技术领域technical field
本发明涉及的是一种无线定位领域的技术,具体是一种基于MDS模型的直接法到达时间差定位方法。The invention relates to a technology in the field of wireless positioning, in particular to a direct time difference of arrival positioning method based on an MDS model.
背景技术Background technique
在雷达、声呐、移动通信、无线传感器网络中,需要依据到达时间差(TDOA)信息对一个信号源进行定位。所述的到达时间差是指:信号源发出信号,由分布在空间中位置已知且时间相互同步的传感器接收该信号,并测量信号到达各个传感器的时间,计算得到信号源所发出的信号到达各个传感器的时间与到达参考传感器的时间之差。In radar, sonar, mobile communication, and wireless sensor networks, it is necessary to locate a signal source based on Time Difference of Arrival (TDOA) information. The time difference of arrival refers to: the signal source sends out a signal, and the sensors distributed in the space with known positions and time synchronization receive the signal, and measure the time when the signal arrives at each sensor, and calculate the arrival time of the signal sent by the signal source at each sensor. The difference between the time of the sensor and the time of arrival at the reference sensor.
经过对现有技术的检索发现,He-Wen Wei等在期刊IEEE Transactions onSignal Processing的2010年第3期58卷发表的论文“Multidimensional scalinganalysis for passive moving target localization with TDOA and FDOAmeasurements”中提出了一种基于多维标度法(MDS)模型的定位方法,根据在无噪声情况下信号子空间和噪声子空间的正交性,推导出子空间分析的线性模型,然后利用最小二乘法计算出信号源的估计值。但该技术在计算线性模型的噪声向量协方差矩阵时,处理过程复杂,效率低下,同时其处理秩亏矩阵求逆过程中的参数估计困难。After searching the prior art, He-Wen Wei et al. proposed a method based on The positioning method of the multidimensional scaling method (MDS) model, according to the orthogonality of the signal subspace and the noise subspace in the case of no noise, derives the linear model of the subspace analysis, and then uses the least square method to calculate the estimation of the signal source value. However, when this technology calculates the noise vector covariance matrix of the linear model, the processing process is complicated and the efficiency is low. At the same time, it is difficult to estimate the parameters in the inversion process of the rank deficient matrix.
中国专利文献CN105259533A,公开日为2016年01月20日,公开了一种无线网络和移动计算领域的基于多维标度子空间分析的三阶段到达时间差定位方法,包括三个阶段,第一阶段:获知平面上传感器位置坐标,到达时间差,到达时间差的测量误差的方差和信号传播速度,计算修正的测量标量乘积矩阵,通过特征值分解,计算得到第一估计点和一个距离估计值,并计算得到一个方向向量;第二阶段:在第一估计点的基础上,利用距离估计值和方向向量,计算得到第二估计点对应的参数;第三阶段:以第二估计点所对应的参数为初始值,通过二分法求根过程,得到第三估计点所对应的参数,进一步计算第三估计点,得到坐标的最终估计值,由此确定信号源的位置。但该技术需要进行非线性方程求根,计算量较大。Chinese patent document CN105259533A, published on January 20, 2016, discloses a three-stage TDOA positioning method based on multi-dimensional scale subspace analysis in the field of wireless networks and mobile computing, including three stages, the first stage: Know the coordinates of the sensor position on the plane, the time difference of arrival, the variance of the measurement error of the time difference of arrival and the signal propagation speed, calculate the corrected measurement scalar product matrix, and calculate the first estimated point and a distance estimate through eigenvalue decomposition, and calculate the obtained A direction vector; the second stage: on the basis of the first estimated point, use the estimated distance value and the direction vector to calculate the parameters corresponding to the second estimated point; the third stage: start with the parameters corresponding to the second estimated point Value, through the process of finding the root of the dichotomy, obtain the parameter corresponding to the third estimated point, further calculate the third estimated point, obtain the final estimated value of the coordinate, and thus determine the position of the signal source. However, this technology needs to find the root of the nonlinear equation, which requires a large amount of calculation.
