技术领域technical field
本发明一般涉及载波聚合技术领域。更具体地,本发明涉及在载波聚合情景中的辅小区激活。The present invention generally relates to the technical field of carrier aggregation. More specifically, the present invention relates to secondary cell activation in carrier aggregation scenarios.
背景技术Background technique
贯穿本说明书,将使用基于通用移动电信标准,长期演进(UMTS-LTE,还被称为演进的UMTS地面无线电接入网络——E-UTRAN——并且由第三代合作伙伴项目——3GPP倡导)的记法和示例。然而,应当注意到,这并不是意味着限制性。相反,实施例和应用情景可以关于其它已知或者将来的通信标准而等效地适用。DL表示下行链路而UL表示上行链路。Throughout this specification, a terrestrial radio access network based on Universal Mobile Telecommunications Standard, Long Term Evolution (UMTS-LTE, also known as Evolved UMTS Terrestrial Radio Access Network - E-UTRAN - and promoted by the 3rd Generation Partnership Project - 3GPP) will be used. ) notation and examples. However, it should be noted that this is not meant to be restrictive. Rather, the embodiments and application scenarios are equally applicable with respect to other known or future communication standards. DL means downlink and UL means uplink.
载波聚合carrier aggregation
载波聚合在E-UTRAN标准的版本10中引入,以用于E-UTRAN能够满足4G的1000Mbit/s要求。载波聚合的另一个目的是允许具有小的(例如小于20MHz)以及离散的频谱分配的运营商通过将离散的分配聚合到例如10MHz、20MHz或者更多来提供好的用户体验。Carrier aggregation was introduced in Release 10 of the E-UTRAN standard for E-UTRAN to be able to meet the 1000Mbit/s requirement of 4G. Another purpose of carrier aggregation is to allow operators with small (eg less than 20MHz) and discrete spectrum allocations to provide a good user experience by aggregating the discrete allocations to eg 10MHz, 20MHz or more.
在典型的载波聚合示例中,用户设备(UE)被连接到服务小区,其被称为主小区(PCell),该主小区使用称为主分量载波(PCC)的载波。移动性在主分量载波上被满足。如果UE使用要求高吞吐量的服务,网络可以激活一个或者多个附加服务小区,每一个被称为辅小区(SCell),使用称为辅分量载波(SCC)的相应的载波。辅小区激活可以在SCell已经被UE检测到之前或者之后发生。例如,在SCell检测之前的SCell激活可以是基于网络关于UE位置(定位)的知识。例如,网络可以知道UE位于潜在的SCell的覆盖区域中。用于SCell激活的此类方法的示例在WO/2012/154112中公开。In a typical carrier aggregation example, a user equipment (UE) is connected to a serving cell, called a primary cell (PCell), which uses a carrier called a primary component carrier (PCC). Mobility is satisfied on the primary component carrier. If the UE uses a service requiring high throughput, the network may activate one or more additional serving cells, each called a secondary cell (SCell), using a corresponding carrier called a secondary component carrier (SCC). Secondary cell activation may occur before or after the SCell has been detected by the UE. For example, SCell activation prior to SCell detection may be based on the network's knowledge of the UE location (positioning). For example, the network may know that the UE is located in the coverage area of a potential SCell. An example of such a method for SCell activation is disclosed in WO/2012/154112.
考虑用于版本10的两种类型的载波聚合情形:Consider two types of carrier aggregation scenarios for Release 10:
-带内连续聚合。- In-band continuous polymerization.
-带间聚合。- Interband aggregation.
在版本11,考虑一个附加类型:In version 11, consider an additional type:
-带内非连续聚合。- In-band discontinuous aggregation.
在带内连续聚合中,PCell和SCell是频率上连续的。标准要求(对于带内连续聚合)在PCell和SCell之间的时间(或者等效地,定时)差最多±130ns(3GPP TS 36.104修订版11.4.0,子目录6.5.3)。进一步假设在标准中,对于此特定情形(带内连续聚合),能够使用一个快速傅里叶变换(FFT)来同时解调从PCell和SCell中接收的信号。因此,在实践中,其通常要求PCell和SCell协同定位,即,从相同的(地理上)站点传输,因为否则在PCell和SCell之间的传播延时的差使得其将不可能使用一个FFT。In in-band continuous aggregation, PCell and SCell are continuous in frequency. The standard requires (for in-band continuous aggregation) the time (or equivalently, timing) difference between PCell and SCell at most ±130 ns (3GPP TS 36.104 Rev. 11.4.0, sub-category 6.5.3). It is further assumed that in the standard, for this particular case (in-band continuous aggregation), one Fast Fourier Transform (FFT) can be used to demodulate the signals received from PCell and SCell simultaneously. Therefore, in practice, it usually requires PCell and SCell to be co-located, ie, transmitted from the same (geographical) site, since otherwise the difference in propagation delay between PCell and SCell would make it impossible to use one FFT.
