技术领域technical field
本发明属于室内机器人通信技术和控制技术领域,具体涉及一种基于UWB的室内移动机器人定位与导航系统。The invention belongs to the field of indoor robot communication technology and control technology, in particular to a UWB-based indoor mobile robot positioning and navigation system.
背景技术Background technique
随着社会经济的进一步发展,工业自动化水平的进一步提高,移动机器人的服务已经深入到社会生产的各个方面。With the further development of the social economy and the further improvement of the level of industrial automation, the service of mobile robots has penetrated into all aspects of social production.
目前,室内移动机器人主要依靠AGV小车来实现。AGV小车路径控制主要有轨道引导和视觉引导两种方式。轨道引导需要在作业现场铺设轨道引导小车行进,这样的路径控制方式的不足是:(1)轨道的铺设使得工业作业现场AGV小车路径灵活性不足,加工工艺的改变,需要用户改变铺设的轨道;(2)对于多移动机器人的复杂路径或交叉路径,铺设轨道的方式,是无法引导AGV小车的。视觉引导方式是使用基于图像背景的定位原理,引导小车行进,存在的不足:(1)位置精度误差大;(2)作业环境的改变,需要重新布置图像背景。At present, indoor mobile robots mainly rely on AGV cars to realize. There are two main ways of AGV path control: track guidance and vision guidance. Track guidance needs to lay tracks on the job site to guide the trolley. The disadvantages of this path control method are: (1) The laying of the track makes the path of the AGV trolley in the industrial job site less flexible, and the change of the processing technology requires the user to change the laid track; (2) For the complex path or cross path of multiple mobile robots, the way of laying the track cannot guide the AGV car. The visual guidance method is to use the positioning principle based on the image background to guide the car to move forward. There are deficiencies: (1) The position accuracy error is large; (2) The change of the working environment requires the rearrangement of the image background.
针对上述AGV小车路径控制方式和定位原理,无线定位方案明显弥补了其定位的不足。目前无线定位技术有很多,包括Wifi、RFID、超声波和蓝牙等,各种定位技术特点如表1所示,然而其定位实现均存在一个共性问题-定位精度是米级水平,正是这一问题的存在,限制了无线定位技术在室内环境中的应用。In view of the above-mentioned path control method and positioning principle of the AGV trolley, the wireless positioning scheme obviously makes up for the deficiency of its positioning. At present, there are many wireless positioning technologies, including Wifi, RFID, ultrasonic and Bluetooth, etc. The characteristics of various positioning technologies are shown in Table 1. However, there is a common problem in their positioning implementation-the positioning accuracy is at the meter level, which is precisely this problem The existence of wireless positioning technology limits the application of wireless positioning technology in indoor environment.
表1无线定位技术特点Table 1 Features of wireless positioning technology
UWB技术是一种利用亚纳秒级超窄脉冲的无载波通信技术。相对于其他定位技术,UWB技术具有以下优势:UWB technology is a carrier-free communication technology that utilizes sub-nanosecond ultra-narrow pulses. Compared with other positioning technologies, UWB technology has the following advantages:
1.通信距离远,能实现百米范围内有效通信,满足室内定位需要1. The communication distance is long, which can realize effective communication within a range of 100 meters and meet the needs of indoor positioning
2.高数据传输速率,10米范围内数据传输速率达到百Mbit/s,甚至到达Gbit/s2. High data transmission rate, the data transmission rate within 10 meters can reach hundreds of Mbit/s, even Gbit/s
3.抗干扰能力强,多径分辨能力强3. Strong anti-interference ability and strong multipath resolution ability
4.功耗小,发射功率在mW级别4. Low power consumption, transmit power at mW level
5.时间分辨率高,时间区分度在亚纳秒级别5. The time resolution is high, and the time discrimination is at the sub-nanosecond level
UWB室内定位技术在理论上可以将误差控制在10cm,实际应用中能控制误差在20cm内。相对于其他定位技术,使用UWB信号进行室内定位可以获得更高的定位精度和稳定性。UWB indoor positioning technology can control the error within 10cm in theory, and within 20cm in practical application. Compared with other positioning technologies, using UWB signals for indoor positioning can achieve higher positioning accuracy and stability.
发明内容Contents of the invention
发明目的:本发明的目的是为了解决现有技术中的不足,提供一种通过采用UWB技术进行室内移动机器人的定位与导航,具有抗干扰能力强、功耗小等优点,且对于其他定位技术,使用UWB信号进行室内定位可以获得更高的定位精度和稳定性的基于UWB的室内移动机器人定位与导航系统。Purpose of the invention: the purpose of the present invention is to solve the deficiencies in the prior art, to provide a positioning and navigation of indoor mobile robots by using UWB technology, which has the advantages of strong anti-interference ability and low power consumption, and is suitable for other positioning technologies , UWB-based indoor mobile robot positioning and navigation system with higher positioning accuracy and stability can be obtained by using UWB signals for indoor positioning.