发明内容Contents of the invention
本发明针对现有技术存在的上述不足,提出一种基于MDS模型的直接法到达时间差定位方法。Aiming at the above-mentioned deficiencies in the prior art, the present invention proposes a direct time difference of arrival positioning method based on the MDS model.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
本发明通过采集平面内传感器的位置坐标,并测量信号源所发出的信号到达各个传感器 的到达时间与到达参考传感器的到达时间之差,即得到到达时间差,而后计算各个到达时间差所对应的到达距离差,通过分析MDS模型的有噪声标量乘积矩阵,计算协方差矩阵,最后以协方差矩阵的广义逆作为加权矩阵,经过加权求解得到信号源位置的估计值。The present invention collects the position coordinates of the sensors in the plane, and measures the difference between the arrival time of the signal sent by the signal source and the arrival time of each sensor and the arrival time of the reference sensor, that is, the arrival time difference is obtained, and then the arrival distance corresponding to each arrival time difference is calculated By analyzing the noisy scalar product matrix of the MDS model, the covariance matrix is calculated, and finally the generalized inverse of the covariance matrix is used as the weighted matrix, and the estimated value of the signal source position is obtained through weighted solution.
本发明具体包括以下步骤:The present invention specifically comprises the following steps:
1)采集分布在平面上的传感器位置坐标um=[xm,ym]T(m=1,...,M),并计算信号源所发出的信号到达各个传感器的到达时间与到达参考传感器的到达时间之差以及各个到达时间差所对应的到达距离差其中:M为传感器总数,指定第一个传感器为参考传感器;1) Collect sensor position coordinates um =[xm ,ym ]T (m=1,...,M) distributed on the plane, and calculate the arrival time and arrival time of the signals sent by the signal source to each sensor The difference between the arrival times of the reference sensor and the arrival distance difference corresponding to each arrival time difference Where: M is the total number of sensors, designate the first sensor as the reference sensor;
2)获得有噪声标量乘积矩阵并计算矩阵G,其中:2) Obtain a noisy scalar product matrix and compute the matrix G where:
3)通过公式取信号源坐标的初步估计值[x,y]T=[z1,z2]T,其中:g为矩阵G中第一列所组成的列向量,G2为矩阵G中除g以外的其余各列所组成的矩阵;3) via the formula Take the preliminary estimated value of the coordinates of the signal source [x,y]T =[z1 ,z2 ]T , where: g is the column vector composed of the first column in the matrix G, and G2 is the column vector in the matrix G other than g the matrix of the remaining columns;
4)计算协方差矩阵Φ的Moore-Penrose广义逆Φ+,其中:Φ=RQRT,I为单位矩阵4) Calculate the Moore-Penrose generalized inverse Φ+ of the covariance matrix Φ, wherein: Φ=RQRT , I is the identity matrix
即1为M个1所组成的列向量,c为的第四列元素组成的向量;That is, 1 is a column vector composed of M 1s, and c is A vector of elements in the fourth column of ;
5)通过公式重新计算z1,z2,z3;5) via the formula Recalculate z1 , z2 , z3 ;
6)计算其中:6) Calculate in:
所述的w1≥0且w2≥0时,则信号源坐标的最终估计值中,与(z1-x1)的符号相同,与(z2-y1)的符号相同;w1<0且w2≥0时,则与(z2-y1)的符号相同;w1≥0且w2<0时,则与(z1-x1)的符号相同;w1<0且w2<0时,则When w1 ≥ 0 and w2 ≥ 0, the final estimated value of the signal source coordinates middle, Same sign as (z1 -x1 ), Same sign as (z2 -y1 ); when w1 <0 and w2 ≥0, then Same sign as (z2 -y1 ); when w1 ≥0 and w2 <0, then Same sign as (z1 -x1 ); when w1 <0 and w2 <0, then
技术效果technical effect
与现有技术相比,本发明简化了协方差矩阵的计算过程,利用广义逆处理秩亏矩阵求逆问题,避免了使用正则化方法处理该问题,在计算上更简便,从而提高了定位的计算效率。Compared with the prior art, the present invention simplifies the calculation process of the covariance matrix, uses the generalized inverse to deal with the inverse problem of the rank deficient matrix, avoids using the regularization method to deal with the problem, and is more convenient in calculation, thereby improving the accuracy of positioning. Computational efficiency.
