icing high-voltage wire includes a steel core inner layer composed of a steel core, and an aluminum alloy wire outer layer composed of an aluminum alloy wire covering the inner layer. The surface of the outer layer of the aluminum alloy wire is dipped, dip-coated or spin-coated with a treatment liquid, and cured at 60-80° C. for 45-50 minutes after coating to form. The thickness of the anti-icing coating film is 5-50 μm. The treatment liquid consists of 5.0-5.5 wt% ethylene glycol dimethacrylate, 3.5-5.0 wt% glycidyl methacrylate, 1.2-1.5 wt% alkylphenol ether sulfosuccinate, 2.0 ~2.2wt% of acrylamide, 0.8~1.0wt% of modified nano-SiO2 monomer, 1.0~1.2wt% of aluminum hydroxide and the balance of solvent. The solvent is at least two selected from xylene, isopropanol, n-butanol, methyl acetate, ethyl acetate, butyl acetate, ethylene glycol ether, and N-methylpyrrolidone.
实施例1AExample 1A
在本实施例中,首先,将纳米SiO2和3-氨丙基三乙氧基硅烷在50℃的无水甲苯溶液反应得到氨基改性纳米SiO2,其中3-氨丙基三乙氧基硅烷与纳米SiO2的质量比为1∶5;然后,在N,N-二甲基甲酰胺溶液中加入顺丁烯二酸酐,搅拌溶解完全得到混合溶液;在所述氨基改性纳米SiO2中加入N,N-二甲基甲酰胺搅拌均匀得到分散液;将分散液滴加到所述混合溶液中,然后在70℃搅拌反应完全,得到的反应产物经过洗涤、过滤、干燥后可得所述改性纳米SiO2单体,其中,所述顺丁烯二酸酐与纳米SiO2的质量比为1∶5。In this example, first, react nano-SiO2 and 3-aminopropyltriethoxysilane in anhydrous toluene solution at 50°C to obtain amino-modified nano-SiO2 , wherein 3-aminopropyltriethoxy The mass ratio of silane to nano-SiO2 is 1:5; then, in N, N-dimethylformamide solution, maleic anhydride is added, stirred and dissolved to obtain a mixed solution completely; in the amino-modified nano-SiO2 Add N, N-dimethylformamide to the mixture and stir to obtain a dispersion; add the dispersion dropwise to the mixed solution, then stir at 70°C to complete the reaction, and the obtained reaction product can be obtained after washing, filtering and drying The modified nano-SiO2 monomer, wherein the mass ratio of maleic anhydride to nano-SiO2 is 1:5.
实施例1BExample 1B
在本实施例中,铝合金线外层表面浸渍处理液,所述处理液由5.0wt%的乙二醇二甲基丙烯酸酯、5.0wt%的甲基丙烯酸缩水甘油酯、1.2wt%的烷基酚醚磺化琥珀酸酯、2.0wt%的丙烯酰胺、0.8wt%的改性纳米SiO2单体(实施例1A)、1.0wt%的氢氧化铝、15wt%的醋酸乙酯,和余量的N-甲基吡咯烷酮。涂覆后,在100℃固化处理45min即可得到防覆冰涂膜,所述防覆冰涂膜的厚度控制为10μm。In this embodiment, the surface of the outer layer of the aluminum alloy wire is impregnated with a treatment solution consisting of 5.0 wt% ethylene glycol dimethacrylate, 5.0 wt% glycidyl methacrylate, 1.2 wt% alkane phenol ether sulfosuccinate, 2.0wt% acrylamide, 0.8wt% modified nano-SiO2 monomer (embodiment 1A), 1.0wt% aluminum hydroxide, 15wt% ethyl acetate, and amount of N-methylpyrrolidone. After coating, the anti-icing coating film can be obtained by curing at 100° C. for 45 minutes, and the thickness of the anti-icing coating film is controlled to be 10 μm.
