技术领域technical field
本发明涉及工业机器人标定技术领域,是一种机器人末端执行器工具坐标系和相机坐标系的标定方法。具体为一种基于激光跟踪仪的机器人末端执行器坐标系标定方法。The invention relates to the technical field of industrial robot calibration, and relates to a calibration method for a tool coordinate system and a camera coordinate system of a robot end effector. Specifically, it is a method for calibrating the coordinate system of a robot end effector based on a laser tracker.
背景技术Background technique
在现代生产制造技术中,工业机器人在飞机、汽车等领域逐渐应用,机器人多用于零部件的制孔、铆接、装配等作业,并且能够大大提高生产效率、保证产品质量及其一致性、缩短生产周期等,应用工业机器人成为工业自动化的一种新趋势。在生产制造过程中,工业机器人按照预先编好的程序路径运动,到达加工工位后,通过高精度工业相机来识别工件坐标系位置,进行理论工件位置和实际位置的误差补偿,然后机器人末端执行器上的工具在工件坐标系中运动,完成相关的加工任务。In modern production and manufacturing technology, industrial robots are gradually used in aircraft, automobiles and other fields. Robots are mostly used for hole making, riveting, assembly and other operations of parts and components, and can greatly improve production efficiency, ensure product quality and consistency, and shorten production. Cycle, etc., the application of industrial robots has become a new trend in industrial automation. In the manufacturing process, the industrial robot moves according to the pre-programmed path. After reaching the processing station, it uses a high-precision industrial camera to identify the position of the workpiece coordinate system, and performs error compensation between the theoretical workpiece position and the actual position, and then the end of the robot executes The tool on the machine moves in the workpiece coordinate system to complete related processing tasks.
机器人运动时,必须建立精确的机器人末端执行器坐标系,主要包括识别位置用的相机坐标系和加工用的工具坐标系。目前机器人标定末端坐标系的典型方法如XYZ4点法,适用于小型工具,标定过程中目测工具固定点和参考点的接触,精度不高;借助三维绘图软件,仿真出理论坐标系和实际会有一定的误差。对于大尺寸的末端执行器,需要采用一种新的方法来准确地标定工具坐标系和相机坐标系。When the robot moves, it is necessary to establish an accurate robot end effector coordinate system, mainly including the camera coordinate system for identifying the position and the tool coordinate system for processing. At present, the typical method of robot calibration terminal coordinate system, such as XYZ4 point method, is suitable for small tools. During the calibration process, the contact between the fixed point of the tool and the reference point is not high in accuracy; with the help of 3D drawing software, the theoretical coordinate system and the actual will be simulated. Certain error. For large-sized end effectors, a new method is needed to accurately calibrate the tool coordinate system and camera coordinate system.
发明内容Contents of the invention
本发明为了解决工业机器人末端执行器上工具坐标系和相机坐标系准确标定的问题,通过提出一种机器人相关坐标系和激光跟踪仪坐标系的快速转换方法,解决机器人实际应用时,机器人末端执行器的快速而准确定位的问题。In order to solve the problem of accurate calibration of the tool coordinate system and the camera coordinate system on the end effector of the industrial robot, the present invention proposes a fast conversion method between the robot-related coordinate system and the laser tracker coordinate system, so as to solve the problem of robot end-execution problems in the actual application of the robot. The problem of fast and accurate location of the device.
末端执行器坐标系标定的实质是确定工具坐标系xtytzt、相机坐标系xpypzp在法兰坐标系xFyFzF下的位姿矩阵TFt和TFp,然后将两个位姿矩阵的参数输入到机器人对应的工具Tool1和相机Tool2坐标系中,机器人便可以识别,并进行相关的作业。The essence of the end-effector coordinate system calibration is to determine the pose matrices TFt and TFp of the tool coordinate system xty t z tandthe camera coordinate system xp yp zp in the flange coordinate system xF yF zF , and then input the parameters of the two pose matrices into the tool Tool1 and camera Tool2 coordinate systems corresponding to the robot, and the robot can recognize and perform related operations.
本发明的技术方案为:Technical scheme of the present invention is:
所述一种基于激光跟踪仪的机器人末端执行器坐标系标定方法,其特征在于:包括以下步骤:The method for calibrating the coordinate system of a robot end effector based on a laser tracker is characterized in that it comprises the following steps:
步骤1:在机器人附近放置激光跟踪仪,预热激光跟踪仪,激光跟踪仪建立默认的激光跟踪仪坐标系xmymzm;进给电机调至零位,缩回机器人末端执行器上的压力鼻,将标定板固定在机器人工作台上,调整机器人使压力鼻距离标定板平面为标准值ltp,并对标定板调平,使机器人末端执行器的主轴轴线垂直于标定板;机器人末端执行器的相机能够同时拍到标定板上呈梅花状分布的5个孔,且安装在主轴刀柄上的激光跟踪仪靶球能够接收到激光跟踪仪的激光束;示教当前点为机器人HOME1点,之后标定过程中机器人都是从HOME1点出发,保证激光跟踪仪在标定坐标系过程中有固定的参考点;Step 1: Place the laser tracker near the robot, warm up the laser tracker, the laser tracker establishes the default laser tracker coordinate system xm ym zm ; adjust the feed motor to zero, retract the robot end effector Fix the calibration plate on the robot workbench, adjust the robot so that the distance between the pressure nose and the plane of the calibration plate is the standard value ltp , and level the calibration plate so that the axis of the main axis of the end effector of the robot is perpendicular to the calibration plate; The camera of the end effector can take pictures of the five holes distributed in the shape of a plum blossom on the calibration plate at the same time, and the target ball of the laser tracker installed on the spindle handle can receive the laser beam of the laser tracker; the current point of teaching is the robot HOME1 point, and then the robot starts from HOME1 point in the calibration process to ensure that the laser tracker has a fixed reference point in the process of calibrating the coordinate system;
步骤2:测量法兰坐标系:Step 2: Measure the flange coordinate system:
步骤2.1:机器人从HOME1点出发,按一个方向绕第六轴旋转,用测量软件记录旋转过程中靶球的坐标,直至靶球接收不到激光跟踪仪的激光束;机器人返回HOME1点,再绕第六轴反方向旋转,用测量软件记录旋转过程中靶球的坐标,直至靶球接收不到激光跟踪仪的激光束;根据记录的靶球坐标拟合出第六轴旋转圆和第六轴旋转平面;机器人返回HOME1点,按一个方向绕第五轴旋转,用测量软件记录旋转过程中靶球的坐标,直至靶球接收不到激光跟踪仪的激光束;机器人返回HOME1点,再绕第五轴反方向旋转,用测量软件记录旋转过程中靶球的坐标,直至靶球接收不到激光跟踪仪的激光束;根据记录的靶球坐标拟合出第五轴旋转圆和第五轴旋转平面;Step 2.1: The robot starts from HOME1, rotates around the sixth axis in one direction, and uses the measurement software to record the coordinates of the target ball during the rotation until the target ball cannot receive the laser beam of the laser tracker; the robot returns to HOME1 point, and then circles The sixth axis rotates in the opposite direction, and use the measurement software to record the coordinates of the target ball during the rotation until the target ball cannot receive the laser beam of the laser tracker; the sixth axis rotation circle and the sixth axis are fitted according to the recorded coordinates of the target ball Rotate the plane; the robot returns to the HOME1 point, rotates around the fifth axis in one direction, and uses the measurement software to record the coordinates of the target ball during the rotation until the target ball cannot receive the laser beam of the laser tracker; the robot returns to the HOME1 point, and then circles the fifth axis. The five-axis rotates in the opposite direction, and the coordinates of the target ball during the rotation are recorded by the measurement software until the target ball cannot receive the laser beam of the laser tracker; the fifth-axis rotation circle and the fifth-axis rotation are fitted according to the recorded target ball coordinates flat;
步骤2.2:利用测量软件测得第五轴旋转圆的圆心O5点到第六轴旋转平面的距离D56,进而得到法兰坐标系xFyFzF原点OF到第六轴旋转面的距离DF6为:Step 2.2: Use the measurement software to measure the distance D56 from the center O5 of thefifth -axis rotation circle to the sixth-axis rotation plane, and then obtain the flange coordinate system xF yF zF origin OF to the sixth-axis rotation plane The distance DF6 is:
DF6=D56-HDF6 = D56 -H
其中H为第五轴旋转圆的圆心O5点到法兰坐标系的原点距离;以第六轴旋转圆的圆心O6为中心,以第六轴旋转面的法向方向为偏移方向,向上偏移DF6,得到的点即为法兰坐标系xFyFzF的原点OF(xmF,ymF,zmF);Wherein H is the distance from the center O5 of thefifth -axis rotation circle to the origin of the flange coordinate system; the center O6 of thesixth -axis rotation circle is the center, and the normal direction of the sixth-axis rotation surface is the offset direction, Offset DF6 upwards, the obtained point is the origin OF (xmF ,ymF ,zmF ) of the flange coordinate system xF yF zF ;
步骤2.3:机器人从HOME1点出发,使机器人沿着法兰坐标系xFyFzF的xF方向移动,拟合向量再沿着法兰坐标系的yF方向移动,拟合向量将第六轴旋转平面方向向下的法线作为法兰坐标系xFyFzF的zF正方向,分别比较zF正方向和向量向量的夹角:Step 2.3: The robot starts from the HOME1 point, makes the robot move along the xF direction of the flange coordinate system xF yF zF , and fits the vector Then move along the yF direction of the flange coordinate system, and fit the vector Take the downward normal of the sixth-axis rotation plane as the positive direction of zF of the flange coordinate system xF yF zF , and compare the positive direction of zF with the vector vector The included angle:
若上述两个夹角均在89.95°~90.05°范围内,则取靠近90°的夹角对应的向量作为准确方向;若只有一个夹角在89.95°~90.05°范围内,则取该夹角对应的向量为准确方向;若两个夹角均不在89.95°~90.05°范围内,则重新进行本步骤;If the above two included angles are both in the range of 89.95°~90.05°, take the vector corresponding to the included angle close to 90° as the exact direction; if only one included angle is in the range of 89.95°~90.05°, then take the included angle The corresponding vector is the exact direction; if the two included angles are not within the range of 89.95°~90.05°, repeat this step;
步骤2.4:采用zF正方向和步骤2.3确定的准确方向组建平面,并得到所建平面的法向,从而得到法兰坐标系yF正方向和xF正方向;在激光跟踪仪控制软件中以原点OF、xF正方向、yF正方向构建法兰坐标系xFyFzF,得到其在激光跟踪仪坐标系xmymzm下的位姿矩阵TmF:Step 2.4: Use the zF positive direction and the accurate direction determined in step 2.3 to construct a plane, and obtain the normal direction of the built plane, so as to obtain the flange coordinate system yF positive direction and xF positive direction; in the laser tracker control software Construct the flange coordinate system xF yF zF with the originOF , the positive direction of xF , and the positive direction of yF , and obtain its pose matrix TmF in the laser tracker coordinate system xm ym zm :
其中omF为单位向量,where omF is a unit vector,
nmF=omF×amFnmF = omF × amF
TransmF=(xmF,ymF,zmF)TTransmF =(xmF ,ymF ,zmF )T
步骤3:标定工具坐标系:Step 3: Calibrate the tool coordinate system:
步骤3.1:机器人从HOME1点出发,进给电机直线运动,拟合进给电机的进给直线,方向指向加工方向作为工具坐标系xtytzt的xt正方向;机器人保持在HOME1点不动,用激光跟踪仪标定压力鼻平面,将压力鼻平面沿工具坐标系xtytzt的xt正方向偏移,偏移量为压力鼻长度ltp,模拟出理论工件平面,理论工件平面和拟合的进给电机进给直线交点Ot(xmt,ymt,zmt)为工具中心点;Step 3.1: The robot starts from the HOME1 point, and the feed motor moves in a straight line, fitting the feed line of the feed motor, and the direction points to the processing direction as the positive direction of xt of the tool coordinate system xt yt zt ; the robot stays at the HOME1 point without moving, use the laser tracker to calibrate the pressure nose plane, offset the pressure nose plane along the positive xt direction of the tool coordinate system x ty t z t,theoffset is the pressure nose length ltp , simulate the theoretical workpiece plane, The intersection point Ot (xmt , ymt , zmt ) of the theoretical workpiece plane and the fitted feed motor feed line is the tool center point;
步骤3.2:将法兰坐标系xFyFzF的xF正方向投影到工具坐标系xtytzt的xt正方向的切面上,得到工具坐标系xtytzt的zt正方向,再根据右手定则,得到工具坐标系xtytzt的yt正方向;以工具坐标系xtytzt的工具中心点、xt正方向、yt正方向、zt正方向构建工具坐标系xtytzt,得到其在激光跟踪仪坐标系xmymzm下的位姿矩阵Tmt:Step 3.2: Project the positive direction of xF of the flange coordinate system xF yF zF to the tangent plane of the positive direction ofxt of the tool coordinate systemx t y tzttoobtain the zt positive direction, and then according to the right-hand rule, the yt positive direction of the tool coordinate system xt yt zt is obtained; the tool center point of the tool coordinate system xt yt zt , the xt positive direction, and the yt positive direction direction, zt positive direction to construct the tool coordinate system xty t z t,and obtain its pose matrix Tmt in the laser tracker coordinate system xm ym zm :
omt=nmt×amtomt = nmt ×amt
Transmt=(xmt,ymt,zmt)TTransmt =(xmt ,ymt ,zmt )T
步骤4:构建标定板坐标系xbybzb,并得到标定板坐标系xbybzb在激光跟踪仪坐标系xmymzm下的位姿矩阵Tmb:Step 4: Construct the calibration board coordinate system xb yb zb , and obtain the pose matrix Tmb of the calibration board coordinate system xb yb zb in the laser tracker coordinate system xm ym zm :
步骤4.1:将靶球放在靶标座上,分别将靶标座放入到标定板中的五个孔中,保持靶标座下表面和标定板平面贴紧,测量五个孔在激光跟踪仪坐标系xmymzm下的坐标值Pmb10(xmb10,ymb10,zmb10)、Pmb20(xmb20,ymb20,zmb20)、Pmb30(xmb30,ymb30,zmb30)、Pmb40(xmb40,ymb40,zmb40)、Pmb50(xmb50,ymb50,zmb50);Step 4.1: Put the target ball on the target seat, put the target seat into the five holes in the calibration plate respectively, keep the lower surface of the target seat and the plane of the calibration plate close to each other, measure the five holes in the laser tracker coordinate system Coordinate values under xm ym zm Pmb10 (xmb10 ,ymb10 ,zmb10 ), Pmb20 (xmb20 ,ymb20 ,zmb20 ), Pmb30 (xmb30 ,ymb30 ,zmb30 ), Pmb40 (xmb40 , ymb40 , zmb40 ), Pmb50 (xmb50 , ymb50 , zmb50 );
步骤4.2:将标定板固定在机器人工作平台上,用靶球在标定板平面上均匀采集若干个不共线的点,排除靶球的半径尺寸,在激光跟踪仪坐标系下构建标定板平面;利用测量软件将测量的五个孔投影到标定板平面上,得到五个孔的投影点分别为Pmb1(xmb1,ymb1,zmb1)、Pmb2(xmb2,ymb2,zmb2)、Pmb3(xmb3,ymb3,zmb3)、Pmb4(xmb4,ymb4,zmb4)和Pmb5(xmb5,ymb5,zmb5);Step 4.2: Fix the calibration board on the robot working platform, use the target ball to evenly collect several non-collinear points on the plane of the calibration board, exclude the radius size of the target ball, and construct the calibration board plane under the coordinate system of the laser tracker; Use the measurement software to project the measured five holes onto the plane of the calibration plate, and obtain the projection points of the five holes as Pmb1 (xmb1 , ymb1 , zmb1 ), Pmb2 (xmb2 , ymb2 , zmb2 ) , Pmb3 (xmb3 , ymb3 , zmb3 ), Pmb4 (xmb4 , ymb4 , zmb4 ) and Pmb5 (xmb5 , ymb5 , zmb5 );
步骤4.3:以五个孔中的中心孔的投影Pmb1为原点,以Pmb1指向孔2的投影Pmb2方向为标定板坐标系xbybzb的xb轴正方向,得到单位向量为:Step 4.3: Take the projection Pmb1 of the center hole among the five holes as the origin, and take the projection Pmb2 direction of Pmb1 pointing to hole 2 as the positive direction of the xb axis of the coordinate system xb yb zb of the calibration plate to obtain the unit vector for:
以标定板的法向且垂直标定板向下为标定板坐标系xbybzb的zb轴正方向,其单位向量为:Taking the normal direction of the calibration plate and the vertical calibration plate downward as the positive direction of the zb axis of the calibration plate coordinate system xb yb zb , the unit vector is:
由右手定则得到标定板坐标系xbybzb的yb轴正方向,其单位向量为:The positive direction of the yb axis of the calibration plate coordinate system xb yb zb is obtained by the right-hand rule, and its unit vector is:
omb0=amb0×nmb0omb0 = amb0 ×nmb0
标定板坐标系xbybzb在激光跟踪仪坐标系xmymzm下的位姿矩阵为:The pose matrix of the calibration board coordinate system xb yb zb in the laser tracker coordinate system xm ym zm is:
其中:in:
nmb=nmb0nmb =nmb0
omb=omb0omb = omb0
amb=amb0amb =amb0
Transmb=(xmb1 ymb1 zmb1)TTransmb = (xmb1 ymb1 zmb1 )T
步骤5:标定相机坐标系:Step 5: Calibrate the camera coordinate system:
步骤5.1:机器人保持在HOME1点不动,打开机器人末端执行器的相机并调节相机焦距,直至在相机中清晰看到标定板上呈梅花状分布的5个孔,记录在相机自带坐标系xp0Oyp0下五个孔中心的坐标值,Ppb01(xpb01,ypb01)、Ppb02(xpb02,ypb02)、Ppb03(xpb03,ypb03)、Ppb04(xpb04,ypb04)、Ppb05(xpb05,ypb05);Step 5.1: Keep the robot at HOME1, turn on the camera of the end effector of the robot and adjust the focal length of the camera until the 5 holes on the calibration plate distributed in a plum blossom shape are clearly seen in the camera, and recorded in the camera's own coordinate system x Coordinate values of five hole centers underp0 Oyp0 , Ppb01 (xpb01 ,ypb01 ), Ppb02 (xpb02 ,ypb02 ), Ppb03 (xpb03 ,ypb03 ), Ppb04 (xpb04 ,ypb04 ), Ppb05 (xpb05 , ypb05 );
步骤5.2:根据步骤4.1得到五个孔中心的坐标值,计算每两个孔之间的像素点距离lpij:Step 5.2: Obtain the coordinates of the centers of the five holes according to step 4.1, and calculate the pixel distance lpij between every two holes:
其中i、j=1~5且i≠j,依次得到lp12、lp13、lp14、lp15、lp23、lp24、lp25、lp34、lp35、lp45;Where i, j=1~5 and i≠j, lp12 , lp13 , lp14 , lp15 , lp23 , lp24 , lp25 , lp34 , lp35 , lp45 are sequentially obtained;
步骤5.3:根据Pmb1(xmb1,ymb1,zmb1)、Pmb2(xmb2,ymb2,zmb2)、Pmb3(xmb3,ymb3,zmb3)、Pmb4(xmb4,ymb4,zmb4)和Pmb5(xmb5,ymb5,zmb5)计算对应的两个孔之间的实际距离Lpij:Step 5.3: According to Pmb1 (xmb1 ,ymb1 ,zmb1 ), Pmb2 (xmb2 ,ymb2 ,zmb2 ), Pmb3 (xmb3 ,ymb3 ,zmb3 ), Pmb4 (xmb4 ,ymb4 ,zmb4 ) and Pmb5 (xmb5 ,ymb5 ,zmb5 ) to calculate the actual distance Lpij between the corresponding two holes:
其中i、j=1~5且i≠j,得到标定板上五个孔之间的实际距离Lp12、Lp13、Lp14、Lp15、Lp23、Lp24、Lp25、Lp34、Lp35、Lp45;依次得到实际每一毫米的像素点数NijWhere i, j=1~5 and i≠j, the actual distance between the five holes on the calibration plate Lp12 , Lp13 , Lp14 , Lp15 , Lp23 , Lp24 , Lp25 , Lp34 , Lp35 , Lp45 ; get the actual number of pixels per millimeter Nij in sequence
求出对应的N12、N13、N14、N15、N23、N24、N25、N34、N35、N45的平均值N;Calculate the average value N of corresponding N12 , N13 , N14 , N15 , N23 , N24 , N25 , N34 , N35 , and N45 ;
步骤5.4:得到标定板上五个孔在相机坐标系xpypzp下的坐标为Ppb1(xpb1,ypb1,zpb1)、Ppb2(xpb2,ypb2,zpb2)、Ppb3(xpb3,ypb3,zpb3)、Ppb4(xpb4,ypb4,zpb4)、Ppb5(xpb5,ypb5,zpb5)为:Step 5.4: Get the coordinates of the five holes on the calibration plate in the camera coordinate system xp yp zp as Ppb1 (xpb1 , ypb1 , zpb1 ), Ppb2 (xpb2 , ypb2 , zpb2 ), Ppb3 (xpb3 ,ypb3 ,zpb3 ), Ppb4 (xpb4 ,ypb4 ,zpb4 ), Ppb5 (xpb5 ,ypb5 ,zpb5 ) are:
zpbi=0zpbi =0
其中i=1~5,L0*B0为相机像素点实际大小;Where i=1~5, L0 *B0 is the actual size of the camera pixel;
步骤5.5:标定板上五个孔中的中心孔在相机坐标系下的坐标点Ppb1(xpb1,ypb1,zpb1)为原点,为标定板坐标系xbybzb的xb轴正方向,再构建向量按照右手定则从正方向指向xb轴的正方向,得到标定板坐标系xbybzb的zb轴正方向,再以xb轴正方向和zb轴正方向按照右手定则得出yb轴正方向,从而得到标定板坐标系xbybzb在相机坐标系xpypzp中的位姿矩阵Tpb:Step 5.5: The coordinate point Ppb1 (xpb1 , ypb1 , zpb1 ) of the center hole of the five holes on the calibration board in the camera coordinate system is the origin, To calibrate the positive direction of the xb axis of the board coordinate system xb yb zb , and then construct a vector According to the right-hand rule from The positive direction points to the positive direction of the xb axis, and the positive direction of the zb axis of the calibration plate coordinate system xb yb zb is obtained, and then the positive direction of the xb axis and the zb axis are used to obtain the yb axis according to the right-hand rule Positive direction, so as to obtain the pose matrix Tpb of the calibration board coordinate system xb yb zb in the camera coordinate system xp yp zp :
其中:in:
opb=apb×npbopb = apb ×npb
Transpb=(xpb1 ypb1 zpb1)TTranspb =(xpb1 ypb1 zpb1 )T
步骤6:依据得到的激光跟踪仪坐标系xmymzm下,法兰坐标系xFyFzF、工具坐标系xtytzt、标定板坐标系xbybzb的位姿矩阵TmF、Tmt、Tmb,和标定板坐标系xbybzb在相机坐标系xpypzp下的位姿矩阵Tpb,利用矩阵转换关系,得到在法兰坐标系xFyFzF下,工具坐标系xtytzt的位姿矩阵TFt和相机坐标系xpypzp的位姿矩阵TFp:Step 6: According to the obtained laser tracker coordinate system xm ym zm , the flange coordinate system xF yF zF , the tool coordinate system xt yt zt , and the calibration plate coordinate system xb yb zb The pose matrix TmF , Tmt , Tmb , and the pose matrix Tpb of the calibration board coordinate system xb yb zb in the camera coordinate system xp yp zp are obtained by using the matrix transformation relationship In the blue coordinate system xF yF zF , the pose matrix TFt of the tool coordinate system xty t z tandthe pose matrix TFp of the camera coordinate system xp yp zp :
TFt=(TmF)-1TmtTFt =(TmF )-1 Tmt
Tmp=Tmb(Tpb)-1Tmp = Tmb (Tpb )-1
TFp=(TmF)-1Tmb(Tpb)-1TFp =(TmF )-1 Tmb (Tpb )-1
步骤7:将工具坐标系xtytzt、相机坐标系xpypzp在法兰坐标系xFyFzF下的位姿矩阵TFt和TFp的对应参数输入到机器人对应的工具坐标系Tool1和Tool2参数表中,定义Tool1为工具坐标系xtytzt,Tool2为相机坐标系xpypzp,机器人识别Tool1和Tool2的参数,从而能够在编程人员指定的坐标系中运行工作。Step 7: Input the corresponding parameters of the pose matrix TFt and TFp of the tool coordinate system xt yt zt , camera coordinate system xp yp zp in the flange coordinate system xF yF zF to the robot In the corresponding tool coordinate system Tool1 and Tool2 parameter tables, define Tool1 as the tool coordinate system xt yt zt , Tool2 as the camera coordinate system xp yp zp , and the robot recognizes the parameters of Tool1 and Tool2, so that the programmer can Run the job in the specified coordinate system.
有益效果Beneficial effect
本发明根据制孔等加工工作的实际需要,定义工具坐标系和相机坐标系。借助于激光跟踪仪和自制的标定板为工具,定义标定板坐标系。根据本发明的方法,标定出在激光跟踪仪坐标系下法兰坐标系、工具坐标系、标定板坐标系的位姿矩阵,在相机坐标系下标定板坐标系的位姿矩阵,来求得工具坐标系和相机坐标系在法兰坐标系下的位姿矩阵,从而得到精确的工具坐标系和相机坐标系。The present invention defines a tool coordinate system and a camera coordinate system according to the actual needs of machining work such as hole making. With the aid of the laser tracker and the self-made calibration board as tools, the coordinate system of the calibration board is defined. According to the method of the present invention, the pose matrix of the flange coordinate system, the tool coordinate system, and the calibration plate coordinate system are calibrated under the laser tracker coordinate system, and the pose matrix of the calibration plate coordinate system is calibrated under the camera coordinate system to obtain The pose matrix of the tool coordinate system and the camera coordinate system in the flange coordinate system, so as to obtain the precise tool coordinate system and camera coordinate system.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and comprehensible from the description of the embodiments in conjunction with the following drawings, wherein:
图1工具坐标系标定原理图;Figure 1 Schematic diagram of tool coordinate system calibration;
图2激光跟踪仪软件SpatialAnalyzer界面;Figure 2 SpatialAnalyzer interface of laser tracker software;
图3机器人坐标系标定现场图;Figure 3 The scene diagram of robot coordinate system calibration;
图4法兰坐标系和工具坐标系标定原理图;Figure 4 Schematic diagram of flange coordinate system and tool coordinate system calibration;
图5末端坐标系标定示意图;(工具坐标系和相机坐标系的原点均定义在理论工件平面上)Figure 5 Schematic diagram of the calibration of the end coordinate system; (the origin of the tool coordinate system and the camera coordinate system are both defined on the theoretical workpiece plane)
图6相机视野;Figure 6 Camera field of view;
图7标定板。Figure 7 Calibration board.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of said embodiments are shown in the accompanying drawings, and the embodiments described with reference to the accompanying drawings are exemplary, intended to explain the present invention, and cannot be construed as limitations of the present invention .