对于带内非连续聚合,定时差允许最大±260ns,并且不作出关于小区协同定位或者关于其应当可能使用一个FFT的假设。For in-band discontinuous aggregation, the timing difference is allowed up to ±260 ns, and no assumption is made about cell co-location or that it should be possible to use an FFT.
对于带间载波聚合,在PCell和SCell之间的定时差允许最大±1.3μs。对于此情形,其还假设小区可以不协同定位并且UE应当能够应付在PCell和SCell之间的最大±30μs的传播延时差,导致了±31.3μs的最大延时扩展(3GPP TS 36.300修订版11.5附件J)。For inter-band carrier aggregation, a maximum of ±1.3 μs is allowed for the timing difference between PCell and SCell. For this case it is also assumed that the cells may not be co-located and the UE should be able to cope with a maximum propagation delay difference of ±30 μs between PCell and SCell, resulting in a maximum delay spread of ±31.3 μs (3GPP TS 36.300 Rev. 11.5 Annex J).
预见的布情形的示例在附图1中示出(也参见3GPP TS 36.300修订版11.5.0附件J)。实线示出了载波频率F1上的PCell而虚线示出了载波频率F2上的SCell。An example of a foreseen deployment scenario is shown in Figure 1 (see also 3GPP TS 36.300 Revision 11.5.0 Annex J). The solid line shows the PCell on carrier frequency Fl and the dashed line shows the SCell on carrier frequency F2.
附图1的部分(a)示出了协同定位的重叠的带内的情形,具有全部重叠PCell和SCell的重叠范围的情形。示出了三个基站地点101a、102a、103a,每一个提供了三个PCsell(对于地点101a示出为121::1a、121:2a、121:3a)以及三个SCell(对于地点101a示出为131:1a、131:2a、131:3a)。由于PCell和SCell的不同的载波频率是在相同的频带内的,在PCell和SCell中相应经受的路径损耗是类似的并且,因此,PCell和SCell的覆盖区域是类似的。Part (a) of FIG. 1 shows the co-located overlapping intra-band situation, with the overlapping extents of all overlapping PCells and SCells. Three base station sites 101a, 102a, 103a are shown, each providing three PCsell (shown as 121::1a, 121:2a, 121:3a for site 101a) and three SCells (shown for site 101a) as 131:1a, 131:2a, 131:3a). Since the different carrier frequencies of PCell and SCell are in the same frequency band, the path losses experienced in PCell and SCell are similar and, therefore, the coverage areas of PCell and SCell are similar.
附图1的部分(b)示出了协同定位的重叠的带间的情形。示出了三个基站地点101b、102b、103b,每一个提供了三个PCsell(对于地点101b示出为121:1b、121:2b、121:3b)以及三个SCell(对于地点101b示出为131:1b、131:2b、131:3b)。由于PCell和SCell的不同的载波频率不在相同的频带内的,在PCell和SCell中经受的相应的路径损耗之间的差别大并且,因此,PCell和SCell的覆盖区域是不同的。Part (b) of Figure 1 shows the situation between co-located overlapping bands. Three base station sites 101b, 102b, 103b are shown, each providing three PCsell (shown as 121:1b, 121:2b, 121:3b for site 101b) and three SCells (shown for site 101b as 131:1b, 131:2b, 131:3b). Since the different carrier frequencies of PCell and SCell are not in the same frequency band, the difference between the corresponding path losses experienced in PCell and SCell is large and, therefore, the coverage areas of PCell and SCell are different.
附图1的部分(c)示出了协同定位的部分重叠的带间的情形。示出了三个基站地点101c、102c、103c,每一个提供了三个PCsell(对于地点101c示出为121:1c、121:2c、121:3c)以及三个SCell(对于地点101c示出为131:1c、131:2c、131:3c)。PCell和SCell的覆盖区域是不同的。Part (c) of Figure 1 shows the situation between co-located partially overlapping bands. Three base station sites 101c, 102c, 103c are shown, each providing three PCsell (shown as 121:1c, 121:2c, 121:3c for site 101c) and three SCells (shown for site 101c as 131:1c, 131:2c, 131:3c). The coverage areas of PCell and SCell are different.
附图1的部分(d)示出了不协同定位的带间的情形。示出了三个基站地点101d、102d、103d,每一个提供了三个PCsell(对于地点101d示出为121:1d、121:2d、121:3d)。此外,具有远程无线电头(例如,111:1d、111:2d),其每一个提供PCell(对于111:1d示出为131:1d,以及对于111:2d示出为131:3d)从而在热点地区提供了改善的吞吐量。PCell和SCell的覆盖区域是不同的。Part (d) of Figure 1 shows the situation between bands that are not co-located. Three base station sites 101d, 102d, 103d are shown, each providing three PCsells (shown as 121:1d, 121:2d, 121:3d for site 101d). In addition, there are remote radio heads (eg, 111:1d, 111:2d), each of which provides a PCell (shown as 131:1d for 111:1d and 131:3d for 111:2d) so that at the hotspot Regions provide improved throughput. The coverage areas of PCell and SCell are different.
