技术领域technical field
本发明涉及一种可宽角扫描的低剖面透镜天线,具有频带宽、增益高、剖面低、易共形等特点,特别适用于通信测控等领域中要求高增益共形的机载或弹载平台。The invention relates to a low-profile lens antenna capable of wide-angle scanning, which has the characteristics of wide frequency band, high gain, low profile, and easy conformality, and is especially suitable for airborne or missile-borne applications requiring high-gain conformality in the fields of communication measurement and control, etc. platform.
背景技术Background technique
在通信测控领域中可实现高增益、波束扫描的天线主要有如下几种,但它们在性能上均存在某些缺陷。In the field of communication measurement and control, there are mainly the following types of antennas that can achieve high gain and beam scanning, but they all have some defects in performance.
1、抛物反射面天线具有高增益特点,利用伺服机构实现波束扫描,但其整机剖面较高,无法实现共形设计。1. The parabolic reflector antenna has the characteristics of high gain, and the servo mechanism is used to realize the beam scanning, but the profile of the whole machine is high, and the conformal design cannot be realized.
2、相控阵天线剖面较低,利用移相器件等组件实现高增益传输及波束扫描,且其辐射阵列可共形设计,但大量移相器和复杂的控制电路导致成本高、散热难度大等,对于大口径相控阵天线来说,该问题尤为严重。2. The profile of the phased array antenna is low, and components such as phase shifting devices are used to achieve high-gain transmission and beam scanning, and its radiation array can be designed conformally, but a large number of phase shifters and complex control circuits lead to high cost and difficulty in heat dissipation etc. This problem is especially serious for large-aperture phased array antennas.
3、普通透镜天线(如龙珀透镜、均匀介质透镜),采用伺服机构控制馈源可实现高增益信号传输和波束扫描,但龙珀透镜的介质成型工艺难度大且强度差,龙珀透镜和均匀介质透镜都具有剖面高、重量大、难共形的缺点,尤其无法用于机载或弹载平台。3. Ordinary lens antennas (such as Loper lens and homogeneous medium lens) can realize high-gain signal transmission and beam scanning by using a servo mechanism to control the feed. However, the medium forming process of the Loper lens is difficult and the strength is poor. The Loper lens and the Homogeneous dielectric lenses all have the disadvantages of high profile, heavy weight, and difficulty in conformal shape, especially they cannot be used on airborne or missile-borne platforms.
发明内容Contents of the invention
本发明的目的是提出一种由馈源照射的低剖面透镜天线,使其具有高增益信号传输、波束扫描、多波束等功能的同时,具备体积小、重量轻、与载体共形等优点。The purpose of the present invention is to propose a low-profile lens antenna irradiated by a feed source, which has the functions of high-gain signal transmission, beam scanning, and multi-beam, and has the advantages of small size, light weight, and conformal shape with the carrier.
本发明的技术方案为构造一种可宽角扫描的低剖面透镜天线,包括透镜和位于透镜焦面上的馈源,透镜由多层超材料面板堆叠而成,该超材料面板是印制板,每层印制板上有超材料微结构;每层印制板被划分成以透镜中心为圆心的多个同心圆区域,每个区域内的超材料微结构的尺寸相同,从中心圆形区域向边缘区域超材料微结构的尺寸递增。The technical solution of the present invention is to construct a low-profile lens antenna capable of wide-angle scanning, including a lens and a feed source located on the focal plane of the lens. The lens is stacked by multi-layer metamaterial panels, and the metamaterial panel is a printed board , there is a metamaterial microstructure on each printed board; each printed board is divided into multiple concentric circles with the center of the lens as the center, and the size of the metamaterial microstructure in each area is the same, starting from the central circle The size of the metamaterial microstructure increases from region to edge region.
其中,透镜外形是平板或曲面。Wherein, the shape of the lens is a flat plate or a curved surface.
其中,透镜的厚度为口面直径的1/8-1/2。Wherein, the thickness of the lens is 1/8-1/2 of the diameter of the mouth surface.