实施例1CExample 1C
在本实施例中,铝合金线外层表面浸渍处理液,所述处理液由5.5wt%的乙二醇二甲基丙烯酸酯、3.5wt%的甲基丙烯酸缩水甘油酯、1.5wt%的烷基酚醚磺化琥珀酸酯、2.2wt%的丙烯酰胺、1.0wt%的改性纳米SiO2单体(实施例1A)、1.2wt%的氢氧化铝、15wt%的醋酸乙酯,和余量的N-甲基吡咯烷酮。涂覆后,在100℃固化处理45min即可得到防覆冰涂膜,所述防覆冰涂膜的厚度控制为10μm。In this embodiment, the surface of the outer layer of the aluminum alloy wire is impregnated with a treatment solution consisting of 5.5 wt% ethylene glycol dimethacrylate, 3.5 wt% glycidyl methacrylate, 1.5 wt% alkanes Base phenol ether sulfosuccinate, 2.2wt% acrylamide, 1.0wt% modified nano-SiO2 monomer (embodiment 1A), 1.2wt% aluminum hydroxide, 15wt% ethyl acetate, and remaining amount of N-methylpyrrolidone. After coating, the anti-icing coating film can be obtained by curing at 100° C. for 45 minutes, and the thickness of the anti-icing coating film is controlled to be 10 μm.
比较例1AComparative Example 1A
在本对比例中,将纳米SiO2和硅烷偶联剂KH550在50℃的无水甲苯溶液反应得到改性纳米SiO2,其中硅烷偶联剂KH550与纳米SiO2的质量比为1∶5。In this comparative example, nano-SiO2 and silane coupling agent KH550 were reacted in anhydrous toluene solution at 50° C. to obtain modified nano-SiO2 , wherein the mass ratio of silane coupling agent KH550 to nano-SiO2 was 1:5.
比较例1BComparative Example 1B
在本对比例中,将纳米SiO2和γ-甲基丙烯酰氧基丙基三甲氧基硅烷在50℃的无水甲苯溶液反应得到改性纳米SiO2,其中γ-甲基丙烯酰氧基丙基三甲氧基硅烷与纳米SiO2的质量比为1∶4。In this comparative example, nano-SiO2 and γ-methacryloxypropyltrimethoxysilane were reacted in anhydrous toluene solution at 50°C to obtain modified nano-SiO2 , wherein γ-methacryloxy The mass ratio of propyltrimethoxysilane to nano-SiO2 is 1:4.
比较例1CComparative Example 1C
在本比较例中,铝合金线外层表面浸渍处理液,所述处理液由5.0wt%的乙二醇二甲基丙 烯酸酯、5.0wt%的甲基丙烯酸缩水甘油酯、1.2wt%的烷基酚醚磺化琥珀酸酯、2.0wt%的丙烯酰胺、0.8wt%的改性纳米SiO2单体(比较例1A)、1.0wt%的氢氧化铝、15wt%的醋酸乙酯,和余量的N-甲基吡咯烷酮。涂覆后,在100℃固化处理45min即可得到涂膜,所述涂膜的厚度控制为10μm。In this comparative example, the surface of the outer layer of the aluminum alloy wire is impregnated with a treatment solution consisting of 5.0 wt% ethylene glycol dimethacrylate, 5.0 wt% glycidyl methacrylate, 1.2 wt% alkanes phenol ether sulfosuccinate, 2.0wt% acrylamide, 0.8wt% modified nano-SiO2 monomer (comparative example 1A), 1.0wt% aluminum hydroxide, 15wt% ethyl acetate, and the remaining amount of N-methylpyrrolidone. After coating, a coating film can be obtained by curing at 100° C. for 45 minutes, and the thickness of the coating film is controlled to be 10 μm.
比较例1DComparative Example 1D
在本比较例中,铝合金线外层表面浸渍处理液,所述处理液由5.0wt%的乙二醇二甲基丙烯酸酯、5.0wt%的甲基丙烯酸缩水甘油酯、1.2wt%的烷基酚醚磺化琥珀酸酯、2.0wt%的丙烯酰胺、0.8wt%的改性纳米SiO2单体(比较例1B)、1.0wt%的氢氧化铝、15wt%的醋酸乙酯,和余量的N-甲基吡咯烷酮。涂覆后,在100℃固化处理45min即可得到涂膜,所述涂膜的厚度控制为10μm。In this comparative example, the surface of the outer layer of the aluminum alloy wire is impregnated with a treatment solution consisting of 5.0 wt% ethylene glycol dimethacrylate, 5.0 wt% glycidyl methacrylate, 1.2 wt% alkanes Base phenol ether sulfosuccinate, 2.0wt% acrylamide, 0.8wt% modified nano-SiO2 monomer (comparative example 1B), 1.0wt% aluminum hydroxide, 15wt% ethyl acetate, and remaining amount of N-methylpyrrolidone. After coating, a coating film can be obtained by curing at 100° C. for 45 minutes, and the thickness of the coating film is controlled to be 10 μm.