附图说明Description of drawings
图1为本发明流程示意图。Fig. 1 is a schematic flow chart of the present invention.
具体实施方式Detailed ways
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below. This embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following implementation example.
实施例1Example 1
如图1所示,本实施例具体包括以下步骤:As shown in Figure 1, this embodiment specifically includes the following steps:
1)采集分布在平面上的传感器的位置坐标um=[xm,ym]T(m=1,...,M),指定第一个传感器为参考传感器,测量信号源u0到达各个传感器的到达时间与到达参考传感器的到达时间之差并根据信号的传播速度c计算对应的到达距离差1) Collect the position coordinates um =[xm ,ym ]T (m=1,...,M) of the sensors distributed on the plane, designate the first sensor as the reference sensor, measure the signal source u0 to reach The difference between the time of arrival at each sensor and the time of arrival at the reference sensor And calculate the corresponding arrival distance difference according to the propagation speed c of the signal
所述的传感器数量M=8,设8个传感器的位置坐标分别为:先假定信号源u0的位置坐标为该坐标待求。The number of sensors M=8, the position coordinates of the eight sensors are respectively: First assume that the position coordinates of the signal source u0 are The coordinates are pending.
所述的信号源u0到达各个传感器的到达时间与到达参考传感器的到达时间之差分别为:和到达时间差的测量误差的方差假设为信号传播速度c归一化为1。信号源u0到达第m(m=2,...,8)个传感器的距离与到达参考传感器的距离之差且计算得到:和The difference between the arrival time of the signal source u0 arriving at each sensor and the arrival time of the reference sensor They are: and Arrival time difference The variance of the measurement error of is assumed to be The signal propagation speed c is normalized to 1. The difference between the distance from the signal source u0 to the mth (m=2,...,8)th sensor and the distance to the reference sensor and Calculated to get: and
所述的到达时间差的测量误差方差和信号传播速度c,计算得到到达距离差的误差方差The time difference of arrival The measurement error variance of and the signal propagation speed c, calculate the arrival distance difference error variance of
设到达时间差测量误差协方差矩阵为其中:Q1=E{[q2,...,qM]T·[q2,...,qM]}已知,一般可取其中:1M-1表示M-1阶单位矩阵,1M-1表示M-1维列向量,且元素全部是1。Let the covariance matrix of TDOA measurement error be Where: Q1 =E{[q2 ,...,qM ]T ·[q2 ,...,qM ]} is known, generally acceptable Among them: 1M-1 means M-1 order identity matrix, 1M-1 means M-1 dimensional column vector, and all elements are 1.
2)获得有噪声标量乘积矩阵并计算矩阵G。2) Obtain a noisy scalar product matrix And calculate the matrix G.
所述的有噪声标量乘积矩阵为M×M方阵,其第(m,n)(m,n=1,...,M)元素计算矩阵获得矩阵最后获得矩阵矩阵G为M×4的矩阵。The noisy scalar product matrix of It is an M×M square matrix, its (m,n)th (m,n=1,...,M) element Calculation matrix get matrix Finally get the matrix Matrix G is an M×4 matrix.
所述的矩阵G的第一列元素组成列向量g,第二列至第四列组成矩阵G2。The elements in the first column of the matrix G form a column vector g, and the second to fourth columns form a matrix G2 .
3)利用步骤2)中计算出的g、G2,通过公式计算出z1,z2,z3,得到信号源坐标的初步估计值3) Using g andG2 calculated in step 2), through the formula Calculate z1 , z2 , z3 to get a preliminary estimate of the coordinates of the signal source
4)计算取:4) calculate Pick:
计算C为4×4方阵,方阵C中的第四列元素组成列向量c,记即1为M个1所组成的列向量。 calculate C is a 4×4 square matrix, and the elements in the fourth column of the square matrix C form a column vector c, denoted That is, 1 is a column vector composed of M 1s.
