Movatterモバイル変換


[0]ホーム

URL:


CN105634851A - Measuring device capable of generating user-defined data file orthogonal amplitude modulation signal and modulation method - Google Patents

Measuring device capable of generating user-defined data file orthogonal amplitude modulation signal and modulation method
Download PDF

Info

Publication number
CN105634851A
CN105634851ACN201410620781.4ACN201410620781ACN105634851ACN 105634851 ACN105634851 ACN 105634851ACN 201410620781 ACN201410620781 ACN 201410620781ACN 105634851 ACN105634851 ACN 105634851A
Authority
CN
China
Prior art keywords
data
quadrature amplitude
modulation
pseudo
baseband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410620781.4A
Other languages
Chinese (zh)
Other versions
CN105634851B (en
Inventor
丁新宇
王悦
王铁军
李维森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Puyuan Jingdian Technology Co Ltd
Original Assignee
Suzhou Rigol Precision Electric Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Rigol Precision Electric Technologies Co LtdfiledCriticalSuzhou Rigol Precision Electric Technologies Co Ltd
Priority to CN201410620781.4ApriorityCriticalpatent/CN105634851B/en
Publication of CN105634851ApublicationCriticalpatent/CN105634851A/en
Application grantedgrantedCritical
Publication of CN105634851BpublicationCriticalpatent/CN105634851B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Landscapes

Abstract

Translated fromChinese

本发明公开了一种可以生成自定义数据文件正交幅度调制信号的测量装置及其调制方法,包括系统控制单元、正交幅度调制单元和正交幅度控制单元,当正交幅度调制源为自定义数据文件时,基带速率控制模块根据基带速率值和调制方式,生成原始文件基带时钟和原始文件调制时钟;存储控制模块根据原始文件基带时钟和自定义数据文件,生成原始文件基带数据;位宽转换模块根据调制方式和原始文件调制时钟,对原始文件基带数据进行位宽转换,生成原始文件待调数据;映射模块根据原始文件待调数据和星座图数据,生成自定义数据文件复数调制信号。本发明所述的测量装置和调制方法,在调制源为自定义数据文件时,可以节约软件资源,提高响应时间。

The invention discloses a measuring device capable of generating a self-defined data file quadrature amplitude modulation signal and a modulation method thereof, including a system control unit, a quadrature amplitude modulation unit and a quadrature amplitude control unit. When the quadrature amplitude modulation source is a self When defining a data file, the baseband rate control module generates the original file baseband clock and the original file modulation clock according to the baseband rate value and modulation mode; the storage control module generates the original file baseband data according to the original file baseband clock and the custom data file; bit width The conversion module converts the bit width of the baseband data of the original file according to the modulation mode and the modulation clock of the original file, and generates the data to be modulated in the original file; the mapping module generates complex modulated signals of the custom data file according to the data to be modulated in the original file and the constellation diagram data. The measuring device and modulation method of the present invention can save software resources and improve response time when the modulation source is a self-defined data file.

Description

Translated fromChinese
可以生成自定义数据文件正交幅度调制信号的测量装置及其调制方法Measuring device capable of generating custom data files for quadrature amplitude modulation signals and its modulation method

技术领域technical field

本发明涉及测试测量领域,特别涉及一种可以生成自定义数据文件正交幅度调制信号的测量装置及其正交幅度调制方法。The invention relates to the field of test and measurement, in particular to a measuring device capable of generating a quadrature amplitude modulation signal of a self-defined data file and a quadrature amplitude modulation method thereof.

背景技术Background technique

正交幅度调制(QuadratureAmplitudeModulation,下面简称QAM)是一种高效的数字调制解调方式,与其他调制技术相比,这种调制技术能充分利用带宽,具有很高的频率利用率,且抗噪声能力强。因而在中、大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信等领域得到广泛应用。QAM是一种矢量调制,将待调制的基带信号先映射到一个复平面(星座图)上,形成2路复数调制信号a、b(对应复平面的实部和虚部,也就是水平和垂直方向),然后对a、b进行抑制载波的双边带调制,分别对应调制在相互正交的两个载波(coswt和sinwt)上;然后将二者相加,形成QAM已调信号。Quadrature Amplitude Modulation (Quadrature Amplitude Modulation, hereinafter referred to as QAM) is an efficient digital modulation and demodulation method. Compared with other modulation technologies, this modulation technology can make full use of the bandwidth, has a high frequency utilization rate, and has the ability to resist noise powerful. Therefore, it is widely used in medium and large capacity digital microwave communication systems, high-speed data transmission of cable television networks, and satellite communications. QAM is a kind of vector modulation. The baseband signal to be modulated is first mapped onto a complex plane (constellation diagram) to form 2-way complex modulation signals a and b (corresponding to the real and imaginary parts of the complex plane, that is, the horizontal and vertical Direction), then carry out double-sideband modulation of suppressed carrier to a and b, and respectively modulate on two mutually orthogonal carriers (coswt and sinwt); then add the two to form a QAM modulated signal.

QAM常见的调制方式有MQAM(例如4QAM、8QAM、16QAM、64QAM等)和多进制PSK(例如QPSK、8PSK、16PSK等),多进制PSK可看作QAM的特例,也用MQAM表示。每种调制方式都有各自的星座图。上述调制方式名称的数字部分M表示的是星座图上坐标点的数目,例如256QAM、8PSK的坐标点的数目分别为256、8,QPSK即四相移键控,其坐标数目为4。将待调制的基带信号按照星座图转换为2路复数调制信号a、b的过程称为“映射”。Common QAM modulation methods include MQAM (such as 4QAM, 8QAM, 16QAM, 64QAM, etc.) and multi-ary PSK (such as QPSK, 8PSK, 16PSK, etc.). Multi-ary PSK can be regarded as a special case of QAM and is also represented by MQAM. Each modulation method has its own constellation diagram. The digital part M of the above modulation method name represents the number of coordinate points on the constellation diagram, for example, the number of coordinate points of 256QAM and 8PSK are 256 and 8 respectively, and the number of coordinate points of QPSK is quadrature phase shift keying is 4. The process of converting the baseband signal to be modulated into two complex modulation signals a and b according to the constellation diagram is called "mapping".

传统的正交幅度调制采用模拟实现方式,由于模拟器件的一致性和稳定性都不够理想,因此大大影响了系统的性能,且模拟系统的功能都较为单一。随着数字技术的飞速发展,采用数字方式、尤其是采用可编程逻辑阵列(FPGA)与CPU相结合的方式所实现的正交幅度调制具有集成度高、灵活性好、功能丰富的优点,可以方便的修改QAM调制方式。The traditional quadrature amplitude modulation is realized by analog, because the consistency and stability of the analog devices are not ideal, so the performance of the system is greatly affected, and the function of the analog system is relatively single. With the rapid development of digital technology, quadrature amplitude modulation realized by digital methods, especially the combination of programmable logic array (FPGA) and CPU, has the advantages of high integration, good flexibility and rich functions. It is convenient to modify the QAM modulation mode.

专利申请号为201110431543.5,专利名称为“正交幅度调制信号的产生方法、装置和数字信号发生器”的专利文献中描述了一种正交幅度调制信号的产生方法。参考图1,是该专利文献公开的QAM调制控制单元1的结构示意图,QAM调制控制单元1用于将调制源映射为复数调制信号,其包括:控制模块101、调制源选择模块102、基带速率控制模块103、调制文件存储器104、存储控制器105、伪随机序列产生模块106和模数转换模块107。The patent application number is 201110431543.5, and the patent document titled "Method, Device and Digital Signal Generator for Quadrature Amplitude Modulation Signal Generation" describes a method for generating quadrature amplitude modulation signals. Referring to FIG. 1 , it is a schematic structural diagram of the QAM modulation control unit 1 disclosed in this patent document. The QAM modulation control unit 1 is used to map the modulation source to a complex modulation signal, which includes: a control module 101, a modulation source selection module 102, a baseband rate Control module 103 , modulation file storage 104 , storage controller 105 , pseudo-random sequence generation module 106 and analog-to-digital conversion module 107 .