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In describing the present invention, it should be understood that the terms "center", "longitudinal", "transverse", "length", "width", "thickness", "upper", "lower", "front", " Orientation indicated by rear, left, right, vertical, horizontal, top, bottom, inside, outside, clockwise, counterclockwise, etc. The positional relationship is based on the orientation or positional relationship shown in the drawings, which is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, Therefore, it should not be construed as limiting the invention.
本实施例为制孔加工示例,标定精确的工具坐标系和相机坐标系的具体步骤为:This embodiment is an example of hole making, and the specific steps for calibrating the precise tool coordinate system and camera coordinate system are as follows:
步骤1:按照图1所示,在机器人附近放置激光跟踪仪,预热激光跟踪仪,预热同时,激光跟踪仪建立了默认的激光跟踪仪坐标系xmymzm,进给电机调至制孔时所设定的零位,机器人末端执行器上的压力鼻缩回,标定板固定在机器人正前方工作台上,调整机器人使其压力鼻距离标定板平面为标准值ltp,并在标定板调平,保证末端执行器上的主轴轴线垂直于标定板,并使得末端执行器上的相机能够同时拍到标定板上的5个梅花孔,且保证安装在主轴刀柄上的激光跟踪仪靶球可以接收到跟踪头的激光束。示教当前点为机器人HOME1点,之后所有标定过程机器人都是从HOME1点出发,保证激光跟踪仪在标定坐标系过程中有固定的参考点。另外,除了标定进给电机方向外,不能移动进给电机,以保证靶球和末端执行器的固连关系。Step 1: As shown in Figure 1, place the laser tracker near the robot, warm up the laser tracker, and at the same time, the laser tracker establishes the default laser tracker coordinate system xm ym zm , and the feed motor adjusts When reaching the zero position set during hole making, the pressure nose on the end effector of the robot is retracted, the calibration plate is fixed on the workbench directly in front of the robot, and the robot is adjusted so that the distance between the pressure nose and the calibration plate plane is the standard value ltp , and Level the calibration plate to ensure that the axis of the spindle on the end effector is perpendicular to the calibration plate, and enable the camera on the end effector to capture the five plum blossom holes on the calibration plate at the same time, and ensure that the laser installed on the spindle handle The tracker target ball can receive the laser beam of the tracking head. The current point of teaching is the HOME1 point of the robot, and the robot starts from the HOME1 point in all subsequent calibration processes to ensure that the laser tracker has a fixed reference point in the process of calibrating the coordinate system. In addition, except to calibrate the direction of the feed motor, the feed motor cannot be moved to ensure the fixed connection between the target ball and the end effector.
步骤2:法兰坐标系的测量。机器人分别绕第五轴、第六轴旋转,再使机器人在自身法兰坐标系下按各坐标方向分别移动,利用激光跟踪仪采样若干组点,再利用测量软件Spatial Analyzer,拟合出法兰坐标系xFyFzF,得到法兰坐标系在激光跟踪仪坐标系xmymzm下的位姿矩阵TmF。Step 2: Measurement of the flange coordinate system. The robot rotates around the fifth axis and the sixth axis respectively, and then moves the robot in each coordinate direction in its own flange coordinate system, uses the laser tracker to sample several sets of points, and then uses the measurement software Spatial Analyzer to fit the flange Coordinate system xF yF zF , get the pose matrix TmF of the flange coordinate system in the laser tracker coordinate system xm ym zm .
步骤2.1:机器人从HOME1出发,按一个方向绕第六轴旋转,每隔1°左右用测量软件Spatial Analyzer记录靶球的坐标,调整靶球继续测量直至靶球接收不到激光束,机器人回HOME1后再绕第六轴反方向旋转,测量靶球的坐标,调整靶球继续测量直至靶球接收不到激光束,机器人回HOME1点。机器人再从HOME1点出发,绕第五轴旋转,同上采集一些列点,如图2和图3所示。在测量软件Spatial Analyzer中,用采集的点拟合出第六轴旋转圆、第六轴旋平面、第五轴旋转圆、第五轴旋平面,如图4所示。Step 2.1: The robot starts from HOME1, rotates around the sixth axis in one direction, records the coordinates of the target ball with the measurement software Spatial Analyzer every 1°, adjusts the target ball and continues to measure until the target ball cannot receive the laser beam, and the robot returns to HOME1 Then rotate around the sixth axis in the opposite direction, measure the coordinates of the target ball, adjust the target ball and continue to measure until the target ball cannot receive the laser beam, and the robot returns to HOME1. The robot then starts from HOME1, rotates around the fifth axis, and collects a series of points as above, as shown in Figure 2 and Figure 3. In the measurement software Spatial Analyzer, use the collected points to fit the sixth axis rotation circle, the sixth axis rotation plane, the fifth axis rotation circle, and the fifth axis rotation plane, as shown in Figure 4.
步骤2.2:利用Spatial Analyzer求得第五轴旋转圆的圆心O5点到第六轴旋转面的距离D56,且机器人五轴和六轴交于一点,第五轴旋转圆的圆心O5点到法兰坐标系的原点距离为H。可求得法兰坐标系xFyFzF原点OF到第六轴旋转面的距离DF6为:Step 2.2: Use the Spatial Analyzer to obtain the distance D56 from the center O5 of the fifth-axis rotation circle to the sixth-axis rotation plane, and the fifth axis and the sixth axis of the robot intersect at one point, and the center O5 points of the fifth-axis rotation circle The distance from the origin of the flange coordinate system is H. The distance DF6 from the origin of the flange coordinate system xF yF zF to the sixth axis rotation plane OF can be obtained as:
DF6=D56-HDF6 = D56 -H
以第六轴旋转圆的圆心O6为中心,以第六轴旋转面的法向方向为偏移方向,向上偏移DF6,得到的点即为法兰坐标系xFyFzF的原点OF(xmF,ymF,zmF)。Take the center O6 of the sixth-axis rotation circle as the center, take the normal direction of the sixth-axis rotation surface as the offset direction, and offset DF6 upwards, and the obtained point is the flange coordinate system xF yF zF The origin OF (xmF , ymF , zmF ).
步骤2.3:机器人从HOME1点出发,使机器人沿着法兰坐标系xFyFzF的xF正方向(也可沿着xF负方向)移动,隔50mm左右采集一个点,拟合向量再沿着法兰坐标系的yF正方向(也可沿着yF负方向)移动,拟合向量将第六轴旋转平面方向向下的法线作为法兰坐标系xFyFzF的zF正方向,分别比较zF正方向和向量向量的夹角:Step 2.3: The robot starts from the HOME1 point, moves the robot along the positive direction of xF (or along the negative direction of xF ) of the flange coordinate system xF yF zF , collects a point every 50 mm or so, and fits the vector Then move along the positive direction of yF of the flange coordinate system (or along the negative direction of yF ), and fit the vector Take the downward normal of the sixth-axis rotation plane as the positive direction of zF of the flange coordinate system xF yF zF , and compare the positive direction of zF with the vector vector The included angle:
若上述两个夹角均在89.95°~90.05°范围内,则取靠近90°的夹角对应的向量作为准确方向;若只有一个夹角在89.95°~90.05°范围内,则取该夹角对应的向量为准确方向;若两个夹角均不在89.95°~90.05°范围内,则重新进行本步骤;If the above two included angles are both in the range of 89.95°~90.05°, take the vector corresponding to the included angle close to 90° as the exact direction; if only one included angle is in the range of 89.95°~90.05°, then take the included angle The corresponding vector is the exact direction; if the two included angles are not within the range of 89.95°~90.05°, repeat this step;
步骤2.4:采用zF正方向和步骤2.3确定的准确方向组建平面,并得到所建平面的法向,从而得到法兰坐标系yF正方向和xF正方向;在激光跟踪仪控制软件中以原点OF、xF正方向、yF正方向构建法兰坐标系xFyFzF,得到其在激光跟踪仪坐标系xmymzm下的位姿矩阵TmF:Step 2.4: Use the zF positive direction and the accurate direction determined in step 2.3 to construct a plane, and obtain the normal direction of the built plane, so as to obtain the flange coordinate system yF positive direction and xF positive direction; in the laser tracker control software Construct the flange coordinate system xF yF zF with the originOF , the positive direction of xF , and the positive direction of yF , and obtain its pose matrix TmF in the laser tracker coordinate system xm ym zm :
其中omF为单位向量where omF is a unit vector
nmF=omF×amFnmF = omF × amF
TransmF=(xmF,ymF,zmF)TTransmF =(xmF ,ymF ,zmF )T
步骤3:标定工具坐标系:使用激光跟踪仪采样拟合出进给电机的移动方向,也就是主轴刀具轴线,作为工具坐标系xtytzt的xt正方向。标定拟合出理论工件平面和刀具轴线的交点作为工具坐标系xtytzt的原点TCP点,制孔时机器人运动到位后,TCP点是待制孔的位置;然后根据法兰坐标系xFyFzF的方向来确定工具坐标系xtytzt的yt和zt方向,从而在测量软件Spatial Analyzer中得到末端执行器的工具坐标系xtytzt在激光跟踪仪坐标系xmymzm下的位姿矩阵Tmt。Step 3: Calibrate the tool coordinate system: use the laser tracker to sample and fit the moving direction of the feed motor, that is, the spindle tool axis, as the positive direction of xt of the tool coordinate system xtyt zt . Calibrate and fit the intersection point of the theoretical workpiece plane and the tool axis as the origin TCP point of the tool coordinate system x tyt zt. After the robot moves in place during hole making, the TCP point is the position of the hole to be made; then according to the flange coordinate system xF yF zF direction to determine the yt and zt directions of the tool coordinate system xt yt zt , so that the tool coordinate system xt yt zt of the end effector can be obtained in the measurement software Spatial Analyzer in the laser The pose matrix Tmt in the tracker coordinate system xm ym zm .