计算I为单位矩阵,通过公式Φ=RQRT获得Φ。calculate I is the identity matrix, and Φ is obtained by the formula Φ=RQRT .
计算Φ的Moore-Penrose广义逆Φ+,所述的Moore-Penrose广义逆为:设Φ的满秩分 解为Φ=ΦL·ΦR,其中ΦL∈RM×r是列满秩矩阵,ΦR∈Rr×M是行满秩矩阵,r是Φ的秩,Rm×n表示m行n列实数矩阵的集合,则Φ的Moore-Penrose广义逆Φ+为Calculate the Moore-Penrose generalized inverse Φ+ of Φ, the Moore-Penrose generalized inverse is: Let the full-rank decomposition of Φ be Φ=ΦL ΦR , where ΦL ∈ RM×r is a full-rank matrix, ΦR ∈R r×M is a row-full rank matrix, r is the rank of Φ, Rm×n represents the set of real matrices with m rows and n columns, then the Moore-Penrose generalized inverse of Φ+ is
5)通过公式重新计算z1,z2,z3。5) via the formula Recalculate z1 , z2 , z3 .
6)通过公式计算w1、w2,其中:6) via the formula Calculate w1 , w2 , where:
获得信号源坐标的最终估计值 Get final estimate of signal source coordinates
所述的w1≥0且w2≥0时,则信号源坐标的最终估计值中,与(z1-x1)的符号相同,与(z2-y1)的符号相同;w1<0且w2≥0时,则与(z2-y1)的符号相同;w1≥0且w2<0时,则与(z1-x1)的符号相同;w1<0且w2<0时,则When w1 ≥ 0 and w2 ≥ 0, the final estimated value of the signal source coordinates middle, Same sign as (z1 -x1 ), Same sign as (z2 -y1 ); when w1 <0 and w2 ≥0, then Same sign as (z2 -y1 ); when w1 ≥0 and w2 <0, then Same sign as (z1 -x1 ); when w1 <0 and w2 <0, then
与现有技术相比,本发明简化了协方差矩阵的计算过程,利用广义逆处理秩亏矩阵求逆,避免了使用正则化方法处理该问题,在计算上更简便,从而提高了定位的计算效率。Compared with the prior art, the present invention simplifies the calculation process of the covariance matrix, uses the generalized inverse to deal with the inversion of the rank deficient matrix, avoids the use of the regularization method to deal with this problem, and is more convenient in calculation, thereby improving the calculation of positioning efficiency.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610209680.7ACN105891776B (en) | 2016-04-06 | 2016-04-06 | Direct method reaching time-difference localization method based on MDS models |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610209680.7ACN105891776B (en) | 2016-04-06 | 2016-04-06 | Direct method reaching time-difference localization method based on MDS models |
| Publication Number | Publication Date |
|---|---|
| CN105891776A CN105891776A (en) | 2016-08-24 |
| CN105891776Btrue CN105891776B (en) | 2018-06-12 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610209680.7AExpired - Fee RelatedCN105891776B (en) | 2016-04-06 | 2016-04-06 | Direct method reaching time-difference localization method based on MDS models |
| Country | Link |
|---|---|
| CN (1) | CN105891776B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108279411B (en)* | 2018-02-01 | 2020-04-14 | 电子科技大学 | A Passive MIMO Time Difference Location Method Based on MDS |
| CN111551897B (en)* | 2020-04-25 | 2021-01-22 | 中国人民解放军战略支援部队信息工程大学 | TDOA localization method based on weighted multidimensional scaling and polynomial root finding under sensor position error |
| CN112346014B (en)* | 2020-09-23 | 2022-06-21 | 宁波大学 | A positioning method of multistatic sonar based on signal arrival time difference |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013166546A1 (en)* | 2012-05-07 | 2013-11-14 | Commonwealth Scientific And Industrial Research Organisation | Wireless positioning |
| CN105158730A (en)* | 2015-08-14 | 2015-12-16 | 上海交通大学 | TDOA positioning method based on fourth and fifth characteristic vectors of MDS subspace |
| CN105259533A (en)* | 2015-10-28 | 2016-01-20 | 上海交通大学 | Three-stage arrival time difference positioning method based on multidimensional scaling sub space analysis |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013166546A1 (en)* | 2012-05-07 | 2013-11-14 | Commonwealth Scientific And Industrial Research Organisation | Wireless positioning |