其中,超材料微结构采用圆形介质孔或十字交叉金属贴片或环形金属贴片。Among them, the metamaterial microstructure adopts a circular dielectric hole or a cross metal patch or a circular metal patch.
本发明的新型低剖面透镜天线具有如下优点:The novel low-profile lens antenna of the present invention has the following advantages:
1、本发明新型低剖面透镜天线具有易共形的优点。本发明透镜剖面低,采用平面或曲面外形,可实现与载体平台共形设计,克服了现有反射面天线不能共形设计的缺点,与普通透镜天线相比,也具有剖面低、重量轻、易共形的优点。1. The novel low-profile lens antenna of the present invention has the advantage of being easy to conform. The lens of the present invention has a low profile and adopts a flat or curved shape, which can realize a conformal design with the carrier platform, overcome the shortcomings of existing reflector antennas that cannot be designed conformally, and compared with ordinary lens antennas, it also has a low profile, light weight, Easy conformal advantages.
2、本发明新型低剖面透镜天线具有可灵活设计的优点。通过调整超材料微单元的结构或尺寸即得到相应的有效介电常数,与现有材料技术相比,该方法设计灵活性更高,甚至可得到现有材料技术无法获得的介电常数。超材料的灵活性使天线具备更佳电气性能,例如实现多波束、超低旁瓣等。2. The novel low-profile lens antenna of the present invention has the advantage of flexible design. The corresponding effective dielectric constant can be obtained by adjusting the structure or size of the micro-units of the metamaterial. Compared with the existing material technology, this method has higher design flexibility, and can even obtain a dielectric constant that cannot be obtained by the existing material technology. The flexibility of metamaterials enables antennas to have better electrical performance, such as achieving multi-beams, ultra-low sidelobes, etc.
3、本发明新型低剖面透镜天线具有成本低、功耗小的优点。本发明的超材料面板采用成熟的印刷电路板工艺进行加工,制作简单、成本低廉,且便于透镜组装;与需要移相器的相控阵天线相比,本发明超材料透镜还具有功耗小的优点。3. The novel low-profile lens antenna of the present invention has the advantages of low cost and low power consumption. The metamaterial panel of the present invention is processed by a mature printed circuit board process, which is simple to manufacture, low in cost, and convenient for lens assembly; compared with a phased array antenna that requires a phase shifter, the metamaterial lens of the present invention also has low power consumption The advantages.
4、本发明新型低剖面透镜天线具有宽频带的优点。本发明采用非谐振超材料结构实现透镜,该类型单元具有宽带电磁响应特性。4. The novel low-profile lens antenna of the present invention has the advantage of wide frequency band. The invention adopts the non-resonant metamaterial structure to realize the lens, and this type of unit has the characteristic of broadband electromagnetic response.
附图说明Description of drawings
图1(a)一种平面的低剖面透镜天线的结构示意图;(b)一种曲面的低剖面透镜天线的结构示意图。Fig. 1 (a) Schematic diagram of the structure of a planar low-profile lens antenna; (b) Schematic diagram of the structure of a curved low-profile lens antenna.
图2一种新型低剖面透镜天线实现波束扫描的结构示意图,(a)图中馈源在曲面内移动;(b)图中馈源在平面内移动;(c)图中馈源扭转运动。Figure 2. Schematic diagram of the structure of a new low-profile lens antenna for beam scanning. (a) The feed moves in the curved surface; (b) the feed moves in the plane; (c) the feed rotates.
图3本发明设计的新型低剖面透镜的剖面图The sectional view of the novel low-profile lens of Fig. 3 the present invention design
图4本发明设计的超材料面板的区域划分结构示意图。Fig. 4 is a schematic diagram of the region division structure of the metamaterial panel designed by the present invention.
图5本发明设计的超材料单元结构示意图。(a)十字交叉金属贴片结构;(b)环形金属贴片结构;(c)圆形介质孔结构。Fig. 5 is a schematic diagram of the structure of the metamaterial unit designed by the present invention. (a) Cross metal patch structure; (b) Ring metal patch structure; (c) Circular dielectric hole structure.