比较例1EComparative Example 1E
在本比较例中,铝合金线外层表面浸渍处理液,所述处理液由5.0wt%的乙二醇二甲基丙烯酸酯、5.0wt%的甲基丙烯酸缩水甘油酯、1.2wt%的烷基酚醚磺化琥珀酸酯、0.8wt%的改性纳米SiO2单体(实施例1A)、1.0wt%的氢氧化铝、15wt%的醋酸乙酯,和余量的N-甲基吡咯烷酮。涂覆后,在100℃固化处理45min即可得到涂膜,所述涂膜的厚度控制为10μm。In this comparative example, the surface of the outer layer of the aluminum alloy wire is impregnated with a treatment solution consisting of 5.0 wt% ethylene glycol dimethacrylate, 5.0 wt% glycidyl methacrylate, 1.2 wt% alkanes Base phenol ether sulfosuccinate, 0.8wt% modified nano-SiO2 monomer (embodiment 1A), 1.0wt% aluminum hydroxide, 15wt% ethyl acetate, and the N-methylpyrrolidone of the remainder . After coating, a coating film can be obtained by curing at 100° C. for 45 minutes, and the thickness of the coating film is controlled to be 10 μm.
比较例1FComparative Example 1F
在本比较例中,铝合金线外层表面浸渍处理液,所述处理液由6.2wt%的乙二醇二甲基丙烯酸酯、5.0wt%的甲基丙烯酸缩水甘油酯、2.0wt%的丙烯酰胺、0.8wt%的改性纳米SiO2单体(实施例1A)、1.0wt%的氢氧化铝、15wt%的醋酸乙酯,和余量的N-甲基吡咯烷酮。涂覆后,在100℃固化处理45min即可得到涂膜,所述涂膜的厚度控制为10μm。In this comparative example, the surface of the outer layer of the aluminum alloy wire is impregnated with a treatment solution consisting of 6.2 wt% ethylene glycol dimethacrylate, 5.0 wt% glycidyl methacrylate, 2.0 wt% propylene Amide, 0.8wt% modified nano-SiO2 monomer (embodiment 1A), 1.0wt% aluminum hydroxide, 15wt% ethyl acetate, and the rest of N-methylpyrrolidone. After coating, a coating film can be obtained by curing at 100° C. for 45 minutes, and the thickness of the coating film is controlled to be 10 μm.
实施例1B-1C,以及比较例1C-1F得到的涂层性能如表1所示。The coating properties of Examples 1B-1C and Comparative Examples 1C-1F are shown in Table 1.