附图1的部分(e)示出了协同定位的重叠的带间的具有转发器的情形。类似于部分(b),示出了三个基站地点101e、102e、103e,每一个提供了三个PCsell(对于地点101c示出为121:1c、121:2c、121:3c)以及三个SCell(对于地点101c示出为131:1c、131:2c、131:3c),其中PCell和SCell的覆盖区域不相同。此外,具有转发器(例如111:2d),每一个提供了PCell(对于111:2d示出为141:2d)从而在热点地区提供了改善的吞吐量。Part (e) of Figure 1 shows the situation with transponders between co-located overlapping bands. Similar to part (b), three base station sites 101e, 102e, 103e are shown, each providing three PCsells (shown as 121:1c, 121:2c, 121:3c for site 101c) and three SCells (shown as 131:1c, 131:2c, 131:3c for site 101c), where the coverage areas of PCell and SCell are not the same. Additionally, having repeaters (eg 111:2d) each provides a PCell (shown as 141:2d for 111:2d) providing improved throughput in hotspot areas.
对于PCell和SCell的覆盖范围全部重叠的协同定位的带内的情形(示于图1,部分(a)),基于报告的对于单独PCell的测量,当需要的时候,eNB(增强NodeB)可以配置并且激活SCell。For the co-located in-band case where the coverage of PCell and SCell all overlap (shown in Figure 1, part (a)), the eNB (enhanced NodeB) can configure the eNB (enhanced NodeB) when needed based on the reported measurements for the PCell alone And activate SCell.
更通常地,如果UE已经测量并且报告小区最近(精确的时间帧,即,在标准化工作中的讨论下,最近的定义是当前(2013))作为频率内相邻小区或者作为在配置的辅分量载波(F2)上的小区,则预先知道SCell的定时。对于带间连续载波聚合,即其中PCell和SCell的频谱是连续的(背对背),SCell的定时还被认为是预先知道的,不管是否其已经被最近报告。在任何这些情况下,当UE获得对于SCell的激活指令后,UE可以能够开始从SCell接收而没有首先执行定时的微调。More generally, if the UE has measured and reported the cell most recently (in precise time frame, i.e., under discussion in the standardization work, the most recent definition is current (2013)) as an intra-frequency neighbor cell or as a secondary component in the configuration The cell on the carrier (F2) knows the timing of the SCell in advance. For inter-band contiguous carrier aggregation, ie where the spectrums of the PCell and SCell are contiguous (back-to-back), the timing of the SCell is also considered to be known in advance, whether it has been recently reported or not. In any of these cases, after the UE obtains the activation instruction for the SCell, the UE may be able to start receiving from the SCell without first performing fine-tuning of timing.
如果对应于SCell的小区最经还没有被报告并且其在另一个带上(带内聚合情形)或者带间非相邻,SCell的定时对于UE是不知道的。但是,如上所述,可以知道其相对于PCell应当落入±31.3μs内(几乎是OFDM-正交频分多路复用-符号的一半)。在这种情况下,在UE能够开始从SCell中接收之前,SCell的定时将必须被调整。The timing of the SCell is unknown to the UE if the cell corresponding to the SCell has not been reported yet and it is on another band (intra-band aggregation case) or non-adjacent between bands. However, as mentioned above, it is known that it should fall within ±31.3 μs relative to PCell (almost half of the OFDM-Orthogonal Frequency Division Multiplexing-symbol). In this case, the timing of the SCell will have to be adjusted before the UE can start receiving from the SCell.
已知用于SCell同步的多种技术。例如,WO2013/025547A2公开了一些情形,其中PCell定时可以用作对于SCell的初始时间同步。Various techniques are known for SCell synchronization. For example, WO2013/025547A2 discloses scenarios where PCell timing can be used as the initial time synchronization for the SCell.
小区检测和测量Cell Detection and Measurement
在E-UTRA内的连接模式移动性是通过测量支持的,所述测量被执行并且由UE报告给网络。当决定是否将UE移交给另一个eNB时,网络使用测量报告其它。网络通常也可以使用测量报告用于其它目的,例如网络优化和小区规划。Connected mode mobility within E-UTRA is supported by measurements, which are performed and reported to the network by the UE. When deciding whether to hand over the UE to another eNB, the network uses the measurements to report the other. The network may also typically use the measurement reports for other purposes, such as network optimization and cell planning.