图6本发明设计实例的结构示意图,其中透镜直径4.2λ,厚度0.8λ。Fig. 6 is a schematic structural diagram of the design example of the present invention, wherein the lens diameter is 4.2λ, and the thickness is 0.8λ.
图7本发明设计实例法向波束和扫描25°波束的方向图仿真结果。Fig. 7 is the simulation result of the pattern of the normal beam and the scanning 25° beam of the design example of the present invention.
具体实施方式detailed description
本发明的低剖面透镜天线,包括馈源1和圆形平板透镜2或曲面透镜3,馈源1的相心位于透镜2或透镜3的焦点处,如图1所示。平板透镜2和曲面透镜3特别适用于需要共形的移动平台。The low-profile lens antenna of the present invention includes a feed source 1 and a circular plate lens 2 or a curved lens 3, and the phase center of the feed source 1 is located at the focal point of the lens 2 or lens 3, as shown in FIG. 1 . Flat lens 2 and curved lens 3 are especially suitable for mobile platforms that require conformality.
本发明透镜天线的扫描工作原理如图2所示。采用机械控制馈源移动的方式实现波束扫描,馈源的移动方式包括如图2a所示的二维曲面移动、如图2b所示的二维平面移动、如图2c所示的馈源旋转等。为获得高效率宽角扫描性能,馈源可采用上述移动方式中的一种或多种。The scanning working principle of the lens antenna of the present invention is shown in FIG. 2 . The beam scanning is realized by mechanically controlling the movement of the feed source. The movement mode of the feed source includes two-dimensional surface movement as shown in Figure 2a, two-dimensional plane movement as shown in Figure 2b, and feed rotation as shown in Figure 2c. . In order to obtain high-efficiency wide-angle scanning performance, the feed can adopt one or more of the above moving methods.
在透镜下方放置多个馈源还可实现多波束出射,如图2所示,其中波束1和波束2分别对应处于不同位置的馈源1。Placing multiple feeds under the lens can also achieve multi-beam output, as shown in Figure 2, where beam 1 and beam 2 correspond to feed 1 in different positions.
透镜2或透镜3的功能是对馈源1发出的近球面电磁波信号进行相位补偿,使其呈平面电磁波出射。本发明以超材料平板透镜为例说明该透镜的具体实现方式。平板透镜中心处的介电常数值最高,介电常数沿横向和纵向从中心向边缘减小。平板透镜2透镜由多层超材料面板堆叠而成,如图3,该超材料面板是印制板,每层超材料面板使用一种或多种印制板材,使透镜具有宽带、双极化电磁响应。每层印制板上刻蚀如图5所示的十字交叉金属贴片、环形金属贴片、圆形介质孔等弱谐振的超材料微结构;每层印制板被划分成以透镜中心为圆心的多个同心圆区域。如图4,区域4-7内的介电常数值相同。每个区域内的超材料微结构的尺寸相同,从中心圆形区域向边缘区域超材料微结构的尺寸递增。The function of the lens 2 or the lens 3 is to perform phase compensation on the near-spherical electromagnetic wave signal emitted by the feed source 1, so that it emerges as a plane electromagnetic wave. The present invention takes a metamaterial flat lens as an example to illustrate the specific implementation of the lens. The dielectric constant value is highest at the center of the slab lens, and the dielectric constant decreases from the center to the edge along the transverse and longitudinal directions. Flat lens 2 The lens is stacked by multi-layer metamaterial panels, as shown in Figure 3, the metamaterial panel is a printed board, and each layer of metamaterial panel uses one or more printed boards to make the lens have broadband, dual polarization electromagnetic response. Weakly resonant metamaterial microstructures such as cross metal patches, ring metal patches, and circular dielectric holes are etched on each printed board as shown in Figure 5; Multiple concentric circle regions at the center of the circle. As shown in Figure 4, the dielectric constant values in the regions 4-7 are the same. The size of the metamaterial microstructure in each region is the same, and the size of the metamaterial microstructure increases from the central circular region to the edge region.