步骤3.1:标定末端执行器的进给电机方向,作为工具坐标系xtytzt的xt正方向:机器人从HOME1点出发,进给电机直线运动,每隔5mm左右采集若干点,拟合进给电机的进给直线,方向指向加工方向作为工具坐标系xtytzt的xt正方向。Step 3.1: Calibrate the direction of the feed motor of the end effector as the positive direction of xt in the tool coordinate system xt yt zt : the robot starts from HOME1 point, the feed motor moves linearly, collects several points every 5mm or so, and plans to The feed line of the combined feed motor points to the processing direction as the positive direction of xt in the tool coordinate system xtyt zt .
标定工具坐标系xtytzt的TCP点:机器人保持在HOME1点不动,用激光跟踪仪标定压力鼻平面,将压力鼻平面沿工具坐标系xtytzt的xt正方向偏移,偏移量为压力鼻长度ltp,模拟出理论工件平面,理论工件平面和拟合的进给电机进给直线交点Ot(xmt,ymt,zmt)为工具中心点;Calibrate the TCP point of the tool coordinate system xt yt zt : keep the robot at HOME1 point, use the laser tracker to calibrate the pressure nose plane, and align the pressure nose plane along the xt positive direction of the tool coordinate system xt yt zt Offset, the offset is the length of the pressure nose ltp , the theoretical workpiece plane is simulated, and the intersection point Ot (xmt , ymt , zmt ) of the theoretical workpiece plane and the fitted feed motor feed line is the tool center point;
步骤3.2:利用测量软件Spatial Analyzer处理数据得到工具坐标系xtytzt:将法兰坐标系xFyFzF的xF正方向投影到工具坐标系xtytzt的xt正方向的切面上,得到工具坐标系xtytzt的zt正方向,再根据右手定则,得到工具坐标系xtytzt的yt正方向;以工具坐标系xtytzt的工具中心点、xt正方向、yt正方向、zt正方向构建工具坐标系xtytzt,得到其在激光跟踪仪坐标系xmymzm下的位姿矩阵Tmt:Step 3.2: Use the measurement software Spatial Analyzer to process the data to obtain the tool coordinate system xt yt zt : project the positive direction of xF of the flange coordinate system xF yF zF to the x of the tool coordinate system xt yt zt On the tangent surface in the positive direction oft , the positive direction of zt in the tool coordinate system xt yt zt is obtained, and then according to the right-hand rule, the positive direction of yt in the tool coordinate system xt yt zt is obtained; The tool center point oft yt zt , the positive direction of xt , the positive direction of yt , and the positive direction of zt construct the tool coordinate system xt yt zt , and obtain its position in the laser tracker coordinate system xm ym zm The pose matrix Tmt of :
omt=nmt×amtomt = nmt ×amt
Transmt=(xmt,ymt,zmt)TTransmt =(xmt ,ymt ,zmt )T
步骤4:如图7所示,利用激光跟踪仪测量出标定板上的五个孔在激光跟踪仪坐标系xmymzm下的坐标Pmb10(xmb10,ymb10,zmb10)、Pmb20(xmb20,ymb20,zmb20)、Pmb30(xmb30,ymb30,zmb30)、Pmb40(xmb40,ymb40,zmb40)、Pmb50(xmb50,ymb50,zmb50),投影到标定板平面后,得到投影点Pmb1(xmb1,ymb1,zmb1)、Pmb2(xmb2,ymb2,zmb2)、Pmb3(xmb3,ymb3,zmb3)、Pmb4(xmb4,ymb4,zmb4)和Pmb5(xmb5,ymb5,zmb5),然后构建标定板坐标系xbybzb,并得到标定板坐标系xbybzb在激光跟踪仪坐标系xmymzm下的位姿矩阵Tmb:Step 4: As shown in Figure 7, use the laser tracker to measure the coordinates Pmb10 (xmb10 , ymb10 , zmb10 ) of the five holes on the calibration plate in the laser tracker coordinate system xm ym zm Pmb20 (xmb20 ,ymb20 ,zmb20 ), Pmb30 (xmb30 ,ymb30 ,zmb30 ), Pmb40 (xmb40 ,ymb40 ,zmb40 ), Pmb50 (xmb50 ,ymb50 ,zmb50 ), after projecting onto the plane of the calibration plate, the projection points Pmb1 (xmb1 ,ymb1 ,zmb1 ), Pmb2 (xmb2 ,ymb2 ,zmb2 ), Pmb3 (xmb3 ,ymb3 ,zmb3 ) are obtained , Pmb4 (xmb4 , ymb4 , zmb4 ) and Pmb5 (xmb5 , ymb5 , zmb5 ), then construct the calibration board coordinate system xb yb zb , and obtain the calibration board coordinate system xb yb The pose matrix Tmb of zb in the laser tracker coordinate system xm ym zm :
步骤4.1:测量标定板上的孔在激光跟踪仪坐标系xmymzm下的坐标值:将靶球放在靶标座上,分别将靶标座放入到标定板中的五个孔中,保持靶标座下表面和标定板平面贴紧,测量五个孔在激光跟踪仪坐标系xmymzm下的坐标值Pmb10(xmb10,ymb10,zmb10)、Pmb20(xmb20,ymb20,zmb20)、Pmb30(xmb30,ymb30,zmb30)、Pmb40(xmb40,ymb40,zmb40)、Pmb50(xmb50,ymb50,zmb50);Step 4.1: Measure the coordinate values of the holes on the calibration plate in the coordinate system xm ym zm of the laser tracker: place the target ball on the target seat, and put the target seat into the five holes in the calibration plate , keeping the lower surface of the target seat close to the plane of the calibration plate, measure the coordinate values Pmb10 (xmb10 ,ymb10 ,zmb10 ), Pmb20 (x mb20 ) of the five holes in the laser tracker coordinate system xm ym zmmb20 ,ymb20 ,zmb20 ), Pmb30 (xmb30 ,ymb30 ,zmb30 ), Pmb40 (xmb40 ,ymb40 ,zmb40 ), Pmb50 (xmb50 ,ymb50 ,zmb50 );
步骤4.2:构建标定板平面,并将测得的五个孔的坐标投影到标定板平面上,得到平面上的孔位坐标信息:将标定板固定在机器人工作平台上,用靶球在标定板平面上均匀采集若干个不共线的点,排除靶球的半径尺寸,在激光跟踪仪坐标系下构建标定板平面;利用测量软件将测量的五个孔投影到标定板平面上。由于靶球测量孔时,靶标座不一定严格贴紧标定板,排除靶球半径尺寸后的孔点位坐标不一定在标定板上,所以利用测量软件SpatialAnalyzer将测量的孔坐标投影到标定板平面上,得到五个孔的投影点分别为Pmb1(xmb1,ymb1,zmb1)、Pmb2(xmb2,ymb2,zmb2)、Pmb3(xmb3,ymb3,zmb3)、Pmb4(xmb4,ymb4,zmb4)和Pmb5(xmb5,ymb5,zmb5);Step 4.2: Construct the plane of the calibration plate, and project the measured coordinates of the five holes onto the plane of the calibration plate to obtain the coordinate information of the holes on the plane: fix the calibration plate on the robot working platform, and use the target ball on the calibration plate Evenly collect several non-collinear points on the plane, exclude the radius size of the target ball, and construct the calibration plate plane in the coordinate system of the laser tracker; use the measurement software to project the measured five holes onto the calibration plate plane. When the target ball measures the hole, the target seat may not be strictly attached to the calibration plate, and the hole point coordinates after excluding the radius of the target ball may not necessarily be on the calibration plate, so use the measurement software SpatialAnalyzer to project the measured hole coordinates to the calibration plate plane , the projection points of the five holes are Pmb1 (xmb1 ,ymb1 ,zmb1 ), Pmb2 (xmb2 ,ymb2 ,zmb2 ), Pmb3 (xmb3 ,ymb3 ,zmb3 ), Pmb4 (xmb4 , ymb4 , zmb4 ) and Pmb5 (xmb5 , ymb5 , zmb5 );
步骤4.3:利用投影点坐标值建立标定板坐标系xbybzb。如图6所示,以五个孔中的中心孔的投影Pmb1为原点,以Pmb1指向孔2的投影Pmb2方向为标定板坐标系xbybzb的xb轴正方向,得到单位向量为:Step 4.3: Establish the coordinate system xb yb zb of the calibration plate by using the coordinate values of the projected points. As shown in Figure 6, take the projection Pmb1 of the central hole among the five holes as the origin, and take the projection Pmb2 direction of Pmb1 pointing to the hole 2 as the positive direction of the xb axis of the coordinate system xb yb zb of the calibration plate, The unit vector is obtained as:
以标定板的法向且垂直标定板向下为标定板坐标系xbybzb的zb轴正方向,其单位向量为:Taking the normal direction of the calibration plate and the vertical calibration plate downward as the positive direction of the zb axis of the calibration plate coordinate system xb yb zb , the unit vector is:
由右手定则得到标定板坐标系xbybzb的yb轴正方向,其单位向量为:The positive direction of the yb axis of the calibration plate coordinate system xb yb zb is obtained by the right-hand rule, and its unit vector is:
omb0=amb0×nmb0omb0 = amb0 ×nmb0
标定板坐标系xbybzb在激光跟踪仪坐标系xmymzm下的位姿矩阵为:The pose matrix of the calibration board coordinate system xb yb zb in the laser tracker coordinate system xm ym zm is:
式中的nmb、omb、amb分别是标定板坐标系xbybzb的三个方向在激光跟踪仪坐标系xmymzm下的单位向量,Transmb是标定板坐标系xbybzb的原点Pmb1在激光跟踪仪坐标系xmymzm下的坐标值的转置:In the formula, nmb , omb , amb are the unit vectors of the three directions of the coordinate system xb yb zb of the calibration board in the coordinate system xm ym zm of the laser tracker, and Transmb is the coordinate of the calibration board The transposition of the coordinate value of the origin Pmb1 of the system xb yb zb in the coordinate system xm ym zm of the laser tracker:
nmb=nmb0nmb =nmb0
omb=omb0omb = omb0
amb=amb0amb =amb0
Transmb=(xmb1 ymb1 zmb1)TTransmb = (xmb1 ymb1 zmb1 )T
步骤5:标定相机坐标系:相机坐标系的原点为相机中心轴线和理论工件平面的交点,相机坐标系的zp正方向与工具坐标系xtytzt的xt正方向相同,而相机坐标系的xp正方向和yp正方向分别与相机自带坐标系xp0Oyp0的xp0方向和yp0方向平行,如图6所示。在制孔基准检测过程中,使用相机时,相机坐标系的坐标系原点即为基准孔的标准位置。通过相机清晰拍摄标定板上的五个孔,得到孔在相机自带坐标系xp0Oyp0下的坐标,然后转化到相机坐标系xpypzp下,建立标定板坐标系xbybzb在相机坐标系xpypzp中的位姿矩阵Tpb。Step 5: Calibrate the camera coordinate system: the origin of the camera coordinate system is the intersection point of the camera central axis and the theoretical workpiece plane, the zp positive direction of the camera coordinate system is the same as the xt positive direction of the tool coordinate system xt yt zt , and The xp positive direction and yp positive direction of the camera coordinate system are parallel to the xp0 direction and yp0 direction of the camera's own coordinate system xp0 Oyp0 respectively, as shown in Figure 6. In the process of hole making datum inspection, when using the camera, the origin of the coordinate system of the camera coordinate system is the standard position of the datum hole. Use the camera to clearly photograph the five holes on the calibration plate, and obtain the coordinates of the holes in the camera’s own coordinate system xp0 Oyp0 , and then transform them into the camera coordinate system xp yp zp to establish the calibration plate coordinate system xb y The pose matrix Tpb ofb zb in the camera coordinate system xp yp zp .
步骤5.1:机器人保持在HOME1点不动,打开机器人末端执行器的相机并调节相机焦距,直至在相机中清晰看到标定板上呈梅花状分布的5个孔,记录在相机自带坐标系xp0Oyp0下五个孔中心的坐标值,Ppb01(xpb01,ypb01)、Ppb02(xpb02,ypb02)、Ppb03(xpb03,ypb03)、Ppb04(xpb04,ypb04)、Ppb05(xpb05,ypb05);Step 5.1: Keep the robot at HOME1, turn on the camera of the end effector of the robot and adjust the focal length of the camera until the five holes on the calibration plate distributed in the shape of a plum blossom are clearly seen in the camera, and recorded in the camera's own coordinate system x Coordinate values of five hole centers underp0 Oyp0 , Ppb01 (xpb01 ,ypb01 ), Ppb02 (xpb02 ,ypb02 ), Ppb03 (xpb03 ,ypb03 ), Ppb04 (xpb04 ,ypb04 ), Ppb05 (xpb05 , ypb05 );
步骤5.2:根据步骤4.1得到五个孔中心的坐标值,计算每两个孔之间的像素点距离lpij:Step 5.2: Obtain the coordinates of the centers of the five holes according to step 4.1, and calculate the pixel distance lpij between every two holes:
其中i、j=1~5且i≠j,依次得到lp12、lp13、lp14、lp15、lp23、lp24、lp25、lp34、lp35、lp45;Where i, j=1~5 and i≠j, lp12 , lp13 , lp14 , lp15 , lp23 , lp24 , lp25 , lp34 , lp35 , lp45 are sequentially obtained;
步骤5.3:根据Pmb1(xmb1,ymb1,zmb1)、Pmb2(xmb2,ymb2,zmb2)、Pmb3(xmb3,ymb3,zmb3)、Pmb4(xmb4,ymb4,zmb4)和Pmb5(xmb5,ymb5,zmb5)计算对应的两个孔之间的实际距离Lpij:Step 5.3: According to Pmb1 (xmb1 ,ymb1 ,zmb1 ), Pmb2 (xmb2 ,ymb2 ,zmb2 ), Pmb3 (xmb3 ,ymb3 ,zmb3 ), Pmb4 (xmb4 ,ymb4 ,zmb4 ) and Pmb5 (xmb5 ,ymb5 ,zmb5 ) to calculate the actual distance Lpij between the corresponding two holes:
其中i、j=1~5且i≠j,得到标定板上五个孔之间的实际距离Lp12、Lp13、Lp14、Lp15、Lp23、Lp24、Lp25、Lp34、Lp35、Lp45;依次得到实际每一毫米的像素点数NijWhere i, j=1~5 and i≠j, the actual distance between the five holes on the calibration plate Lp12 , Lp13 , Lp14 , Lp15 , Lp23 , Lp24 , Lp25 , Lp34 , Lp35 , Lp45 ; get the actual number of pixels per millimeter Nij in turn
求出对应的N12、N13、N14、N15、N23、N24、N25、N34、N35、N45的平均值N;Calculate the average value N of corresponding N12 , N13 , N14 , N15 , N23 , N24 , N25 , N34 , N35 , and N45 ;
步骤5.4:将五个孔的像素点坐标转化为相机坐标系xpypzp下的坐标,并从二维坐标扩展为三维坐标:图6中相机坐标系xpypzp的原点Op投影在相机视野的正中央,标定过程中标定板固定在距离缩回状态的压力鼻ltp的平行平面上,则标定板上五个孔在相机坐标系xpypzp下的坐标为Ppb1(xpb1,ypb1,zpb1)、Ppb2(xpb2,ypb2,zpb2)、Ppb3(xpb3,ypb3,zpb3)、Ppb4(xpb4,ypb4,zpb4)、Ppb5(xpb5,ypb5,zpb5),此时五个孔的坐标是在相机坐标系xpypzp下实际长度单位坐标。标定板上五个孔在相机坐标系xpypzp下的坐标为Ppb1(xpb1,ypb1,zpb1)、Ppb2(xpb2,ypb2,zpb2)、Ppb3(xpb3,ypb3,zpb3)、Ppb4(xpb4,ypb4,zpb4)、Ppb5(xpb5,ypb5,zpb5)为Step 5.4: Transform the coordinates of the pixel points of the five holes into coordinates in the camera coordinate system xp yp zp , and expand from two-dimensional coordinates to three-dimensional coordinates: the origin of the camera coordinate system xp yp zp in Figure 6 Op is projected in the center of the camera's field of view. During the calibration process, the calibration plate is fixed on a plane parallel to the pressure nose ltp in the retracted state. Then the five holes on the calibration plate are in the camera coordinate system xp yp zp The coordinates are Ppb1 (xpb1 ,ypb1 ,zpb1 ), Ppb2 (xpb2 ,y pb2 ,z pb2 ), P pb3 (x pb3,y pb3,z pb3),Ppb4( xpb4 ,ypb4 , zpb4 ), Ppb5 (xpb5 , ypb5 , zpb5 ), at this time, the coordinates of the five holes are the actual length unit coordinates in the camera coordinate system xp yp zp . The coordinates of the five holes on the calibration board in the camera coordinate system xp yp zp are Ppb1 (xpb1 , ypb1 , zpb1 ), Ppb2 (x pb2 , ypb2 , zpb2 ),P pb3( xpb3 ,ypb3 ,zpb3 ), Ppb4 (xpb4 ,ypb4 ,zpb4 ), Ppb5 (xpb5 ,ypb5 ,zpb5 ) are
zpbi=0zpbi =0
其中i=1~5,L0*B0为相机像素点实际大小。Where i=1~5, L0 *B0 is the actual size of the camera pixel.