由UE执行的测量通常包括相邻小区的检测(例如小区搜索)以及信号强度估算(例如参考信号接收功率-RSRP-和/或参考信号接收质量-RSRQ)。3GPP TS 36.133修订版11.4.0子目录8中的要求规定UE应当能够检测频率内相邻小区,这些小区像一样微弱(频域信号与干扰噪声比-SINR)并且在给定时间将它们报告给网络。对于载波聚合,PCC和SCC都被认为是频率间载波并且对应的小区被认为是频率间相邻小区,其对应地应当被检测和报告。Measurements performed by the UE typically include detection of neighboring cells (eg cell search) and signal strength estimation (eg Reference Signal Received Power-RSRP- and/or Reference Signal Received Quality-RSRQ). The requirements in 3GPP TS 36.133 Rev. 11.4.0 sub-category 8 specify that the UE shall be able to detect intra-frequency neighbor cells, such as as weak (Signal to Interference and Noise Ratio in Frequency Domain - SINR) and report them to the network at a given time. For carrier aggregation, both PCC and SCC are considered as inter-frequency carriers and the corresponding cells are considered as inter-frequency neighbor cells, which should be detected and reported accordingly.
在E-UTRA中的小区搜索包括获得:频率和符号同步、帧同步、以及物理小区身份。这通过在每一个小区中以5ms基础(每5ms重复)传输的两个信号来促进:主同步信号(P-SSIG或者PSS)和辅同步信号(S-SSIG或者SSS)。在3GPP TS 36.211修订版11.2.0子目录6.11中描述了这些信号,并且在对于LTE FDD(频分复用)无线帧的附图2中示出。中央72个副载波周围的进一步的细节被突出于对于LTE FDD(频分复用)的附图3中和对于LTE TDD(时分复用)的附图4中。附图2、3和4中的图示是示意性的并且因此不是意味着对于各项的彼此尺寸的精确大小和正确性。Cell search in E-UTRA includes obtaining: frequency and symbol synchronization, frame synchronization, and physical cell identity. This is facilitated by two signals transmitted on a 5ms basis (repeated every 5ms) in each cell: a primary synchronization signal (P-SSIG or PSS) and a secondary synchronization signal (S-SSIG or SSS). These signals are described in 3GPP TS 36.211 Rev. 11.2.0 sub-category 6.11 and shown in Figure 2 for LTE FDD (Frequency Division Duplex) radio frames. Further details around the central 72 sub-carriers are highlighted in Figure 3 for LTE FDD (Frequency Division Duplex) and Figure 4 for LTE TDD (Time Division Duplex). The illustrations in Figures 2, 3 and 4 are schematic and therefore do not imply exact size and correctness of the dimensions of the items relative to each other.
附图2示出了LTE FDD无线帧的时间-频率规划的示例。在水平轴中示出时间(子分割为如由150,151,152,153示出的子帧0,1,2,...,9)而在垂直轴上示出频率。黑格示出总是出现的小区专有参考信号(CRS)而白格示出有时出现的小区专有参考信号(CRS)。中间的72个副载波由154示出,并且为了清楚,其一部分在158被增强。在155示出了SSS的传输,在156示出了PSS的传输,而在157示出了物理广播信道(PBCH)的传输。Figure 2 shows an example of a time-frequency plan for an LTE FDD radio frame. Time is shown in the horizontal axis (sub-division into subframes 0, 1, 2, . The black boxes show cell-specific reference signals (CRS) that are always present and the white boxes show cell-specific reference signals (CRS) that are sometimes present. The middle 72 subcarriers are shown at 154, and a portion of which is enhanced at 158 for clarity. The transmission of the SSS is shown at 155, the transmission of the PSS is shown at 156, and the transmission of the Physical Broadcast Channel (PBCH) is shown at 157.
附图3示出了在FDD小区中(与附图2比较)传输的示例同步信号和参考符号。只有中间72个副载波被示出。在水平轴中示出时间(子分割为如由160,161,162,163示出的子帧0,1,2,...,9)而在垂直轴上示出频率(子分割为如由164,165示出的资源块0,...,5)。黑格示出对于下行链路传输的(DLTX0,从基站的天线端口0)总是出现的CRS而白格示出有时出现的对于DLTX0的CRS。如在附图2中的相同位置中示出了SSS和PSS传输(相应在辅同步信道-S-SCH和主同步信道-P-SCH上传输的)。一些子帧(由166和167示出的)可以被用于例如MBSFN(多播广播单频网络)。因此,它们可能不包括小区专有参考符号。Figure 3 shows example synchronization signals and reference symbols transmitted in an FDD cell (compare to Figure 2). Only the middle 72 subcarriers are shown. Time is shown on the horizontal axis (sub-divisions into subframes 0, 1, 2, . Resource blocks 0, . . . , 5) shown by 164, 165). The white boxes show the CRS for DLTX0 that is always present for downlink transmissions (DLTX0, antenna port 0 from the base station) and the white boxes are sometimes present. The SSS and PSS transmissions (transmitted on the Secondary Sync Channel-S-SCH and Primary Sync Channel-P-SCH, respectively) are shown in the same positions as in Figure 2 . Some subframes (shown by 166 and 167) may be used, for example, for MBSFN (Multicast Broadcast Single Frequency Network). Therefore, they may not include cell-specific reference symbols.