表1Table 1
实施例2Example 2
本实施例涉及的用于高压线的铝合金线的组成和质量百分比为:0.25~0.30wt%的Si、0.20~0.25wt%的Cu、0.55~0.60wt%的Mg、0.10~0.15wt%的Mn、0.15~0.20wt%的Cr、0.08~0.10wt%的Zr、0.02~0.03wt%的Te、0.03~0.05wt%的Sr,其余为Al和不可避免的杂质。其制造方法包括以下步骤:①在790℃熔炼铝锭,然后添加在熔铝中添加合金元素,进行精炼、除渣和吹扫,通过取样分析、调整并控制合金元素的含量,浇铸成铝合金铸锭,浇铸温度为700℃;②将所述铝合金铸锭在220℃的温度下固溶化处理4.0小时;③将经过固溶化处理后的铝合金铸锭在轧机上热轧轧制成铝合金杆(直径为9.5mm),进轧温度为490℃,终轧温度为275℃;然后进行热均化处理,处理温度为200℃,时间为8小时;④在铝合金拉线机上,控制拉线速度为8~10米/秒,拉成铝合金线成品(直径为5.0mm)。The composition and mass percentage of the aluminum alloy wire used for high voltage wires involved in this embodiment are: 0.25-0.30wt% Si, 0.20-0.25wt% Cu, 0.55-0.60wt% Mg, 0.10-0.15wt% Mn , 0.15-0.20wt% Cr, 0.08-0.10wt% Zr, 0.02-0.03wt% Te, 0.03-0.05wt% Sr, and the rest are Al and unavoidable impurities. Its manufacturing method includes the following steps: ①Smelting aluminum ingots at 790°C, then adding alloying elements to the molten aluminum, refining, slag removal and purging, through sampling analysis, adjusting and controlling the content of alloying elements, and casting into aluminum alloy Ingot casting, the casting temperature is 700°C; ②The aluminum alloy ingot is solution-treated at a temperature of 220°C for 4.0 hours; ③The aluminum alloy ingot after solution treatment is hot-rolled on a rolling mill to form aluminum alloy Alloy rod (diameter 9.5mm), the rolling temperature is 490°C, the final rolling temperature is 275°C; then heat homogenization treatment is carried out, the treatment temperature is 200°C, and the time is 8 hours; ④On the aluminum alloy wire drawing machine, control the wire The speed is 8-10 m/s, and the finished aluminum alloy wire (5.0mm in diameter) is drawn.
表2给出了本实施例2A、2B以及比较例2A、2B铝合金线具体的组成和含量。Table 2 shows the specific composition and content of the aluminum alloy wires of Examples 2A, 2B and Comparative Examples 2A, 2B.
表2 余量为铝和不可避免的杂质Table 2 The balance is aluminum and unavoidable impurities
实施例2A、2B以及比较例2A、2B铝合金线的性能如表3所示。The properties of the aluminum alloy wires of Examples 2A, 2B and Comparative Examples 2A, 2B are shown in Table 3.
表3table 3
所述的蠕变伸长率是指在50N/mm2的拉伸应力条件下,在100℃放置150小时后的伸长率。The creep elongation refers to the elongation after standing at 100° C. for 150 hours under the condition of tensile stress of 50 N/mm2 .
对于本领域的普通技术人员而言,具体实施例只是对本发明进行了示例性描述,显然本发明具体实现并不受上述方式的限制,只要采用了本发明的方法构思和技术方案进行的各种非实质性的改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围之内。For those of ordinary skill in the art, the specific embodiment is only an exemplary description of the present invention, and obviously the specific implementation of the present invention is not limited by the above-mentioned methods, as long as the method concept and technical solutions of the present invention are used to carry out various Immaterial improvements, or direct application of the concept and technical solutions of the present invention to other occasions without improvement are within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510072530.1ACN105989923A (en) | 2015-02-11 | 2015-02-11 | Anti-icing high voltage wire |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510072530.1ACN105989923A (en) | 2015-02-11 | 2015-02-11 | Anti-icing high voltage wire |
| Publication Number | Publication Date |
|---|---|
| CN105989923Atrue CN105989923A (en) | 2016-10-05 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510072530.1APendingCN105989923A (en) | 2015-02-11 | 2015-02-11 | Anti-icing high voltage wire |
| Country | Link |
|---|---|
| CN (1) | CN105989923A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06162828A (en)* | 1992-11-19 | 1994-06-10 | Sumitomo Electric Ind Ltd | Icing resistant transmission line |
| JPH08195126A (en)* | 1995-01-18 | 1996-07-30 | Mitsui Eng & Shipbuild Co Ltd | Anti-icing snow transmission line |
| CN1953822A (en)* | 2004-05-14 | 2007-04-25 | 陶氏康宁爱尔兰有限公司 | coating composition |
| US20100220018A1 (en)* | 2007-05-14 | 2010-09-02 | Kazufumi Ogawa | Ice and snow accretion-preventive antenna, electric wire, and insulator having water-repellent, oil-repellent, and antifouling surface and method for manufacturing the same |