| CN105158730A (en)* | 2015-08-14 | 2015-12-16 | 上海交通大学 | TDOA positioning method based on fourth and fifth characteristic vectors of MDS subspace |
| CN105259533A (en)* | 2015-10-28 | 2016-01-20 | 上海交通大学 | Three-stage arrival time difference positioning method based on multidimensional scaling sub space analysis |
| Title |
|---|
| Multidimensional Scaling-Based TDOA Localization Scheme Using an Auxiliary Line;Wuyang Jiang et al.;《IEEE Signal Processing Society》;20160303;第546-550页* |
| 观测站存在位置误差条件下基于MDS的多站时差定位算法;吴魏 等;《信号处理》;20150715(第7期);第770-776页* |
| Publication number | Publication date |
|---|---|
| CN105891776A (en) | 2016-08-24 |
| Publication | Publication Date | Title |
|---|---|---|
| CN110570449B (en) | A positioning and mapping method based on millimeter-wave radar and visual SLAM | |
| CN105866735B (en) | The reaching time-difference iteration localization method of amendment cost function based on MDS models | |
| CN104360315A (en) | LabVIEW-based (laboratory virtual instrumentation engineering workbench based) microphone array sound source localization method and device | |
| CN105954712B (en) | The direct localization method of the multiple target of associated wireless electric signal complex envelope and carrier phase information | |
| CN106646453B (en) | A kind of Doppler radar method for tracking target based on predicted value measurement conversion | |
| CN108051779B (en) | A TDOA-Oriented Location Node Optimization Method | |
| CN109195110B (en) | Indoor localization method based on hierarchical clustering technology and online extreme learning machine | |
| CN109543143A (en) | The Multi-sensor Fusion estimation method of non-linear belt bias system | |
| CN111551896B (en) | Weighted multidimensional scale TOA and FOA multi-source co-location method for inhibiting sensor position and speed prior errors | |
| CN105158730B (en) | TDOA localization methods based on MDS subspaces the 4th and the 5th characteristic vector | |
| CN104535965A (en) | Parallelized sound source positioning system based on embedded GPU system and method | |
| CN106226729B (en) | Relatively prime array direction of arrival angle method of estimation based on fourth-order cumulant | |
| CN106353720B (en) | Multistation consecutive tracking model based on TDOA/GROA | |
| CN103927745A (en) | Tracking and matching parallel computing method for wearable device | |
| CN105891776B (en) | Direct method reaching time-difference localization method based on MDS models | |
| CN106019215A (en) | Nested array direction-of-arrival angle estimation method based on fourth-order cumulants | |
| CN106991705B (en) | Position parameter estimation method based on P3P algorithm | |
| CN113923590B (en) | A TOA positioning method under the condition of uncertain anchor node position | |
| CN111157943B (en) | TOA-Based Sensor Position Error Suppression in Asynchronous Networks | |
| CN104330768B (en) | A kind of motor-driven sound bearing based on acoustic vector sensors method of estimation | |
| CN108761384B (en) | Target positioning method for robust sensor network | |
| CN105353351A (en) | Improved positioning method based on multi-beacon arrival time differences | |
| CN109100685A (en) | A kind of passive acoustic direction blending algorithm of two-sided quaternary cross battle array | |
| CN103792513A (en) | Thunder positioning system and method | |
| CN108398659B (en) | Direction-of-arrival estimation method combining matrix beam and root finding MUSIC |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20180612 Termination date:20210406 |