当调制源选择为外部模拟源时,模数转换模块107用于将外部输入的、已经映射好的2路复数调制信号的模拟量转换为数字量,然后发送给调制源选择模块102,调制源选择模块102根据调制源,选择将其输出;When the modulation source is selected as an external analog source, the analog-to-digital conversion module 107 is used to convert the analog quantities of the externally input and mapped 2-way complex modulation signals into digital quantities, and then send them to the modulation source selection module 102, and the modulation source The selection module 102 selects and outputs it according to the modulation source;

当调制源选择为伪随机序列时,伪随机序列生成模块106用于根据用户设置的调制方式,将伪随机序列映射为复数调制信号给调制源选择模块102,调制方式不同,伪随机序列生成模块106输出数据的序列格式也随之不同,比如:调制方式为16QAM时,伪随机序列生成模块106是将伪随机序列的前2比特作为复数调制信号的一路a,后2比特作为复数调制信号的另一路b,依次循环;而当调制方式为64QAM时,伪随机序列生成模块106是将伪随机序列的前3比特作为a,后3比特作为b,依次循环,最终生成的调制信号送给调制元选择模块102,调制源选择模块102根据调制源,选择将其输出;When the modulation source is selected as a pseudo-random sequence, the pseudo-random sequence generation module 106 is used to map the pseudo-random sequence into a complex modulation signal for the modulation source selection module 102 according to the modulation method set by the user. The modulation methods are different, and the pseudo-random sequence generation module The sequence format of 106 output data is also different thereupon, such as: when the modulation mode is 16QAM, the pseudo-random sequence generating module 106 is to use the first 2 bits of the pseudo-random sequence as one way a of the complex modulation signal, and the latter 2 bits as the complex modulation signal The other way b is cycled in turn; and when the modulation method is 64QAM, the pseudo-random sequence generation module 106 uses the first 3 bits of the pseudo-random sequence as a, and the last 3 bits as b, and cycles in turn, and the finally generated modulation signal is sent to the modulation Element selection module 102, the modulation source selection module 102 selects and outputs it according to the modulation source;

当调制源选择为自定义数据文件时,调制文件存储器104和存储控制器105用于实现自定义数据文件的存储和读取。当开始QAM调制前,系统的中央处理单元(图1中没有画出)首先将用户自定义数据文件写入到存储器中,然后再按照用户设置的调制方式从存储器中读取自定义数据文件,将其映射为2路复数调制信号,并通过控制模块101和存储控制器105写入到调制文件存储器104中;当开始调制后,存储控制器105将2路复数调制信号从调制文件存储器104中读取到调制源选择模块102中,调制源选择模块102根据调制源,选择将其输出。When the modulation source is selected as a custom data file, the modulation file memory 104 and the storage controller 105 are used to store and read the custom data file. Before starting the QAM modulation, the central processing unit (not shown in Fig. 1) of the system first writes the user-defined data file into the memory, and then reads the user-defined data file from the memory according to the modulation mode set by the user. Map it into 2-way complex modulation signals, and write them into the modulation file memory 104 through the control module 101 and the storage controller 105; It is read into the modulation source selection module 102, and the modulation source selection module 102 selects and outputs the modulation source according to the modulation source.

由上可见,现有技术中主要存在两个技术问题:As can be seen from the above, there are mainly two technical problems in the prior art:

1、在调制源选择为伪随机序列时,伪随机序列产生模块106对其所产生的伪随机序列进行映射,其映射原理为:首先产生串行的伪随机序列,然后根据不同的调制方式将串行码流(伪随机序列)的前N/2个比特、后N/2个比特分别作为复数调制信号a和b。对于4QAM、8QAM、16QAM、64QAM、256QAM、512QAM、QPSK、8PSK、16PSK,N值分别为2、3、4、6、8、9、2、3、4,M=2N。所以,采用现有技术这种调制信号产生这种方法只能实现N为偶数的调制方式,而像8QAM、8PSK等N为奇数的调制方式是不能实现的。1. When the modulation source is selected as a pseudo-random sequence, the pseudo-random sequence generation module 106 maps the generated pseudo-random sequence. The mapping principle is: first generate a serial pseudo-random sequence, and then convert The first N/2 bits and the last N/2 bits of the serial code stream (pseudo-random sequence) are respectively used as complex modulation signals a and b. For 4QAM, 8QAM, 16QAM, 64QAM, 256QAM, 512QAM, QPSK, 8PSK, and 16PSK, the values of N are 2, 3, 4, 6, 8, 9, 2, 3, and 4 respectively, and M=2N . Therefore, the modulation signal generation method in the prior art can only realize the modulation mode in which N is an even number, but the modulation mode in which N is an odd number such as 8QAM and 8PSK cannot be realized.

2、在调制源选择为自定义数据文件时,自定义数据文件由中央处理单元进行映射,好处是支持自定义的星座图。但当用户重新配置自定义数据文件或者用户修改了调制方式时,中央处理单元都需要重新从存储器中取出自定义数据文件,并按照修改后的调制方式对数据进行映射处理。中央处理单元读取非易失存储器(例如Flash存储器)的速度通常都比较慢,并且中央处理器单元需要对自定义数据文件的每个数值进行映射,然后再写入到调制文件存储器104。所以上述处理流程带来了以下问题:中央处理单元读取、映射、写入的处理时间比较长,使得在修改调制方式、或者修改自定义数据文件时的响应时间慢,并且占用了大量的中央处理器单元的资源;并且,对自定义数据文件进行映射时,比如8QAM,那么3比特的自定义数据文件的数值要被映射为2路更高数据位宽的复数调制信号,为了保证星座图上坐标的精确性,通常复数调制信号的数据位宽要达到16比特,也就是3比特要放大到2路16比特,放大了近10倍,也就是说,存储2路复数调制信号的存储器的容量是自定义数据文件的10倍,显然,造成了极大的资源浪费。2. When the modulation source is selected as a custom data file, the custom data file is mapped by the central processing unit. The advantage is that it supports a custom constellation diagram. However, when the user reconfigures the user-defined data file or the user modifies the modulation mode, the central processing unit needs to take out the user-defined data file from the memory again, and map the data according to the modified modulation mode. The speed at which the central processing unit reads non-volatile memory (such as Flash memory) is usually relatively slow, and the central processing unit needs to map each value of the custom data file, and then write it into the modulation file memory 104 . Therefore, the above processing flow brings the following problems: the processing time of the central processing unit to read, map, and write is relatively long, which makes the response time slow when modifying the modulation mode or modifying the custom data file, and takes up a lot of central processing time. The resources of the processor unit; and, when mapping a custom data file, such as 8QAM, then the value of the 3-bit custom data file should be mapped to a complex modulation signal with a higher data bit width of 2 channels, in order to ensure that the constellation diagram The accuracy of the above coordinates, usually the data bit width of the complex modulation signal must reach 16 bits, that is, 3 bits must be enlarged to 2 channels of 16 bits, which is nearly 10 times larger, that is to say, the memory of the two channels of complex modulation signals The capacity is 10 times that of the custom data file, which obviously causes a great waste of resources.

发明内容Contents of the invention

为了解决现有技术中存在的第二个技术问题,本发明提出了一种可以减少中央处理单元处理时间,并节约其资源的自定义数据文件正交幅度调制信号的测量装置及其调制方法。In order to solve the second technical problem existing in the prior art, the present invention proposes a measuring device and modulation method of a quadrature amplitude modulation signal of a self-defined data file that can reduce the processing time of the central processing unit and save its resources.

本发明提出了一种可以生成自定义数据文件正交幅度调制信号的测量装置,包括系统控制单元、正交幅度调制单元和正交幅度控制单元,系统控制单元根据用户输入设置,生成正交幅度调制方式、正交幅度调制源、基带速率值、星座图数据、载波频率、自定义数据文件或序列阶数;正交幅度控制单元根据正交幅度调制方式、正交幅度调制源、基带速率值、星座图数据、序列阶数或自定义数据文件,生成复数调制信号;正交幅度调制单元根据复数调制信号和载波频率,生成正交幅度已调信号;所述的正交幅度控制单元包括基带速率控制模块、存储控制模块、位宽转换模块和映射模块,当正交幅度调制源为自定义数据文件时,基带速率控制模块根据基带速率值和调制方式,生成原始文件基带时钟和原始文件调制时钟;存储控制模块根据原始文件基带时钟和自定义数据文件,生成原始文件基带数据;位宽转换模块根据调制方式和原始文件调制时钟,对原始文件基带数据进行位宽转换,生成原始文件待调数据;映射模块根据原始文件待调数据和星座图数据,生成自定义数据文件复数调制信号。The invention proposes a measuring device capable of generating a quadrature amplitude modulation signal of a custom data file, including a system control unit, a quadrature amplitude modulation unit, and a quadrature amplitude control unit, and the system control unit generates quadrature amplitude according to user input settings Modulation mode, quadrature amplitude modulation source, baseband rate value, constellation data, carrier frequency, custom data file or sequence order; quadrature amplitude control unit according to quadrature amplitude modulation mode, quadrature amplitude modulation source, baseband rate value , constellation diagram data, sequence order or custom data file, generate complex modulation signal; quadrature amplitude modulation unit generates quadrature amplitude modulated signal according to complex modulation signal and carrier frequency; described quadrature amplitude control unit includes baseband Rate control module, storage control module, bit width conversion module and mapping module, when the quadrature amplitude modulation source is a custom data file, the baseband rate control module generates the original file baseband clock and original file modulation according to the baseband rate value and modulation mode Clock; the storage control module generates the original file baseband data according to the original file baseband clock and the custom data file; the bit width conversion module performs bit width conversion on the original file baseband data according to the modulation mode and the original file modulation clock, and generates the original file to be adjusted Data; the mapping module generates a complex modulation signal of a custom data file according to the data to be modulated in the original file and the constellation diagram data.