| CN102097187A (en)* | 2011-02-21 | 2011-06-15 | 山东大学 | Method for producing anti-icing aluminum conductor steel reinforced |
| CN102634695A (en)* | 2012-04-26 | 2012-08-15 | 远东电缆有限公司 | High-conductivity non-heat-treatment type moderate-intensity aluminum alloy wire and production method thereof |
| CN102977700A (en)* | 2012-12-28 | 2013-03-20 | 上海电缆研究所 | Coating for improving performance of overhead conductor comprehensively |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06162828A (en)* | 1992-11-19 | 1994-06-10 | Sumitomo Electric Ind Ltd | Icing resistant transmission line |
| JPH08195126A (en)* | 1995-01-18 | 1996-07-30 | Mitsui Eng & Shipbuild Co Ltd | Anti-icing snow transmission line |
| CN1953822A (en)* | 2004-05-14 | 2007-04-25 | 陶氏康宁爱尔兰有限公司 | coating composition |
| US20100220018A1 (en)* | 2007-05-14 | 2010-09-02 | Kazufumi Ogawa | Ice and snow accretion-preventive antenna, electric wire, and insulator having water-repellent, oil-repellent, and antifouling surface and method for manufacturing the same |
| CN102097187A (en)* | 2011-02-21 | 2011-06-15 | 山东大学 | Method for producing anti-icing aluminum conductor steel reinforced |
| CN102634695A (en)* | 2012-04-26 | 2012-08-15 | 远东电缆有限公司 | High-conductivity non-heat-treatment type moderate-intensity aluminum alloy wire and production method thereof |
| CN102977700A (en)* | 2012-12-28 | 2013-03-20 | 上海电缆研究所 | Coating for improving performance of overhead conductor comprehensively |
| Publication | Publication Date | Title |
|---|---|---|
| CN104975211B (en) | Strength aluminum alloy conductive monofilament in a kind of high conductivity heat treatment type | |
| CN103952605B (en) | A kind of preparation method of middle strength aluminium alloy monofilament | |
| CN102682872B (en) | Semihard aluminum wire, overhead wire and preparation method thereof | |
| CN103724880B (en) | A kind of cable protection pipe and application thereof | |
| CN102363849B (en) | Large-capacity non-heat treated high-conductivity aluminum alloy conductive material | |
| CN105237867A (en) | Cable sheath tube preparation method | |
| CN104008809A (en) | Cable for electric transmission lines and application thereof | |
| CN103985481A (en) | Rare earth coated Al-zinc steel stranded wire and manufacturing method of rare earth coated Al-zinc steel stranded wire | |
| CN104231412A (en) | Cold-resistant type one-step process silane crosslinked polyolefin cable material and preparation method thereof | |
| CN111074112B (en) | Aluminum alloy wire for preformed conductor splicing fitting and preparation method thereof | |
| CN117818152A (en) | High-strength PE pipe and preparation method thereof | |
| CN101937733A (en) | Civil aluminum alloy conductor, wiring and preparation method thereof | |
| CN105861893A (en) | Seawater-corrosion-resisting aluminum alloy and manufacturing method thereof | |
| CN105989923A (en) | Anti-icing high voltage wire | |
| CN102453275B (en) | Polyolefin alloy material capable of being naturally crosslinked at room temperature | |
| CN104264003A (en) | Stretch-proof energy-saving aluminum alloy conductor and preparation method thereof | |
| CN104561674A (en) | Heat-resistant aluminum alloy conductor material with electric conductivity of 62 percent and preparation method for heat-resistant aluminum alloy conductor material | |
| CN105989924A (en) | Bare conductor possessing super hydrophobicity | |
| CN105989934A (en) | Insulator possessing super-hydrophobic surface | |
| CN111128445A (en) | Aluminum-manganese alloy steel-clad reinforced overhead conductor and preparation process thereof | |
| CN105985670A (en) | Insulator capable of inhibiting icing | |
| CN116646123A (en) | Low-creep heat-resistant aluminum alloy wire and preparation method thereof | |
| CN104361921A (en) | Copper alloy single-core cable and manufacturing method thereof | |
| CN107815010A (en) | Field wear-resistant cable | |
| CN104332221A (en) | High-strength cable and preparation method thereof |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication | Application publication date:20161005 |