本设计实例采用如图5c所示的圆形介质孔结构,单元周期小于0.2λ。区域内介电常数值相同,即介质孔单元尺寸相同,通过调控每个区域内孔直径的尺寸,得到适当的介电常数分布,获得单层超材料面板。This design example adopts a circular dielectric hole structure as shown in Figure 5c, and the unit period is less than 0.2λ. The dielectric constant value in the area is the same, that is, the size of the dielectric hole unit is the same. By adjusting the size of the hole diameter in each area, an appropriate dielectric constant distribution is obtained, and a single-layer metamaterial panel is obtained.
多层超材料面板组装成如图5所示平板透镜,其中超材料平板透镜8的口面直径为4.2λ,厚度为0.8λ,透镜的厚度为口面直径的八分之一到二分之一。波纹喇叭9位于透镜的焦点处,且具有特定照射角。Multilayer metamaterial panels are assembled into a flat lens as shown in Figure 5, wherein the metamaterial flat lens 8 has an orifice diameter of 4.2λ and a thickness of 0.8λ, and the thickness of the lens is one-eighth to one-half of the orifice diameter one. The corrugated horn 9 is located at the focal point of the lens and has a specific irradiation angle.
图7是本发明设计实例的法向波束和扫描25°波束的远场方向图仿真结果。插图1是实现法向波束的结构示意图,法向方向图旁瓣值为-20.6dB,口面效率高达约70%。通过旋转波纹喇叭10,如插图2所示,设计实例的透镜天线实现波束扫描。Fig. 7 is the simulation result of the far-field pattern of the normal beam and the scanning 25° beam of the design example of the present invention. Illustration 1 is a schematic diagram of the structure of the normal beam. The side lobe value of the normal pattern is -20.6dB, and the mouth-to-face efficiency is as high as about 70%. By rotating the corrugated horn 10, as shown in Fig. 2, the lens antenna of the design example realizes beam scanning.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610230773.8ACN105742824A (en) | 2016-04-13 | 2016-04-13 | Low-profile lens antenna capable of realizing wide-angle scanning |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610230773.8ACN105742824A (en) | 2016-04-13 | 2016-04-13 | Low-profile lens antenna capable of realizing wide-angle scanning |
| Publication Number | Publication Date |
|---|---|
| CN105742824Atrue CN105742824A (en) | 2016-07-06 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610230773.8APendingCN105742824A (en) | 2016-04-13 | 2016-04-13 | Low-profile lens antenna capable of realizing wide-angle scanning |
| Country | Link |
|---|---|
| CN (1) | CN105742824A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106918852A (en)* | 2017-04-11 | 2017-07-04 | 华南师范大学 | A kind of off-axis focussing plane lens of wide-angle |
| CN109066085A (en)* | 2018-08-01 | 2018-12-21 | 中国航空工业集团公司雷华电子技术研究所 | Dual-polarized single pulse tracks reflecting plane aerial feed source |
| CN109103604A (en)* | 2018-07-19 | 2018-12-28 | 电子科技大学 | A kind of high-gain based on ladder medium, large-angle scanning lens antenna |
| WO2019129298A1 (en)* | 2017-12-29 | 2019-07-04 | 华为技术有限公司 | Device |
| CN110148840A (en)* | 2019-05-05 | 2019-08-20 | 西安电子科技大学 | A kind of blending agent antenna for realizing axial orientation wave beam and radial multiple radiation |
| CN110739548A (en)* | 2019-10-14 | 2020-01-31 | 南京理工大学 | High Gain Low Profile Transmissive Array Antenna |
| CN110783697A (en)* | 2019-11-05 | 2020-02-11 | Oppo广东移动通信有限公司 | Antenna arrays and electronic equipment |
| CN110783692A (en)* | 2019-11-05 | 2020-02-11 | Oppo广东移动通信有限公司 | Antenna arrays and electronic equipment |
| CN111418114A (en)* | 2017-12-19 | 2020-07-14 | 三星电子株式会社 | Beamforming Antenna Module with Lens |