技术方案:本发明所述的一种基于UWB的室内移动机器人定位与导航系统,包括设备层、中间层和应用层;Technical solution: A UWB-based indoor mobile robot positioning and navigation system according to the present invention includes a device layer, an intermediate layer and an application layer;
所述设备层完成系统硬件平台的搭建,包括基站、标签、移动机器人和Wifi通信模块,其中基站与标签实现定位功能,Wifi模块和基站中的通信基站用于连接设备层和中间层,实现信息的上传和下达;标签与基站之间,按照设定的机制,通过UWB信号的飞行时间,进行测距;在标签获得与4个基站(其中1个为通信基站)之间的有效距离时,选择可信度高的3个距离,利用定位算法求解标签坐标信息;标签在获得坐标信息后,一方面将坐标信息传至与标签一体的移动机器人控制器,用于机器人导航控制;另一方面回送通信基站。通信基站利用Wifi网络将将该坐标信息上传至中间层服务器进行存储,供后续应用软件使用;The device layer completes the construction of the system hardware platform, including base stations, tags, mobile robots and Wifi communication modules, wherein the base stations and tags realize positioning functions, and the communication base stations in the Wifi modules and base stations are used to connect the device layer and the middle layer to realize information uploading and downloading; between the tag and the base station, according to the set mechanism, the distance is measured through the flight time of the UWB signal; when the tag obtains the effective distance between the four base stations (one of which is a communication base station), Select three distances with high reliability, and use the positioning algorithm to solve the coordinate information of the tag; after the tag obtains the coordinate information, on the one hand, it transmits the coordinate information to the mobile robot controller integrated with the tag for robot navigation control; Loopback communication base station. The communication base station uses the Wifi network to upload the coordinate information to the middle layer server for storage, for subsequent application software to use;
所述设备层标签安装在移动机器人本体上,并与移动机器人控制器使用串口进行通信,移动机器人通过标签、通信基站、Wifi模块、服务器和因特网实现与客户端软件的信息交互;The device layer label is installed on the mobile robot body, and communicates with the mobile robot controller using a serial port, and the mobile robot realizes information interaction with the client software through the label, communication base station, Wifi module, server and the Internet;
中间层包括数据库、数据分析软件和服务器,完成数据存储转发、分析处理和远程访问控制功能;The middle layer includes database, data analysis software and server to complete data storage and forwarding, analysis and processing and remote access control functions;
应用层主要提供友好的远程客户端软件界面,利用Visualstudio平台开发C#软件,进行移动机器人状态信息在线更新、移动机器人路径规划和其他相关报表的生成。The application layer mainly provides a friendly remote client software interface, uses the Visualstudio platform to develop C# software, and performs online update of mobile robot status information, mobile robot path planning and generation of other related reports.
进一步的,所述基站和标签均使用UWB信号收发芯片DW1000进行无线信号的相互收发。Further, both the base station and the tag use the UWB signal transceiver chip DW1000 to transmit and receive wireless signals.
进一步的,所述基站和标签中的单片机通过SPI接口实现对DW1000内部各映射寄存器的读写,控制其接收和发送无线信号,同时单片机可以配置DW1000的中断引脚,使其只在某些特定状态下触发单片机中断。Further, the single-chip microcomputer in the base station and the tag realizes reading and writing of each mapping register inside the DW1000 through the SPI interface, and controls it to receive and send wireless signals. The MCU interrupt is triggered in the state.
进一步的,所述基站包括通信基站和普通基站,所述通信基站连接有Wifi模块,普通基站不设有Wifi模块。Further, the base station includes a communication base station and an ordinary base station, the communication base station is connected with a Wifi module, and the ordinary base station does not have a Wifi module.
进一步的,所述通信基站的主控制器使用STM32F107RCT6型号单片机,Wifi部分采用USR-WIFI232-A型号串口转Wifi模块。Further, the main controller of the communication base station uses a STM32F107RCT6 single-chip microcomputer, and the Wifi part adopts a USR-WIFI232-A serial port to Wifi module.
进一步的,所述通信基站还设有状态指示模块。Further, the communication base station is also provided with a status indication module.
进一步的,所述标签与移动机器人之间使用串口进行通信,所述移动机器人采用单片机控制,且该单片机还连接有转向舵机模块、驱动电机模块和避障传感器。Further, the serial port is used for communication between the tag and the mobile robot, and the mobile robot is controlled by a single-chip microcomputer, and the single-chip microcomputer is also connected with a steering servo module, a drive motor module and an obstacle avoidance sensor.
进一步的,所述中间层使用SQLServer2012软件,完成数据库的建立、存取和维护;使用C#开发数据分析软件,并利用.NET平台提供的接口,实现与数据库数据的交互,完成对各种数据的分析处理;为实现远程访问系统数据的目的,中间层将设计基于Socket的网络后台服务器。Further, the middle layer uses SQLServer2012 software to complete the establishment, access and maintenance of the database; use C# to develop data analysis software, and utilize the interface provided by the .NET platform to realize the interaction with the database data and complete the various data. Analysis and processing; in order to achieve the purpose of remote access to system data, the middle layer will design a Socket-based network background server.
进一步的,用户通过访问系统服务器,可以浏览移动机器人的各种状态参数信息;同时,用户可以使用客户端软件,通过互联网改变移动机器人的预设行进路线,实现对移动机器人的路径规划,以满足对生产工艺的需求。Further, the user can browse various state parameter information of the mobile robot by accessing the system server; at the same time, the user can use the client software to change the preset travel route of the mobile robot through the Internet, and realize the path planning of the mobile robot to meet requirements for the production process.