附图4示出了在TDD小区中传输的同步信号和参考符号的示例。只有中间的72个副载波被示出。在水平轴中示出时间(子分割为如由170,171,172,173示出的子帧0,1,2,...,9)而在垂直轴上示出频率(子分割为如由174,175示出的资源块0,...,5)。黑格示出对于DLTX0的总是出现的CRS而白格示出对于DLTX0的有时出现的CRS。还示出了SSS和PSS传输(相应在辅同步信道-S-SCH178和主同步信道-P-SCH179上传输的)。可以注意到同步信道的位置稍微不同于FDD的情况。一些子帧(由176和177示出的)被用于例如引导周期(GP)目的、上行链路(UL)或者MBSFN。因此,它们可能不包括小区专有参考符号。Figure 4 shows an example of synchronization signals and reference symbols transmitted in a TDD cell. Only the middle 72 subcarriers are shown. Time is shown on the horizontal axis (sub-division into sub-frames 0, 1, 2, . Resource blocks 0, . . . , 5) shown by 174, 175). The black boxes show the always-occurring CRS for DLTX0 and the white boxes show the sometimes-occurring CRS for DLTX0. Also shown are SSS and PSS transmissions (transmitted on Secondary Sync Channel-S-SCH 178 and Primary Sync Channel-P-SCH 179, respectively). It can be noted that the location of the synchronization channel is slightly different from the case of FDD. Some of the subframes (shown by 176 and 177) are used for eg guided period (GP) purposes, uplink (UL) or MBSFN. Therefore, they may not include cell-specific reference symbols.
如在标准中描述的,P-SSIG存在于三个版本中(一个对于出自三个组中小区身份的每一个),其基于Zadoff-Chu序列,所述序列映射到中间62个资源单元(RE)(根据典型的方法,72个中央RE中的仅62个可以被使用并且5个最接近于边界的RE被设置为零)上。具有总共168个小区组,并且由S-SSIG携带关于小区属于哪一个小区组的信息,其基于m-序列。小区组和P-SSIG版本一起产生物理小区身份,其中具有3×168=504。S-SSIG还携带关于是否在子帧0或者子帧5中传输S-SSIG的特定示例的信息,其被用于获取帧定时(帧同步)。此外,S-SSIG被以特定小区的组中小区身份缩放。因此,具有总数为2×3×168=2×504个版本,对于504个物理小区身份中的每一个都具有两个。类似于P-SSIG,S-SSIG映射到中央的62个RE上。As described in the standard, the P-SSIG exists in three versions (one for each of the cell identities out of the three groups), which are based on Zadoff-Chu sequences that map to the middle 62 resource elements (REs) ) (according to a typical approach, only 62 of the 72 central REs can be used and the 5 REs closest to the boundary are set to zero). There are a total of 168 cell groups, and the information about which cell group a cell belongs to is carried by the S-SSIG, which is based on m-sequences. The cell group and P-SSIG version together generate the physical cell identity with 3x168=504. The S-SSIG also carries information on whether a specific instance of the S-SSIG is transmitted in subframe 0 or subframe 5, which is used to obtain frame timing (frame synchronization). In addition, the S-SSIG is scaled with the cell-in-group identity of a specific cell. Thus, there are a total of 2x3x168 = 2x504 versions, two for each of the 504 physical cell identities. Similar to P-SSIG, S-SSIG is mapped to the central 62 REs.
如本领域中公知的,小区的检测可以基于在至少5ms上的接收的样本(基于三个P-SSIG版本)的匹配的滤波。在匹配的滤波器输出中的相关峰值通常呈现来自一个或者多个小区的同步信号。此步骤称为符号同步。已经建立符号同步并且识别了组中小区的身份后,S-SSIG检测通常执行产生帧定时(帧同步)、物理小区身份(由小区组身份确定)以及循环前缀(CP)配置。Detection of cells may be based on matched filtering of received samples (based on three P-SSIG versions) over at least 5 ms, as is known in the art. Correlation peaks in the matched filter output typically exhibit synchronization signals from one or more cells. This step is called symbol synchronization. After symbol synchronization has been established and the identity of the cells in the group identified, S-SSIG detection is typically performed to generate frame timing (frame synchronization), physical cell identity (determined by cell group identity), and cyclic prefix (CP) configuration.
SCell激活的要求Requirements for SCell Activation
对于SCell激活的最大可接受延时(等待时间)(从接收到激活指令直到有效信道状态信息(CSI)被传输到网络)的典型示例要求可以包括,对于SINR>-3dB,激活应当被完成在Typical example requirements for the maximum acceptable delay (latency) for SCell activation (from receipt of the activation instruction until valid channel state information (CSI) is transmitted to the network) may include that, for SINR > -3dB, activation should be done at
-24ms,如果小区是已知的(通常定义为例如已经在最后一个周期内,其长度等于在5个DRX循环与5个SCell测量循环中的最小的,被报告给网络的RSRP测量),以及- 24ms, if the cell is known (usually defined as e.g. already in the last cycle with a length equal to the smallest of 5 DRX cycles and 5 SCell measurement cycles, the RSRP measurements reported to the network), and
-34ms,如果小区是未知的,通常称为盲激活(通常定义为例如没有在上述周期内被报告的RSRP测量)。-34ms, if the cell is unknown, usually called blind activation (usually defined as eg no RSRP measurement reported in the above period).