步骤5.5:标定板上五个孔中的中心孔在相机坐标系下的坐标点Ppb1(xpb1,ypb1,zpb1)为原点,为标定板坐标系xbybzb的xb轴正方向,再构建向量按照右手定则从正方向指向xb轴的正方向,得到标定板坐标系xbybzb的zb轴正方向,再以xb轴正方向和zb轴正方向按照右手定则得出yb轴正方向,从而得到标定板坐标系xbybzb在相机坐标系xpypzp中的位姿矩阵Tpb:Step 5.5: The coordinate point Ppb1 (xpb1 , ypb1 , zpb1 ) of the center hole of the five holes on the calibration board in the camera coordinate system is the origin, To calibrate the positive direction of the xb axis of the board coordinate system xb yb zb , and then construct a vector According to the right-hand rule from The positive direction points to the positive direction of the xb axis, and the positive direction of the zb axis of the calibration plate coordinate system xb yb zb is obtained, and then the positive direction of the xb axis and the zb axis are used to obtain the yb axis according to the right-hand rule Positive direction, so as to obtain the pose matrix Tpb of the calibration board coordinate system xb yb zb in the camera coordinate system xp yp zp :
其中:in:
opb=apb×npbopb = apb ×npb
Transpb=(xpb1 ypb1 zpb1)TTranspb =(xpb1 ypb1 zpb1 )T
步骤6:依据得到的激光跟踪仪坐标系xmymzm下,法兰坐标系xFyFzF、工具坐标系xtytzt、标定板坐标系xbybzb的位姿矩阵TmF、Tmt、Tmb,和标定板坐标系xbybzb在相机坐标系xpypzp下的位姿矩阵Tpb,利用矩阵转换关系,得到在法兰坐标系xFyFzF下,工具坐标系xtytzt的位姿矩阵TFt和相机坐标系xpypzp的位姿矩阵TFp。Step 6: According to the obtained laser tracker coordinate system xm ym zm , the flange coordinate system xF yF zF , the tool coordinate system xt yt zt , and the calibration plate coordinate system xb yb zb The pose matrix TmF , Tmt , Tmb , and the pose matrix Tpb of the calibration board coordinate system xb yb zb in the camera coordinate system xp yp zp , using the matrix transformation relationship, we can get the In the blue coordinate system xF yF zF , the pose matrix TFt of the tool coordinate system xty t z tandthe pose matrix TFp of the camera coordinate system xp yp zp .
根据法兰和工具坐标系在激光跟踪仪坐标系下的位姿矩阵TmF、Tmt,得到工具坐标系xtytzt在法兰坐标系xFyFzF下的位姿矩阵TFt:According to the pose matrix TmF and Tmt of the flange and the tool coordinate system in the laser tracker coordinate system, the pose matrix of the tool coordinate system xt yt zt in the flange coordinate system xF yF zF is obtained TFt :
TFt=(TmF)-1TmtTFt =(TmF )-1 Tmt
根据相机、标定板坐标系和激光跟踪仪坐标系的关系Tpb、Tmb,得到相机坐标系xpypzp在激光跟踪仪坐标系xmymzm下的位姿矩阵Tmp:According to the relationship Tpb , Tmb of the camera, the calibration plate coordinate system and the laser tracker coordinate system, the pose matrix Tmp of the camera coordinate system xp yp zp in the laser tracker coordinate system xm ym zm is obtained :
Tmp=Tmb(Tpb)-1Tmp = Tmb (Tpb )-1
根据法兰坐标系在激光跟踪仪坐标系下的位姿矩阵TmF,得到相机坐标系xpypzp在法兰坐标系xFyFzF下的位姿矩阵TFp。According to the pose matrix TmF of the flange coordinate system in the laser tracker coordinate system, the pose matrix TFp of the camera coordinate system xp yp zp in the flange coordinate system xF yF zF is obtained.
TFp=(TmF)-1Tmb(Tpb)-1TFp =(TmF )-1 Tmb (Tpb )-1
步骤7:将工具坐标系xtytzt、相机坐标系xpypzp在法兰坐标系xFyFzF下的位姿矩阵TFt和TFp的对应参数输入到机器人对应的工具坐标系Tool1和Tool2参数表中,定义Tool1为工具坐标系xtytzt,Tool2为相机坐标系xpypzp,机器人识别Tool1和Tool2的参数,从而能够在编程人员指定的坐标系中运行工作。Step 7: Input the corresponding parameters of the pose matrix TFt and TFp of the tool coordinate system xt yt zt , camera coordinate system xp yp zp in the flange coordinate system xF yF zF to the robot In the corresponding tool coordinate system Tool1 and Tool2 parameter tables, define Tool1 as the tool coordinate system xt yt zt , Tool2 as the camera coordinate system xp yp zp , and the robot recognizes the parameters of Tool1 and Tool2, so that the programmer can Run the job in the specified coordinate system.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and cannot be construed as limitations to the present invention. Variations, modifications, substitutions, and modifications to the above-described embodiments are possible within the scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610190887.4ACN105716525B (en) | 2016-03-30 | 2016-03-30 | End effector of robot coordinate system scaling method based on laser tracker |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610190887.4ACN105716525B (en) | 2016-03-30 | 2016-03-30 | End effector of robot coordinate system scaling method based on laser tracker |
| Publication Number | Publication Date |
|---|---|
| CN105716525A CN105716525A (en) | 2016-06-29 |
| CN105716525Btrue CN105716525B (en) | 2018-03-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610190887.4AActiveCN105716525B (en) | 2016-03-30 | 2016-03-30 | End effector of robot coordinate system scaling method based on laser tracker |
| Country | Link |
|---|---|
| CN (1) | CN105716525B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2899284T3 (en)* | 2016-07-15 | 2022-03-10 | Fastbrick Ip Pty Ltd | Vehicle incorporating a brick laying machine |
| CN106643489A (en)* | 2016-11-07 | 2017-05-10 | 北京航空航天大学 | Ground quick response (QR) code calibration method and device based on laser tracker |
| CN106625774B (en)* | 2016-12-27 | 2018-09-28 | 中国科学院长春光学精密机械与物理研究所 | A kind of space manipulator geometrical parameter calibration method |
| CN107256567B (en)* | 2017-01-22 | 2020-08-07 | 梅卡曼德(北京)机器人科技有限公司 | A kind of automatic calibration device and calibration method for industrial robot hand-eye camera |
| CN106989670B (en)* | 2017-02-27 | 2019-06-04 | 上海大学 | A non-contact, high-precision, large-scale workpiece tracking and measurement method for robot collaboration |
| CN107462154B (en)* | 2017-07-28 | 2019-08-30 | 深圳市圆梦精密技术研究院 | Pose measurement method of robot end tool |
| CN107560538A (en)* | 2017-08-17 | 2018-01-09 | 安徽零点精密机械有限责任公司 | The scaling method of six-DOF robot tool coordinates system based on laser tracker |
| CN109420923A (en)* | 2017-08-24 | 2019-03-05 | 中航贵州飞机有限责任公司 | A kind of undercarriage bearing hole method for fine finishing |
| CN107738254B (en)* | 2017-08-25 | 2019-12-24 | 中国科学院光电研究院 | A method and system for converting and calibrating a manipulator coordinate system |
| CN107511829B (en)* | 2017-10-11 | 2020-06-05 | 深圳市威博特科技有限公司 | Control method and device of manipulator, readable storage medium and automation equipment |
| CN108195327B (en)* | 2017-12-29 | 2021-02-19 | 上海新时达机器人有限公司 | Robot-based additional axis calibration method and terminal |
| CN108544434A (en)* | 2018-02-05 | 2018-09-18 | 西安理工大学 | A kind of automatic punching system Experimental Calibration integral work table and scaling method |
| CN108413988B (en)* | 2018-03-13 | 2020-09-15 | 北京卫星环境工程研究所 | Method for quickly calibrating coordinate system of theodolite at tail end of robot |
| CN108548510B (en)* | 2018-05-10 | 2020-05-01 | 珞石(山东)智能科技有限公司 | Force sensor-based calibration method for base calibration system of obliquely-installed robot |
| EP3584533A1 (en)* | 2018-06-19 | 2019-12-25 | Apodius GmbH | Coordinate measurement system |
| CN109005506B (en)* | 2018-09-18 | 2021-04-06 | 华志微创医疗科技(北京)有限公司 | Registration method of high-precision Mark points |
| CN109794963B (en)* | 2019-01-07 | 2021-06-01 | 南京航空航天大学 | A fast positioning method of robots for curved surface components |
| CN109813218B (en)* | 2019-01-23 | 2020-11-13 | 南京工程学院 | Precision compensation method for three-degree-of-freedom target of laser tracker |
| CN110009689B (en)* | 2019-03-21 | 2023-02-28 | 上海交通大学 | A fast construction method of image data set for collaborative robot pose estimation |
| CN110007292B (en)* | 2019-04-08 | 2020-04-24 | 上海禾赛光电科技有限公司 | Laser radar zero calibration method and calibration system |
| CN109974584B (en)* | 2019-04-12 | 2020-03-20 | 山东大学 | Calibration system and calibration method for auxiliary laser osteotomy robot |