进一步的,移动机器人获取标签的当前坐标信息和用户设定的目标位置及预设路径信息,自动进行路径规划和前行,并能根据当前作业环境自动地进行避障和防碰撞处理,到达指定的工位进行后续加工。Furthermore, the mobile robot acquires the current coordinate information of the tag, the target position set by the user and the preset path information, automatically performs path planning and forward movement, and can automatically perform obstacle avoidance and anti-collision processing according to the current working environment, and arrive at the specified location. station for subsequent processing.
有益效果:本发明通过采用UWB技术进行室内移动机器人的定位与导航,具有抗干扰能力强、功耗小等优点,且对于其他定位技术,使用UWB信号进行室内定位可以获得更高的定位精度和稳定性。Beneficial effects: the present invention uses UWB technology for positioning and navigation of indoor mobile robots, which has the advantages of strong anti-interference ability and low power consumption, and for other positioning technologies, using UWB signals for indoor positioning can obtain higher positioning accuracy and stability.
附图说明Description of drawings
图1为本发明的基于UWB的室内移动机器人定位与导航系统控制效果图;Fig. 1 is the UWB-based indoor mobile robot positioning and navigation system control effect diagram of the present invention;
图2为本发明的基于UWB的室内移动机器人定位与导航系统结构框图;Fig. 2 is the structural block diagram of the UWB-based indoor mobile robot positioning and navigation system of the present invention;
图3为本发明的标签与基站的信息流向示意图;Fig. 3 is a schematic diagram of information flow between tags and base stations of the present invention;
图4为本发明单片机与DW1000通信结构示意图;Fig. 4 is a schematic diagram of the communication structure between the single-chip microcomputer of the present invention and DW1000;
图5为本发明的通信基站的硬件结构示意图;Fig. 5 is a schematic diagram of the hardware structure of the communication base station of the present invention;
图6为本发明的标签与移动机器人硬件结构示意图。Fig. 6 is a schematic diagram of the tag and mobile robot hardware structure of the present invention.
具体实施方式detailed description
下面结合具体实施例对本发明的工作原理以及具体的技术方案作进一步详细说明:Below in conjunction with specific embodiment, working principle of the present invention and concrete technical scheme are described in further detail:
室内移动机器人应用可以概括为两大部分:定位和导航。定位是指移动机器人依托4个基站的测距数据,实时计算得到自身的平面位置信息S(x,y);导航是指移动机器人,根据自身当前位置信息、用户设定的目标位置及预设路径信息(用户设定机器人的行走路径),能自动进行路径规划,并控制移动机器人前行。同时移动机器人能根据当前作业环境自动地进行避障和防碰撞处理Indoor mobile robot applications can be summarized into two parts: localization and navigation. Positioning means that the mobile robot calculates its own plane position information S(x, y) in real time based on the ranging data of four base stations; Path information (the walking path of the robot set by the user), can automatically plan the path and control the mobile robot to move forward. At the same time, the mobile robot can automatically perform obstacle avoidance and anti-collision processing according to the current working environment
图1为基于UWB的室内移动机器人定位与导航系统控制效果图,模拟具有4个生产工位的工作车间,5个移动机器人实现工位间自动搬运原料进行加工的场景。Figure 1 is a UWB-based indoor mobile robot positioning and navigation system control effect diagram, simulating a workshop with 4 production stations, and 5 mobile robots realize the automatic handling of raw materials between stations for processing.
车间室内顶部安装有4个使用UWB技术的基站(基站1、基站2、基站3和基站4),移动机器人上同时安装有使用UWB技术的标签。标签按照设定机制与基站进行通信,可以计算自身的坐标位置S(x,y)(坐标位置由标签单片机计算)。标签单片机在计算得到自身坐标信息后,一方面,经通信接口,将坐标信息传至移动机器人控制器;另一方面回送通信基站。通信基站利用Wifi网络将将该坐标信息上传至服务器进行存储,并可由上位机软件做进一步处理。Four base stations using UWB technology (base station 1, base station 2, base station 3 and base station 4) are installed on the top of the workshop, and tags using UWB technology are installed on the mobile robot. The tag communicates with the base station according to the setting mechanism, and can calculate its own coordinate position S(x, y) (the coordinate position is calculated by the tag microcontroller). After the tag microcontroller calculates its own coordinate information, on the one hand, it transmits the coordinate information to the mobile robot controller through the communication interface; on the other hand, it sends it back to the communication base station. The communication base station uses the Wifi network to upload the coordinate information to the server for storage, and can be further processed by the host computer software.
针对生产流程多变的作业现场,系统满足用户的个性化需求。用户通过访问系统服务器,可以浏览移动机器人的各种状态参数信息;同时,用户可以使用客户端软件,通过互联网改变移动机器人的预设行进路线,实现对移动机器人的路径规划,以满足对生产工艺的需求。For job sites with changing production processes, the system meets the individual needs of users. By accessing the system server, the user can browse various state parameter information of the mobile robot; at the same time, the user can use the client software to change the preset travel route of the mobile robot through the Internet, and realize the path planning of the mobile robot to meet the requirements of the production process. demand.
移动机器人获取标签的当前坐标信息和用户设定的目标位置及预设路径信息,自动进行路径规划和前行,并能根据当前作业环境自动地进行避障和防碰撞处理,到达指定的工位进行后续加工。The mobile robot obtains the current coordinate information of the label, the target position set by the user and the preset path information, automatically performs path planning and forward movement, and can automatically perform obstacle avoidance and anti-collision processing according to the current working environment to reach the designated station For subsequent processing.
图1中虚线表示用户通过客户端软件设定的移动机器人目标位置(即指工位1、工位2、工位3、工位4)和预设路径。如图所示,工位2和工位3之间存在障碍物,移动机器人自动完成避障;工位1和工位4之间,两个向不同方向行进的移动机器人自动进行防碰撞处理。The dotted line in Figure 1 indicates the target position of the mobile robot (that is, station 1, station 2, station 3, and station 4) and the preset path set by the user through the client software. As shown in the figure, there is an obstacle between station 2 and station 3, and the mobile robot automatically completes obstacle avoidance; between station 1 and station 4, two mobile robots traveling in different directions automatically perform anti-collision processing.
系统框架为三层结构,如图2所示,分别为设备层、中间层和应用层。The system framework is a three-layer structure, as shown in Figure 2, which are device layer, middle layer and application layer.
设备层完成系统硬件平台的搭建,主要包括基站、标签、移动机器人和Wifi通信模块的硬件设计。其中基站与标签完成定位功能,Wifi模块和通信基站(基站分为通信基站和普通基站)用于连接设备层和中间层,实现信息的上传和下达。标签与基站之间,按照设定的机制,通过UWB信号的飞行时间,进行测距;在标签获得与4个基站(其中1个为通信基站)之间的有效距离时,选择可信度高的3个距离,利用定位算法求解标签坐标信息;标签在获得坐标信息后,一方面将坐标信息传至与标签一体的移动机器人控制器,用于机器人导航控制;另一方面回送通信基站。通信基站利用Wifi网络将将该坐标信息上传至服务器进行存储,并可由上位机软件做进一步处理;The equipment layer completes the construction of the system hardware platform, mainly including the hardware design of base stations, tags, mobile robots and Wifi communication modules. Among them, the base station and the tag complete the positioning function, and the Wifi module and the communication base station (the base station is divided into a communication base station and a common base station) are used to connect the equipment layer and the middle layer to realize the upload and release of information. Between the tag and the base station, according to the set mechanism, the distance is measured through the time-of-flight of the UWB signal; when the tag obtains the effective distance from the 4 base stations (one of which is a communication base station), choose a high reliability The coordinate information of the tag is solved by using the positioning algorithm; after the tag obtains the coordinate information, on the one hand, the coordinate information is transmitted to the mobile robot controller integrated with the tag for robot navigation control; on the other hand, it is sent back to the communication base station. The communication base station uses the Wifi network to upload the coordinate information to the server for storage, and can be further processed by the host computer software;
设备层标签安装在移动机器人本体上,并与移动机器人控制器使用串口进行通信。移动机器人通过标签、通信基站、Wifi网络、服务器和因特网实现与客户端软件的信息交互。The device layer label is installed on the mobile robot body, and communicates with the mobile robot controller using a serial port. The mobile robot realizes the information interaction with the client software through tags, communication base stations, Wifi networks, servers and the Internet.
中间层主要包括数据库、数据分析软件和服务器,主要完成数据存储转发、分析处理和远程访问控制功能。使用SQLServer2012软件,完成数据库的建立、存取和维护;使用C#开发数据分析软件,并利用.NET平台提供的接口,实现与数据库数据的交互,完成对各种数据的分析处理;为实现远程访问系统数据的目的,中间层将设计基于Socket的网络后台服务器。The middle layer mainly includes database, data analysis software and server, and mainly completes the functions of data storage and forwarding, analysis processing and remote access control. Use SQLServer2012 software to complete the establishment, access and maintenance of the database; use C# to develop data analysis software, and use the interface provided by the .NET platform to realize the interaction with the database data and complete the analysis and processing of various data; to achieve remote access For the purpose of system data, the middle layer will design a Socket-based network background server.
应用层主要提供友好的远程客户端软件界面,利用Visualstudio平台开发C#软件,进行移动机器人状态信息在线更新、移动机器人路径规划和其他相关报表的生成。The application layer mainly provides a friendly remote client software interface, uses the Visualstudio platform to develop C# software, and performs online update of mobile robot status information, mobile robot path planning and generation of other related reports.
基站和标签是整个系统的核心,最终实现定位和导航功能。图3表示N个标签和4个基站之间的信息流向关系。每个标签都需要依次与各基站进行UWB通信,标签按照设定机制完成一轮通信后可以计算获得自身的坐标位置。为了实现设备层与中间层信息互联,系统在设备层设有通信基站(如基站1),相对于普通基站(如基站2、基站3、基站4),通信基站上安装Wifi模块,能够利用Wifi网络连接至中间层服务器。The base station and tags are the core of the whole system, and finally realize the positioning and navigation functions. Fig. 3 shows the information flow relationship between N labels and 4 base stations. Each tag needs to perform UWB communication with each base station in turn, and the tag can calculate its own coordinate position after completing a round of communication according to the set mechanism. In order to realize the information interconnection between the equipment layer and the middle layer, the system has a communication base station (such as base station 1) on the equipment layer. Compared with ordinary base stations (such as base station 2, base station 3, and base station 4), the Wifi module is installed on the communication base station, which can use Wifi Network connections to middle-tier servers.
基站与标签配合实现定位和导航功能,因此两者硬件上均使用UWB信号收发芯片DW1000,DW1000是一款高度集成化的低功耗的UWB无线信号收发芯片,其兼容IEEE802.15.4-2011标准。DW1000参数如表2所示。The base station and the tag cooperate to realize positioning and navigation functions, so the UWB signal transceiver chip DW1000 is used in both hardware. DW1000 is a highly integrated and low-power UWB wireless signal transceiver chip, which is compatible with the IEEE802.15.4-2011 standard. The parameters of DW1000 are shown in Table 2.
表2DW1000参数Table 2DW1000 parameters
单片机通过SPI接口实现对DW1000内部各映射寄存器的读写,控制其接收和发送无线信号,同时单片机可以配置DW1000的中断引脚,使其只在某些特定状态下触发单片机中断,满足实时性需要,控制原理如图4所示。The single-chip microcomputer realizes the reading and writing of each mapping register inside DW1000 through the SPI interface, and controls it to receive and send wireless signals. At the same time, the single-chip microcomputer can configure the interrupt pin of DW1000 to trigger the single-chip microcomputer interrupt only in certain specific states to meet real-time requirements. , the control principle is shown in Figure 4.
基站分为普通基站和通信基站。由于普通基站、通信基站和标签功能不同,因此三者硬件上有如下区别:Base stations are divided into ordinary base stations and communication base stations. Due to the different functions of ordinary base stations, communication base stations and tags, the hardware of the three has the following differences:
(1)电源方面,标签使用锂电池供电,体积小;基站由室内+5V电源供电;(1) In terms of power supply, the tag is powered by a lithium battery and is small in size; the base station is powered by an indoor +5V power supply;
(2)标签和普通基站无Wifi模块,通信基站有Wifi模块。(2) Tags and ordinary base stations do not have Wifi modules, while communication base stations have Wifi modules.
通信基站硬件结构如图5所示,基站主控制器使用STM32F107RCT6型号单片机,Wifi部分使用有人公司生产的USR-WIFI232-A型号串口转Wifi模块,此外为方便维护基站设备,基站还设有必要的状态指示模块。The hardware structure of the communication base station is shown in Figure 5. The main controller of the base station uses the STM32F107RCT6 single-chip microcomputer, and the Wifi part uses the USR-WIFI232-A serial port to Wifi module produced by the company. In addition, in order to facilitate the maintenance of the base station equipment, the base station also has the necessary Status indication module.
普通基站相比通信基站,不具有联网功能,因此,在硬件上普通基站不设有Wifi模块,其他部分同通信基站。Compared with the communication base station, the ordinary base station does not have the networking function. Therefore, in terms of hardware, the ordinary base station does not have a Wifi module, and the other parts are the same as the communication base station.
标签按照设定的机制与基站进行通信,并实现与移动机器人控制器的信息交互。标签与移动机器人硬件结构如图6所示。标签与移动机器人之间使用串口进行通信。所述移动机器人采用单片机控制,且该单片机还连接有转向舵机模块、驱动电机模块和避障传感器。The tag communicates with the base station according to the set mechanism, and realizes the information interaction with the mobile robot controller. The tag and mobile robot hardware structure are shown in Figure 6. The serial port is used for communication between the tag and the mobile robot. The mobile robot is controlled by a single-chip microcomputer, and the single-chip microcomputer is also connected with a steering servo module, a drive motor module and an obstacle avoidance sensor.
本发明通过采用UWB技术进行室内移动机器人的定位与控制,具有抗干扰能力强、功耗小等优点,且对于其他定位技术,使用UWB信号进行室内定位可以获得更高的定位精度和稳定性。The invention adopts UWB technology to locate and control the indoor mobile robot, and has the advantages of strong anti-interference ability and low power consumption. For other positioning technologies, using UWB signals for indoor positioning can obtain higher positioning accuracy and stability.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above description is only a preferred embodiment of the present invention, and does not limit the present invention in any form. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone familiar with this field Those skilled in the art, without departing from the scope of the technical solution of the present invention, can use the technical content disclosed above to make some changes or modify equivalent embodiments with equivalent changes, but all the content that does not depart from the technical solution of the present invention, according to the present invention Any simple modifications, equivalent changes and modifications made to the above embodiments by the technical essence still belong to the scope of the technical solutions of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610148779.0ACN105682047A (en) | 2016-03-16 | 2016-03-16 | UWB-based indoor mobile robot navigation and positioning system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610148779.0ACN105682047A (en) | 2016-03-16 | 2016-03-16 | UWB-based indoor mobile robot navigation and positioning system |
| Publication Number | Publication Date |
|---|---|
| CN105682047Atrue CN105682047A (en) | 2016-06-15 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201610148779.0APendingCN105682047A (en) | 2016-03-16 | 2016-03-16 | UWB-based indoor mobile robot navigation and positioning system |
| Country | Link |
|---|---|
| CN (1) | CN105682047A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106211080A (en)* | 2016-09-28 | 2016-12-07 | 深圳市普渡科技有限公司 | A kind of UWB base station coordinates method for self-calibrating |
| CN106444742A (en)* | 2016-08-16 | 2017-02-22 | 成都市和平科技有限责任公司 | Intelligent office chair system and control method |
| CN106507302A (en)* | 2016-11-04 | 2017-03-15 | 南开大学 | A 3D Indoor Positioning System Based on UWB |
| CN106569174A (en)* | 2016-11-15 | 2017-04-19 | 深圳市中舟智能科技有限公司 | Multi-mobile robot indoor wireless positioning system |
| CN106873597A (en)* | 2017-03-24 | 2017-06-20 | 上海思岚科技有限公司 | The implementation method of virtual rail is set by computer client to mobile robot |
| CN106919171A (en)* | 2017-03-02 | 2017-07-04 | 安科智慧城市技术(中国)有限公司 | A kind of robot indoor positioning navigation system and method |
| CN106961725A (en)* | 2017-03-31 | 2017-07-18 | 深圳大学 | Indoor equipotential method and system based on UWB Yu Wifi combined high precisions |
| CN107065858A (en)* | 2017-02-13 | 2017-08-18 | 四川超影科技有限公司 | Crusing robot air navigation aid based on ultra wide band |
| CN107225575A (en)* | 2017-07-22 | 2017-10-03 | 广东大仓机器人科技有限公司 | The robot of indoor precise positioning is realized using six ultra wide band modules |
| CN107329112A (en)* | 2017-06-30 | 2017-11-07 | 成都智建新业建筑设计咨询有限公司 | A kind of multi-target positioning system of use TOA location technologies |
| CN107702721A (en)* | 2017-11-07 | 2018-02-16 | 云南昆船智能装备有限公司 | A kind of AGV navigation positional devices based on ultra wide band UWB |
| CN107861513A (en)* | 2017-12-08 | 2018-03-30 | 深圳市中舟智能科技有限公司 | Intelligent robot autonomous navigation system based on UWB technology |
| CN108107404A (en)* | 2017-12-19 | 2018-06-01 | 成都鸿福润德科技有限公司 | A kind of indoor ultra-broadband Position Fixing Navigation System |
| CN108377467A (en)* | 2016-11-21 | 2018-08-07 | 深圳光启合众科技有限公司 | Indoor positioning and interactive approach, the device and system of target object |
| CN108664015A (en)* | 2017-03-29 | 2018-10-16 | 北京米文动力科技有限公司 | A kind of planing method and equipment in robot ambulation path |
| CN108983772A (en)* | 2018-07-05 | 2018-12-11 | 天津中德应用技术大学 | Intelligent transfer robot control system and control method based on UWB positioning |
| CN109018077A (en)* | 2018-08-29 | 2018-12-18 | 山东力创科技股份有限公司 | A kind of base station navigation Twin Rudders wheel AGV vehicle and application method |
| CN109109762A (en)* | 2018-08-20 | 2019-01-01 | 江苏大学 | It is a kind of for assisting the intelligent carriage of customs inspection |
| CN109367615A (en)* | 2018-10-12 | 2019-02-22 | 浙江农林大学 | An automatic navigation vehicle based on ultra-wideband technology |
| CN109725642A (en)* | 2019-01-25 | 2019-05-07 | 深圳普思英察科技有限公司 | Self-service machine system and its air navigation aid and device |
| CN110244712A (en)* | 2019-05-22 | 2019-09-17 | 南通大学 | A multi-AGV system path planning method |
| CN110490283A (en)* | 2019-08-27 | 2019-11-22 | 何杭 | A kind of books sorting system based on UWB positioning |
| CN111309453A (en)* | 2020-02-13 | 2020-06-19 | 佛山智能装备技术研究院 | Intelligent robot system of distributed deployment |
| CN111360796A (en)* | 2018-12-07 | 2020-07-03 | 深圳市优必选科技有限公司 | A robot and its positioning method and device |
| CN111954187A (en)* | 2019-12-12 | 2020-11-17 | 南京熊猫电子股份有限公司 | Mobile robot wireless communication system based on UWB |
| CN112179346A (en)* | 2020-09-15 | 2021-01-05 | 国营芜湖机械厂 | Indoor navigation system of unmanned trolley and use method thereof |
| CN112286187A (en)* | 2020-10-16 | 2021-01-29 | 北京特种机械研究所 | An AGV navigation control system and method based on UWB wireless positioning and visual positioning |
| CN112422318A (en)* | 2020-10-23 | 2021-02-26 | 锐捷网络股份有限公司 | Simulation method, simulation device and storage medium for UWB positioning environment |
| CN112959903A (en)* | 2021-02-07 | 2021-06-15 | 广州欧纬德教学设备技术有限公司 | Unmanned vehicle sand table system and control method thereof |
| CN113703459A (en)* | 2021-08-31 | 2021-11-26 | 疯壳(深圳)科技有限公司 | Indoor unmanned driving simulation system |
| CN114747998A (en)* | 2022-04-14 | 2022-07-15 | 上海景吾酷租科技发展有限公司 | Method and system for remotely editing cleaning trajectory of cleaning robot |
| CN114933130A (en)* | 2022-05-07 | 2022-08-23 | 苏州索服电子科技有限公司 | Intelligence SMT material car and UWB communication system based on UWB location technique |
| CN116834030A (en)* | 2023-06-28 | 2023-10-03 | 北京中科声智科技有限公司 | Robot service system, service control method, device and storage medium |
| CN117053780A (en)* | 2023-08-14 | 2023-11-14 | 山东新一代信息产业技术研究院有限公司 | Building site safety monitoring robot system and method based on UWB positioning |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103309350A (en)* | 2013-05-24 | 2013-09-18 | 南京航空航天大学 | Automatic guided vehicle scheduling system and method based on global wireless precise positioning |
| CN104914869A (en)* | 2015-03-24 | 2015-09-16 | 南京航空航天大学 | UWB-based discrete manufacturing plant material delivery cart control system |
| CN105303346A (en)* | 2015-10-20 | 2016-02-03 | 南京邮电大学 | UWB based fork truck anti-collision system and method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103309350A (en)* | 2013-05-24 | 2013-09-18 | 南京航空航天大学 | Automatic guided vehicle scheduling system and method based on global wireless precise positioning |
| CN104914869A (en)* | 2015-03-24 | 2015-09-16 | 南京航空航天大学 | UWB-based discrete manufacturing plant material delivery cart control system |
| CN105303346A (en)* | 2015-10-20 | 2016-02-03 | 南京邮电大学 | UWB based fork truck anti-collision system and method |
| Title |
|---|
| DECAWAVE: "APS016:MOVING FROM TREK1000 TO A PRODUCT, Version 2.01", 《APPLICATION NOTE》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106444742A (en)* | 2016-08-16 | 2017-02-22 | 成都市和平科技有限责任公司 | Intelligent office chair system and control method |
| CN106211080A (en)* | 2016-09-28 | 2016-12-07 | 深圳市普渡科技有限公司 | A kind of UWB base station coordinates method for self-calibrating |
| CN106507302A (en)* | 2016-11-04 | 2017-03-15 | 南开大学 | A 3D Indoor Positioning System Based on UWB |
| CN106569174A (en)* | 2016-11-15 | 2017-04-19 | 深圳市中舟智能科技有限公司 | Multi-mobile robot indoor wireless positioning system |
| CN108377467A (en)* | 2016-11-21 | 2018-08-07 | 深圳光启合众科技有限公司 | Indoor positioning and interactive approach, the device and system of target object |
| CN107065858A (en)* | 2017-02-13 | 2017-08-18 | 四川超影科技有限公司 | Crusing robot air navigation aid based on ultra wide band |
| CN106919171A (en)* | 2017-03-02 | 2017-07-04 | 安科智慧城市技术(中国)有限公司 | A kind of robot indoor positioning navigation system and method |
| CN106919171B (en)* | 2017-03-02 | 2020-06-12 | 安科机器人有限公司 | Indoor robot positioning and navigation system and method |
| CN106873597A (en)* | 2017-03-24 | 2017-06-20 | 上海思岚科技有限公司 | The implementation method of virtual rail is set by computer client to mobile robot |
| CN108664015A (en)* | 2017-03-29 | 2018-10-16 | 北京米文动力科技有限公司 | A kind of planing method and equipment in robot ambulation path |
| CN108664015B (en)* | 2017-03-29 | 2025-01-17 | 北京米文动力科技有限公司 | Planning method and equipment for robot walking path |
| CN106961725A (en)* | 2017-03-31 | 2017-07-18 | 深圳大学 | Indoor equipotential method and system based on UWB Yu Wifi combined high precisions |
| CN107329112A (en)* | 2017-06-30 | 2017-11-07 | 成都智建新业建筑设计咨询有限公司 | A kind of multi-target positioning system of use TOA location technologies |
| CN107225575A (en)* | 2017-07-22 | 2017-10-03 | 广东大仓机器人科技有限公司 | The robot of indoor precise positioning is realized using six ultra wide band modules |
| CN107702721A (en)* | 2017-11-07 | 2018-02-16 | 云南昆船智能装备有限公司 | A kind of AGV navigation positional devices based on ultra wide band UWB |
| CN107861513A (en)* | 2017-12-08 | 2018-03-30 | 深圳市中舟智能科技有限公司 | Intelligent robot autonomous navigation system based on UWB technology |
| CN108107404A (en)* | 2017-12-19 | 2018-06-01 | 成都鸿福润德科技有限公司 | A kind of indoor ultra-broadband Position Fixing Navigation System |
| CN108983772A (en)* | 2018-07-05 | 2018-12-11 | 天津中德应用技术大学 | Intelligent transfer robot control system and control method based on UWB positioning |
| CN109109762A (en)* | 2018-08-20 | 2019-01-01 | 江苏大学 | It is a kind of for assisting the intelligent carriage of customs inspection |
| CN109018077A (en)* | 2018-08-29 | 2018-12-18 | 山东力创科技股份有限公司 | A kind of base station navigation Twin Rudders wheel AGV vehicle and application method |
| CN109018077B (en)* | 2018-08-29 | 2023-08-18 | 力创科技股份有限公司 | Base station navigation double-steering-wheel AGV and using method |
| CN109367615A (en)* | 2018-10-12 | 2019-02-22 | 浙江农林大学 | An automatic navigation vehicle based on ultra-wideband technology |
| CN111360796B (en)* | 2018-12-07 | 2021-10-29 | 深圳市优必选科技有限公司 | Robot and positioning method and device thereof |
| CN111360796A (en)* | 2018-12-07 | 2020-07-03 | 深圳市优必选科技有限公司 | A robot and its positioning method and device |
| CN109725642A (en)* | 2019-01-25 | 2019-05-07 | 深圳普思英察科技有限公司 | Self-service machine system and its air navigation aid and device |
| CN110244712A (en)* | 2019-05-22 | 2019-09-17 | 南通大学 | A multi-AGV system path planning method |
| CN110490283A (en)* | 2019-08-27 | 2019-11-22 | 何杭 | A kind of books sorting system based on UWB positioning |
| CN111954187A (en)* | 2019-12-12 | 2020-11-17 | 南京熊猫电子股份有限公司 | Mobile robot wireless communication system based on UWB |
| CN111309453A (en)* | 2020-02-13 | 2020-06-19 | 佛山智能装备技术研究院 | Intelligent robot system of distributed deployment |
| CN112179346A (en)* | 2020-09-15 | 2021-01-05 | 国营芜湖机械厂 | Indoor navigation system of unmanned trolley and use method thereof |
| CN112179346B (en)* | 2020-09-15 | 2024-02-27 | 国营芜湖机械厂 | Indoor navigation system of unmanned trolley and application method thereof |
| CN112286187A (en)* | 2020-10-16 | 2021-01-29 | 北京特种机械研究所 | An AGV navigation control system and method based on UWB wireless positioning and visual positioning |
| CN112422318B (en)* | 2020-10-23 | 2023-03-21 | 锐捷网络股份有限公司 | Simulation method, simulation device and storage medium for UWB positioning environment |
| CN112422318A (en)* | 2020-10-23 | 2021-02-26 | 锐捷网络股份有限公司 | Simulation method, simulation device and storage medium for UWB positioning environment |
| CN112959903A (en)* | 2021-02-07 | 2021-06-15 | 广州欧纬德教学设备技术有限公司 | Unmanned vehicle sand table system and control method thereof |
| CN113703459A (en)* | 2021-08-31 | 2021-11-26 | 疯壳(深圳)科技有限公司 | Indoor unmanned driving simulation system |
| CN114747998A (en)* | 2022-04-14 | 2022-07-15 | 上海景吾酷租科技发展有限公司 | Method and system for remotely editing cleaning trajectory of cleaning robot |
| CN114933130A (en)* | 2022-05-07 | 2022-08-23 | 苏州索服电子科技有限公司 | Intelligence SMT material car and UWB communication system based on UWB location technique |
| CN116834030A (en)* | 2023-06-28 | 2023-10-03 | 北京中科声智科技有限公司 | Robot service system, service control method, device and storage medium |
| CN117053780A (en)* | 2023-08-14 | 2023-11-14 | 山东新一代信息产业技术研究院有限公司 | Building site safety monitoring robot system and method based on UWB positioning |
| Publication | Publication Date | Title |
|---|---|---|
| CN105682047A (en) | UWB-based indoor mobile robot navigation and positioning system | |
| CN112066989B (en) | Indoor AGV automatic navigation system and navigation method based on laser SLAM | |
| CN105657668A (en) | Positioning and navigation control method of indoor mobile robot based on UWB | |
| JP6868028B2 (en) | Autonomous positioning navigation equipment, positioning navigation method and autonomous positioning navigation system | |
| CN104914869B (en) | UWB-based control system for material delivery trolley in discrete manufacturing workshop | |
| CN103838152B (en) | A kind of ground test device for flight control system and control method | |
| CN113282083B (en) | An experimental platform for unmanned vehicle formation based on robot operating system | |
| WO2020192000A1 (en) | Livestock and poultry information perception robot based on autonomous navigation, and map building method | |
| CN105563485B (en) | A kind of meal delivery robot control system control method of motion trace | |
| CN107992035A (en) | A kind of Multi Mobile Robots Formation's control method based on indoor Global localization | |
| CN106325270A (en) | Intelligent vehicle navigation system and method based on perception and autonomous calculation positioning navigation | |
| CN104062630A (en) | Exhibition room service robot stereo positioning and scheduling management system and positioning method thereof | |
| CN108762255A (en) | A kind of indoor intelligent mobile robot and control method | |
| CN108801269A (en) | A kind of interior cloud Algorithms of Robots Navigation System and method | |
| CN207373179U (en) | A kind of robot control system for being used for SLAM and navigation | |
| CN208013783U (en) | The co-located system of the Mobile Robot Formation of view-based access control model | |
| CN107621826A (en) | Mobile Intelligent Tracing Vehicle | |
| CN110673614A (en) | Mapping system and mapping method of small robot group based on cloud server | |
| CN104089649A (en) | System and method for collecting indoor environment data | |
| CN207240184U (en) | Mobile object follows the trail of robot | |
| CN112896192A (en) | Mining electric locomotive unmanned system based on UWB technology | |
| CN104613982A (en) | An Indoor Integrated Navigation Simulation Verification System | |
| CN114527763A (en) | Intelligent inspection system and method based on target detection and SLAM composition | |
| CN114355910A (en) | An autonomous mapping and navigation system and method for indoor robot based on Jetson Nano | |
| CN211786766U (en) | Livestock and poultry house inspection robot walking control device based on laser radar |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20160615 | |
| RJ01 | Rejection of invention patent application after publication |