技术领域technical field
本发明涉及近眼显示技术领域,特别是涉及一种基于透镜阵列的近眼显示方法。The invention relates to the technical field of near-eye display, in particular to a near-eye display method based on a lens array.
背景技术Background technique
近眼显示装置,是一种使得佩戴者能够看清距离人眼很近的内容的显示技术。最初主要用于军事和科研领域。随着科学技术的发展,近眼显示器逐渐进入人们的生活当中。A near-eye display device is a display technology that enables a wearer to clearly see content that is very close to the human eye. Initially, it was mainly used in military and scientific research fields. With the development of science and technology, near-eye displays have gradually entered people's lives.
目前普通的头戴显示装置采用不透明结构,利用透镜将距离人眼很近的显示器内容成像在人眼的聚焦范围内,使得人眼能够看清显示器上的内容。但是,现有的近眼显示装置采用单透镜显示方法,由于单个透镜相对孔径条件的限制,使得普通的头戴显示器比较笨重,使用极不方便,并且也无法方便携带。At present, a common head-mounted display device adopts an opaque structure, and uses a lens to image the content of the display that is very close to the human eye within the focus range of the human eye, so that the human eye can clearly see the content on the display. However, the existing near-eye display devices use a single-lens display method. Due to the limitation of the relative aperture of a single lens, the ordinary head-mounted display is relatively heavy, extremely inconvenient to use, and cannot be easily carried.
发明内容Contents of the invention
针对上述现有的近眼显示装置采用单透镜显示方法使得普通的头戴显示器比较笨重的问题,本发明提供了一种基于透镜阵列的近眼显示方法。Aiming at the above-mentioned problem that the conventional near-eye display device adopts a single-lens display method, which makes the ordinary head-mounted display relatively bulky, the present invention provides a near-eye display method based on a lens array.
本发明提供一种基于透镜阵列的近眼显示方法,包括:The present invention provides a near-eye display method based on a lens array, comprising:
采用多个焦距相等的透镜组成透镜阵列;Multiple lenses with equal focal lengths are used to form a lens array;
使显示器位于所述透镜阵列的焦平面处;positioning a display at the focal plane of said lens array;
所述显示器中的图像经过所述透镜阵列显示给用户。The images in the display are displayed to the user through the lens array.
进一步地,所述采用多个焦距相等的透镜组成透镜阵列的步骤,包括:Further, the step of using a plurality of lenses with equal focal lengths to form a lens array includes:
根据人眼观看区域大小以及人眼到透镜阵列的距离确定选用透镜的焦距以及所述透镜阵列中透镜之间的间距。The focal length of the selected lens and the distance between the lenses in the lens array are determined according to the size of the viewing area of the human eye and the distance from the human eye to the lens array.
进一步地,所述人眼观看区域大小、人眼到透镜阵列的距离、透镜的焦距以及所述透镜阵列中透镜之间的间距满足以下公式:Further, the size of the viewing area of the human eye, the distance from the human eye to the lens array, the focal length of the lens, and the distance between the lenses in the lens array satisfy the following formula:
其中,p为透镜单元间距,L为人眼观看区域大小,f为透镜单元焦距,D为人眼到透镜阵列的距离。Among them, p is the lens unit pitch, L is the size of the viewing area of the human eye, f is the focal length of the lens unit, and D is the distance from the human eye to the lens array.
进一步地,所述每个透镜的孔径形状为圆形、矩形或者正三角形、正方形、正六边形。Further, the aperture shape of each lens is circular, rectangular or equilateral triangle, square, regular hexagon.
进一步地,所述透镜的孔径形状为矩形或正方形时所述透镜对齐排列形成透镜阵列;所述透镜的孔径形状为圆形、正三角形或正六边形时对应的所述透镜交错排列形成透镜阵列。Further, when the aperture shape of the lenses is a rectangle or a square, the lenses are aligned and arranged to form a lens array; when the aperture shape of the lenses is a circle, a regular triangle or a regular hexagon, the corresponding lenses are arranged in a staggered manner to form a lens array .
另一方面,本发明还提供一种近眼显示方法所显示的图像的处理方法,所述方法包括:On the other hand, the present invention also provides a method for processing an image displayed by a near-eye display method, the method comprising:
确定所述透镜阵列中每个透镜对应所述显示器的显示区域;determining that each lens in the lens array corresponds to a display area of the display;
分别选取目标图像中一部分作为单个显示区域的显示子图;Respectively select a part of the target image as a display sub-image of a single display area;
将选取的所有显示子图拼接成一幅完整的显示图像。All the selected display subimages are spliced into a complete display image.
进一步地,所述确定所述透镜阵列中每个透镜对应所述显示器的显示区域的步骤,包括:Further, the step of determining that each lens in the lens array corresponds to the display area of the display includes:
根据人眼观看区域大小、人眼到透镜阵列的距离以及透镜的焦距确定所述透镜阵列中每个透镜对应所述显示器的显示区域。The display area of the display corresponding to each lens in the lens array is determined according to the size of the viewing area of the human eye, the distance from the human eye to the lens array, and the focal length of the lens.
进一步地,所述人眼观看区域大小、人眼到透镜阵列的距离、透镜的焦距以及每个透镜对应所述显示器的显示区域的长度满足以下公式:Further, the size of the viewing area of the human eye, the distance from the human eye to the lens array, the focal length of the lens, and the length of each lens corresponding to the display area of the display satisfy the following formula:
其中,f为透镜的焦距,D为人眼到透镜阵列的距离,w为每个透镜对应所述显示器的显示区域的长度,L为人眼观看区域大小。Wherein, f is the focal length of the lens, D is the distance from the human eye to the lens array, w is the length of each lens corresponding to the display area of the display, and L is the size of the viewing area of the human eye.
进一步地,所述分别选取目标图像中一部分作为单个显示区域的显示子图的步骤,包括:Further, the step of respectively selecting a part of the target image as a display sub-image of a single display area includes:
针对所述透镜阵列中的每一透镜,将目标图像的中心与所述透镜中心对齐,选取所述目标图像与所述透镜对应的显示区域重合部分作为该显示区域的显示子图。For each lens in the lens array, the center of the target image is aligned with the center of the lens, and the overlapping portion of the display area corresponding to the target image and the lens is selected as a display sub-image of the display area.
进一步地,所述将选取的所有显示子图拼接成一幅完整的显示图像的步骤,包括:Further, the step of splicing all selected display subimages into a complete display image includes:
按照每一显示子图对应的所述显示区域在显示器上的位置顺序拼接成一幅完整的显示图像。A complete display image is spliced according to the sequence of positions of the display regions corresponding to each display sub-picture on the display.
本发明提供的一种基于透镜阵列的近眼显示方法,通过采用多个焦距相等的透镜组成透镜阵列,使显示器位于所述透镜阵列的焦平面处,所述显示器中的图像经过所述透镜阵列显示给用户,能够突破单个透镜相对孔径条件的限制,实现减小近眼显示装置体积和减轻近眼显示装置重量的效果,提高人们头戴近眼显示装置的舒适度。The present invention provides a near-eye display method based on a lens array. By using a plurality of lenses with equal focal lengths to form a lens array, the display is located at the focal plane of the lens array, and the image in the display is displayed through the lens array. For users, it can break through the limitation of the relative aperture condition of a single lens, realize the effect of reducing the volume and weight of the near-eye display device, and improve the comfort of people wearing the near-eye display device.
附图说明Description of drawings
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:The features and advantages of the present invention will be more clearly understood by referring to the accompanying drawings, which are schematic and should not be construed as limiting the invention in any way. In the accompanying drawings:
图1是本发明一个实施例中基于透镜阵列的近眼显示方法的流程示意图;1 is a schematic flow diagram of a near-eye display method based on a lens array in an embodiment of the present invention;
图2是本发明一个实施例中一种透镜阵列与显示器位置示意图;Fig. 2 is a schematic diagram of the positions of a lens array and a display in an embodiment of the present invention;
图3是本发明一个实施例中人眼观看区域大小、人眼到透镜阵列的距离、透镜焦距、透镜间距以及显示子图长度对照示意图;Fig. 3 is a schematic diagram showing the size of the viewing area of the human eye, the distance from the human eye to the lens array, the focal length of the lens, the distance between the lenses and the length of the display sub-image in one embodiment of the present invention;
图4是本发明一个实施例中矩形透镜阵列示意图;Fig. 4 is a schematic diagram of a rectangular lens array in one embodiment of the present invention;
图5是本发明一个实施例中六边形透镜阵列示意图;Fig. 5 is a schematic diagram of a hexagonal lens array in one embodiment of the present invention;
图6是本发明一个实施例中显示图像处理方法的流程示意图;FIG. 6 is a schematic flow chart of a method for displaying image processing in an embodiment of the present invention;
图7是本发明一个实施例中显示子图选取与拼接过程示意图;Fig. 7 is a schematic diagram showing the process of selecting and splicing subgraphs in one embodiment of the present invention;
图8是本发明一个实施例中目标图像处理得到显示图像的效果示意图;Fig. 8 is a schematic diagram of the effect of displaying images obtained by target image processing in an embodiment of the present invention;
其中,1-显示器,2-显示区域,3-透镜阵列,4-透镜,5-人眼,6-人眼观看区域。Among them, 1-display, 2-display area, 3-lens array, 4-lens, 5-human eye, 6-human eye viewing area.
具体实施方式detailed description
现结合附图和实施例对本发明技术方案作进一步详细阐述。The technical solution of the present invention will be further described in detail in conjunction with the accompanying drawings and embodiments.
图1示出了本实施例中一种基于透镜阵列的近眼显示方法的流程示意图,如图1所示,本实施例提供的一种基于透镜阵列的近眼显示方法,包括:Fig. 1 shows a schematic flow chart of a near-eye display method based on a lens array in this embodiment. As shown in Fig. 1, a near-eye display method based on a lens array provided in this embodiment includes:
S11,采用多个焦距相等的透镜组成透镜阵列;S11, using a plurality of lenses with equal focal lengths to form a lens array;
S12,使显示器位于所述透镜阵列的焦平面处;S12, positioning the display at the focal plane of the lens array;
S13,所述显示器中的图像经过所述透镜阵列显示给用户。S13, the image in the display is displayed to the user through the lens array.
如图2所示,多个透镜4组成透镜阵列3,显示器1放置于透镜阵列的焦平面处,在具体实施过程中,根据人眼5的观看区域6的大小以及人眼到透镜阵列的距离确定选用透镜的焦距以及所述透镜阵列中透镜之间的间距。显示区域2为显示器上与透镜阵列3中透镜4一一对应。As shown in Figure 2, a plurality of lenses 4 form a lens array 3, and the display 1 is placed at the focal plane of the lens array. Determine the focal length of the selected lenses and the spacing between the lenses in the lens array. The display area 2 is in one-to-one correspondence with the lenses 4 in the lens array 3 on the display.
如图3所示,所述人眼观看区域大小、人眼到透镜阵列的距离、透镜的焦距以及所述透镜阵列中透镜之间的间距满足以下公式:As shown in Figure 3, the size of the viewing area of the human eye, the distance from the human eye to the lens array, the focal length of the lens and the distance between the lenses in the lens array satisfy the following formula:
其中,p为透镜单元间距,L为人眼观看区域大小,f为透镜单元焦距,D为人眼到透镜阵列的距离。Among them, p is the lens unit pitch, L is the size of the viewing area of the human eye, f is the focal length of the lens unit, and D is the distance from the human eye to the lens array.
所述每个透镜的孔径形状为圆形、矩形或者正三角形、正方形、正六边形以及其他正多边形。不同透镜孔径形状的透镜阵列的排列方式也不同,根据透镜单元的形状,选择一种合适的排列方式,使得透镜单元填充率最高。举例来说,对于所述透镜的孔径形状为矩形或正方形时所述透镜对齐排列形成透镜阵列,如图4所示;对于所述透镜的孔径形状为圆形、正三角形或正六边形时对应的所述透镜交错排列形成透镜阵列,如图5所示。The aperture shape of each lens is circular, rectangular or regular triangle, square, regular hexagon and other regular polygons. Lens arrays with different lens aperture shapes have different arrangements. According to the shape of the lens units, an appropriate arrangement is selected to maximize the filling rate of the lens units. For example, when the aperture shape of the lens is a rectangle or a square, the lenses are aligned and arranged to form a lens array, as shown in Figure 4; when the aperture shape of the lens is a circle, a regular triangle or a regular hexagon, the corresponding The lenses are arranged in a staggered manner to form a lens array, as shown in FIG. 5 .
另一方面,如图6所示,本实施例还提供一种近眼显示方法所显示的图像的处理方法,所述方法包括:On the other hand, as shown in FIG. 6, this embodiment also provides a method for processing an image displayed by a near-eye display method, the method comprising:
S21,确定所述透镜阵列中每个透镜对应所述显示器的显示区域;S21. Determine that each lens in the lens array corresponds to a display area of the display;
S22,分别选取目标图像中一部分作为单个显示区域的显示子图;S22, respectively selecting a part of the target image as a display sub-image of a single display area;
S23,将选取的所有显示子图拼接成一幅完整的显示图像。S23, splicing all the selected display sub-pictures into a complete display image.
具体实施过程中,所述确定所述透镜阵列中每个透镜对应所述显示器的显示区域的步骤,包括:In the specific implementation process, the step of determining that each lens in the lens array corresponds to the display area of the display includes:
根据人眼观看区域大小、人眼到透镜阵列的距离以及透镜的焦距确定所述透镜阵列中每个透镜对应所述显示器的显示区域。The display area of the display corresponding to each lens in the lens array is determined according to the size of the viewing area of the human eye, the distance from the human eye to the lens array, and the focal length of the lens.
例如,如图3所示,所述人眼观看区域大小、人眼到透镜阵列的距离、透镜的焦距以及每个透镜对应所述显示器的显示区域的长度满足以下公式:For example, as shown in Figure 3, the size of the viewing area of the human eye, the distance from the human eye to the lens array, the focal length of the lens, and the length of each lens corresponding to the display area of the display satisfy the following formula:
其中,f为透镜的焦距,D为人眼到透镜阵列的距离,w为每个透镜对应所述显示器的显示区域的长度,L为人眼观看区域大小。Wherein, f is the focal length of the lens, D is the distance from the human eye to the lens array, w is the length of each lens corresponding to the display area of the display, and L is the size of the viewing area of the human eye.
所述分别选取目标图像中一部分作为单个显示区域的显示子图的步骤,包括:The step of selecting a part of the target image as a display sub-image of a single display area includes:
针对所述透镜阵列中的每一透镜,将目标图像的中心与所述透镜中心对齐,选取所述目标图像与所述透镜对应的显示区域重合部分作为该显示区域的显示子图。For each lens in the lens array, the center of the target image is aligned with the center of the lens, and the overlapping portion of the display area corresponding to the target image and the lens is selected as a display sub-image of the display area.
如图7(a)所示,将目标图像的中心分别与第4、第5、第6和第7个透镜的中心对齐,根据目标图像分别与第4、第5、第6和第7个显示区域重合的部分选取该显示区域对应的显示子图1、显示子图2、显示子图3和显示子图4。As shown in Figure 7(a), align the center of the target image with the center of the 4th, 5th, 6th and 7th lens respectively, and according to the target image with the 4th, 5th, 6th and 7th lens respectively For the part where the display areas overlap, select the display sub-picture 1, display sub-picture 2, display sub-picture 3 and display sub-picture 4 corresponding to the display area.
然后如图7(b)所示,按照每一显示子图对应的所述显示区域在显示器上的位置顺序拼接成一幅完整的显示图像。Then, as shown in FIG. 7( b ), a complete display image is spliced according to the sequence of positions of the display regions corresponding to each display sub-image on the display.
图8给出了图像处理的效果示意图,将图8(a)所示的目标图像经过本实施例图像处理方法处理后,得到如图8(b)所示的显示图像。将图8(b)所示的显示图像在如图1所示的显示器中显示,其中每一个显示子图分别经过图1中对应的透镜阵列3中的透镜4后进入人眼5,人眼5所看到的图像即为图8(a)所示。FIG. 8 shows a schematic diagram of the effect of image processing. After the target image shown in FIG. 8(a) is processed by the image processing method of this embodiment, the display image shown in FIG. 8(b) is obtained. The display image shown in Figure 8(b) is displayed on the display as shown in Figure 1, wherein each display sub-image enters the human eye 5 after passing through the lens 4 in the corresponding lens array 3 in Figure 1, and the human eye 5 The image you see is shown in Figure 8(a).
本实施例提供的一种基于透镜阵列的近眼显示方法,通过采用多个焦距相等的透镜组成透镜阵列,使显示器位于所述透镜阵列的焦平面处,所述显示器中的图像经过所述透镜阵列显示给用户。同时本实施例提供的图像处理方法,根据透镜阵列对应的显示器的显示区域选取目标图像的显示子图,并将选取的所有显示子图拼接成一幅显示图像。通过上述近眼显示方法及图像处理方法能够突破单个透镜相对孔径条件的限制,实现减小近眼显示装置体积和减轻近眼显示装置重量的效果,提高人们头戴近眼显示装置的舒适度。In the near-eye display method based on a lens array provided in this embodiment, a lens array is composed of a plurality of lenses with equal focal lengths, so that the display is located at the focal plane of the lens array, and the image in the display passes through the lens array displayed to the user. At the same time, the image processing method provided in this embodiment selects display subimages of the target image according to the display area of the display corresponding to the lens array, and stitches all the selected display subimages into one display image. The above-mentioned near-eye display method and image processing method can break through the limitation of the relative aperture condition of a single lens, realize the effect of reducing the volume and weight of the near-eye display device, and improve the comfort of people wearing the near-eye display device.
虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。Although the embodiments of the present invention have been described in conjunction with the accompanying drawings, those skilled in the art can make various modifications and variations without departing from the spirit and scope of the present invention. within the bounds of the requirements.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410767747.XACN105739094A (en) | 2014-12-11 | 2014-12-11 | Near-eye display method based on lens array |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410767747.XACN105739094A (en) | 2014-12-11 | 2014-12-11 | Near-eye display method based on lens array |
| Publication Number | Publication Date |
|---|---|
| CN105739094Atrue CN105739094A (en) | 2016-07-06 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410767747.XAPendingCN105739094A (en) | 2014-12-11 | 2014-12-11 | Near-eye display method based on lens array |
| Country | Link |
|---|---|
| CN (1) | CN105739094A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019165620A1 (en)* | 2018-03-01 | 2019-09-06 | 陈台国 | Near eye display method capable of multi-depth of field imaging |
| CN110244469A (en)* | 2019-06-19 | 2019-09-17 | 中国人民解放军陆军装甲兵学院 | A kind of determination method and system of directional scattering device position and diffusion angle |
| CN113253454A (en)* | 2020-02-11 | 2021-08-13 | 京东方科技集团股份有限公司 | Head-mounted display device and manufacturing method thereof |
| CN113325588A (en)* | 2021-06-21 | 2021-08-31 | 凤凰光学股份有限公司 | High-brightness high-resolution high-contrast augmented reality display equipment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5499138A (en)* | 1992-05-26 | 1996-03-12 | Olympus Optical Co., Ltd. | Image display apparatus |
| US5561538A (en)* | 1992-11-17 | 1996-10-01 | Sharp Kabushiki Kaisha | Direct-view display apparatus |
| US7898477B1 (en)* | 2010-01-31 | 2011-03-01 | Roger Dale Oxley | Volumetric direction-finding using a Maxwell Fish-Eye lens |
| TW201109731A (en)* | 2009-06-15 | 2011-03-16 | Fraunhofer Ges Forschung | Projection display and use thereof |
| WO2013144311A1 (en)* | 2012-03-29 | 2013-10-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Projection display and method for projecting an overall image |
| CN103885582A (en)* | 2012-12-19 | 2014-06-25 | 辉达公司 | Near-eye Microlens Array Displays |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5499138A (en)* | 1992-05-26 | 1996-03-12 | Olympus Optical Co., Ltd. | Image display apparatus |
| US5561538A (en)* | 1992-11-17 | 1996-10-01 | Sharp Kabushiki Kaisha | Direct-view display apparatus |
| TW201109731A (en)* | 2009-06-15 | 2011-03-16 | Fraunhofer Ges Forschung | Projection display and use thereof |
| US7898477B1 (en)* | 2010-01-31 | 2011-03-01 | Roger Dale Oxley | Volumetric direction-finding using a Maxwell Fish-Eye lens |
| WO2013144311A1 (en)* | 2012-03-29 | 2013-10-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Projection display and method for projecting an overall image |
| CN103885582A (en)* | 2012-12-19 | 2014-06-25 | 辉达公司 | Near-eye Microlens Array Displays |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019165620A1 (en)* | 2018-03-01 | 2019-09-06 | 陈台国 | Near eye display method capable of multi-depth of field imaging |
| US11927871B2 (en) | 2018-03-01 | 2024-03-12 | Hes Ip Holdings, Llc | Near-eye displaying method capable of multiple depths of field imaging |
| CN110244469A (en)* | 2019-06-19 | 2019-09-17 | 中国人民解放军陆军装甲兵学院 | A kind of determination method and system of directional scattering device position and diffusion angle |
| CN110244469B (en)* | 2019-06-19 | 2021-03-23 | 中国人民解放军陆军装甲兵学院 | Method and system for determining position and diffusion angle of directional diffuser |
| CN113253454A (en)* | 2020-02-11 | 2021-08-13 | 京东方科技集团股份有限公司 | Head-mounted display device and manufacturing method thereof |
| CN113325588A (en)* | 2021-06-21 | 2021-08-31 | 凤凰光学股份有限公司 | High-brightness high-resolution high-contrast augmented reality display equipment |
| Publication | Publication Date | Title |
|---|---|---|
| WO2016086742A1 (en) | Microlens array based near-eye display (ned) | |
| CN204331144U (en) | Zoom helmet | |
| CN105739094A (en) | Near-eye display method based on lens array | |
| CN106772717A (en) | A kind of Fresnel Lenses and virtual reality device | |
| CN104049369B (en) | A kind of camera lens for wearing display device and helmet | |
| BR112012014012A2 (en) | methods for creating output stream and apparatus for capturing multiple series of images | |
| CN105911747B (en) | A display panel and display device | |
| CN105842864B (en) | A kind of slim grating 3D display device | |
| CN104914556A (en) | Wide-angle lens | |
| CN103985084A (en) | Image processing method and device | |
| CN204462536U (en) | A kind of miniscope eyepiece | |
| CN104407439A (en) | Self-adaptive transparent display device used for intelligent glasses | |
| Yamada et al. | Expanding the field-of-view of head-mounted displays with peripheral blurred images | |
| WO2017143726A1 (en) | System for presenting virtual reality contents and head-mounted display | |
| CN105738981A (en) | Lens and camera lens comprising the same and head-worn display | |
| EP2667239A3 (en) | Three-dimensional image display device | |
| CN205608305U (en) | 3D virtual reality helmet and display module thereof | |
| CN204479780U (en) | A kind of lens and comprise camera lens and the head mounted display of these lens | |
| US9743070B2 (en) | Three-dimensional image display apparatus and three-dimensional image display | |
| CN103837989A (en) | Head-mounted imaging device and head-mounted intelligent terminal | |
| EP2402810A3 (en) | Shutter glasses capable of viewing a plurality of types of monitors whose image light outputs have different polarization directions | |
| CN206258634U (en) | A secondary display virtual reality optical system for viewing large screens | |
| CN204389720U (en) | Lens and lens barrel comprising same | |
| CN203981975U (en) | An optical machine for near-eye display | |
| CN103837968B (en) | Lens for head-mounted display device and head-mounted display device |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20160706 |