技术领域technical field
本发明涉及一种机动车辅助驾驶系统的运行方式,尤其是一种基于无人机协作的车载无人机辅助驾驶系统的运行方式。The invention relates to an operation mode of a motor vehicle assisted driving system, in particular to an operating mode of a vehicle-mounted unmanned aerial vehicle assisted driving system based on unmanned aerial vehicle cooperation.
背景技术Background technique
现有的机动车辅助驾驶系统主要通过机动车车身上安装的各种传感器或者安装于驾驶室的前置摄像头采集信号,以辅助驾驶员完成对机动车的各种控制工作。虽然各种车载传感器能采集的信号越来越多,但传统机动车测控方式有一个较大的局限就是其采集的传感器信号仅限于车身周围或者车身下侧,不能掌握距离车身较远距离的各种交通信息。同时现有的车载摄像装置视角有限,只能实现驾驶员平视范围内的图像信息采集,当遇到车身周围有障碍物或其它车辆时,传统车载摄像装置的作用更会大打折扣,驾驶员也很难掌握距离机动车车身较远距离和视线死角的交通环境中是否适合通行,直接导致驾驶员的驾驶效率降低,特别是初级驾驶员因为不了解机动车车身周围的驾驶环境信息而频发交通事故。The existing motor vehicle assisted driving system mainly collects signals through various sensors installed on the vehicle body or a front camera installed in the driver's cab to assist the driver in completing various control tasks on the motor vehicle. Although various on-board sensors can collect more and more signals, a big limitation of the traditional motor vehicle measurement and control method is that the sensor signals collected are limited to the surrounding or underside of the vehicle body, and it is impossible to grasp various signals that are far away from the vehicle body. traffic information. At the same time, the existing vehicle-mounted camera device has a limited viewing angle and can only collect image information within the driver's head-up range. When there are obstacles or other vehicles around the vehicle body, the effect of the traditional vehicle-mounted camera device will be greatly reduced, and the driver will also It is difficult to grasp whether the traffic environment with a long distance from the motor vehicle body and a blind spot is suitable for passing, which directly leads to a decrease in the driving efficiency of the driver, especially for primary drivers who do not understand the driving environment information around the motor vehicle body. ACCIDENT.
发明内容Contents of the invention
针对现有技术的不足,本发明提供了一种既能通过俯视角度采集机动车驾驶环境图像信息,同时又能辅助驾驶员高效驾驶的车载无人机辅助驾驶系统的运行方式。Aiming at the deficiencies of the prior art, the present invention provides an operation mode of a vehicle-mounted UAV assisted driving system that can not only collect the image information of the driving environment of the motor vehicle through the overlooking angle, but also assist the driver to drive efficiently.
本发明采用的技术方案如下:一种车载无人机辅助驾驶系统的运行方式,包括无人机、无人机控制器、系统控制器、车载充电装置、定位标识装置和多媒体智能终端;所述无人机上安装有摄像装置和辅助投影装置;所述无人机控制器包括图像处理模块和飞行路线测算模块;所述系统控制器包括机动车状态检测模块、模式选择模块、场景显示模块和控制信号输入模块;所述车载充电装置安装于机动车顶部,其电源输入口与机动车电力系统的电源输出口电性连接;所述定位标识装置安装于机动车顶盖对角线交点处;所述无人机能与无人机控制器进行无线通信;所述系统控制器的数据端口与无人机控制器的数据端口能通过有线方式和无线方式进行数据传输;所述多媒体智能终端的数据端口与系统控制器的数据端口能通过有线方式和无线方式进行数据传输;The technical scheme adopted by the present invention is as follows: an operation mode of a vehicle-mounted UAV assisted driving system, including a UAV, a UAV controller, a system controller, a vehicle charging device, a positioning identification device and a multimedia intelligent terminal; A camera and an auxiliary projection device are installed on the UAV; the UAV controller includes an image processing module and a flight path calculation module; the system controller includes a motor vehicle state detection module, a mode selection module, a scene display module and a control module. Signal input module; the on-board charging device is installed on the top of the motor vehicle, and its power input port is electrically connected to the power output port of the motor vehicle power system; the positioning identification device is installed at the intersection of the diagonal lines of the motor vehicle roof; the The unmanned aerial vehicle can communicate wirelessly with the unmanned aerial vehicle controller; the data port of the system controller and the data port of the unmanned aerial vehicle controller can carry out data transmission in a wired and wireless manner; the data port of the multimedia intelligent terminal The data port with the system controller can carry out data transmission through wired and wireless methods;
所述无人机上还设置有飞行充电端口;所述车载充电装置还设置有充电电缆,所述充电电缆能紧固连接在无人机的飞行充电端口上,使无人机在飞行过程中能通过充电电缆进行充电;所述系统控制器为机动车上的智能行车电脑;所述摄像装置为CCD高清摄像机;所述辅助投影装置为激光投射灯;所述多媒体智能终端为车载投影装置或者手持数字设备;The unmanned aerial vehicle is also provided with a flight charging port; the vehicle charging device is also provided with a charging cable, and the charging cable can be firmly connected to the flight charging port of the unmanned aerial vehicle, so that the unmanned aerial vehicle can Charge through a charging cable; the system controller is an intelligent driving computer on a motor vehicle; the camera is a CCD high-definition camera; the auxiliary projection device is a laser projection lamp; the multimedia intelligent terminal is a vehicle projection device or a handheld digital equipment;
所述系统包括倒车辅助模式、标准道路模式和狭窄道路模式。The system includes reverse assist mode, standard road mode and narrow road mode.
所述倒车辅助模式的运行步骤如下:The operation steps of the reverse assist mode are as follows:
a.所述系统控制器的模式选择模块检测到机动车进入倒车状态,便启动倒车辅助模式,同时发送相应的控制信号到无人机控制器;所述无人机控制器接收到信号后控制无人机按倒车辅助运行模式预设的初始飞行路线起飞,无人机在飞行过程中通过摄像装置采集飞行图像信息,并通过无线方式传输飞行图像数据到无人机控制器;a. The mode selection module of the system controller detects that the motor vehicle enters the reversing state, and then starts the reversing auxiliary mode, and sends corresponding control signals to the UAV controller; the UAV controller controls after receiving the signal The UAV takes off according to the initial flight route preset in the reverse auxiliary operation mode. During the flight, the UAV collects flight image information through the camera device, and transmits the flight image data to the UAV controller by wireless means;
b.无人机控制器中的图像处理模块对飞行图像数据进行预处理,并将处理后的飞行图像数据传输给飞行路线测算模块;飞行路线测算模块采用目标规划模型和蚁群算法对飞行图像数据进行分析计算,得到最佳飞行路径和飞行策略数据,无人机控制器便控制无人机调整飞行航线,开始实时采集倒车图像信息;b. The image processing module in the UAV controller preprocesses the flight image data, and transmits the processed flight image data to the flight route calculation module; the flight route calculation module uses the target planning model and the ant colony algorithm to process the flight image The data is analyzed and calculated to obtain the best flight path and flight strategy data, and the UAV controller controls the UAV to adjust the flight route and start collecting real-time reversing image information;
c.无人机上的摄像装置通过俯视的角度采集倒车图像信息,并将倒车图像数据传送到图像处理模块;无人机控制器中的图像处理模块对倒车图像数据预处理后传送数据到系统控制器的场景显示模块,场景显示模块通过预设参数和运动测距算法对倒车图像数据进行分析计算,得到关于倒车驾驶的警示边界距离的场景数据信息;c. The camera device on the UAV collects the reversing image information from the angle of overlooking, and transmits the reversing image data to the image processing module; the image processing module in the UAV controller preprocesses the reversing image data and transmits the data to the system control The scene display module of the device, the scene display module analyzes and calculates the reversing image data through the preset parameters and the motion ranging algorithm, and obtains the scene data information about the warning boundary distance of the reversing driving;
d.场景显示模块在倒车图像数据中添加警示边界距离的相关信息,并把处理后的倒车图像数据传送到多媒体智能终端进行显示,驾驶员通过多媒体智能终端不仅能看到实时俯视角度倒车图像,还能看到警示边界距离的相关倒车信息;同时,无人机上的辅助投影装置根据预设参数和警示边界距离信息在倒车现场地面上投影倒车位置警示边界轮廓的激光图形,使驾驶员能在弱光环境中从多个角度更直观的观察倒车情况,完成倒车作业。d. The scene display module adds relevant information about the warning boundary distance to the reversing image data, and transmits the processed reversing image data to the multimedia intelligent terminal for display. The driver can not only see the reversing image of the real-time overlooking angle through the multimedia intelligent terminal, You can also see the relevant reversing information of the warning boundary distance; at the same time, the auxiliary projection device on the UAV projects the laser graphics of the reversing position warning boundary outline on the ground of the reversing scene according to the preset parameters and the warning boundary distance information, so that the driver can In the low-light environment, observe the reversing situation more intuitively from multiple angles, and complete the reversing operation.
优选的,所述标准道路模式的运行方式如下:Preferably, the operating mode of the standard road mode is as follows:
a.驾驶员在开始驾驶前通过所述控制信号输入模块输入控制信号启动标准道路模式信号,所述系统控制器的模式选择模块发送相应的控制信号到无人机控制器,所述无人机控制器接收到信号后控制无人机按标准道路模式设定的初始飞行路线起飞,无人机在飞行过程中通过摄像装置采集飞行图像信息,并通过无线方式传输飞行图像数据到无人机控制器;a. The driver inputs a control signal to start a standard road mode signal through the control signal input module before driving, and the mode selection module of the system controller sends a corresponding control signal to the UAV controller, and the UAV After receiving the signal, the controller controls the UAV to take off according to the initial flight route set by the standard road mode. During the flight, the UAV collects the flight image information through the camera device, and transmits the flight image data to the UAV control by wireless means. device;
b.无人机控制器中的图像处理模块对飞行图像数据进行预处理,并将处理后的飞行图像数据传输给飞行路线测算模块;飞行路线测算模块首先通过飞行图像数据中的定位标识装置信息确定无人机相对于机动车的伴飞位置,然后采用目标规划模型和蚁群算法得到最佳飞行路径和飞行策略数据;在机动车行驶过程中,无人机的摄像装置以预设的频率采集飞行图像数据并传回无人机控制器,同时系统控制器通过机动车状态检测模块实时监测关于机动车车速、车轮转向角度的机动车状态数据,并将数据传送给无人机控制器;无人机控制器的飞行路线测算模块把机动车状态数据与飞行图形数据进行综合分析比对,实时的调整无人机的最佳飞行路径和飞行策略数据,控制无人机与机动车保持相对位置稳定的跟踪飞行状态;b. The image processing module in the UAV controller preprocesses the flight image data, and transmits the processed flight image data to the flight route calculation module; the flight route calculation module first uses the positioning identification device information in the flight image data Determine the accompanying flight position of the UAV relative to the motor vehicle, and then use the target programming model and ant colony algorithm to obtain the best flight path and flight strategy data; Collect flight image data and send it back to the UAV controller, and at the same time, the system controller monitors the motor vehicle status data about the vehicle speed and wheel steering angle in real time through the motor vehicle status detection module, and transmits the data to the UAV controller; The flight path calculation module of the UAV controller comprehensively analyzes and compares the state data of the motor vehicle with the flight graphic data, adjusts the optimal flight path and flight strategy data of the UAV in real time, and controls the UAV to keep relative to the motor vehicle. Position stable tracking flight status;
c.无人机在跟踪飞行过程中通过摄像装置以俯视角度采集交通道路全景图像信息,并将交通全景图像数据传送到无人机控制器中的图像处理模块;图像处理模块对交通全景图像数据预处理后传送数据到场景显示模块,场景显示模块首先通过边缘检测算法对交通全景图像数据进行分析计算,获得交通道路前方路面机动车分布数据和关于交通车流量的数据信息,然后再通过机动车行驶路线目标规划模型模型和蚁群算法对机动车分布数据和交通车流量进行分析,结合预设参数得出合理行车路线的数据信息;c. During the tracking flight, the UAV collects the panoramic image information of the traffic road with a bird's-eye view angle through the camera device, and transmits the panoramic image data of the traffic to the image processing module in the UAV controller; the image processing module processes the panoramic image data of the traffic After preprocessing, the data is sent to the scene display module. The scene display module first analyzes and calculates the traffic panoramic image data through the edge detection algorithm, obtains the distribution data of motor vehicles on the road ahead of the traffic road and the data information about traffic flow, and then passes the motor vehicle The driving route target planning model and the ant colony algorithm analyze the vehicle distribution data and traffic flow, and combine the preset parameters to obtain the data information of a reasonable driving route;
d.场景显示模块在交通全景图像数据中添加关于交通车流量数据和合理行车路线的辅助信息,并把处理后的交通全景图像数据传送到多媒体智能终端,显示实时的交通道路全景图像,驾驶员能通过多媒体智能终端从俯视角度直观的观察道路交通情况,同时获得数字化的交通车流量数据信息和建议行车路线。d. The scene display module adds auxiliary information about traffic flow data and reasonable driving routes to the traffic panorama image data, and transmits the processed traffic panorama image data to the multimedia intelligent terminal to display the real-time traffic road panorama image. It can intuitively observe road traffic conditions from a bird's-eye view through a multimedia intelligent terminal, and at the same time obtain digital traffic flow data information and suggested driving routes.
优选的,所述狭窄道路模式的运行方式如下:Preferably, the operating mode of the narrow road mode is as follows:
a.驾驶员在狭窄道路进口通过所述控制信号输入模块输入控制信号启动狭窄道路模式信号,所述系统控制器的模式选择模块发送相应的控制信号到无人机控制器,所述无人机控制器接收到信号后控制无人机按狭窄道路模式设定的初始飞行路线起飞,无人机在飞行过程中通过摄像装置采集飞行图像信息,并通过无线方式传输飞行图像数据到无人机控制器;a. The driver enters the control signal through the control signal input module at the entrance of the narrow road to start the narrow road mode signal, and the mode selection module of the system controller sends the corresponding control signal to the UAV controller, and the UAV After receiving the signal, the controller controls the UAV to take off according to the initial flight route set by the narrow road mode. During the flight, the UAV collects the flight image information through the camera device, and transmits the flight image data to the UAV control by wireless means. device;
b.无人机控制器中的图像处理模块对飞行图像数据进行预处理,并将处理后的飞行图像数据传输给飞行路线测算模块;飞行路线测算模块采用目标规划模型和蚁群算法得到最佳飞行路径和飞行策略数据,无人机控制器控制无人机先于机动车快速通过狭窄道路并返航;在飞行过程中,无人机的摄像装置以预设的频率采集飞行图像数据并传回无人机控制器,飞行路线测算模块根据最新的飞行图像数据信息实时的调整无人机的最佳飞行路径和飞行策略数据,控制无人机在飞行过程中保持最佳拍摄视角;b. The image processing module in the UAV controller preprocesses the flight image data, and transmits the processed flight image data to the flight route calculation module; the flight route calculation module adopts the target programming model and the ant colony algorithm to obtain the best Flight path and flight strategy data, the UAV controller controls the UAV to pass through the narrow road quickly and return before the motor vehicle; during the flight, the camera device of the UAV collects flight image data at a preset frequency and transmits The UAV controller and the flight path calculation module adjust the UAV’s optimal flight path and flight strategy data in real time according to the latest flight image data information, and control the UAV to maintain the best shooting angle during the flight;
c.无人机在飞行过程中通过摄像装置以俯视角度采集狭窄道路图像信息,并将道路图像数据传送到无人机控制器中的图像处理模块;图像处理模块对道路图像数据预处理后传送数据到系统控制器的场景显示模块,场景显示模块首先通过边缘检测算法对道路图像数据进行分析计算,获得道路边沿宽度、道路中障碍物尺寸的数据信息,然后结合预设机动车尺寸参数分析得出机动车是否能正常通过狭窄道路结果或者机动车正常通过狭窄道路的行车路线的数据信息;c. During the flight, the UAV collects image information of narrow roads from a bird's-eye view through the camera device, and transmits the road image data to the image processing module in the UAV controller; the image processing module preprocesses the road image data and then transmits them The data is sent to the scene display module of the system controller. The scene display module first analyzes and calculates the road image data through the edge detection algorithm to obtain the data information of the width of the road edge and the size of obstacles in the road, and then combines the preset vehicle size parameters to analyze Data information on whether the motor vehicle can normally pass through the narrow road or the driving route of the motor vehicle through the narrow road;
d.场景显示模块在狭窄道路图像数据中添加可通行道路边沿标记和建议行车路线的相关信息,并把处理后的道路图像数据传送到多媒体智能终端,显示实时的狭窄道路图像,驾驶员能通过多媒体智能终端从俯视角度直观的观察狭窄道路情况;d. The scene display module adds relevant information of passable road edge markings and suggested driving routes to the narrow road image data, and transmits the processed road image data to the multimedia intelligent terminal to display real-time narrow road images. Drivers can pass through The multimedia intelligent terminal can intuitively observe the narrow road conditions from a top-down perspective;
e.机动车驶入狭窄道路,无人机控制器控制无人机沿狭窄道路方向飞行于机动车车体的正前部,并始终与机动车车体保持固定距离,无人机上的辅助投影装置根据预设机动车尺寸参数在机动车车体之前的地面上投影车身安全边界轮廓的激光图形,使驾驶员能通过激光图形的引导顺利通过狭窄道路。e. When the motor vehicle enters a narrow road, the UAV controller controls the UAV to fly in the direction of the narrow road at the front of the motor vehicle body, and always maintain a fixed distance from the motor vehicle body. The auxiliary projection on the UAV The device projects the laser graphics of the safety boundary contour of the vehicle body on the ground in front of the vehicle body according to the preset size parameters of the vehicle, so that the driver can pass the narrow road smoothly through the guidance of the laser graphics.
采用本发明所述的车载无人机辅助驾驶系统,能帮助驾驶员更直观更准确的了解距离机动车车身较远距离的交通环境信息,对周围道路交通情况进行预判,制定更加合理的驾驶策略和行车路线。同时,车载无人机辅助驾驶系统还能协助初级驾驶员轻松的完成倒车泊车和快速通过狭窄道路的驾驶作业。Adopting the vehicle-mounted UAV assisted driving system described in the present invention can help the driver to more intuitively and accurately understand the traffic environment information that is far away from the vehicle body, predict the surrounding road traffic conditions, and formulate more reasonable driving. Policy and driving directions. At the same time, the vehicle-mounted drone assisted driving system can also assist junior drivers to easily complete reverse parking and quickly drive through narrow roads.
附图说明Description of drawings
图1为本发明车载无人机辅助驾驶系统的系统框图;Fig. 1 is the system block diagram of vehicle-mounted unmanned aerial vehicle assisted driving system of the present invention;
图2为本发明车载无人机辅助驾驶系统实施例1的现场示意图;Fig. 2 is the on-site schematic diagram of Embodiment 1 of the vehicle-mounted UAV assisted driving system of the present invention;
图3为本发明车载无人机辅助驾驶系统实施例2的现场示意图;Fig. 3 is the on-site schematic diagram of Embodiment 2 of the vehicle-mounted UAV assisted driving system of the present invention;
图4为本发明车载无人机辅助驾驶系统实施例3的现场示意图。Fig. 4 is a schematic diagram of the scene of Embodiment 3 of the vehicle-mounted UAV assisted driving system of the present invention.
图中100无人机,101摄像装置,102辅助投影装置,200无人机控制器,201图像处理模块,202飞行路线测算模块,300系统控制器,301模式选择模块,302场景显示模块,303机动车状态检测模块,304控制信号输入模块,400多媒体智能终端,500车载充电装置,501充电电缆,502定位标识装置,600警示边界轮廓,700安全边界轮廓。In the figure 100 drone, 101 camera device, 102 auxiliary projection device, 200 drone controller, 201 image processing module, 202 flight path calculation module, 300 system controller, 301 mode selection module, 302 scene display module, 303 Motor vehicle status detection module, 304 control signal input module, 400 multimedia intelligent terminal, 500 vehicle charging device, 501 charging cable, 502 positioning identification device, 600 warning boundary outline, 700 safety boundary outline.
具体实施方式Detailed ways
由图1和图3所示,一种车载无人机辅助驾驶系统,主要包括无人机100、无人机控制器200、系统控制器300、车载充电装置500、定位标识装置502和多媒体智能终端400;其中无人机100与无人机控制器200都安装有无线通信装置,使无人机100能与无人机控制器200进行无线通信;系统控制器300也安装有无线通信装置,能与与无人机控制器200通过无线方式进行数据传输,同时系统控制器300的数据端口与无人机控制器200的数据端口能通过有线方式电性连接,进行有线数据传输;多媒体智能终端400的数据端口与系统控制器300的数据端口能通过有线方式和无线方式进行数据传输。As shown in Figures 1 and 3, a vehicle-mounted UAV assisted driving system mainly includes a UAV 100, a UAV controller 200, a system controller 300, a vehicle charging device 500, a positioning identification device 502 and a multimedia intelligence system. The terminal 400; wherein the UAV 100 and the UAV controller 200 are equipped with a wireless communication device, so that the UAV 100 can communicate wirelessly with the UAV controller 200; the system controller 300 is also equipped with a wireless communication device, It can carry out data transmission with the UAV controller 200 in a wireless manner, and at the same time, the data port of the system controller 300 and the data port of the UAV controller 200 can be electrically connected by wire to perform wired data transmission; the multimedia intelligent terminal The data port of 400 and the data port of the system controller 300 can perform data transmission through wired and wireless methods.
无人机100采用四轴无人机,并且在无人机100机身下侧安装有能调节摄像角度的摄像装置101,其中摄像装置101采用CCD高清摄像机;同时在无人机100上还安装有激光投射灯作为辅助投影装置102,能向地面投影激光图形,通过无人机控制器200能控制辅助投影装置102的投影方向和投影图形的外观;在无人机100上还设置有飞行充电端口,方便无人机100在飞行过程中实现有线充电,增加无人机100的续航时间。The UAV 100 adopts a four-axis UAV, and a camera device 101 capable of adjusting the camera angle is installed on the underside of the UAV 100 fuselage, wherein the camera device 101 adopts a CCD high-definition camera; There is a laser projection lamp as the auxiliary projection device 102, which can project laser graphics to the ground, and the projection direction of the auxiliary projection device 102 and the appearance of the projection graphics can be controlled by the UAV controller 200; The port is convenient for the UAV 100 to realize wired charging during flight, and increases the battery life of the UAV 100.
无人机控制器200主要包括图像处理模块201和飞行路线测算模块202;图像处理模块201完成对图像数据的预处理,以方便系统中其它基于图像数据进行系统运算分析的模块能更好的完成数据计算工作;飞行路线测算模块202通过预设参数和基于来自摄像装置101的实时图形数据进行数据运算,以确定无人机100飞行的最佳航行路线,其中要完成对航路规划约束参数的设置和计算,包括无人机100的最大航程、最小步长、最大爬升角度、最小飞行高度、最小转弯半径和最大转弯角度等。The drone controller 200 mainly includes an image processing module 201 and a flight path calculation module 202; the image processing module 201 completes the preprocessing of image data, so that other modules in the system that perform system calculation and analysis based on image data can be better completed Data calculation work; the flight route calculation module 202 performs data calculations based on preset parameters and real-time graphic data from the camera device 101 to determine the best flight route for the flight of the UAV 100, wherein the setting of the route planning constraint parameters is completed and calculation, including the maximum range, minimum step size, maximum climb angle, minimum flight height, minimum turning radius and maximum turning angle of the UAV 100.
系统控制器300主要包括机动车状态检测模块303、模式选择模块301、场景显示模块302和控制信号输入模块304;机动车状态检测模块303实时监测机动车所处的运行状态和处理来自机动车各传感器的监测数据,包括车速、车辆转向角度、变速箱运行状态等数据;模式选择模块301根据机动车状态检测模块303的监测数据和控制信号输入模块304的输入数据确定系统将以何种模式进行运行,并发送相应信号到无人机控制器200;场景显示模块302根据系统不同的运行模式计算分析实时图像信息,等到相关的环境数据,同时把最终的实时图像信号结合数据提示信息发送到多媒体终端;控制信号输入模块304主要方便驾驶员输入各项指令完成对系统的预设及实时控制。这里采用机动车上的智能行车电脑作为系统控制器300控制各种数据信息的采集和运算,实现整个车载无人机辅助驾驶系统的正常运行。System controller 300 mainly includes motor vehicle state detection module 303, mode selection module 301, scene display module 302 and control signal input module 304; The monitoring data of the sensor includes data such as vehicle speed, vehicle steering angle, gearbox operating status; the mode selection module 301 determines which mode the system will perform according to the monitoring data of the motor vehicle state detection module 303 and the input data of the control signal input module 304 run, and send corresponding signals to the UAV controller 200; the scene display module 302 calculates and analyzes real-time image information according to different operating modes of the system, waits for relevant environmental data, and sends the final real-time image signal combined with data prompt information to the multimedia Terminal; the control signal input module 304 is mainly convenient for the driver to input various commands to complete the preset and real-time control of the system. Here, the intelligent driving computer on the motor vehicle is used as the system controller 300 to control the collection and calculation of various data information, so as to realize the normal operation of the entire vehicle-mounted UAV assisted driving system.
车载充电装置500安装于机动车顶部,其电源输入口与机动车电力系统的电源输出口电性连接,同时在车载充电装置500上还设置有可自动收放的充电电缆501,该充电电缆501能紧固连接在无人机100的飞行充电端口上,使无人机100在飞行过程中能通过充电电缆501进行充电;在机动车顶盖对角线交点处还安装有定位标识装置502,无人机100通过定位标识装置502进行起飞航点和摄像角度的定位,同时系统控制器300在进行图像数据计算分析的过程中能通过定位标识装置502建立实际环境尺寸的参考坐标系。The on-board charging device 500 is installed on the top of the motor vehicle, and its power input port is electrically connected to the power output port of the motor vehicle power system. It can be firmly connected to the flight charging port of the UAV 100, so that the UAV 100 can be charged through the charging cable 501 during the flight; a positioning identification device 502 is also installed at the intersection of the diagonal lines of the roof of the motor vehicle, The UAV 100 uses the positioning marking device 502 to locate the take-off waypoint and the camera angle, and at the same time, the system controller 300 can use the positioning marking device 502 to establish a reference coordinate system of the actual environment size during the calculation and analysis of image data.
多媒体智能终端400为车载投影装置或者手持数字设备,能帮助驾驶员以俯视的角度观察机动车车身周围的情况和距离机动车较远距离的交通道路实时路况环境信息,同时多媒体智能终端400还能以文字或图形的方式把相关数据叠加到实时图像上进行显示,帮助驾驶员了解更详尽的驾驶情况,做出合理的驾驶预判。The multimedia intelligent terminal 400 is a vehicle-mounted projection device or a handheld digital device, which can help the driver to observe the situation around the vehicle body and the real-time road condition and environmental information of the traffic roads that are far away from the vehicle from a bird's-eye view. Superimpose relevant data on real-time images in the form of text or graphics for display, helping drivers understand more detailed driving conditions and make reasonable driving predictions.
本发明车载无人机辅助驾驶系统的运行方式主要包括倒车辅助模式、标准道路模式和狭窄道路模式,下面结合具体实施例对各运行方式作进一步详细说明:The operating mode of the vehicle-mounted UAV assisted driving system of the present invention mainly includes a reversing auxiliary mode, a standard road mode and a narrow road mode. Below in conjunction with specific embodiments, each operating mode will be further described in detail:
实施例1:由图2所示,本实施例将说明车载无人机辅助驾驶系统在倒车辅助模式状态的运行方式,具体的运行步骤如下:Embodiment 1: As shown in Figure 2, this embodiment will illustrate the operation mode of the vehicle-mounted UAV assisted driving system in the reversing auxiliary mode state, and the specific operation steps are as follows:
a.系统控制器300的模式选择模块301检测到机动车进入倒车状态,便启动倒车辅助模式,同时发送相应的控制信号到无人机控制器200;无人机控制器200接收到信号后控制无人机100按倒车辅助运行模式预设的初始飞行路线起飞,无人机100在飞行过程中通过摄像装置101采集飞行图像信息,并通过无线方式传输飞行图像数据到无人机控制器200;a. The mode selection module 301 of the system controller 300 detects that the motor vehicle enters the reversing state, and then starts the reversing auxiliary mode, and sends a corresponding control signal to the UAV controller 200 at the same time; the UAV controller 200 controls after receiving the signal The UAV 100 takes off according to the preset initial flight route of the reversing auxiliary operation mode, and the UAV 100 collects flight image information through the camera device 101 during the flight, and transmits the flight image data to the UAV controller 200 in a wireless manner;
b.无人机控制器200中的图像处理模块201对飞行图像数据进行预处理,并将处理后的飞行图像数据传输给飞行路线测算模块202;飞行路线测算模块202采用目标规划模型和蚁群算法对飞行图像数据进行分析计算,得到最佳飞行路径和飞行策略数据,无人机控制器200便控制无人机100调整飞行航线,开始实时采集倒车图像信息;其中在目标规划模型中要完成对各种航路规划约束参数的设置和计算,包括无人机100的最大航程、最小步长、最大爬升角度、最小飞行高度、最小转弯半径和最大转弯角度等;b. the image processing module 201 in the UAV controller 200 preprocesses the flight image data, and transmits the processed flight image data to the flight route calculation module 202; the flight route calculation module 202 adopts the target planning model and the ant colony The algorithm analyzes and calculates the flight image data, and obtains the optimal flight path and flight strategy data. The UAV controller 200 controls the UAV 100 to adjust the flight route, and starts to collect the reversing image information in real time; among them, the target planning model needs to complete Setting and calculation of various route planning constraint parameters, including the maximum range, minimum step size, maximum climb angle, minimum flight height, minimum turning radius, and maximum turning angle of the UAV 100;
c.无人机100上的摄像装置101通过俯视的角度采集倒车图像信息,并将倒车图像数据传送到图像处理模块201;无人机控制器200中的图像处理模块201对倒车图像数据预处理后传送数据到系统控制器300的场景显示模块302,场景显示模块302通过预设参数和运动测距算法对倒车图像数据进行分析计算,得到倒车驾驶的警示边界距离等场景数据信息;c. The camera device 101 on the UAV 100 gathers the reversing image information by looking down, and transmits the reversing image data to the image processing module 201; the image processing module 201 in the UAV controller 200 preprocesses the reversing image data After the data is transmitted to the scene display module 302 of the system controller 300, the scene display module 302 analyzes and calculates the reversing image data through the preset parameters and the motion ranging algorithm, and obtains scene data information such as the warning boundary distance of reversing driving;
d.场景显示模块302在倒车图像数据中添加警示边界距离等相关信息,并把处理后的倒车图像数据传送到多媒体智能终端400进行显示,驾驶员通过多媒体智能终端400不仅能看到实时俯视角度倒车图像,还能看到警示边界距离等相关倒车信息;同时,无人机100上的辅助投影装置102根据车身长宽等预设参数和警示边界距离信息在倒车现场地面上投影倒车位置警示边界轮廓600的激光图形,使驾驶员能在弱光环境中从多个角度更直观的观察倒车情况,完成倒车作业。d. The scene display module 302 adds relevant information such as the warning boundary distance to the reversing image data, and transmits the processed reversing image data to the multimedia intelligent terminal 400 for display. The driver can not only see the real-time bird's-eye view angle through the multimedia intelligent terminal 400 In the reversing image, you can also see relevant reversing information such as the warning boundary distance; at the same time, the auxiliary projection device 102 on the UAV 100 projects the reversing position warning boundary on the ground of the reversing scene according to the preset parameters such as the length and width of the vehicle body and the warning boundary distance information The laser graphics of Contour 600 enable the driver to observe the reversing situation more intuitively from multiple angles in low-light environment and complete the reversing operation.
实施例2:由图3所示,本实施例将说明车载无人机辅助驾驶系统在标准道路模式状态的运行方式,具体的运行步骤如下:Embodiment 2: As shown in Figure 3, this embodiment will illustrate the operation mode of the vehicle-mounted UAV assisted driving system in the standard road mode state, and the specific operation steps are as follows:
a.驾驶员在开始驾驶前通过所述控制信号输入模块304输入控制信号启动标准道路模式信号,系统控制器300的模式选择模块301发送相应的控制信号到无人机控制器200,无人机控制器200接收到信号后控制无人机100按标准道路模式设定的初始飞行路线起飞,无人机100在飞行过程中通过摄像装置101采集飞行图像信息,并通过无线方式传输飞行图像数据到无人机控制器200;a. The driver inputs the control signal through the control signal input module 304 to start the standard road mode signal before driving, and the mode selection module 301 of the system controller 300 sends the corresponding control signal to the UAV controller 200, and the UAV After receiving the signal, the controller 200 controls the unmanned aerial vehicle 100 to take off according to the initial flight route set by the standard road mode, and the unmanned aerial vehicle 100 collects flight image information through the camera device 101 during the flight, and transmits the flight image data to UAV controller 200;
b.无人机控制器200中的图像处理模块201对飞行图像数据进行预处理,并将处理后的飞行图像数据传输给飞行路线测算模块202;飞行路线测算模块202首先通过飞行图像数据中的定位标识装置502信息确定无人机100相对于机动车的伴飞位置,然后采用目标规划模型和蚁群算法得到最佳飞行路径和飞行策略数据;其中在目标规划模型中要完成对各种航路规划约束参数的设置和计算,包括无人机100的最大航程、最小步长、最大爬升角度、最小飞行高度、最小转弯半径和最大转弯角度等;在机动车行驶过程中,无人机100的摄像装置101以预设的频率采集飞行图像数据并传回无人机控制器200,同时系统控制器300通过机动车状态检测模块303实时监测机动车车速、车轮转向角度等机动车状态数据,并将数据传送给无人机控制器200;无人机控制器200的飞行路线测算模块202把机动车状态数据与飞行图形数据进行综合分析比对,实时的调整无人机100的最佳飞行路径和飞行策略数据,控制无人机100与机动车保持相对位置稳定的跟踪飞行状态;b. the image processing module 201 in the UAV controller 200 preprocesses the flight image data, and transmits the processed flight image data to the flight path calculation module 202; Positioning identification device 502 information determines the accompanying flying position of UAV 100 relative to the motor vehicle, and then uses the target planning model and ant colony algorithm to obtain the best flight path and flight strategy data; The setting and calculation of planning constraint parameters, including the maximum range, minimum step size, maximum climb angle, minimum flight height, minimum turning radius, and maximum turning angle of the UAV 100; The camera device 101 collects flight image data at a preset frequency and transmits it back to the UAV controller 200. Meanwhile, the system controller 300 monitors the vehicle status data such as the vehicle speed and the wheel steering angle in real time through the vehicle status detection module 303, and The data is sent to the UAV controller 200; the flight path calculation module 202 of the UAV controller 200 comprehensively analyzes and compares the motor vehicle status data and the flight graphic data, and adjusts the optimal flight path of the UAV 100 in real time and flight strategy data, to control the UAV 100 and the motor vehicle to maintain a relatively stable tracking flight state;
c.无人机100在跟踪飞行过程中通过摄像装置101以俯视角度采集交通道路全景图像信息,并将交通全景图像数据传送到无人机控制器200中的图像处理模块201;图像处理模块201对交通全景图像数据预处理后传送数据到场景显示模块302,场景显示模块302首先通过边缘检测算法对交通全景图像数据进行计算分析,分辨出机动车图像和道路标识图像信息,最后获得交通道路前方路面机动车分布数据和交通车流量等数据信息,然后再通过机动车行驶路线目标规划模型和蚁群算法对机动车分布数据和交通车流量数据进行分析,结合预设参数得出合理行车路线数据等信息;c. UAV 100 collects traffic road panorama image information by camera device 101 with a bird's-eye view angle in the tracking flight process, and traffic panorama image data is sent to the image processing module 201 in the UAV controller 200; Image processing module 201 After the traffic panoramic image data is preprocessed, the data is sent to the scene display module 302. The scene display module 302 first calculates and analyzes the traffic panoramic image data through the edge detection algorithm, distinguishes the motor vehicle image and the road sign image information, and finally obtains the traffic road ahead Data information such as road surface motor vehicle distribution data and traffic flow, and then analyze the motor vehicle distribution data and traffic flow data through the motor vehicle driving route target planning model and ant colony algorithm, and combine the preset parameters to obtain reasonable driving route data and other information;
d.场景显示模块302在交通全景图像数据中添加交通车流量数据和合理行车路线等辅助信息,并把处理后的交通全景图像数据传送到多媒体智能终端400,显示实时的交通道路全景图像,驾驶员能通过多媒体智能终端400从俯视角度直观的观察道路交通情况,同时获得数字化的交通车流量数据信息和建议行车路线。d. The scene display module 302 adds auxiliary information such as traffic flow data and reasonable driving routes to the traffic panoramic image data, and transmits the processed traffic panoramic image data to the multimedia intelligent terminal 400 to display real-time traffic road panoramic images, driving The driver can intuitively observe the road traffic situation from a bird's-eye view through the multimedia intelligent terminal 400, and at the same time obtain digitalized traffic flow data information and suggested driving routes.
实施例3:由图4所示,本实施例将说明车载无人机辅助驾驶系统在狭窄道路模式状态的运行方式,具体的运行步骤如下:Embodiment 3: As shown in Figure 4, this embodiment will illustrate the operation mode of the vehicle-mounted UAV assisted driving system in the narrow road mode state, and the specific operation steps are as follows:
a.驾驶员在狭窄道路进口通过所述控制信号输入模块304输入控制信号启动狭窄道路模式信号,所述系统控制器300的模式选择模块301发送相应的控制信号到无人机控制器200,无人机控制器200接收到信号后控制无人机100按狭窄道路模式设定的初始飞行路线起飞,无人机100在飞行过程中通过摄像装置101采集飞行图像信息,并通过无线方式传输飞行图像数据到无人机控制器200;a. The driver inputs a control signal through the control signal input module 304 at the narrow road entrance to start the narrow road mode signal, and the mode selection module 301 of the system controller 300 sends a corresponding control signal to the UAV controller 200, without After receiving the signal, the man-machine controller 200 controls the UAV 100 to take off according to the initial flight route set in the narrow road mode, and the UAV 100 collects flight image information through the camera device 101 during the flight, and transmits the flight image by wireless Data to UAV controller 200;
b.无人机控制器200中的图像处理模块201对飞行图像数据进行预处理,并将处理后的飞行图像数据传输给飞行路线测算模块202;飞行路线测算模块202采用目标规划模型和蚁群算法得到最佳飞行路径和飞行策略数据,无人机控制器200控制无人机100先于机动车快速通过狭窄道路并返航;其中在目标规划模型中要完成对各种航路规划约束参数的设置和计算,包括无人机100的最大航程、最小步长、最大爬升角度、最小飞行高度、最小转弯半径和最大转弯角度等;在飞行过程中,无人机100的摄像装置101以预设的频率采集飞行图像数据并传回无人机控制器200,飞行路线测算模块202根据最新的飞行图像数据信息实时的调整无人机100的最佳飞行路径和飞行策略数据,控制无人机100在飞行过程中保持最佳拍摄视角;b. the image processing module 201 in the UAV controller 200 preprocesses the flight image data, and transmits the processed flight image data to the flight route calculation module 202; the flight route calculation module 202 adopts the target planning model and the ant colony The algorithm obtains the optimal flight path and flight strategy data, and the UAV controller 200 controls the UAV 100 to pass through the narrow road quickly and return before the motor vehicle; among them, in the target planning model, it is necessary to complete the setting of various route planning constraint parameters and calculation, including the maximum range, the minimum step size, the maximum climb angle, the minimum flight height, the minimum turning radius and the maximum turning angle, etc. of the UAV 100; The flight image data is collected frequently and sent back to the UAV controller 200, and the flight path calculation module 202 adjusts the optimal flight path and flight strategy data of the UAV 100 in real time according to the latest flight image data information, and controls the UAV 100 in the Maintain the best shooting angle during the flight;
c.无人机100在飞行过程中通过摄像装置101以俯视角度采集狭窄道路图像信息,并将道路图像数据传送到无人机控制器200中的图像处理模块201;图像处理模块201对道路图像数据预处理后传送数据到系统控制器300的场景显示模块302,场景显示模块302首先通过边缘检测算法对道路图像数据进行分析计算,获得道路边沿宽度、道路中障碍物尺寸等数据信息,然后结合预设机动车尺寸参数分析得出机动车是否能正常通过狭窄道路结果或者机动车正常通过狭窄道路的行车路线等数据信息;c. UAV 100 gathers image information of narrow roads with a bird's-eye view angle by camera device 101 during flight, and road image data is sent to the image processing module 201 in the UAV controller 200; Image processing module 201 road image After the data is preprocessed, the data is sent to the scene display module 302 of the system controller 300. The scene display module 302 first analyzes and calculates the road image data through an edge detection algorithm to obtain data information such as road edge width and obstacle size in the road, and then combines Preset motor vehicle size parameter analysis to obtain data information such as whether the motor vehicle can pass through the narrow road normally or the driving route of the motor vehicle normally passing through the narrow road;
d.场景显示模块302在狭窄道路图像数据中添加可通行道路边沿标记和建议行车路线等相关信息,并把处理后的道路图像数据传送到多媒体智能终端400,显示实时的狭窄道路图像,驾驶员能通过多媒体智能终端400从俯视角度直观的观察狭窄道路情况;d. The scene display module 302 adds relevant information such as passable road edge marks and suggested driving routes to the narrow road image data, and transmits the processed road image data to the multimedia intelligent terminal 400 to display real-time narrow road images. The condition of narrow roads can be visually observed from a bird's-eye view through the multimedia intelligent terminal 400;
e.机动车驶入狭窄道路,无人机控制器200控制无人机100沿狭窄道路方向飞行于机动车车体的正前部,并始终与机动车车体保持固定距离,无人机100上的辅助投影装置102根据预设机动车尺寸等参数在机动车车体之前的地面上投影车身安全边界轮廓700的激光图形,使驾驶员能通过激光图形的引导顺利通过狭窄道路。e. The motor vehicle enters a narrow road, the UAV controller 200 controls the UAV 100 to fly in the front of the motor vehicle body along the direction of the narrow road, and always maintains a fixed distance from the motor vehicle body, the UAV 100 The auxiliary projection device 102 on the vehicle projects the laser pattern of the safety boundary outline 700 of the vehicle body on the ground in front of the vehicle body according to the parameters such as the preset vehicle size, so that the driver can pass through the narrow road smoothly through the guidance of the laser pattern.
综上所述,采用本发明所述的车载无人机辅助驾驶系统,不仅能使驾驶员通过俯视的角度观察机动车车体的运动状态,还能帮助驾驶员更直观准确的了解距离机动车车身较远距离的交通环境信息,对周围道路交通情况进行预判,制定更加合理的驾驶策略和行车路线。同时车载无人机辅助驾驶系统还能协助初级驾驶员轻松的完成倒车泊车和快速通过狭窄道路的驾驶作业,减少交通擦挂事故的发生。In summary, the vehicle-mounted UAV assisted driving system of the present invention can not only enable the driver to observe the movement state of the vehicle body from a bird's-eye view, but also help the driver to understand the distance from the vehicle body more intuitively and accurately. The long-distance traffic environment information of the car body can predict the surrounding road traffic conditions and formulate more reasonable driving strategies and driving routes. At the same time, the vehicle-mounted UAV assisted driving system can also assist junior drivers to easily complete reverse parking and quickly drive through narrow roads, reducing the occurrence of traffic accidents.
本发明的上述实施例仅仅是为说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。The above-mentioned embodiments of the present invention are only examples for illustrating the present invention, rather than limiting the implementation of the present invention. For those of ordinary skill in the art, other variations and modifications in various forms can be made on the basis of the above description. It is not possible to exhaustively list all implementation manners here. All obvious changes or changes derived from the technical solutions of the present invention are still within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610220211.5ACN105825713B (en) | 2016-04-08 | 2016-04-08 | The method of operation of vehicle-mounted unmanned aerial vehicle DAS (Driver Assistant System) |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610220211.5ACN105825713B (en) | 2016-04-08 | 2016-04-08 | The method of operation of vehicle-mounted unmanned aerial vehicle DAS (Driver Assistant System) |
| Publication Number | Publication Date |
|---|---|
| CN105825713A CN105825713A (en) | 2016-08-03 |
| CN105825713Btrue CN105825713B (en) | 2018-07-24 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610220211.5AExpired - Fee RelatedCN105825713B (en) | 2016-04-08 | 2016-04-08 | The method of operation of vehicle-mounted unmanned aerial vehicle DAS (Driver Assistant System) |
| Country | Link |
|---|---|
| CN (1) | CN105825713B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106371460A (en)* | 2016-09-07 | 2017-02-01 | 四川天辰智创科技有限公司 | Target searching method and apparatus |
| KR102630681B1 (en)* | 2016-10-11 | 2024-01-30 | 삼성전자주식회사 | Display apparatus and method for generating capture image |
| CN108068697A (en)* | 2016-11-11 | 2018-05-25 | 法乐第(北京)网络科技有限公司 | Camera system, method and automobile based on automobile |
| JP6624022B2 (en)* | 2016-11-24 | 2019-12-25 | 株式会社デンソー | Information providing system, vehicle device, information providing program |
| CN108116314B (en)* | 2016-11-29 | 2021-02-23 | 比亚迪股份有限公司 | Automobile and automobile panoramic image system |
| CN108227731B (en)* | 2016-12-15 | 2020-08-07 | 比亚迪股份有限公司 | Unmanned aerial vehicle anti-collision method and device |
| CN108225340A (en)* | 2016-12-21 | 2018-06-29 | 致伸科技股份有限公司 | Automatic driving assistance system and method thereof |
| CN107038496B (en)* | 2017-03-29 | 2020-10-27 | 中南大学 | Automatic express delivery path planning method and system for unmanned aerial vehicle |
| CN106898156B (en)* | 2017-04-12 | 2023-09-05 | 上海量明科技发展有限公司 | Parking assisting method for vehicle, aircraft and system |
| CN106940888B (en)* | 2017-04-14 | 2023-11-24 | 上海工程技术大学 | An auxiliary device for image pixel calibration of high-altitude structures |
| CN107176052B (en)* | 2017-06-23 | 2018-08-14 | 杭州力谱科技有限公司 | Electric vehicle electric energy sharing system and sharing method |
| CN107264316A (en)* | 2017-06-23 | 2017-10-20 | 温州睿楚科技有限公司 | An electric vehicle charging system using guide rail power transmission |
| CN108312869B (en)* | 2017-06-23 | 2020-07-03 | 杭州力谱科技有限公司 | Electric vehicle electric energy sharing method |
| CN108749649B (en)* | 2017-06-23 | 2021-10-22 | 杭州力谱科技有限公司 | An electric vehicle power supply system |
| CN107272739B (en)* | 2017-07-24 | 2020-09-29 | 湘潭大学 | A kind of spraying system and method based on sub-mother system |
| CN107479575B (en)* | 2017-08-25 | 2019-12-17 | 中国地质大学(武汉) | A kind of multi-rotor unmanned aerial vehicle flight control method and system |
| CN108426580B (en)* | 2018-01-22 | 2021-04-30 | 中国地质大学(武汉) | Unmanned aerial vehicle and intelligent vehicle collaborative navigation method based on image recognition |
| CN108216639A (en)* | 2018-04-03 | 2018-06-29 | 惠安县金建达电子科技有限公司 | A kind of improved multifunctional microbubble plant protection unmanned plane |
| CN108682166A (en)* | 2018-05-02 | 2018-10-19 | 苏州诺登德智能科技有限公司 | A kind of Traffic Announcement control system based on unmanned plane |
| CN109544971A (en)* | 2018-05-31 | 2019-03-29 | 亿航智能设备(广州)有限公司 | Dispatching method, unmanned plane and unmanned plane cluster based on unmanned plane |
| CN108919805B (en)* | 2018-07-04 | 2021-09-28 | 江苏大块头智驾科技有限公司 | Vehicle unmanned auxiliary system |
| KR20200017582A (en)* | 2018-07-26 | 2020-02-19 | 현대자동차주식회사 | System and method for assisting autonomous driving of vehicle using drone |
| CN109102719A (en)* | 2018-10-08 | 2018-12-28 | 广州中劲达科技有限公司 | A kind of waterway bridge night based on laser shows contour method |
| CN109177753A (en)* | 2018-10-19 | 2019-01-11 | 如皋福大工程技术研究院有限公司 | Automobile-used aircraft and the automobile for carrying aircraft |
| CN109597432B (en)* | 2018-11-30 | 2022-03-18 | 航天时代飞鸿技术有限公司 | Unmanned aerial vehicle take-off and landing monitoring method and system based on vehicle-mounted camera unit |
| CN113165753B (en)* | 2018-12-05 | 2024-03-26 | 株式会社尼罗沃克 | Unmanned aerial vehicle system, unmanned aerial vehicle, mobile body, control method for unmanned aerial vehicle system, and computer-readable storage medium |
| CN110143200A (en)* | 2019-04-01 | 2019-08-20 | 深圳市元征科技股份有限公司 | A kind of vehicle status data acquisition methods, device, mobile unit and storage medium |
| CN110045736B (en)* | 2019-04-12 | 2022-02-15 | 淮安信息职业技术学院 | A UAV-Based Curve Obstacle Avoidance Method |
| CN110046612A (en)* | 2019-05-05 | 2019-07-23 | 淮安信息职业技术学院 | A kind of road group mist state parameter monitoring system and its method |
| CN110085052A (en)* | 2019-05-10 | 2019-08-02 | 华侨大学 | A kind of parking condition display methods and advertising method is launched for parking vehicle |
| JP2022542481A (en)* | 2019-08-03 | 2022-10-03 | ザン,チュアンルイ | Advanced display and control systems for driver assistance |
| CN110379046A (en)* | 2019-09-04 | 2019-10-25 | 李良杰 | Flight formula panorama automobile data recorder |
| CN110562248B (en)* | 2019-09-17 | 2020-09-25 | 浙江吉利汽车研究院有限公司 | Automatic parking system and automatic parking method based on unmanned aerial vehicle |
| CN110632925B (en)* | 2019-09-18 | 2020-12-01 | 同济大学 | A UAV-assisted AGV self-guidance system and method thereof |
| CN111137411B (en)* | 2019-12-30 | 2024-10-15 | 广州航海学院 | Autonomous water surface garbage cleaning system |
| KR102384404B1 (en)* | 2020-10-29 | 2022-04-08 | 주식회사 아이에이 | Vehicle driving information control system based camera and method of control ling vehicle driving information based camera |
| JP2022127779A (en)* | 2021-02-22 | 2022-09-01 | トヨタ自動車株式会社 | Transport system for transport vehicle and method for transporting transport vehicle by transport system |
| CN113022879B (en)* | 2021-05-17 | 2021-09-14 | 南京航天国器智能装备有限公司 | Follow car and tie unmanned aerial vehicle and keep away barrier system |
| CN113815529A (en)* | 2021-08-23 | 2021-12-21 | 华人运通(上海)云计算科技有限公司 | Backing-up assisting method, equipment and system based on unmanned aerial vehicle and vehicle |
| CN114125380B (en)* | 2021-11-05 | 2024-11-05 | 中科晶锐(苏州)科技有限公司 | Target monitoring system and target monitoring method |
| CN113973196A (en)* | 2021-11-09 | 2022-01-25 | 北京萌特博智能机器人科技有限公司 | Mobile projection robot and mobile projection method thereof |
| CN114283595A (en)* | 2021-11-12 | 2022-04-05 | 上海国际港务(集团)股份有限公司 | Method, equipment and system for guiding road signs of wharf storage yard |
| CN114115287B (en)* | 2021-12-06 | 2023-09-22 | 西安航空学院 | Unmanned vehicle-unmanned aerial vehicle air-ground collaborative patrol and guide system |
| CN114155511B (en)* | 2021-12-13 | 2024-11-26 | 吉林大学 | A method for collecting environmental information for autonomous vehicles on public roads |
| CN114152254A (en)* | 2021-12-14 | 2022-03-08 | 广州极飞科技股份有限公司 | Positioning method, equipment and system and operation method, system and electronic equipment |
| CN114093219B (en)* | 2021-12-31 | 2024-01-26 | 鄂尔多斯职业学院 | Auxiliary training system and method for second subjects in small automobile driving license examination |
| CN114625174B (en)* | 2022-05-12 | 2022-08-02 | 之江实验室 | A V2X-based vehicle-mounted UAV control method and device |
| CN114715390A (en)* | 2022-06-07 | 2022-07-08 | 西华大学 | Auxiliary drone, emergency rescue system and emergency rescue method |
| US20240201683A1 (en)* | 2022-12-15 | 2024-06-20 | Ford Global Technologies, Llc | Vehicle data sharing for coordinated robot actions |
| CN116206449B (en)* | 2023-02-24 | 2025-01-07 | 深圳市普渡科技有限公司 | Robot, intersection detection method for robot, and storage medium |
| CN116909317B (en)* | 2023-09-14 | 2023-11-21 | 飞客工场科技(北京)有限公司 | Unmanned aerial vehicle control system and method based on terminal Internet of vehicles |
| CN117864113B (en)* | 2024-02-01 | 2024-12-17 | 重庆赛力斯凤凰智创科技有限公司 | Parking method, electronic equipment and storage medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103434352A (en)* | 2013-09-09 | 2013-12-11 | 厦门大学 | Accompanying flight system arranged on land vehicle |
| CN105035322A (en)* | 2015-07-07 | 2015-11-11 | 范充 | Vehicle-mounted flight device |
| CN105083120A (en)* | 2014-04-30 | 2015-11-25 | 比亚迪股份有限公司 | Detection system and flight apparatus for automobile surrounding environment |
| CN105185143A (en)* | 2015-07-29 | 2015-12-23 | 深圳前海探鹿科技有限公司 | Vehicle-mounted unmanned aerial vehicle |
| CN105460218A (en)* | 2015-12-18 | 2016-04-06 | 苏州贝多环保技术有限公司 | Novel intelligent automobile |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103434352A (en)* | 2013-09-09 | 2013-12-11 | 厦门大学 | Accompanying flight system arranged on land vehicle |
| CN105083120A (en)* | 2014-04-30 | 2015-11-25 | 比亚迪股份有限公司 | Detection system and flight apparatus for automobile surrounding environment |
| CN105035322A (en)* | 2015-07-07 | 2015-11-11 | 范充 | Vehicle-mounted flight device |
| CN105185143A (en)* | 2015-07-29 | 2015-12-23 | 深圳前海探鹿科技有限公司 | Vehicle-mounted unmanned aerial vehicle |
| CN105460218A (en)* | 2015-12-18 | 2016-04-06 | 苏州贝多环保技术有限公司 | Novel intelligent automobile |
| Title |
|---|
| "一种无人机航拍影像快速特征提取与匹配算法";余淮 等;《电子与信息学报》;20160331;正文全文* |
| "无人飞机在交通信息采集中的研究进展和展望";彭仲仁 等;《交通运输工程学报》;20121231;正文全文* |
| Publication number | Publication date |
|---|---|
| CN105825713A (en) | 2016-08-03 |
| Publication | Publication Date | Title |
|---|---|---|
| CN105825713B (en) | The method of operation of vehicle-mounted unmanned aerial vehicle DAS (Driver Assistant System) | |
| US11789461B2 (en) | Autonomous vehicle collision mitigation systems and methods | |
| JP7043450B2 (en) | Vehicle control devices, vehicle control methods, and programs | |
| CN112817307B (en) | A vehicle assisted driving system and method based on UAV road perception | |
| US11407407B2 (en) | Vehicle control device, vehicle control method, and storage medium | |
| CN109828581B (en) | Multi-mode intelligent electric sweeper with automatic driving system | |
| CN105389988B (en) | A kind of express highway intelligent cruising inspection system of multiple no-manned plane collaboration | |
| KR101714185B1 (en) | Driver Assistance Apparatus and Vehicle Having The Same | |
| EP4067821A1 (en) | Path planning method for vehicle and path planning apparatus for vehicle | |
| US9862364B2 (en) | Collision mitigated braking for autonomous vehicles | |
| CN103465906B (en) | A kind of parking area automatic train stop implementation method based on telepresenc | |
| EP2900531B1 (en) | Determining changes in a driving environment based on vehicle behavior | |
| CN103473951B (en) | A kind of Automatic Carpark Control System based on telepresenc | |
| KR20130085235A (en) | System for driving manless of car | |
| EP4202587A1 (en) | Methods and systems for providing incremental remote assistance to an autonomous vehicle | |
| CN108710368A (en) | Unmanned driving system and electric automobile | |
| JP2015074321A (en) | Parking support system | |
| US11183063B2 (en) | Recognition and guidance to specialized stop spaces for different sized vehicles | |
| EP4400367A1 (en) | Method and apparatus for controlling angle of view of vehicle-mounted camera, and vehicle | |
| CN111746789B (en) | Shooting system, server, control method and storage medium storing program | |
| EP2246762B1 (en) | System and method for driving assistance at road intersections | |
| US20220219678A1 (en) | Parking Assist Method and Parking Assist Apparatus | |
| CN115158360A (en) | Automatic driving vehicle over-bending control system and method thereof | |
| CN109131356A (en) | Man-machine mixing enhancing intelligent driving system and electric car | |
| US20250236308A1 (en) | Information providing device and information providing method |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20180724 Termination date:20210408 |