在本发明所述的测量装置中,所述的正交幅度调制单元还可以包括伪随机序列生成模块和串并转换模块,当正交幅度调制源为伪随机序列时,基带速率控制模块根据基带速率值和调制方式,生成伪随机序列基带时钟和伪随机序列调制时钟;伪随机序列生成模块根据伪随机序列基带时钟和序列阶数,生成伪随机序列串行数据;串并转换模块根据调制方式和伪随机序列调制时钟,对伪随机序列串行数据进行串并转换,生成伪随机序列待调数据;映射模块根据伪随机序列待调数据和星座图数据,生成伪随机序列复数调制信号。In the measurement device of the present invention, the quadrature amplitude modulation unit may also include a pseudo-random sequence generation module and a serial-to-parallel conversion module. When the quadrature amplitude modulation source is a pseudo-random sequence, the baseband rate control module baseband Rate value and modulation method, generate pseudo-random sequence baseband clock and pseudo-random sequence modulation clock; pseudo-random sequence generation module generates pseudo-random sequence serial data according to pseudo-random sequence baseband clock and sequence order; serial-to-parallel conversion module generates pseudo-random sequence serial data according to the modulation method The pseudo-random sequence modulates the clock, performs serial-to-parallel conversion on the pseudo-random sequence serial data, and generates the pseudo-random sequence to-be-modulated data; the mapping module generates a pseudo-random sequence complex modulated signal according to the pseudo-random sequence to-be-modulated data and the constellation diagram data.

在本发明所述的测量装置中,所述的映射模块还可以包括地址生成模块、星座图数据存储模块和复数调制信号生成模块,所述的地址生成模块根据正交幅度调制源,生成映射地址;所述的星座图数据存储模块存储所述的星座图数据;所述的复数调制信号生成模块根据正交幅度调制源、映射地址和星座图数据,生成所述的复数调制信号。In the measurement device of the present invention, the mapping module may also include an address generation module, a constellation data storage module, and a complex modulation signal generation module, and the address generation module generates a mapping address according to a quadrature amplitude modulation source The constellation data storage module stores the constellation data; the complex modulation signal generation module generates the complex modulation signal according to the quadrature amplitude modulation source, mapping address and constellation data.

在本发明所述的测量装置中,还可以当正交幅度调制源是自定义数据文件时,所述的地址生成模块选择原始文件待调数据作为映射地址;所述的复数调制信号生成模块根据所述的映射地址读取星座存储模块中的星座图数据,并根据读取的数据得到所述的自定义数据文件复数调制信号。In the measurement device of the present invention, when the quadrature amplitude modulation source is a user-defined data file, the address generation module selects the original file to be adjusted data as the mapping address; the complex modulation signal generation module according to The mapping address reads the constellation diagram data in the constellation storage module, and obtains the complex modulation signal of the self-defined data file according to the read data.

在本发明所述的测量装置中,还可以当正交幅度调制源是伪随机序列时,所述的地址生成模块选择伪随机序列待调数据作为映射地址;所述的复数调制信号生成模块根据所述的映射地址读取星座存储模块中的星座图数据,并根据读取的数据得到所述的伪随机序列复数调制信号。In the measurement device of the present invention, when the quadrature amplitude modulation source is a pseudo-random sequence, the address generation module selects the pseudo-random sequence data to be modulated as the mapping address; the complex modulation signal generation module according to The mapping address reads the constellation diagram data in the constellation storage module, and obtains the pseudo-random sequence complex modulation signal according to the read data.

在本发明所述的测量装置中,所述的原始文件调制时钟的频率值与所述的原始文件基带时钟的频率值的比值还可以为D:N,D为自定义数据文件每个数据的位宽,与调制方式对应的星座图上点的数目是2NIn the measurement device of the present invention, the ratio of the frequency value of the modulation clock of the original file to the frequency value of the baseband clock of the original file can also be D: N, where D is the value of each data in the custom data file Bit width, the number of points on the constellation diagram corresponding to the modulation mode is 2N .

在本发明所述的测量装置中,所述的存储控制模块还可以根据系统通信协议将所述的自定义数据文件转换成原始文件数据并存储,并根据原始文件基带时钟读取原始文件数据,生成原始文件基带数据。In the measurement device of the present invention, the storage control module can also convert the self-defined data file into original file data according to the system communication protocol and store it, and read the original file data according to the baseband clock of the original file, Generate raw file baseband data.

在本发明所述的测量装置中,所述的位宽转换模块还可以根据原始文件调制时钟将D比特的原始文件基带数据,转换成N比特的原始文件待调数据,D为自定义数据文件每个数据的位宽,与调制方式对应的星座图上点的数目是2NIn the measurement device of the present invention, the bit width conversion module can also convert the D-bit original file baseband data into N-bit original file data to be adjusted according to the original file modulation clock, and D is a self-defined data file The bit width of each data, and the number of points on the constellation diagram corresponding to the modulation mode are 2N .

在本发明所述的测量装置中,所述的正交幅度调制单元还可以由FPGA器件构成。In the measurement device of the present invention, the quadrature amplitude modulation unit may also be composed of an FPGA device.

本发明还提出了一种自定义数据文件正交幅度调制方法,包括以下步骤:The present invention also proposes a method for quadrature amplitude modulation of a self-defined data file, comprising the following steps:

1)根据用户输入设置,生成正交幅度调制方式、正交幅度调制源、基带速率值、星座图数据、自定义数据文件和载波频率;1) Generate quadrature amplitude modulation mode, quadrature amplitude modulation source, baseband rate value, constellation diagram data, custom data files and carrier frequency according to user input settings;

2)根据基带速率值和调制方式,生成原始文件基带时钟和原始文件调制时钟;2) Generate an original file baseband clock and an original file modulation clock according to the baseband rate value and modulation mode;

3)根据原始文件基带时钟和自定义数据文件,生成原始文件基带数据;3) Generate the baseband data of the original file according to the baseband clock of the original file and the custom data file;

4)根据调制方式和原始文件调制时钟,对原始文件基带数据进行位宽转换,生成原始文件待调数据;4) Carry out bit width conversion to the baseband data of the original file according to the modulation mode and the modulation clock of the original file, and generate the data to be adjusted in the original file;

5)根据原始文件待调数据和星座图数据,生成自定义数据文件复数调制信号;5) According to the data to be modulated in the original file and the constellation diagram data, generate the complex modulation signal of the custom data file;

6)根据自定义数据文件调制信号和载波频率,生成自定义数据文件已调信号。6) According to the modulated signal and carrier frequency of the custom data file, the modulated signal of the custom data file is generated.

与现有技术相比,在自定义数据文件作为调制源时,本发明所述的测量装置和正交幅度调制方法,通过对原始文件进行位宽转换,并改进星座图的映射方法,使得修改自定义数据文件时,无需系统控制单元做映射处理,节省了软件处理资源,加快了响应时间;存储原始文件的存储器的容量就是自定义数据文件的长度,与现有技术要写入映射后的2路复数调制信号的调制文件存储器相比,不需要额外的存储器容量。而且也可以自定义星座图数据。Compared with the prior art, when the user-defined data file is used as the modulation source, the measurement device and the quadrature amplitude modulation method described in the present invention perform bit width conversion on the original file and improve the mapping method of the constellation map, so that the modified When customizing data files, there is no need for the system control unit to do mapping processing, which saves software processing resources and speeds up the response time; the capacity of the memory storing the original files is the length of the custom data files, which is different from the existing technology that needs to write the mapped Compared with the modulation file memory of 2 complex modulation signals, no additional memory capacity is required. And you can also customize the constellation diagram data.

另外,在伪随机序列为调制源时,本发通过对伪随机序列进行串并转换,并改进星座图的映射方法,使得在伪随机序列为调制源时,可以支持所有的调制方式,并且还可以自定义星座图,应用范围更广,更加灵活。In addition, when the pseudo-random sequence is the modulation source, the present invention performs serial-to-parallel conversion on the pseudo-random sequence and improves the mapping method of the constellation map, so that when the pseudo-random sequence is the modulation source, it can support all modulation methods, and also The constellation diagram can be customized, and the application range is wider and more flexible.

并且,用户修改调制方式或者星座图时,本发明只需重新配置调制方式,将新的星座图坐标数据写入映射存储器,因为星座图数据的最大长度仅是512,所以写入时间比较短,也不用耗费过多软件处理资源。Moreover, when the user modifies the modulation mode or the constellation diagram, the present invention only needs to reconfigure the modulation mode and write the new constellation diagram coordinate data into the mapping memory, because the maximum length of the constellation diagram data is only 512, so the writing time is relatively short. There is no need to consume too much software processing resources.

附图说明Description of drawings

图1是现有技术中QAM调制控制单1的结构示意图。FIG. 1 is a schematic structural diagram of a QAM modulation control unit 1 in the prior art.

图2是本发明实施例中可以生成自定义数据文件正交幅度调制信号的测量装置2的结构示意图。FIG. 2 is a schematic structural diagram of a measuring device 2 capable of generating a quadrature amplitude modulation signal of a user-defined data file in an embodiment of the present invention.

图3是本发明实施例中正交幅度控制单元202的结构示意图。FIG. 3 is a schematic structural diagram of the quadrature amplitude control unit 202 in the embodiment of the present invention.

图4是16QAM的矩形星座图。Fig. 4 is a rectangular constellation diagram of 16QAM.

图5是16QAM的同心圆星座图。Fig. 5 is a constellation diagram of concentric circles of 16QAM.

图6是本发明实施例中自定义数据文件正交幅度调制方法的流程图Fig. 6 is a flow chart of a method for quadrature amplitude modulation of a user-defined data file in an embodiment of the present invention

图7是本发明实施例中伪随机序列生成模块302的结构示意图。Fig. 7 is a schematic structural diagram of the pseudo-random sequence generation module 302 in the embodiment of the present invention.

图8是本发明实施例中伪随机序列正交幅度调制方法的流程图。Fig. 8 is a flow chart of a pseudo-random sequence quadrature amplitude modulation method in an embodiment of the present invention.

具体实施方式detailed description

为使本发明实施方式的目的、技术方案和优点清楚明白,下面结合附图对本发明的实施方式做进一步详细说明。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clear, the embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings.

参考图2,是本发明实施例中可以生成自定义数据文件正交幅度调制信号的测量装置2的结构示意图。Referring to FIG. 2 , it is a schematic structural diagram of a measurement device 2 capable of generating a quadrature amplitude modulation signal of a user-defined data file in an embodiment of the present invention.

在本实施例中,测量装置2包括系统控制单元201、正交幅度控制单元202和正交幅度调制单元203。In this embodiment, the measurement device 2 includes a system control unit 201 , a quadrature amplitude control unit 202 and a quadrature amplitude modulation unit 203 .

系统控制单元201用于根据用户输入设置,生成正交幅度调制方式、正交幅度调制源、基带速率值、星座图数据、载波频率、以及序列阶数或自定义数据文件。The system control unit 201 is used to generate quadrature amplitude modulation mode, quadrature amplitude modulation source, baseband rate value, constellation diagram data, carrier frequency, and sequence order or user-defined data files according to user input settings.

在本实施例中,系统控制单元201包括输入单元、时钟单元、存储单元和中央处理单元,其中输入单元用于接收用户的输入设置,时钟单元用于产生系统工作时钟,存储单元用于存储各种系统参数和测量数据等,中央处理单元用于根据用户的输入设置,生成对应的系统参数发送给正交幅度调制单元202和正交幅度调制单元203,在进行正交幅度调制前,用户需要先在伪随机序列、自定义数据文件和外部模拟源中选择一种作为正交幅度调制源,然后再根据测量需求设置正交幅度调制方式、基带速率值、星座图数据、载波频率、以及序列阶数(调制源为伪随机序列时设置)或自定义数据文件(调制源为自定义数据文件时设置)。In this embodiment, the system control unit 201 includes an input unit, a clock unit, a storage unit and a central processing unit, wherein the input unit is used to receive user input settings, the clock unit is used to generate a system working clock, and the storage unit is used to store various Various system parameters and measurement data, etc., the central processing unit is used to generate corresponding system parameters according to the user's input settings and send them to the quadrature amplitude modulation unit 202 and quadrature amplitude modulation unit 203. Before performing quadrature amplitude modulation, the user needs First select one of the pseudo-random sequence, custom data file and external simulation source as the quadrature amplitude modulation source, and then set the quadrature amplitude modulation mode, baseband rate value, constellation diagram data, carrier frequency, and sequence according to the measurement requirements Order (set when the modulation source is a pseudo-random sequence) or custom data file (set when the modulation source is a custom data file).

正交幅度控制单元202用于根据正交幅度调制方式、正交幅度调制源、基带速率值、星座图数据、以及序列阶数或自定义数据文件,生成复数调制信号a和b。The quadrature amplitude control unit 202 is used to generate complex modulation signals a and b according to the quadrature amplitude modulation method, quadrature amplitude modulation source, baseband rate value, constellation diagram data, and sequence order or user-defined data files.

正交幅度调制单元203根据复数调制信号a、b和载波频率,生成正交幅度已调信号;The quadrature amplitude modulation unit 203 generates a quadrature amplitude modulated signal according to the complex modulation signals a, b and the carrier frequency;

在本实施例中,正交幅度调制单元203包括数字控制振荡器2031、第一乘法器2032、第二乘法器2033、加法器2034和输出单元2035,数字控制振荡器2031根据载波频率输出两个相互正交的同频载波cosωt和sinωt,分别送给第一乘法器2032和第二乘法器2032,正交幅度控制单元202将生成的复数调制信号a、b分别送给第一乘法器2032和第二乘法器2033,分别与载波相乘后,在加法器2034中相加,最终得到数字正交幅度已调信号c:c=a*cosωt+b*sinωt,然后输出单元2035将数字正交幅度已调信号c转换成模拟正交幅度已调信号d后输出。In this embodiment, the quadrature amplitude modulation unit 203 includes a digitally controlled oscillator 2031, a first multiplier 2032, a second multiplier 2033, an adder 2034, and an output unit 2035. The digitally controlled oscillator 2031 outputs two The mutually orthogonal cos ωt and sin ωt of the same-frequency carrier are sent to the first multiplier 2032 and the second multiplier 2032 respectively, and the quadrature amplitude control unit 202 sends the generated complex modulation signals a and b to the first multiplier 2032 and 2032 respectively. The second multiplier 2033, respectively multiplied by the carrier, is added in the adder 2034, and finally obtains the digital quadrature amplitude modulated signal c: c=a*cosωt+b*sinωt, and then the output unit 2035 digital quadrature The amplitude modulated signal c is converted into an analog quadrature amplitude modulated signal d and then output.

下面将详细描述本实施例中正交幅度控制单元202的构成以及生成复数调制信号的工作流程。The composition of the quadrature amplitude control unit 202 and the workflow of generating complex modulation signals in this embodiment will be described in detail below.

参考图3,是本实施例中正交幅度控制单元202的结构示意图。Referring to FIG. 3 , it is a schematic structural diagram of the quadrature amplitude control unit 202 in this embodiment.

前面提到,系统控制单元201根据用户输入设置,生成各种参数,当用户设置正交幅度调制源为自定义数据文件时,需要设置正交幅度调制方式w1、基带速率值w2、星座图数据w3和自定义数据文件w10,系统控制单元201将根据用户设置生成的这些参数发送给正交幅度控制单元202内的各个模块,用于生成自定义数据文件复数调制信号a2和b2。As mentioned above, the system control unit 201 generates various parameters according to user input settings. When the user sets the quadrature amplitude modulation source as a custom data file, it is necessary to set the quadrature amplitude modulation mode w1, the baseband rate value w2, and the constellation data w3 and user-defined data file w10, the system control unit 201 sends these parameters generated according to user settings to each module in the quadrature amplitude control unit 202 for generating the user-defined data file complex modulation signals a2 and b2.

当正交幅度调制源为自定义数据文件时,基带速率控制模块301根据基带速率值w2和正交幅度调制方式w1,生成原始文件基带时钟w11和原始文件调制时钟w12。When the quadrature amplitude modulation source is a custom data file, the baseband rate control module 301 generates the original file baseband clock w11 and the original file modulation clock w12 according to the baseband rate value w2 and the quadrature amplitude modulation mode w1.

在本实施例中,基带速率控制模块301根据基带速率值w2生成原始文件基带时钟w11,基带速率控制模块301生成的原始文件基带时钟w11的频率值等于基带速率值w2;基带速率控制模块301还根据正交幅度调制方式w1和基带速率值w2,生成原始文件调制时钟w12,假设正交幅度调制方式w1用MQAM表示,M=2N,与正交幅度调制方式对应的星座图上坐标点的数目是2N,基带速率控制模块301生成的原始文件调制时钟w12的频率值等于原始文件基带时钟w11的D/N,所以原始文件调制时钟w12的频率值等于基带速率值w2的D/N。D为自定义数据文件中每个数据的位宽。In this embodiment, the baseband rate control module 301 generates the original file baseband clock w11 according to the baseband rate value w2, and the frequency value of the original file baseband clock w11 generated by the baseband rate control module 301 is equal to the baseband rate value w2; the baseband rate control module 301 also According to the quadrature amplitude modulation mode w1 and the baseband rate value w2, generate the original file modulation clock w12, assuming that the quadrature amplitude modulation mode w1 is represented by MQAM, M=2N , and the coordinate points on the constellation diagram corresponding to the quadrature amplitude modulation mode The number is 2N , the frequency value of the original file modulation clock w12 generated by the baseband rate control module 301 is equal to D/N of the original file baseband clock w11, so the frequency value of the original file modulation clock w12 is equal to D/N of the baseband rate value w2. D is the bit width of each data in the custom data file.

存储控制模块305根据原始文件基带时钟w11和自定义数据文件w10,生成原始文件基带数据w13。The storage control module 305 generates the original file baseband data w13 according to the original file baseband clock w11 and the custom data file w10.

在本实施例中,存储控制模块305根据测量装置2的系统通信协议将自定义数据文件w10进行格式转换,转换成原始文件数据并存储,这里的格式转换是指将自定义数据文件w10转换成系统通信协议要求的格式,并不涉及数据的映射;当系统控制单元201发出调制开始的信号后,存储控制模块305按照原始文件基带时钟w11的频率值读取原始文件数据,生成原始文件基带数据w13。In this embodiment, the storage control module 305 converts the format of the custom data file w10 according to the system communication protocol of the measuring device 2, converts it into original file data and stores it, and the format conversion here refers to converting the custom data file w10 into The format required by the system communication protocol does not involve data mapping; when the system control unit 201 sends a modulation start signal, the storage control module 305 reads the original file data according to the frequency value of the original file baseband clock w11 to generate the original file baseband data w13.

在本实施例中,系统控制单元201在不进行任何处理的情况下,直接将自定义数据文件w10发送给存储控制模块305,所以存储控制模块306存储的原始文件数据(经过格式转换的自定义数据文件)的数据长度就是自定义数据文件w10的数据长度,不需要额外的存储空间,而且每次修改自定义数据文件w10的时候,也不需要系统控制单元201做复杂的处理,因此节省了软件资源,提高了响应时间。In this embodiment, the system control unit 201 directly sends the custom data file w10 to the storage control module 305 without any processing, so the original file data stored by the storage control module 306 (customized data after format conversion) The data length of data file) is exactly the data length of user-defined data file w10, does not need additional storage space, and when revising user-defined data file w10 at every turn, also does not need system control unit 201 to do complicated processing, therefore saved Software resources improve response time.

位宽转换模块306根据正交幅度调制方式w1和原始文件调制时钟w12,对原始文件基带数据w13进行位宽转换,生成原始文件待调数据w14。The bit width conversion module 306 converts the bit width of the original file baseband data w13 according to the quadrature amplitude modulation method w1 and the original file modulation clock w12, and generates the original file to-be-modulated data w14.

在本实施例中,位宽转换模块306按照正交幅度调制方式w1和原始文件调制时钟w12对原始文件基带数据w13进行位宽转换,将D(D为自定义数据文件中每个数据的位宽)比特的原始文件基带数据w13转换为N比特位宽的并行数据-原始文件待调数据w14,例如,w1为8QAM,那么M=2N,8=23,所以N=3,那么位宽转换模块306就根据原始文件调制时钟w12将D比特的原始文件基带数据w13转换成3比特位宽的原始文件待调数据w14。可见,原始文件基带数据w13的速率由原始文件基带时钟w11的频率得到,原始文件待调数据w14的速率由原始文件调制时钟w12的频率得到,前面提到,原始文件调制时钟w12和原始文件基带时钟w11的频率值的比值为D:N,因此可以实现D比特的原始文件基带数据w13与N比特位宽的原始文件待调数据w14之间的数据位宽转换。In this embodiment, the bit width conversion module 306 performs bit width conversion on the original file baseband data w13 according to the quadrature amplitude modulation mode w1 and the original file modulation clock w12, and D (D is the bit of each data in the custom data file The original file baseband data w13 of wide) bit is converted into the parallel data-original file data w14 of N bit width, for example, w1 is 8QAM, then M=2N , 8=23 , so N=3, then bit The width converting module 306 converts the D-bit original file baseband data w13 into 3-bit wide original file to-be-modulated data w14 according to the original file modulation clock w12. It can be seen that the rate of the original file baseband data w13 is obtained from the frequency of the original file baseband clock w11, and the rate of the original file to-be-modulated data w14 is obtained from the frequency of the original file modulation clock w12. As mentioned above, the original file modulation clock w12 and the original file baseband The ratio of the frequency value of the clock w11 is D:N, so the data bit width conversion between the D-bit original file baseband data w13 and the N-bit original file to-be-modulated data w14 can be realized.

映射模块304根据原始文件待调数据w14和星座图数据w3,生成自定义数据文件复数调制信号a2和b2。The mapping module 304 generates the complex modulated signals a2 and b2 of the custom data file according to the original file to-be-modulated data w14 and the constellation diagram data w3.

在本实施例中,映射模块304包括地址生成模块、星座图数据存储模块和复数调制信号生成模块。当正交幅度调制源是自定义数据文件时,地址生成模块将原始文件待调数据w14作为映射地址;星座图数据存储模块将用户输入的星座图数据w3进行存储,复数调制信号生成模块根据映射地址读取星座存储模块中的星座图数据w3,并根据读取的数据生成自定义数据文件复数调制信号a2和b2。In this embodiment, the mapping module 304 includes an address generation module, a constellation diagram data storage module and a complex modulation signal generation module. When the quadrature amplitude modulation source is a user-defined data file, the address generation module uses the original file to be modulated data w14 as the mapping address; the constellation data storage module stores the constellation data w3 input by the user, and the complex modulation signal generation module according to the mapping The address reads the constellation data w3 in the constellation storage module, and generates the complex modulation signals a2 and b2 of the self-defined data file according to the read data.

并且在本实施例中,用户输入的星座图数据w3可以是标准的,也可以是用户自己定义的。下面举例说明本发明可以实现自定义星座图数据,满足用户的不同需求。And in this embodiment, the constellation data w3 input by the user may be standard or user-defined. The following examples illustrate that the present invention can realize custom constellation data to meet different needs of users.

参考图4,是16QAM的矩形星座图。16QAM的矩形星座图有16个坐标点,每个坐标点的数据分别存储在星座图数据存储模块中的一个存储单元中,存储单元的地址是0000到1111。用户在编辑星座图数据时,可以自定义每个坐标点在星座图上的坐标位置(x,y),复数调制信号生成模块用原始文件待调数据w14作为映射地址,从星座图数据存储模块中的每个存储单元中取出每个坐标点在坐标系上的位置数据,生成原始文件复数调制信号a2和b2。Referring to FIG. 4, it is a rectangular constellation diagram of 16QAM. The 16QAM rectangular constellation diagram has 16 coordinate points, and the data of each coordinate point is stored in a storage unit in the constellation diagram data storage module, and the address of the storage unit is 0000 to 1111. When editing the constellation diagram data, the user can customize the coordinate position (x, y) of each coordinate point on the constellation diagram, and the complex modulation signal generation module uses the original file to be modulated data w14 as the mapping address, from the constellation diagram data storage module The position data of each coordinate point on the coordinate system is taken out from each storage unit in , and the complex modulation signals a2 and b2 of the original file are generated.

对于用户编辑的星座图,坐标点的顺序,其实就是映射地址;而坐标点的具体位置就是星座图数据w3。可见,通过上面的方法将映射地址与星座图数据w3之间建立了一一对应的映射关系。For the constellation diagram edited by the user, the order of the coordinate points is actually the mapping address; and the specific position of the coordinate point is the constellation diagram data w3. It can be seen that, through the above method, a one-to-one mapping relationship is established between the mapping address and the constellation data w3.

星座图数据存储模块的每个存储单元存储2个P比特位宽的坐标点坐标数据(P为数模转换器的位宽),按照映射地址读取的坐标数据的高P比特、低P比特分别作为自定义数据文件复数调制信号a2和b2。Each storage unit of the constellation diagram data storage module stores 2 coordinate point coordinate data of P bit width (P is the bit width of the digital-to-analog converter), and the high P bit and low P bit of the coordinate data read according to the mapping address They are the complex modulation signals a2 and b2 respectively as custom data files.

再参考图5,是16QAM的同心圆星座图,同样是16个坐标点,但用户定义星座图数据w3不同,也就是各坐标点的坐标位置不同,所以按照上面的方法生成的自定义数据文件调制数据a2和b2也是不同的。Referring to Figure 5 again, it is a 16QAM concentric circle constellation diagram, which also has 16 coordinate points, but the user-defined constellation diagram data w3 is different, that is, the coordinate positions of each coordinate point are different, so the custom data file generated according to the above method Modulation data a2 and b2 are also different.

由此可见,采用本发明的星座图数据映射方法,用户可以根据需要自定义星座图数据,生成多种自定义数据文件复数调制信号,从而产生多种正交幅度调制信号,满足多种测量需求。It can be seen that, using the constellation diagram data mapping method of the present invention, the user can customize the constellation diagram data according to the needs, and generate a variety of custom data files complex modulation signals, thereby generating a variety of quadrature amplitude modulation signals to meet various measurement requirements .

下面结合附图6,是本实施例中的自定义数据文件正交幅度调制方法的流程图,其包括以下步骤:Below in conjunction with accompanying drawing 6, be the flow chart of the self-defined data file quadrature amplitude modulation method in the present embodiment, it comprises the following steps:

步骤601:根据用户输入设置,生成正交幅度调制方式w1、正交幅度调制源、基带速率值w2、星座图数据w3、自定义数据文件w10和载波频率w4;Step 601: Generate quadrature amplitude modulation mode w1, quadrature amplitude modulation source, baseband rate value w2, constellation data w3, custom data file w10, and carrier frequency w4 according to user input settings;

步骤602:根据基带速率值w2和正交幅度调制方式w1,生成原始文件基带时钟w11和原始文件调制时钟w12;Step 602: Generate the original file baseband clock w11 and the original file modulation clock w12 according to the baseband rate value w2 and the quadrature amplitude modulation method w1;

步骤603:根据原始文件基带时钟w11和自定义数据文件w10,生成原始文件基带数据w13;Step 603: Generate the original file baseband data w13 according to the original file baseband clock w11 and the custom data file w10;

步骤604:根据正交幅度调制方式w1和原始文件调制时钟w12,对原始文件基带数据w13进行位宽转换,生成原始文件待调数据w14;Step 604: According to the quadrature amplitude modulation mode w1 and the original file modulation clock w12, perform bit width conversion on the original file baseband data w13 to generate the original file to-be-modulated data w14;

步骤605:根据原始文件待调数据w14和星座图数据w3,生成自定义数据文件复数调制信号a2和b2;Step 605: Generate complex modulated signals a2 and b2 of custom data files according to the original file to-be-modulated data w14 and constellation diagram data w3;

步骤606:根据自定义数据文件调制信号a2、b2和载波频率w4,生成自定义数据文件已调信号。Step 606: Generate a modulated signal of a custom data file according to the modulated signals a2 and b2 of the custom data file and the carrier frequency w4.

自定义数据文件正交幅度调制方法的具体实现方法可参见测量装置2生成自定义数据文件已调信号的方法,此处不再赘述。For the specific implementation method of the quadrature amplitude modulation method of the user-defined data file, please refer to the method for generating the modulated signal of the user-defined data file by the measurement device 2 , which will not be repeated here.

作为本实施例的另外一种举例说明,正交幅度控制单元202还包括基带速率控制模块301、伪随机序列生成模块302、串并转换模块303和映射模块304。As another illustration of this embodiment, the quadrature amplitude control unit 202 further includes a baseband rate control module 301 , a pseudo-random sequence generation module 302 , a serial-to-parallel conversion module 303 and a mapping module 304 .

前面提到,系统控制单元201根据用户输入设置,生成各种参数给正交幅度控制单元202,当用户设置正交幅度调制源为伪随机序列时,需要设置正交幅度调制方式w1、基带速率值w2、星座图数据w3和序列阶数w5,系统控制单元201将根据用户设置生成的这些参数发送给正交幅度控制单元202内的各个模块,用于生成伪随机序列复数调制信号a1和b1。As mentioned above, the system control unit 201 generates various parameters for the quadrature amplitude control unit 202 according to user input settings. When the user sets the quadrature amplitude modulation source as a pseudo-random sequence, it is necessary to set the quadrature amplitude modulation mode w1, the baseband rate Value w2, constellation diagram data w3 and sequence order w5, the system control unit 201 sends these parameters generated according to user settings to each module in the quadrature amplitude control unit 202 for generating pseudo-random sequence complex modulation signals a1 and b1 .

当正交幅度调制源为伪随机序列时,基带速率控制模块301用于根据正交幅度调制方式w1和基带速率值w2,生成伪随机序列基带时钟w6和伪随机序列调制时钟w7。When the quadrature amplitude modulation source is a pseudo-random sequence, the baseband rate control module 301 is configured to generate a pseudo-random sequence baseband clock w6 and a pseudo-random sequence modulation clock w7 according to the quadrature amplitude modulation mode w1 and the baseband rate value w2.

在本实施例中,基带速率控制模块301根据基带速率值w2生成伪随机序列基带时钟w6,基带速率控制模块301生成的伪随机序列基带时钟w6的频率值等于基带速率值w2;基带速率控制模块301还根据正交幅度调制方式w1和基带速率值w2,生成伪随机序列调制时钟w7,假设正交幅度调制方式w1用MQAM表示,M=2N,与正交幅度调制方式对应的星座图上坐标点的数目是2N,所以基带速率控制模块301生成的伪随机序列调制时钟w7的频率值等于伪随机序列基带时钟w6的1/N,所以伪随机序列调制时钟w7的频率值等于基带速率值w2的1/N。In this embodiment, the baseband rate control module 301 generates a pseudo-random sequence baseband clock w6 according to the baseband rate value w2, and the frequency value of the pseudo-random sequence baseband clock w6 generated by the baseband rate control module 301 is equal to the baseband rate value w2; the baseband rate control module 301 also generates a pseudo-random sequence modulation clock w7 according to the quadrature amplitude modulation mode w1 and the baseband rate value w2, assuming that the quadrature amplitude modulation mode w1 is represented by MQAM, M=2N , on the constellation diagram corresponding to the quadrature amplitude modulation mode The number of coordinate points is 2N , so the frequency value of the pseudo-random sequence modulation clock w7 generated by the baseband rate control module 301 is equal to 1/N of the pseudo-random sequence baseband clock w6, so the frequency value of the pseudo-random sequence modulation clock w7 is equal to the baseband rate 1/N of the value w2.

伪随机序列生成模块302根据伪随机序列基带时钟w6和序列阶数w5,生成伪随机序列串行数据w8。The pseudo-random sequence generation module 302 generates pseudo-random sequence serial data w8 according to the pseudo-random sequence baseband clock w6 and sequence order w5.

参考图7,是伪随机序列生成模块302的结构示意图。在本实施例中,伪随机序列生成模块302由最大长度线性反馈移位寄存器构成,是由w5个寄存器构成w5阶移位寄存器,w5是伪随机序列的序列阶数,在伪随机序列基带时钟w6的控制下,各级寄存器的输出分别为x0、x1…xw5-2、xw5-1,反馈单元401将公式1的结果反馈给第1级寄存器。其中,Ci称为反馈系数,其值为0或1,反馈系数不同,xw5-1就产生不同序列顺序的伪随机序列串行数据w8。Referring to FIG. 7 , it is a schematic structural diagram of the pseudo-random sequence generation module 302 . In this embodiment, the pseudo-random sequence generation module 302 is composed of a maximum length linear feedback shift register, and is composed of w5 registers to form a w5-order shift register, where w5 is the sequence order of the pseudo-random sequence, and the pseudo-random sequence baseband clock Under the control ofw6 , theoutputs of registers at all levels are x0 , x1 . Among them, Ci is called the feedback coefficient, and its value is 0 or 1. If the feedback coefficient is different, xw5-1 will generate pseudo-random sequence serial data w8 of different sequence order.

f(x0,x1...xN-2,xN-1)=Σi=0w5-1Ci*xi公式1f ( x 0 , x 1 . . . x N - 2 , x N - 1 ) = Σ i = 0 w 5 - 1 C i * x i Formula 1

串并转换模块303根据正交幅度调制方式w1和伪随机序列调制时钟w7,对伪随机序列串行数据w8进行串并转换,生成伪随机序列待调数据w9。The serial-to-parallel conversion module 303 performs serial-to-parallel conversion on the pseudo-random sequence serial data w8 according to the quadrature amplitude modulation mode w1 and the pseudo-random sequence modulation clock w7 to generate the pseudo-random sequence to-be-modulated data w9.

在本实施例中,串并转换模块303按照正交幅度调制方式w1和伪随机序列调制时钟w7对伪随机序列串行数据w8进行串并转换,将1比特的伪随机序列串行数据转换为N比特位宽的并行数据-伪随机序列待调数据w9,例如,w1为8QAM,那么M=2N,8=23,所以N=3,那么串并转换模块303就根据伪随机序列调制时钟w7将1比特的伪随机序列串行数据转换成3比特位宽的伪随机序列待调数据w9。可见,伪随机序列串行数据w8的速率由伪随机序列基带时钟w6的频率得到,伪随机序列待调数据w9的速率由伪随机序列调制时钟w7的频率得到,前面提到,伪随机序列调制时钟w7和伪随机序列基带时钟w6的频率值的比值为1:N,因此可以实现1比特的伪随机序列串行数据w8与N比特位宽的伪随机序列待调数据w9之间的数据位宽转换。In this embodiment, the serial-to-parallel conversion module 303 performs serial-to-parallel conversion on the pseudo-random sequence serial data w8 according to the quadrature amplitude modulation mode w1 and the pseudo-random sequence modulation clock w7, and converts the 1-bit pseudo-random sequence serial data into N-bit wide parallel data-pseudo-random sequence data w9 to be modulated, for example, w1 is 8QAM, then M=2N , 8=23 , so N=3, then the serial-to-parallel conversion module 303 modulates according to the pseudo-random sequence The clock w7 converts the 1-bit pseudo-random sequence serial data into 3-bit pseudo-random sequence to-be-modulated data w9. It can be seen that the rate of the pseudo-random sequence serial data w8 is obtained by the frequency of the pseudo-random sequence baseband clock w6, and the rate of the pseudo-random sequence to-be-modulated data w9 is obtained by the frequency of the pseudo-random sequence modulation clock w7. As mentioned earlier, the pseudo-random sequence modulation The ratio of the frequency value of the clock w7 to the pseudo-random sequence baseband clock w6 is 1:N, so the data bits between the 1-bit pseudo-random sequence serial data w8 and the N-bit wide pseudo-random sequence to-be-modulated data w9 can be realized wide conversion.

映射模块304根据伪随机序列待调数据w9和星座图数据w3,生成伪随机序列复数调制信号a1和b1。The mapping module 304 generates pseudo-random sequence complex modulated signals a1 and b1 according to the pseudo-random sequence to-be-modulated data w9 and the constellation diagram data w3.

在本实施例中,映射模块304包括地址生成模块、星座图数据存储模块和复数调制信号生成模块。当正交幅度调制源是伪随机序列时,地址生成模块将伪随机序列待调数据w9作为映射地址;星座图数据存储模块将用户输入的星座图数据w3进行存储,复数调制信号生成模块根据映射地址读取星座存储模块中的星座图数据w3,并根据读取的数据生成伪随机序列复数调制信号a1和b1。In this embodiment, the mapping module 304 includes an address generation module, a constellation diagram data storage module and a complex modulation signal generation module. When the quadrature amplitude modulation source is a pseudo-random sequence, the address generation module uses the pseudo-random sequence data w9 as the mapping address; the constellation data storage module stores the constellation data w3 input by the user, and the complex modulation signal generation module according to the mapping The address reads the constellation data w3 in the constellation storage module, and generates pseudo-random sequence complex modulation signals a1 and b1 according to the read data.

可见,本发明通过将伪随机序列进行1:N的串并转换,使得在进行数据映射处理的时候,不再受N为奇数的限制,既可以实现N为奇数也能实现N为偶数的调制方式,应用范围更广,更加灵活。It can be seen that the present invention performs 1:N serial-to-parallel conversion of the pseudo-random sequence, so that when performing data mapping processing, it is no longer restricted by N being an odd number, and can realize modulation where N is an odd number or an even number way, a wider range of applications and more flexibility.

并且在本实施例中,用户输入的星座图数据w3可以是标准的,也可以是用户自己定义的。下面举例说明本发明可以实现自定义星座图数据,满足用户的不同需求。And in this embodiment, the constellation data w3 input by the user may be standard or user-defined. The following examples illustrate that the present invention can realize custom constellation data to meet different needs of users.

参考图4,是16QAM的矩形星座图。16QAM的矩形星座图有16个坐标点,每个坐标点的数据分别存储在星座图数据存储模块中的一个存储单元中,存储单元的地址是0000到1111。用户在编辑星座图数据时,可以自定义每个坐标点在星座图上的坐标位置(x,y),复数调制信号生成模块用伪随机序列待调数据w9作为映射地址,从星座图数据存储模块中的每个存储单元中取出每个坐标点在坐标系上的位置数据,生成伪随机序列复数调制信号a1和b1。Referring to FIG. 4, it is a rectangular constellation diagram of 16QAM. The 16QAM rectangular constellation diagram has 16 coordinate points, and the data of each coordinate point is stored in a storage unit in the constellation diagram data storage module, and the address of the storage unit is 0000 to 1111. When editing the constellation diagram data, the user can customize the coordinate position (x, y) of each coordinate point on the constellation diagram. The complex modulation signal generation module uses the pseudo-random sequence data w9 to be modulated as the mapping address, and stores it from the constellation diagram data. Each storage unit in the module takes out the position data of each coordinate point on the coordinate system to generate pseudo-random sequence complex modulation signals a1 and b1.

对于用户编辑的星座图,坐标点的顺序,其实就是映射地址;而坐标点的具体位置就是星座图数据w3。可见,通过上面的方法将映射地址与星座图数据w3之间建立了一一对应的映射关系。For the constellation diagram edited by the user, the order of the coordinate points is actually the mapping address; and the specific position of the coordinate point is the constellation diagram data w3. It can be seen that, through the above method, a one-to-one mapping relationship is established between the mapping address and the constellation data w3.

星座图数据存储模块的每个存储单元存储2个P比特位宽的坐标点坐标数据(P为数模转换器的位宽),按照映射地址读取的坐标数据的高P比特和低P比特分别作为伪随机序列复数调制信号a1和b1。Each storage unit of the constellation diagram data storage module stores 2 coordinate point coordinate data of P bit width (P is the bit width of the digital-to-analog converter), and the high P bit and low P bit of the coordinate data read according to the mapping address Respectively as pseudo-random sequence complex modulation signals a1 and b1.

再参考图5,是16QAM的同心圆星座图,同样是16个坐标点,但用户定义星座图数据w3不同,也就是各坐标点的坐标位置不同,所以按照上面的方法生成的伪随机序列调制数据a1和b1也是不同的。Referring to Figure 5 again, it is a 16QAM concentric circle constellation diagram, which also has 16 coordinate points, but the user-defined constellation diagram data w3 is different, that is, the coordinate positions of each coordinate point are different, so the pseudo-random sequence modulation generated according to the above method Data a1 and b1 are also different.

由此可见,采用本发明的星座图数据映射方法,用户可以根据需要自定义星座图数据,生成多种伪随机序列复数调制信号,从而产生多种正交幅度调制信号,满足多种测量需求。It can be seen that, using the constellation data mapping method of the present invention, the user can customize the constellation data according to needs, generate multiple pseudo-random sequence complex modulation signals, thereby generate multiple quadrature amplitude modulation signals, and meet various measurement requirements.

下面结合附图8,是本实施例中的伪随机序列正交幅度调制方法的流程图,其包括以下步骤:Below in conjunction with accompanying drawing 8, it is the flowchart of the pseudo-random sequence quadrature amplitude modulation method in the present embodiment, and it comprises the following steps:

步骤801:根据用户输入设置,生成正交幅度调制方式w1、正交幅度调制源、基带速率值w2、星座图数据w3、序列阶数w5和载波频率w4;Step 801: Generate quadrature amplitude modulation mode w1, quadrature amplitude modulation source, baseband rate value w2, constellation data w3, sequence order w5, and carrier frequency w4 according to user input settings;

步骤802:根据基带速率值w2和正交幅度调制方式w1,生成伪随机序列基带时钟w6和伪随机序列调制时钟w7;Step 802: Generate a pseudo-random sequence baseband clock w6 and a pseudo-random sequence modulation clock w7 according to the baseband rate value w2 and the quadrature amplitude modulation mode w1;

步骤803:根据伪随机序列基带时钟w6和序列阶数w5,生成伪随机序列串行数据w8;Step 803: Generate pseudo-random sequence serial data w8 according to the pseudo-random sequence baseband clock w6 and sequence order w5;

步骤804:根据正交幅度调制方式w1和伪随机序列调制时钟w7,对伪随机序列串行数据w8进行串并转换,生成伪随机序列待调数据w9;Step 804: According to the quadrature amplitude modulation mode w1 and the pseudo-random sequence modulation clock w7, perform serial-to-parallel conversion on the pseudo-random sequence serial data w8 to generate the pseudo-random sequence to-be-modulated data w9;

步骤805:根据伪随机序列待调数据w9和星座图数据w3,生成伪随机序列复数调制信号a1和b1;Step 805: Generate pseudo-random sequence complex modulation signals a1 and b1 according to the pseudo-random sequence to-be-modulated data w9 and constellation data w3;

步骤806:根据伪随机序列复数调制信号a1、b1和载波频率w4,生成伪随机序列已调信号。Step 806: Generate a pseudo-random sequence modulated signal according to the pseudo-random sequence complex modulation signals a1, b1 and carrier frequency w4.

具体实现方法可参见测量装置2生成伪随机序列已调信号的方法,此处不再赘述。For a specific implementation method, please refer to the method for generating a pseudo-random sequence modulated signal by the measurement device 2 , which will not be repeated here.

在本实施例中,正交幅度控制单元202由FPGA器件构成。In this embodiment, the quadrature amplitude control unit 202 is composed of an FPGA device.

本发明所述的可以生成自定义数据文件正交幅度调制信号的测量装置和正交幅度调制方法,通过对原始文件进行位宽转换,并改进星座图的映射方法,使得修改自定义数据文件时,无需系统控制单元做映射处理,节省了软件处理资源,加快了响应时间;存储原始文件的存储器的容量就是自定义数据文件的长度,与现有技术要写入映射后的2路复数调制信号的调制文件存储器相比,不需要额外的存储器容量。而且也可以自定义星座图数据。The measurement device and quadrature amplitude modulation method for generating a custom data file quadrature amplitude modulation signal according to the present invention, by performing bit width conversion on the original file, and improving the mapping method of the constellation diagram, when modifying the custom data file , no need for system control unit to do mapping processing, which saves software processing resources and speeds up the response time; the capacity of the memory storing the original file is the length of the custom data file, which is different from the existing technology to write the mapped 2-way complex modulation signal No additional memory capacity is required compared to the modulation file memory of the And you can also customize the constellation diagram data.

另外,在伪随机序列作为调制源时,本发明所述的测量装置和正交幅度调制方法,通过对伪随机序列进行串并转换,并改进星座图的映射方法,使得在伪随机序列为调制源时,可以支持所有的调制方式,并且还可以进行自定义星座图,应用范围更广,更加灵活。In addition, when the pseudo-random sequence is used as the modulation source, the measurement device and the quadrature amplitude modulation method described in the present invention perform serial-to-parallel conversion on the pseudo-random sequence and improve the mapping method of the constellation map, so that the pseudo-random sequence is modulated When it comes to source, it can support all modulation methods, and can also customize the constellation diagram, which has a wider application range and is more flexible.

并且,用户修改调制方式或者星座图时,本发明只需重新配置调制方式,将新的星座图坐标数据写入映射存储器,因为星座图数据的最大长度仅是512,所以写入时间比较短,也不用耗费过多软件处理资源。Moreover, when the user modifies the modulation mode or the constellation diagram, the present invention only needs to reconfigure the modulation mode and write the new constellation diagram coordinate data into the mapping memory, because the maximum length of the constellation diagram data is only 512, so the writing time is relatively short. There is no need to consume too much software processing resources.

Claims (10)

CN201410620781.4A2014-11-062014-11-06 Measuring device capable of generating custom data files for quadrature amplitude modulation signals and its modulation methodActiveCN105634851B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201410620781.4ACN105634851B (en)2014-11-062014-11-06 Measuring device capable of generating custom data files for quadrature amplitude modulation signals and its modulation method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201410620781.4ACN105634851B (en)2014-11-062014-11-06 Measuring device capable of generating custom data files for quadrature amplitude modulation signals and its modulation method

Publications (2)

Publication NumberPublication Date
CN105634851Atrue CN105634851A (en)2016-06-01
CN105634851B CN105634851B (en)2019-12-31

Family

ID=56049384

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201410620781.4AActiveCN105634851B (en)2014-11-062014-11-06 Measuring device capable of generating custom data files for quadrature amplitude modulation signals and its modulation method

Country Status (1)

CountryLink
CN (1)CN105634851B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN106059985A (en)*2016-07-292016-10-26武汉芯泰科技有限公司Demodulating device and demodulating method based on vector
CN106101051A (en)*2016-07-292016-11-09武汉芯泰科技有限公司A kind of modulating device based on vector and modulator approach
WO2018018578A1 (en)*2016-07-292018-02-01武汉芯泰科技有限公司Vector-based modulation apparatus and modulation method
CN112751379A (en)*2020-12-282021-05-04Oppo广东移动通信有限公司In-band communication method and system, terminal, charging device and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103179066A (en)*2011-12-212013-06-26北京普源精电科技有限公司Multi-system phase shifting keying (MPSK) modulation method, MPSK modulation device and function signal generator
CN103179079A (en)*2011-12-212013-06-26北京普源精电科技有限公司 Method, device and digital signal generator for generating quadrature amplitude modulation signal
US8630362B1 (en)*2011-05-022014-01-14Urbain A. von der EmbseQLM co-state MAP trellis
US20140269591A1 (en)*2011-09-232014-09-18Esmael Hejazi DinanMulti-Cell Signals in OFDM Wireless Networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8630362B1 (en)*2011-05-022014-01-14Urbain A. von der EmbseQLM co-state MAP trellis
US20140269591A1 (en)*2011-09-232014-09-18Esmael Hejazi DinanMulti-Cell Signals in OFDM Wireless Networks
CN103179066A (en)*2011-12-212013-06-26北京普源精电科技有限公司Multi-system phase shifting keying (MPSK) modulation method, MPSK modulation device and function signal generator
CN103179079A (en)*2011-12-212013-06-26北京普源精电科技有限公司 Method, device and digital signal generator for generating quadrature amplitude modulation signal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王昭诚等: "低复杂度QAM 解映射模块的实现", 《清华大学学报(自然科学版)》*

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN106059985A (en)*2016-07-292016-10-26武汉芯泰科技有限公司Demodulating device and demodulating method based on vector
CN106101051A (en)*2016-07-292016-11-09武汉芯泰科技有限公司A kind of modulating device based on vector and modulator approach
WO2018018578A1 (en)*2016-07-292018-02-01武汉芯泰科技有限公司Vector-based modulation apparatus and modulation method
CN112751379A (en)*2020-12-282021-05-04Oppo广东移动通信有限公司In-band communication method and system, terminal, charging device and storage medium

Also Published As

Publication numberPublication date
CN105634851B (en)2019-12-31

Similar Documents

PublicationPublication DateTitle
CN105635027B (en) Measuring device capable of generating pseudo-random sequence quadrature amplitude modulation signal and modulation method thereof
CN103179066B (en)Multiple phase-shift keying MPSK modulator approaches, device and function signal generator
CN102413094B (en)Method for constructing multimode quadrature amplitude modulation (QAM) uniform constellation diagram label and modulator
CN105634851B (en) Measuring device capable of generating custom data files for quadrature amplitude modulation signals and its modulation method
TWI502899B (en) Radio frequency transmitter, integrated circuit device, wireless communication unit and method
CN110418220B (en)Generalized frequency division multiplexing system, and method and device for generating optical fiber signals
US20140035693A1 (en)Method and apparatus for implementing high-order modulation schemes using low-order modulators
CN104283598B (en)Antenna modulation method and transmitter
CN103179079B (en)Production method, device and the digital signal generator of quadrature amplitude modulation signal
CN103873160B (en)A kind of method and device for the phase hit for improving digital phase modulation
CN104506471B (en)Modulating device occurs for multi-standard digital baseband
CN103179063B (en)A kind of shift keying modulation device and method
TWI482446B (en)Method for data modulation and transmitter using the same
US8503571B2 (en)Dual purpose modulator
CN108881099B (en) A system and method for generating a communication signal
CN101867437B (en)Base band mapping method, mapper and transmitter of communication system
CN102664861A (en)Method for improving ultralow-power-consumption wireless communication transmission spectral efficiency
KR20230027196A (en) Data modulation method, device, facility and storage medium
CN107425919B (en) A QAM-based modulation and demodulation method and device
CN204272168U (en) Multi-standard digital baseband generation modulation device
CN1326408C (en) A device for modulating wireless communication signals
CN202818363U (en)Multi-mode QAM unified constellation diagram label modulator
CN202696557U (en)Novel digital multiple continuous phase frequency shift keying (MCPFSK) signal generator
CN115733502B (en) A reconfigurable communication transmitter and method
Jamuna et al.Dynamic reconfigurable modulator for communication systems

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant
CP01Change in the name or title of a patent holder

Address after:Suzhou City, Jiangsu province 215163 Suzhou New District kolding Road No. 8

Patentee after:Puyuan Jingdian Technology Co., Ltd

Address before:Suzhou City, Jiangsu province 215163 Suzhou New District kolding Road No. 8

Patentee before:SUZHOU RIGOL PRECISION ELECTRIC TECHNOLOGIES Co.,Ltd.

CP01Change in the name or title of a patent holder

[8]ページ先頭

©2009-2025 Movatter.jp