根据该标准,在已经接收到SCell激活指令8ms后,UE将开始传输CSI。但是,在与SCell的同步已经完成之前,CSI应当指示溢出(信道质量指示符,CQI=0)。According to this standard, the UE will start transmitting CSI 8ms after having received the SCell activation instruction. However, the CSI should indicate overflow (channel quality indicator, CQI=0) before synchronization with the SCell has been completed.
对于关于单播子帧的可使用数量的最差情况情形的方案,示例性的要求通常应该被满足。对于LTE FDD,最差情况情形是当每5ms具有2个单播子帧时。对于LTE TDD,最差情况情形是当每5ms仅具有一个单播子帧并且一个特别子帧时。For a worst-case scenario with respect to the usable number of unicast subframes, the exemplary requirements should generally be satisfied. For LTE FDD, the worst case is when there are 2 unicast subframes every 5ms. For LTE TDD, the worst case is when there is only one unicast subframe and one ad hoc subframe every 5ms.
如果通常,已知小区检测方法(例如在WO2013/025547A2中公开的方法)已经使用,满足典型的盲SCell激活要求可以是挑战性的。因此,需要方法和布置,其如所要求的能够实现CSI报告。例如,需要方法和布置,其能够满足在载波聚合情形中的SCell激活期间的CSI报告的等待时间要求。Meeting typical blind SCell activation requirements can be challenging if, in general, known cell detection methods, such as the method disclosed in WO2013/025547A2, are used. Therefore, there is a need for methods and arrangements that enable CSI reporting as required. For example, there is a need for methods and arrangements that can meet latency requirements for CSI reporting during SCell activation in carrier aggregation scenarios.
发明内容SUMMARY OF THE INVENTION
应该强调的是当在本说明书中使用时术语“包括”,其用于说明存在特定的特征、整体、步骤,或者组件,但是不排除存在或者附加一个或者多个其它特征、整体、步骤、组件或者它们的群组。It should be emphasized that the term "comprising" when used in this specification is intended to indicate the presence of a particular feature, integer, step, or component, but does not preclude the presence or addition of one or more other features, integers, steps, components or their groups.
一些实施例的目的是消除至少一些上述缺点并且提供方法和布置用于实现在载波聚合情形中与辅小区的时间同步。优选地,提供的方法和布置因而如要求的能够实现CSI报告。It is an aim of some embodiments to obviate at least some of the above disadvantages and to provide methods and arrangements for enabling time synchronization with secondary cells in carrier aggregation scenarios. Preferably, the provided methods and arrangements thus enable CSI reporting as required.
根据第一方面,提供用于实现对于可以在蜂窝通信网络中使用的无线通信装置的与辅小区的时间同步的载波聚合应用方法。如果辅小区的时间参考对于无线通信装置是已知的,该方法包括:According to a first aspect, a carrier aggregation application method for enabling time synchronization with a secondary cell for a wireless communication device usable in a cellular communication network is provided. If the time reference of the secondary cell is known to the wireless communication device, the method includes:
-设置辅小区的初步时间参考为等于载波聚合应用中的主小区的时间参考;- Set the preliminary time reference of the secondary cell to be equal to the time reference of the primary cell in the carrier aggregation application;
-执行辅小区的时间参考的基于同步信号的检测,其基于初步时间参考和在辅小区中传输的一个或者多个同步信号;- performing synchronization signal based detection of the time reference of the secondary cell, which is based on the preliminary time reference and one or more synchronization signals transmitted in the secondary cell;
-执行辅小区的基于初步时间参考的信道状态测量,其基于初步时间参考和在辅小区中传输的一个或者多个参考信号来;- performing preliminary time reference based channel state measurements of the secondary cell based on the preliminary time reference and one or more reference signals transmitted in the secondary cell;
-基于基于同步信号的检测,设置信道质量指示符的值为标称值或者基于基于初步时间参考的信道状态测量的值;以及- setting the value of the channel quality indicator to a nominal value or to a value based on a channel state measurement based on a preliminary time reference, based on the detection of the synchronization signal; and
-传输包括信道质量指示符的信道状态信息报告给蜂窝通信网络。- Transmission of a channel state information report including a channel quality indicator to the cellular communication network.
该标称值可以例如等于零。将信道质量指示符传输给蜂窝通信网络可以例如包括将信道质量指示符传输到主小区。参考信号可以指示信道状态测量参考信号。This nominal value may eg be equal to zero. The transmitting of the channel quality indicator to the cellular communication network may, for example, comprise transmitting the channel quality indicator to the primary cell. The reference signal may indicate a channel state measurement reference signal.