| CN111916911A (en)* | 2019-05-10 | 2020-11-10 | 北京小米移动软件有限公司 | terminal |
| CN112103669A (en)* | 2019-06-17 | 2020-12-18 | Oppo广东移动通信有限公司 | Lens antenna array and electronic equipment |
| CN112106255A (en)* | 2018-05-09 | 2020-12-18 | 住友电气工业株式会社 | Lens, antenna and vehicle-mounted device |
| CN112103621A (en)* | 2019-06-17 | 2020-12-18 | Oppo广东移动通信有限公司 | Electronic device |
| CN112103662A (en)* | 2019-06-17 | 2020-12-18 | Oppo广东移动通信有限公司 | Lens antenna module and electronic equipment |
| CN112436289A (en)* | 2020-11-12 | 2021-03-02 | 佛山蓝谱达科技有限公司 | Wave beam separator |
| CN112510379A (en)* | 2020-12-08 | 2021-03-16 | 四川大学 | Water load capable of efficiently absorbing microwave energy |
| CN112968296A (en)* | 2021-04-12 | 2021-06-15 | 深圳市前海派速科技有限公司 | Lens structure applied to 5G communication and 5G base station |
| WO2021160110A1 (en)* | 2020-02-14 | 2021-08-19 | 华为技术有限公司 | Antenna apparatus |
| CN113708078A (en)* | 2021-08-30 | 2021-11-26 | 中信科移动通信技术股份有限公司 | Lens antenna and preparation method of dielectric lens |
| CN115621741A (en)* | 2022-10-28 | 2023-01-17 | 惠州硕贝德无线科技股份有限公司 | Phased array antenna, radio frequency wireless circuit and 5G mobile device |
| CN118610781A (en)* | 2024-08-08 | 2024-09-06 | 成都辰星迅联科技有限公司 | A low-profile curved conformal phased array antenna based on gradient refractive index lens |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4642651A (en)* | 1984-09-24 | 1987-02-10 | The United States Of America As Represented By The Secretary Of The Army | Dual lens antenna with mechanical and electrical beam scanning |
| CN102800985A (en)* | 2011-06-30 | 2012-11-28 | 深圳光启高等理工研究院 | Array metamaterial antenna |
| CN103036028A (en)* | 2011-09-29 | 2013-04-10 | 深圳光启高等理工研究院 | Horn antenna |
| CN103094701A (en)* | 2011-10-28 | 2013-05-08 | 深圳光启高等理工研究院 | Flat plate lens and lens antenna with the same |
| CN103178353A (en)* | 2013-02-22 | 2013-06-26 | 哈尔滨工业大学 | Wide band gradient index metamaterials lens adaptable to circular polarized electromagnetic waves and lens antenna with same |
| CN205609758U (en)* | 2016-04-13 | 2016-09-28 | 中国电子科技集团公司第五十四研究所 | Can extend low section lens antenna of angle sweep |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4642651A (en)* | 1984-09-24 | 1987-02-10 | The United States Of America As Represented By The Secretary Of The Army | Dual lens antenna with mechanical and electrical beam scanning |
| CN102800985A (en)* | 2011-06-30 | 2012-11-28 | 深圳光启高等理工研究院 | Array metamaterial antenna |
| CN103036028A (en)* | 2011-09-29 | 2013-04-10 | 深圳光启高等理工研究院 | Horn antenna |
| CN103094701A (en)* | 2011-10-28 | 2013-05-08 | 深圳光启高等理工研究院 | Flat plate lens and lens antenna with the same |
| CN103178353A (en)* | 2013-02-22 | 2013-06-26 | 哈尔滨工业大学 | Wide band gradient index metamaterials lens adaptable to circular polarized electromagnetic waves and lens antenna with same |
| CN205609758U (en)* | 2016-04-13 | 2016-09-28 | 中国电子科技集团公司第五十四研究所 | Can extend low section lens antenna of angle sweep |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106918852A (en)* | 2017-04-11 | 2017-07-04 | 华南师范大学 | A kind of off-axis focussing plane lens of wide-angle |
| CN106918852B (en)* | 2017-04-11 | 2019-02-01 | 华南师范大学 | A kind of off-axis focussing plane lens of wide-angle |
| CN111418114B (en)* | 2017-12-19 | 2023-11-21 | 三星电子株式会社 | Beam forming antenna module comprising lens |
| CN111418114A (en)* | 2017-12-19 | 2020-07-14 | 三星电子株式会社 | Beamforming Antenna Module with Lens |
| US11641063B2 (en) | 2017-12-19 | 2023-05-02 | Samsung Electronics Co., Ltd. | Beamforming antenna module comprising lens |
| WO2019129298A1 (en)* | 2017-12-29 | 2019-07-04 | 华为技术有限公司 | Device |
| CN111566875A (en)* | 2017-12-29 | 2020-08-21 | 华为技术有限公司 | a device |
| WO2019127498A1 (en)* | 2017-12-29 | 2019-07-04 | 华为技术有限公司 | Device |
| CN111566875B (en)* | 2017-12-29 | 2022-03-11 | 华为技术有限公司 | A device |
| US11289818B2 (en) | 2017-12-29 | 2022-03-29 | Huawei Technologies Co., Ltd. | RF lens with doping medium |
| CN112106255A (en)* | 2018-05-09 | 2020-12-18 | 住友电气工业株式会社 | Lens, antenna and vehicle-mounted device |
| CN109103604A (en)* | 2018-07-19 | 2018-12-28 | 电子科技大学 | A kind of high-gain based on ladder medium, large-angle scanning lens antenna |
| CN109103604B (en)* | 2018-07-19 | 2020-12-29 | 电子科技大学 | A high-gain, wide-angle scanning lens antenna based on stepped medium |
| CN109066085B (en)* | 2018-08-01 | 2021-02-19 | 中国航空工业集团公司雷华电子技术研究所 | Dual-polarized monopulse tracking reflector antenna feed source |
| CN109066085A (en)* | 2018-08-01 | 2018-12-21 | 中国航空工业集团公司雷华电子技术研究所 | Dual-polarized single pulse tracks reflecting plane aerial feed source |
| CN110148840B (en)* | 2019-05-05 | 2020-09-08 | 西安电子科技大学 | A Hybrid Dielectric Antenna for Axial Directional Beam and Radial Multi-beam Radiation |
| CN110148840A (en)* | 2019-05-05 | 2019-08-20 | 西安电子科技大学 | A kind of blending agent antenna for realizing axial orientation wave beam and radial multiple radiation |
| CN111916911A (en)* | 2019-05-10 | 2020-11-10 | 北京小米移动软件有限公司 | terminal |
| CN111916911B (en)* | 2019-05-10 | 2022-02-08 | 北京小米移动软件有限公司 | Terminal device |
| CN112103662B (en)* | 2019-06-17 | 2022-03-01 | Oppo广东移动通信有限公司 | Lens antenna module and electronic equipment |
| CN112103662A (en)* | 2019-06-17 | 2020-12-18 | Oppo广东移动通信有限公司 | Lens antenna module and electronic equipment |
| CN112103669A (en)* | 2019-06-17 | 2020-12-18 | Oppo广东移动通信有限公司 | Lens antenna array and electronic equipment |
| CN112103621A (en)* | 2019-06-17 | 2020-12-18 | Oppo广东移动通信有限公司 | Electronic device |
| CN110739548A (en)* | 2019-10-14 | 2020-01-31 | 南京理工大学 | High Gain Low Profile Transmissive Array Antenna |
| CN110783697A (en)* | 2019-11-05 | 2020-02-11 | Oppo广东移动通信有限公司 | Antenna arrays and electronic equipment |
| WO2021088637A1 (en)* | 2019-11-05 | 2021-05-14 | Oppo广东移动通信有限公司 | Antenna array and electronic device |
| CN110783692A (en)* | 2019-11-05 | 2020-02-11 | Oppo广东移动通信有限公司 | Antenna arrays and electronic equipment |
| WO2021160110A1 (en)* | 2020-02-14 | 2021-08-19 | 华为技术有限公司 | Antenna apparatus |
| CN112436289B (en)* | 2020-11-12 | 2023-04-07 | 佛山蓝谱达科技有限公司 | Wave beam separator |
| CN112436289A (en)* | 2020-11-12 | 2021-03-02 | 佛山蓝谱达科技有限公司 | Wave beam separator |
| CN112510379A (en)* | 2020-12-08 | 2021-03-16 | 四川大学 | Water load capable of efficiently absorbing microwave energy |
| CN112968296A (en)* | 2021-04-12 | 2021-06-15 | 深圳市前海派速科技有限公司 | Lens structure applied to 5G communication and 5G base station |
| CN113708078A (en)* | 2021-08-30 | 2021-11-26 | 中信科移动通信技术股份有限公司 | Lens antenna and preparation method of dielectric lens |
| CN115621741A (en)* | 2022-10-28 | 2023-01-17 | 惠州硕贝德无线科技股份有限公司 | Phased array antenna, radio frequency wireless circuit and 5G mobile device |
| CN115621741B (en)* | 2022-10-28 | 2023-12-15 | 惠州硕贝德无线科技股份有限公司 | Phased array antenna, radio frequency wireless circuit and 5G mobile device |
| WO2024088021A1 (en)* | 2022-10-28 | 2024-05-02 | 惠州硕贝德无线科技股份有限公司 | Metamaterial-loaded phased array antenna module, radio frequency wireless circuit, and 5g mobile device |
| CN118610781A (en)* | 2024-08-08 | 2024-09-06 | 成都辰星迅联科技有限公司 | A low-profile curved conformal phased array antenna based on gradient refractive index lens |
| Publication | Publication Date | Title |
|---|---|---|
| CN105742824A (en) | Low-profile lens antenna capable of realizing wide-angle scanning | |
| CN205609758U (en) | Can extend low section lens antenna of angle sweep | |
| CN108110435B (en) | Millimeter wave high-gain circularly polarized horn antenna loaded by single-medium planar lens | |
| CN105960736B (en) | Dynamic Polarization and Coupling Control of a Steerable Multilayer Cylindrical Feed Holographic Antenna | |
| CN102122762B (en) | Millimeter wave 360o omnidirectional scanning dielectric cylindrical lens antenna | |
| CN107425291B (en) | Antennas that generate arbitrarily directed Bessel beams | |
| US9590315B2 (en) | Planar linear phase array antenna with enhanced beam scanning | |
| CN103762423A (en) | Reflection array antenna beam scanning antenna based on rotary phase shift surface technology | |
| CN107275788A (en) | A kind of millimeter wave fan-shaped beam cylinder Luneberg lens antenna based on metal perturbed structure | |
| CN105960735A (en) | Dynamic Polarization and Coupling Control of a Steerable Cylindrical-Fed Holographic Antenna | |
| CN106450789A (en) | Low-profile lens antenna based on reflective array feed | |
| CN105552573B (en) | The symmetrical media filler cylindrical lens antenna of dual polarization Waveguide slot feed | |
| CN112886284B (en) | Radiation unit pattern regulating structure and regulating method | |
| CN104022363A (en) | Frequency-controlled beam/focus scanning plane reflection array/reflector | |
| CN105322291A (en) | Microstrip array antenna | |
| CN105261836A (en) | Active microstrip reflective array unit and microstrip reflective array antenna | |
| CN103050782A (en) | Multi-beam plane patch lens antenna | |
| CN105261842A (en) | Microstrip reflective array unit loaded with cross slot on ground, and reflective array antenna | |
| CN104485520A (en) | Beam scanning array antenna having ultralow elevation characteristic | |
| CN114361783A (en) | A Lens-Loaded Wide-Angle Beam Scanning Transmissive Array Antenna | |
| CN107546478B (en) | Wide-angle scanning phased array antenna using special directional pattern elements and design method | |
| CN105609965B (en) | A kind of antenna generating Bezier wave beam | |
| CN114865332A (en) | Metamaterial structure for improving beam overlapping level of multi-beam antenna and design method thereof | |
| CN116387820A (en) | Small array feed beam forming transmission array antenna | |
| CN215266686U (en) | Dual-frequency dual-polarization multifunctional transmission and reflection type super-surface antenna and communication equipment |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20160706 |