| CN110490934B (en)* | 2019-08-13 | 2022-04-19 | 西北工业大学 | Attitude detection method of vertical blade of hybrid machine based on monocular camera and robot |
| CN111251189B (en)* | 2019-11-12 | 2021-07-27 | 长沙长泰机器人有限公司 | Visual positioning method for casting polishing |
| CN111203861B (en)* | 2020-01-06 | 2021-10-19 | 珠海格力电器股份有限公司 | Calibration method and calibration system for robot tool coordinate system |
| CN111238458B (en)* | 2020-03-17 | 2022-03-25 | 散裂中子源科学中心 | Equipment reference rapid leveling method |
| CN111805534A (en)* | 2020-06-02 | 2020-10-23 | 珠海格力智能装备有限公司 | Robot and zero calibration method thereof |
| CN111941425B (en)* | 2020-08-17 | 2023-02-10 | 沈阳飞机工业(集团)有限公司 | Rapid workpiece positioning method of robot milling system based on laser tracker and binocular camera |
| CN112223285B (en)* | 2020-09-30 | 2022-02-01 | 南京航空航天大学 | Robot hand-eye calibration method based on combined measurement |
| CN112304218B (en)* | 2020-10-22 | 2022-06-07 | 中国人民解放军战略支援部队信息工程大学 | Tool center point position calibration method and system of industrial robot |
| CN112589800B (en)* | 2020-12-11 | 2022-08-30 | 深圳市越疆科技有限公司 | Desktop mechanical arm calibration method and device |
| CN112762822B (en)* | 2020-12-21 | 2022-05-20 | 北京无线电计量测试研究所 | Mechanical arm calibration method and system based on laser tracker |
| CN112729112B (en)* | 2020-12-24 | 2022-05-31 | 扬州大学 | Engine cylinder bore diameter and hole site detection method based on robot vision |
| CN115366089A (en)* | 2021-05-20 | 2022-11-22 | 配天机器人技术有限公司 | A Calibration Method of Robot Coordinate System |
| CN113547515B (en)* | 2021-07-16 | 2022-07-12 | 华中科技大学 | A coordinate calibration method based on ultrasonic servo surgical robot |
| CN113625756A (en)* | 2021-08-11 | 2021-11-09 | 长春理工大学 | An Airplane Leveling Method Based on Ground Level |
| CN113686278B (en)* | 2021-08-24 | 2022-12-30 | 南京衍构科技有限公司 | High-precision industrial robot tool TCP calibration method |
| CN113799130B (en)* | 2021-09-22 | 2023-05-02 | 西北工业大学 | Robot pose calibration method in man-machine cooperation assembly |
| CN114353802A (en)* | 2022-01-04 | 2022-04-15 | 上海圭目机器人有限公司 | Robot three-dimensional space positioning method based on laser tracking |
| CN114166252B (en)* | 2022-02-10 | 2022-05-10 | 成都飞机工业(集团)有限责任公司 | Comprehensive positioning precision testing method for industrial robot integrated system |
| CN115139338B (en)* | 2022-06-30 | 2023-09-22 | 上海睿触科技有限公司 | Robot TCP quick high-precision calibration method |
| CN115900547A (en)* | 2022-11-24 | 2023-04-04 | 北京理工大学 | A Calibration Method of Robot Tool Coordinate System Based on Laser Tracker |
| CN115854873B (en)* | 2022-12-16 | 2025-09-26 | 华南理工大学 | A robot posture measurement device and method based on laser tracker |
| CN116038721B (en)* | 2023-04-03 | 2023-07-18 | 广东工业大学 | Hand-eye calibration method and system without kinematic participation |
| US11992959B1 (en) | 2023-04-03 | 2024-05-28 | Guangdong University Of Technology | Kinematics-free hand-eye calibration method and system |
| CN116572255B (en)* | 2023-07-10 | 2023-10-20 | 北京集度科技有限公司 | Coordinate origin calibration method, calibration device and medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102010031248A1 (en)* | 2010-07-12 | 2012-01-12 | Kuka Roboter Gmbh | Method for measuring a robot arm of an industrial robot |
| CN103837085A (en)* | 2014-03-07 | 2014-06-04 | 哈尔滨工业大学 | Target displacement vector measuring device and method based on laser tracker point-by-point calibration |
| CN104759945A (en)* | 2015-03-25 | 2015-07-08 | 西北工业大学 | Mobile hole-making robot standard alignment method based on high precision industrial camera |
| CN204585232U (en)* | 2015-03-26 | 2015-08-26 | 华南理工大学 | Capture robot pose and the movement locus navigation system of online workpiece |
| CN105333819A (en)* | 2014-08-15 | 2016-02-17 | 苏州北硕检测技术有限公司 | Robot workpiece assembly and form and location tolerance detection system and method based on face laser sensor |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102010031248A1 (en)* | 2010-07-12 | 2012-01-12 | Kuka Roboter Gmbh | Method for measuring a robot arm of an industrial robot |
| CN103837085A (en)* | 2014-03-07 | 2014-06-04 | 哈尔滨工业大学 | Target displacement vector measuring device and method based on laser tracker point-by-point calibration |
| CN105333819A (en)* | 2014-08-15 | 2016-02-17 | 苏州北硕检测技术有限公司 | Robot workpiece assembly and form and location tolerance detection system and method based on face laser sensor |
| CN104759945A (en)* | 2015-03-25 | 2015-07-08 | 西北工业大学 | Mobile hole-making robot standard alignment method based on high precision industrial camera |
| CN204585232U (en)* | 2015-03-26 | 2015-08-26 | 华南理工大学 | Capture robot pose and the movement locus navigation system of online workpiece |
| Publication number | Publication date |
|---|---|
| CN105716525A (en) | 2016-06-29 |
| Publication | Publication Date | Title |
|---|---|---|
| CN105716525B (en) | End effector of robot coordinate system scaling method based on laser tracker | |
| CN104759945B (en) | Mobile hole-making robot standard alignment method based on high precision industrial camera | |
| CN109794938B (en) | A robot hole making error compensation device suitable for curved surface structure and method thereof | |
| CN103991006B (en) | For scaling method and the device of robot hole platform vision measurement system | |
| CN109859275B (en) | Monocular vision hand-eye calibration method of rehabilitation mechanical arm based on S-R-S structure | |
| US9895810B2 (en) | Cooperation system having machine tool and robot | |
| CN105091807B (en) | The bearing calibration of robot tool coordinate system | |
| CN107214692B (en) | Automatic Calibration Method of Robot System | |
| CN103878478B (en) | A kind of three-dimensional laser processing Workpiece fixing measurement mechanism and method thereof | |
| US20130035791A1 (en) | Vision correction method for tool center point of a robot manipulator | |
| CN109822577A (en) | A kind of mobile robot's high-precision processing method of view-based access control model servo | |
| CN112958960B (en) | Robot hand-eye calibration device based on optical target | |
| CN104690551A (en) | Robot automatic assembly system | |
| CN108731591A (en) | A kind of robot tool coordinate system scaling method based on plane restriction | |
| CN110962127B (en) | Auxiliary calibration device for tail end pose of mechanical arm and calibration method thereof | |
| CN109623822B (en) | Robot hand-eye calibration method | |
| CN110370316A (en) | It is a kind of based on the robot TCP scaling method vertically reflected | |
| JP2019014011A (en) | Method of correcting teaching position of robot | |
| CN111360585B (en) | A method for acquiring real-time position error of tool end in robotic milling system | |
| CN116038721B (en) | Hand-eye calibration method and system without kinematic participation | |
| CN115371564B (en) | Method and system for calibrating relative pose between line laser sensor and robot flange | |
| CN115319754A (en) | Robot and laser sensor hand-eye calibration method and device | |
| CN112828878A (en) | A three-dimensional measurement and tracking method for large-scale equipment docking process | |
| CN113799115B (en) | Coordinate correction method of robot arm | |
| CN108592838B (en) | Calibration method and device of tool coordinate system and computer storage medium |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |