技术领域technical field
本发明涉及一种个体化骨骼模型的解剖型接骨板的设计及成型方法。The invention relates to a method for designing and forming an anatomical bone plate of an individualized bone model.
背景技术Background technique
骨折内固定是通过骨科手术在骨折复位后用金属或生物材料维持骨折对位和稳定的技术。数字技术和医学影像技术的发展,给骨科手术方案术前规划及术中的实施提供了技术支持。精确的个性化术前计划能减少经验治疗的主观臆测,增加手术操作上的成功率,且术前计划也能使术者提前准备手术过程中所需的内固定植入物。如何在虚拟环境中获得优化设计的内固定器械模型,是实现精准骨科虚拟手术的关键环节。现有内固定接骨板数字建模的方法主要包括计算机软件辅助顺向三维建模以及基于三维扫描的逆向软件建模。基于CAD软件的三维建模,能根据实体的几何特征进行精确的建模,其前提是需具备实体的原始尺寸数据或工程草图测量,设计耗时长,多用于规则钢板的建模。这种顺向设计方式通过实体测量能解决部分数据来源问题,但往往受限于骨科内固定器械表面结构的复杂性以及骨骼表面曲率的高度个体化差异、因此设计的接骨板解剖匹配度较差,难以发挥最佳的固定性能;基于三维扫描的逆向软件建模主要是采用表面点云采集的方法,其精度易受实体的表面色泽、粗糙度影响,往往需在被测接骨板表面涂上“反差增强剂”或做喷漆处理,即使如此,重建出的模型仍存在失真。由于个体差异,现有常规接骨板难以实现个体化高度解剖匹配设计,使术中钢板塑形不良,或者植入物不能完全匹配患肢的骨骼解剖结构,导致部分病人发生骨折愈合延迟,畸形愈合或骨不连,甚至内植入物断裂,取出困难等等问题。Internal fixation of fractures is the technique of maintaining fracture alignment and stability with metal or biomaterials after fracture reduction through orthopedic surgery. The development of digital technology and medical imaging technology provides technical support for the preoperative planning and intraoperative implementation of orthopedic surgery. Precise personalized preoperative planning can reduce the subjective guesswork of empirical treatment, increase the success rate of surgical operation, and preoperative planning can also enable the surgeon to prepare the internal fixation implants required during the operation in advance. How to obtain the optimally designed internal fixation device model in the virtual environment is a key link in realizing precise orthopedic virtual surgery. The existing digital modeling methods of internal fixation bone plates mainly include computer software-assisted forward three-dimensional modeling and reverse software modeling based on three-dimensional scanning. The 3D modeling based on CAD software can carry out accurate modeling according to the geometric characteristics of the entity. The premise is to have the original size data of the entity or the measurement of the engineering sketch. The design takes a long time and is mostly used for the modeling of regular steel plates. This orthodromic design method can solve some data source problems through physical measurement, but it is often limited by the complexity of the surface structure of orthopedic internal fixation devices and the highly individual differences in the curvature of the bone surface, so the anatomical matching degree of the designed bone plate is poor , it is difficult to exert the best fixation performance; the reverse software modeling based on 3D scanning mainly adopts the method of surface point cloud acquisition, and its accuracy is easily affected by the surface color and roughness of the entity, and it is often necessary to paint the surface of the bone plate under test A "contrast enhancer" or paint job, and even then, the reconstructed model is still distorted. Due to individual differences, it is difficult for existing conventional bone plates to achieve individualized highly anatomical matching design, resulting in poor shaping of the plate during operation, or the implant cannot fully match the bone anatomy of the affected limb, resulting in delayed fracture healing and malunion in some patients. Or nonunion, or even fracture of the implant, difficulty in taking it out, etc.
因此,针对现有技术不足,本发明将提供一种个性化解剖型接骨板的设计和成型方法,可快速定制出适合不同病人、不同部位和不同骨折形态学特点的高匹配解剖型内固定接骨板,使患者的内固定接骨板的完全个体化,且可以自定义钉道方向以实现术前规划和力学性能的个体化设计,从而克服传统接骨板的不足。Therefore, aiming at the deficiencies of the prior art, the present invention will provide a design and forming method of a personalized anatomical bone plate, which can quickly customize a high-matching anatomical internal fixation bone plate suitable for different patients, different parts and different fracture morphology characteristics. The plate makes the patient's internal fixation bone plate completely individualized, and the direction of the screw track can be customized to realize the individual design of preoperative planning and mechanical properties, so as to overcome the shortcomings of the traditional bone plate.
发明内容Contents of the invention
本发明提供一种个体化骨骼模型的解剖型接骨板的设计及成型方法能够避免传统接骨板在设计、制造和应用方面的不足之处,提供个性化钢板的设计与制造成型,该个性化钢板的构建方法能够快速定制出按照不同病人、不同部位、不同骨折特点的骨骼匹配度极高的个体化解剖型内固定钢板,使患者的内固定钢板完全个体化并发挥最佳的固定性能。The present invention provides a design and forming method of anatomical bone plate of individualized bone model, which can avoid the shortcomings of traditional bone plate in design, manufacture and application, and provide the design, manufacture and molding of personalized steel plate. The personalized steel plate The construction method can quickly customize an individualized anatomical internal fixation plate with a high degree of bone matching according to different patients, different parts, and different fracture characteristics, so that the patient's internal fixation plate can be completely individualized and exert the best fixation performance.
为解决上述问题,本发明采用如下技术方案:In order to solve the above problems, the present invention adopts the following technical solutions:
一种个体化骨骼模型的解剖型接骨板的设计及成型方法,包括如下步骤:A method for designing and forming an anatomical bone plate of an individualized bone model, comprising the following steps:
1)数据采集:使用CT机对患者进行患侧和健侧两侧扫描,采集影像文件为Dicom格式文件,导入医学三维重建软件进行三维重建;1) Data acquisition: Use CT machine to scan both sides of the affected side and the healthy side of the patient, collect image files in Dicom format, and import them into medical 3D reconstruction software for 3D reconstruction;
2)使用医学三维重建软件,根据CT机扫描数据把图像分割,并进行骨三维模型重建,在逆向工程软件中实体化并转换成实体模型格式文件;2) Use medical 3D reconstruction software to segment the image according to the CT scan data, reconstruct the bone 3D model, materialize it in the reverse engineering software and convert it into a solid model format file;
3)使用计算机辅助设计CAD软件,根据骨的三维重建模型,使用偏置曲面和修剪片体功能精确绘制出钢板放置处骨骼的不规则曲面,设计出在健侧与骨相贴合的钢板,通过镜像功能获得患侧钢板主体,同时结合患侧骨碎片大小、位置以及骨折线长度,设计出螺钉孔的间距及分布,保存文件;3) Using computer-aided design CAD software, according to the three-dimensional reconstruction model of the bone, using the offset surface and trimming functions to accurately draw the irregular surface of the bone where the steel plate is placed, and design a steel plate that fits the bone on the healthy side. The mirror image function obtains the main body of the affected side plate, and at the same time combines the size and position of the bone fragments on the affected side and the length of the fracture line to design the spacing and distribution of the screw holes and save the file;
4)将钢板STL格式模型导入3D打印系统,进行金属3D打印,再进行尾部锥度曲面抛光加工处理。4) Import the STL format model of the steel plate into the 3D printing system for metal 3D printing, and then polish the tail taper surface.
作为优选,所述步骤3)中的精确绘制是根据重建的骨三维模型在逆向工程软件中提取出的轮廓线,使用CAD软件中偏置曲面和修剪片体功能精确绘制出钢板放置处骨骼的不规则曲面,由此设计出在健侧与骨相贴合的钢板。As a preference, the accurate drawing in step 3) is based on the contour line extracted in the reverse engineering software based on the reconstructed bone three-dimensional model, using the offset surface and trimming sheet functions in the CAD software to accurately draw the bone at the place where the steel plate is placed Irregular curved surface, thus designing a plate that fits the bone on the healthy side.
作为优选,所述步骤3)中对定制化钢板模型进行镜像处理是根据人体骨骼的对称性,把得到的健侧定制化钢板模型进行镜像处理,得到对侧骨定制钢板模型。Preferably, the mirror image processing of the customized steel plate model in the step 3) is based on the symmetry of the human skeleton, mirroring the obtained healthy side customized steel plate model to obtain the contralateral bone customized steel plate model.
本发明的有益效果为:大大提高了接骨板内固定治疗的灵活性,可实现个性化的精准治疗;对个体化解剖型接骨板在设计上采用了患者双侧肢体CT/MRI断层影像数据作为三维重建的基础,数据来源可靠且容易获取,可在基层医疗机构实施;采用的逆向工程技术建模,实现快速设计制造,可以改变目前手术医生根据目测和经验进行预弯塑形钢板的现状,这会降低接骨板的疲劳强度,增加植入物断裂的风险,现在不但省去这个步骤,而且减少手术创伤,缩短手术时间,减少骨折畸形愈合、骨不连等并发症发生,完全符合现代骨科内固定微创BO的理念;个性化订制的钢板,克服传统手术钢板因为无法满足不同病人的骨弧度不一,骨折线各异,而导致的钢钉和克氏针无法准确估计数量,手术费用高昂。The beneficial effects of the present invention are: the flexibility of internal fixation treatment of bone plate is greatly improved, and individualized precise treatment can be realized; the CT/MRI tomographic image data of bilateral limbs of the patient is used as the design for the individualized anatomical bone plate. The basis of 3D reconstruction, the data source is reliable and easy to obtain, and can be implemented in grassroots medical institutions; the reverse engineering technology modeling adopted can realize rapid design and manufacture, which can change the current situation that surgeons pre-bend and shape steel plates based on visual inspection and experience. This will reduce the fatigue strength of the bone plate and increase the risk of implant fracture. Now not only this step is omitted, but also the surgical trauma is reduced, the operation time is shortened, and the occurrence of complications such as fracture malunion and bone nonunion is completely in line with modern orthopedics. The concept of minimally invasive BO for internal fixation; customized steel plates overcome the inability to accurately estimate the number of steel nails and Kirschner wires due to the inability of traditional surgical steel plates to meet the different bone curvatures and fracture lines of different patients. Expensive.
附图说明Description of drawings
图1为本发明健侧接骨板设计结构图。Fig. 1 is a design structure diagram of the bone plate on the healthy side of the present invention.
图2是在CAD软件中精确设计个性化钢板的结构图。Figure 2 is a structural diagram of the precise design of personalized steel plates in CAD software.
图3是进行钉道规划分布以避免螺钉穿入关节面的结构图。Fig. 3 is a structural diagram of planning and distribution of screw tracks to avoid screws penetrating into the articular surface.
图4是对定制化钢板模型进行镜像处理得到对侧骨定制钢板模型的结构图。Fig. 4 is a structural diagram of the customized steel plate model of the contralateral bone obtained by mirroring the customized steel plate model.
图5是将个性化解剖型接骨板进行金属3D打印成型的结构图。Fig. 5 is a structural diagram of metal 3D printing of personalized anatomical bone plate.
具体实施方式detailed description
如图1-图5所示,As shown in Figure 1-Figure 5,
1)数据采集:使用CT机对患者进行患侧和健侧两侧扫描,采集影像文件为Dicom格式文件,导入医学三维重建软件进行三维重建;1) Data acquisition: Use CT machine to scan both sides of the affected side and the healthy side of the patient, collect image files in Dicom format, and import them into medical 3D reconstruction software for 3D reconstruction;
2)使用医学三维重建软件,根据CT机扫描数据把图像分割,并进行骨三维模型重建,在逆向工程软件中实体化并转换成实体模型格式文件;2) Use medical 3D reconstruction software to segment the image according to the CT scan data, reconstruct the bone 3D model, materialize it in the reverse engineering software and convert it into a solid model format file;
3)使用计算机辅助设计CAD软件,根据骨的三维重建模型,使用偏置曲面和修剪片体功能精确绘制出钢板放置处骨骼的不规则曲面,设计出在健侧与骨相贴合的钢板,通过镜像功能获得患侧钢板主体,同时结合患侧骨碎片大小、位置以及骨折线长度,设计出螺钉孔的间距及分布,保存文件;3) Using computer-aided design CAD software, according to the three-dimensional reconstruction model of the bone, using the offset surface and trimming functions to accurately draw the irregular surface of the bone where the steel plate is placed, and design a steel plate that fits the bone on the healthy side. The mirror image function obtains the main body of the affected side plate, and at the same time combines the size and position of the bone fragments on the affected side and the length of the fracture line to design the spacing and distribution of the screw holes and save the file;
4)将钢板STL格式模型导入3D打印系统,进行金属3D打印,再进行尾部锥度曲面抛光加工处理。4) Import the STL format model of the steel plate into the 3D printing system for metal 3D printing, and then polish the tail taper surface.
所述步骤3)中的精确绘制是根据重建的骨三维模型在逆向工程软件中提取出的轮廓线,使用CAD软件中偏置曲面和修剪片体功能精确绘制出钢板放置处骨骼的不规则曲面,由此设计出在健侧与骨相贴合的钢板。The precise drawing in step 3) is based on the outline extracted from the reconstructed bone three-dimensional model in the reverse engineering software, using the offset surface and trimming functions in the CAD software to accurately draw the irregular surface of the bone where the steel plate is placed , thus designing a plate that fits the bone on the healthy side.
所述步骤3)中对定制化钢板模型进行镜像处理是根据人体骨骼的对称性,把得到的健侧定制化钢板模型进行镜像处理,得到对侧骨定制钢板模型。Mirroring the customized steel plate model in step 3) is based on the symmetry of the human skeleton, mirroring the obtained healthy side customized steel plate model to obtain the contralateral bone customized steel plate model.
本发明的有益效果为:大大提高了接骨板内固定治疗的灵活性,可实现个性化的精准治疗;对个体化解剖型接骨板在设计上采用了患者双侧肢体CT/MRI断层影像数据作为三维重建的基础,数据来源可靠且容易获取,可在基层医疗机构实施;采用的逆向工程技术建模,实现快速设计制造,可以改变目前手术医生根据目测和经验进行预弯塑形钢板的现状,这会降低接骨板的疲劳强度,增加植入物断裂的风险,现在不但省去这个步骤,而且减少手术创伤,缩短手术时间,减少骨折畸形愈合、骨不连等并发症发生,完全符合现代骨科内固定微创BO的理念;个性化订制的钢板,克服传统手术钢板因为无法满足不同病人的骨弧度不一,骨折线各异,而导致的钢钉和克氏针无法准确估计数量,手术费用高昂。The beneficial effects of the present invention are: the flexibility of internal fixation treatment of bone plate is greatly improved, and individualized precise treatment can be realized; the CT/MRI tomographic image data of bilateral limbs of the patient is used as the design for the individualized anatomical bone plate. The basis of 3D reconstruction, the data source is reliable and easy to obtain, and can be implemented in grassroots medical institutions; the reverse engineering technology modeling adopted can realize rapid design and manufacture, which can change the current situation that surgeons pre-bend and shape steel plates based on visual inspection and experience. This will reduce the fatigue strength of the bone plate and increase the risk of implant fracture. Now not only this step is omitted, but also the surgical trauma is reduced, the operation time is shortened, and the occurrence of complications such as fracture malunion and bone nonunion is completely in line with modern orthopedics. The concept of minimally invasive BO for internal fixation; customized steel plates overcome the inability to accurately estimate the number of steel nails and Kirschner wires due to the inability of traditional surgical steel plates to meet the different bone curvatures and fracture lines of different patients. Expensive.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。The above is only a specific implementation of the present invention, but the scope of protection of the present invention is not limited thereto, and any changes or replacements that do not come to mind through creative work shall be covered within the scope of protection of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610325281.7ACN105816232A (en) | 2016-05-17 | 2016-05-17 | Design and molding method of anatomical bone plate for individualized bone model |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610325281.7ACN105816232A (en) | 2016-05-17 | 2016-05-17 | Design and molding method of anatomical bone plate for individualized bone model |
| Publication Number | Publication Date |
|---|---|
| CN105816232Atrue CN105816232A (en) | 2016-08-03 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610325281.7APendingCN105816232A (en) | 2016-05-17 | 2016-05-17 | Design and molding method of anatomical bone plate for individualized bone model |
| Country | Link |
|---|---|
| CN (1) | CN105816232A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106976240A (en)* | 2017-04-07 | 2017-07-25 | 新疆大学 | The design and preparation method of a kind of customization stabilizing brace after flexor tendon injury in hand reparation |
| CN106991720A (en)* | 2017-06-02 | 2017-07-28 | 南方医科大学 | A personalized acetabular reconstruction plate pre-bending method based on finite element analysis |
| CN107049517A (en)* | 2017-04-20 | 2017-08-18 | 莆田学院附属医院(莆田市第二医院) | A kind of floated navigation module of 3D printing |
| CN107252364A (en)* | 2017-07-06 | 2017-10-17 | 武汉市黄陂区人民医院 | A kind of humerus model of 3D printing and preparation method thereof |
| CN107397589A (en)* | 2017-06-28 | 2017-11-28 | 芜湖启泽信息技术有限公司 | A kind of 3D printing navigation template and its manufacture method for aiding in shin bone prosthesis |
| CN107397583A (en)* | 2017-06-28 | 2017-11-28 | 芜湖启泽信息技术有限公司 | A kind of medical shin bone fixing device of 3D printing and preparation method thereof |
| CN107909431A (en)* | 2017-11-10 | 2018-04-13 | 广州华钛三维材料制造有限公司 | A kind of medical instrument custom-built system and method based on high in the clouds |
| CN107993277A (en)* | 2017-11-28 | 2018-05-04 | 河海大学常州校区 | Damage location artificial skelecton patch formation model method for reconstructing based on priori |
| CN108246862A (en)* | 2017-12-30 | 2018-07-06 | 梅木精密工业(珠海)有限公司 | A kind of bone plate quick molding method |
| CN108261241A (en)* | 2018-01-16 | 2018-07-10 | 河北瑞鹤医疗器械有限公司 | Orthopedic implant method for customizing, apparatus and system |
| CN108338828A (en)* | 2018-03-05 | 2018-07-31 | 新疆大学 | A kind of design and manufacturing method of the customization Degradable bone fracture plate of composite construction |
| CN108392270A (en)* | 2018-03-13 | 2018-08-14 | 广东工业大学 | The method of Medical bone plate digital customization |
| CN109255812A (en)* | 2018-08-30 | 2019-01-22 | 南方医科大学 | A kind of human body forearm morphology symmetrical analysis method based on 3D image |
| CN109528282A (en)* | 2018-10-22 | 2019-03-29 | 沙洲职业工学院 | A kind of preparation method customizing shin bone locking steel plate |
| CN110341192A (en)* | 2019-07-12 | 2019-10-18 | 东北大学 | A VR-based guide plate 3D printing model building method |
| CN110481028A (en)* | 2019-04-03 | 2019-11-22 | 甘肃普锐特科技有限公司 | A kind of method of 3D printing surgery simulation manikin manufacture |
| CN110559066A (en)* | 2019-10-07 | 2019-12-13 | 丁浩男 | Fixing support device with auxiliary fracture reduction function |
| CN108103427B (en)* | 2017-11-14 | 2020-07-28 | 广东工业大学 | Laser shock strengthening method and device for β-type medical titanium alloy bone plate for long bone fractures |
| CN112089430A (en)* | 2019-05-29 | 2020-12-18 | 上海理工大学 | Method of making fixed plate for patients with fracture and joint replacement |
| CN112704557A (en)* | 2019-10-25 | 2021-04-27 | 可成生物科技股份有限公司 | Customized construction method and system for modular bone plate lamination |
| CN113143432A (en)* | 2021-04-14 | 2021-07-23 | 常州工程职业技术学院 | Personalized bone fracture plate design method based on contralateral bone shape matching |
| CN113681895A (en)* | 2021-08-20 | 2021-11-23 | 宜宾显微智能科技有限公司 | Guide pin positioning guide plate customization and simulation verification system and method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070173815A1 (en)* | 2003-02-12 | 2007-07-26 | Tsuyoshi Murase | Method, members, system and program for bone correction |
| CN101259046A (en)* | 2007-03-07 | 2008-09-10 | 上海双申医疗器械有限公司 | Titanium individuation mandibula prosthesis and preparation |
| CN101953726A (en)* | 2010-09-20 | 2011-01-26 | 李长安 | Personalized skull dummy and preparation method thereof |
| CN102033980A (en)* | 2010-10-13 | 2011-04-27 | 北方工业大学 | Digital preparation method of titanium mesh skull prosthesis |
| US20140276867A1 (en)* | 2013-03-13 | 2014-09-18 | University Of Cincinnati | Patient-specific assemblies, jigs, and methods for a personalized total hip arthroplasty system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070173815A1 (en)* | 2003-02-12 | 2007-07-26 | Tsuyoshi Murase | Method, members, system and program for bone correction |
| CN101259046A (en)* | 2007-03-07 | 2008-09-10 | 上海双申医疗器械有限公司 | Titanium individuation mandibula prosthesis and preparation |
| CN101953726A (en)* | 2010-09-20 | 2011-01-26 | 李长安 | Personalized skull dummy and preparation method thereof |
| CN102033980A (en)* | 2010-10-13 | 2011-04-27 | 北方工业大学 | Digital preparation method of titanium mesh skull prosthesis |
| US20140276867A1 (en)* | 2013-03-13 | 2014-09-18 | University Of Cincinnati | Patient-specific assemblies, jigs, and methods for a personalized total hip arthroplasty system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106976240B (en)* | 2017-04-07 | 2019-09-06 | 新疆大学 | Design and preparation method of a customized fixation brace after finger flexor tendon injury repair |
| CN106976240A (en)* | 2017-04-07 | 2017-07-25 | 新疆大学 | The design and preparation method of a kind of customization stabilizing brace after flexor tendon injury in hand reparation |
| CN107049517A (en)* | 2017-04-20 | 2017-08-18 | 莆田学院附属医院(莆田市第二医院) | A kind of floated navigation module of 3D printing |
| CN106991720A (en)* | 2017-06-02 | 2017-07-28 | 南方医科大学 | A personalized acetabular reconstruction plate pre-bending method based on finite element analysis |
| CN106991720B (en)* | 2017-06-02 | 2020-02-14 | 南方医科大学 | Personalized acetabulum reconstruction steel plate pre-bending method based on finite element analysis and operation |
| CN107397589A (en)* | 2017-06-28 | 2017-11-28 | 芜湖启泽信息技术有限公司 | A kind of 3D printing navigation template and its manufacture method for aiding in shin bone prosthesis |
| CN107397583A (en)* | 2017-06-28 | 2017-11-28 | 芜湖启泽信息技术有限公司 | A kind of medical shin bone fixing device of 3D printing and preparation method thereof |
| CN107252364B (en)* | 2017-07-06 | 2023-09-12 | 武汉市黄陂区人民医院 | A 3D printed humerus model and its preparation method |
| CN107252364A (en)* | 2017-07-06 | 2017-10-17 | 武汉市黄陂区人民医院 | A kind of humerus model of 3D printing and preparation method thereof |
| CN107909431A (en)* | 2017-11-10 | 2018-04-13 | 广州华钛三维材料制造有限公司 | A kind of medical instrument custom-built system and method based on high in the clouds |
| CN108103427B (en)* | 2017-11-14 | 2020-07-28 | 广东工业大学 | Laser shock strengthening method and device for β-type medical titanium alloy bone plate for long bone fractures |
| CN107993277B (en)* | 2017-11-28 | 2019-12-17 | 河海大学常州校区 | Artificial bone repair model reconstruction method based on prior knowledge |
| CN107993277A (en)* | 2017-11-28 | 2018-05-04 | 河海大学常州校区 | Damage location artificial skelecton patch formation model method for reconstructing based on priori |
| CN108246862A (en)* | 2017-12-30 | 2018-07-06 | 梅木精密工业(珠海)有限公司 | A kind of bone plate quick molding method |
| CN108261241A (en)* | 2018-01-16 | 2018-07-10 | 河北瑞鹤医疗器械有限公司 | Orthopedic implant method for customizing, apparatus and system |
| CN108261241B (en)* | 2018-01-16 | 2020-02-14 | 河北瑞鹤医疗器械有限公司 | Method, device and system for customizing orthopedics endophyte |
| CN108338828B (en)* | 2018-03-05 | 2021-03-16 | 新疆大学 | Design and manufacturing method of a customized degradable bone plate with composite structure |
| CN108338828A (en)* | 2018-03-05 | 2018-07-31 | 新疆大学 | A kind of design and manufacturing method of the customization Degradable bone fracture plate of composite construction |
| CN108392270A (en)* | 2018-03-13 | 2018-08-14 | 广东工业大学 | The method of Medical bone plate digital customization |
| CN109255812A (en)* | 2018-08-30 | 2019-01-22 | 南方医科大学 | A kind of human body forearm morphology symmetrical analysis method based on 3D image |
| CN109528282A (en)* | 2018-10-22 | 2019-03-29 | 沙洲职业工学院 | A kind of preparation method customizing shin bone locking steel plate |
| CN110481028B (en)* | 2019-04-03 | 2021-05-18 | 甘肃普锐特科技有限公司 | Method for manufacturing 3D printing medical simulation human body model |
| CN110481028A (en)* | 2019-04-03 | 2019-11-22 | 甘肃普锐特科技有限公司 | A kind of method of 3D printing surgery simulation manikin manufacture |
| CN112089430A (en)* | 2019-05-29 | 2020-12-18 | 上海理工大学 | Method of making fixed plate for patients with fracture and joint replacement |
| WO2021007935A1 (en)* | 2019-07-12 | 2021-01-21 | 东北大学 | Vr-based guide plate 3d printing model construction method |
| CN110341192A (en)* | 2019-07-12 | 2019-10-18 | 东北大学 | A VR-based guide plate 3D printing model building method |
| CN110559066A (en)* | 2019-10-07 | 2019-12-13 | 丁浩男 | Fixing support device with auxiliary fracture reduction function |
| CN112704557A (en)* | 2019-10-25 | 2021-04-27 | 可成生物科技股份有限公司 | Customized construction method and system for modular bone plate lamination |
| CN113143432A (en)* | 2021-04-14 | 2021-07-23 | 常州工程职业技术学院 | Personalized bone fracture plate design method based on contralateral bone shape matching |
| CN113143432B (en)* | 2021-04-14 | 2022-05-31 | 常州工程职业技术学院 | Design method of personalized bone plate based on shape matching of contralateral bone |
| CN113681895A (en)* | 2021-08-20 | 2021-11-23 | 宜宾显微智能科技有限公司 | Guide pin positioning guide plate customization and simulation verification system and method |
| CN113681895B (en)* | 2021-08-20 | 2023-03-10 | 宜宾显微智能科技有限公司 | Guide pin positioning guide plate customization and simulation verification system and method |
| Publication | Publication Date | Title |
|---|---|---|
| CN105816232A (en) | Design and molding method of anatomical bone plate for individualized bone model | |
| CN110393572B (en) | Preparation method of personalized 3D printed tibial high osteotomy guide plate | |
| CN107951538B (en) | Manufacturing method of 3D printing fibula reconstruction jaw bone surgical tool combining bone resection and titanium plate positioning | |
| CN102760199B (en) | Method for manufacturing navigation template for knee replacement, and navigation template | |
| US20140074438A1 (en) | Method for producing patient-specific plate | |
| CN104462720B (en) | A kind of bone plate Fast design method of feature based | |
| CN103099679B (en) | Personalized lumbar internal fixation auxiliary device and manufacturing method thereof | |
| Shan et al. | Surgical navigation-assisted mandibular reconstruction with fibula flaps | |
| CN102335033B (en) | Individual craniofacial bone piece auxiliary positioning guide plate system and preparation method thereof | |
| US12268403B2 (en) | Surgical guides with removable inserts | |
| CN111544079A (en) | Construction method of individual mandible defect reconstruction guide plate system | |
| CN104240298A (en) | Three-dimensional finite element constructing method based on medical image data LISS-DF to cure distal femur fracture | |
| CN103366397A (en) | Spinal column 3D model constructing method based on C-arm 2D projection images | |
| Yu et al. | A new procedure assisted by digital techniques for secondary mandibular reconstruction with free fibula flap | |
| CN104983458A (en) | Manufacturing method for posterior column lag screw 3D navigation module used for acetabulum fracture | |
| CN103099669A (en) | Single-side pedicle screw-driving auxiliary device and manufacturing method thereof | |
| CN106308919A (en) | Method for producing navigation template for assisting imbedding of thoracic vertebra pedicle screw and navigation template | |
| CN105877807A (en) | Navigation device capable of accurately positioning high tibial osteotomy, and manufacturing method of navigation device | |
| CN106991720B (en) | Personalized acetabulum reconstruction steel plate pre-bending method based on finite element analysis and operation | |
| CN115137443A (en) | Bone cutting guide plate and manufacturing method thereof based on depth following | |
| CN104820760B (en) | A kind of intramedullary nail design method based on optimization curvature | |
| Chai et al. | Computer-aided design and custom-made guide in corrective osteotomy for complex femoral deformity | |
| CN209220408U (en) | A Personalized Intertrochanteric Rotational Osteotomy Guide | |
| Xiaoxi et al. | Superior border of the arcuate line: Three dimension reconstruction and digital measurements of the fixation route for pelvic and acetabular fractures | |
| CN209734134U (en) | Navigation registration guide plate for individualized mandible |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20160803 | |
| RJ01 | Rejection of invention patent application after publication |