执行辅小区的基于初步时间参考的信道状态测量的步骤的执行可能与执行辅小区的时间参考的基于同步信号的检测的步骤的执行重叠。因此,辅小区的基于初步时间参考的信道状态测量可以基于主小区的时间参考,其通常对辅小区激活缩短平均时间,因为在获得了与辅小区的同步之前可以实现可接受的信道质量指示符值。The execution of the step of performing the preliminary time reference based channel state measurement of the secondary cell may overlap with the execution of the step of performing the synchronization signal based detection of the secondary cell's time reference. Therefore, the preliminary time reference based channel state measurement of the secondary cell may be based on the primary cell time reference, which typically reduces the average time for secondary cell activation since an acceptable channel quality indicator can be achieved before synchronization with the secondary cell is obtained value.
在一些实施例中,基于初步时间参考和在辅小区中传输的一个或者多个同步信号来执行辅小区的时间参考的基于同步信号的检测与基于初步时间参考的和在辅小区中传输的一个或者多个参考信号来执行辅小区的基于初步时间参考的信道状态测量,可以被并行地执行。In some embodiments, one of the synchronization signal based detection of the time reference of the secondary cell and the preliminary time reference based and transmitted in the secondary cell is performed based on the preliminary time reference and one or more synchronization signals transmitted in the secondary cell Or multiple reference signals to perform preliminary time reference-based channel state measurement of the secondary cell may be performed in parallel.
根据一些实施例,设置信道质量指示符的值可以包括如果基于同步信号的检测指示没有检测到辅小区,则将信道质量指示符值设置为标称值。According to some embodiments, setting the value of the channel quality indicator may include setting the channel quality indicator value to a nominal value if the detection based on the synchronization signal indicates that no secondary cell is detected.
根据一些实施例,设置信道质量指示符的值还可以包括,如果基于同步信号的检测指示检测到辅小区,则:确定在初步时间参考与基于同步信号的检测的时间参考之间的基于同步信号时间偏差,并且如果基于同步信号的时间偏差的绝对值大于基于同步信号的时间偏差阈值,则基于基于同步信号的时间偏差调整辅小区的时间参考并且将信道质量指示符值设置为标称值。According to some embodiments, setting the value of the channel quality indicator may further include, if the detection based on the synchronization signal indicates that the secondary cell is detected, then: determining a synchronization signal-based time reference between the preliminary time reference and the time reference based on the detection of the synchronization signal time offset, and if the absolute value of the synchronization signal based time offset is greater than the synchronization signal based time offset threshold, the time reference of the secondary cell is adjusted based on the synchronization signal based time offset and the channel quality indicator value is set to a nominal value.
如果基于同步信号的时间偏差的绝对值小于基于同步信号的时间偏差阈值,该方法可以(在一些实施例中)还包括:基于基于同步信号的时间偏差调整辅小区的时间参考,并且将信道质量指示符值设置为基于基于初始时间参考的信道状态测量的值。If the absolute value of the synchronization signal-based time offset is less than the synchronization signal-based time offset threshold, the method may (in some embodiments) further include: adjusting the time reference of the secondary cell based on the synchronization signal-based time offset, and adjusting the channel quality The indicator value is set to a value based on the channel state measurement based on the initial time reference.
根据一些实施例,该方法还可以包括基于初步时间参考和在辅小区中传输的一个或者多个通用参考信号来执行辅小区的时间参考的基于通用参考信号的检测,并且设置信道质量指示符值为标称值或者基于基于初步时间参考的信道状态测量的值,可以还基于基于通用参考信号的检测。通用参考信号可以指示时间参考检测参考信号并且可以与信道状态测量参考信号相同或者不同。According to some embodiments, the method may further include performing general reference signal based detection of the time reference of the secondary cell based on the preliminary time reference and one or more general reference signals transmitted in the secondary cell, and setting a channel quality indicator value Either a nominal value or a value based on channel state measurements based on a preliminary time reference, and may also be based on a common reference signal based detection. The common reference signal may indicate a time reference detection reference signal and may be the same as or different from the channel state measurement reference signal.
如果基于同步信号的时间偏差的绝对值小于基于同步信号的时间偏差阈值,该方法可以(在一些实施例中)还包括:基于在初步时间参考与基于通用参考信号的检测的时间参考之间的时间偏差来确定通用参考信号,以及如果基于通用参考信号的时间偏差的绝对值大于基于通用参考信号的时间偏差阈值,则基于基于通用参考信号的时间偏差来调整辅小区的时间参考并且将信道质量指示符值设置为标称值。If the absolute value of the synchronization signal-based time offset is less than the synchronization signal-based time offset threshold, the method may (in some embodiments) further include: based on the difference between the preliminary time reference and the detected time reference based on the general reference signal. The time offset is used to determine the general reference signal, and if the absolute value of the general reference signal-based time offset is greater than the general reference signal-based time offset threshold, the time reference of the secondary cell is adjusted based on the general reference signal-based time offset and the channel quality is adjusted. The indicator value is set to the nominal value.
根据一些实施例,如果基于通用参考信号的时间偏差的绝对值小于基于通用参考信号的时间偏差阈值,该方法可以包括基于基于通用参考信号的时间偏差调整辅小区的时间参考并且将信道质量指示符的值设置为基于基于初步时间参考的信道状态测量的值。According to some embodiments, if the absolute value of the universal reference signal-based time offset is less than the universal reference signal-based time offset threshold, the method may include adjusting the time reference of the secondary cell based on the universal reference signal-based time offset and setting the channel quality indicator The value of is set to the value based on the channel state measurement based on the preliminary time reference.
对于包括基于通用参考信号的检测的实施例备选地或者附加地,如果基于同步信号的时间偏差的绝对值小于基于同步信号的时间偏差阈值并且大于基于同步信号的时间偏差接受阈值,该方法可以(在一些实施例中)包括基于在初步时间参考与基于通用参考信号的检测的时间参考之间的时间偏差确定通用参考信号,并且如果基于通用参考信号的时间偏差的绝对值大于基于通用参考信号的时间偏差阈值,则基于基于通用参考信号的时间偏差来调整辅小区的时间参考并且将信道质量指示符的值设置为标称值。如果基于同步信号的时间偏差的绝对值小于基于同步信号的时间偏差阈值并且小于基于同步信号的时间偏差接受阈值,该方法可以(在一些实施例中)包括基于基于同步信号的时间偏差或者基于通用参考信号的时间偏差调整辅小区的时间参考并且将信道质量指示符值设置为基于基于初步时间参考的信道状态测量的值。Alternatively or additionally to embodiments including detection based on a common reference signal, if the absolute value of the synchronization signal based time offset is less than the synchronization signal based time offset threshold and greater than the synchronization signal based time offset acceptance threshold, the method may comprising (in some embodiments) determining the general reference signal based on a time offset between the preliminary time reference and the detected time reference based on the general reference signal, and if the absolute value of the general reference signal based time offset is greater than the general reference signal based time offset If the time offset threshold is , the time reference of the secondary cell is adjusted based on the time offset based on the common reference signal and the value of the channel quality indicator is set to a nominal value. If the absolute value of the synchronization signal based time offset is less than the synchronization signal based time offset threshold and less than the synchronization signal based time offset acceptance threshold, the method may (in some embodiments) include the synchronization signal based time offset or the general The time offset of the reference signal adjusts the time reference of the secondary cell and sets the channel quality indicator value to a value based on the channel state measurement based on the preliminary time reference.
根据一些实施例,基于初步时间参考和在辅小区中传输的一个或者多个通用参考信号来执行辅小区的时间参考的基于通用参考信号的检测,与基于基于初步时间参考和在辅小区中传输的一个或者多个同步信号来执行辅小区的时间参考的基于同步信号的检测,可以被并行地执行。According to some embodiments, the common reference signal based detection of the time reference of the secondary cell is performed based on the preliminary time reference and the one or more common reference signals transmitted in the secondary cell, and the common reference signal based detection of the time reference of the secondary cell is performed based on the preliminary time reference and the transmission in the secondary cell. One or more synchronization signals to perform synchronization signal-based detection of the time reference of the secondary cell may be performed in parallel.
在一些实施例中,该方法可以还包括,如果辅小区的时间参考对于无线通信装置是已知的,则:In some embodiments, the method may further include, if the time reference of the secondary cell is known to the wireless communication device, then:
-基于已知的时间参考和在辅小区中传输的一个或者多个参考信号来执行基于已知时间参考的辅小区的信道状态测量;- performing channel state measurements of the secondary cell based on the known time reference based on the known time reference and one or more reference signals transmitted in the secondary cell;
-将信道质量指示符值设置为标称值或者基于基于已知的时间参考的信道状态测量的值;以及- setting the channel quality indicator value to a nominal value or a value based on a channel state measurement based on a known time reference; and
-将包括信道质量指示符的信道状态信息报告传输给蜂窝通信网络。- transmitting a channel state information report including a channel quality indicator to the cellular communication network.
在一些实施例中,该方法可以还包括从主小区中初始接收辅小区激活请求。In some embodiments, the method may further include initially receiving a secondary cell activation request from the primary cell.
在一些实施例中,设置信道质量指示符的值可以还包括,如果基于同步信号的检测指示检测到辅小区,则:In some embodiments, setting the value of the channel quality indicator may further include, if the detection based on the synchronization signal indicates that the secondary cell is detected, then:
-确定在基于在初步时间参考与基于同步信号的检测的时间参考之间的基于同步信号的时间偏差;- determining the synchronization signal-based time offset between the time reference based on the detection of the preliminary time reference and the synchronization signal-based;
-确定在基于在初步时间参考与基于通用参考信号的检测的时间参考之间的基于通用参考信号的时间偏差;- determining the time offset based on the general reference signal between the time reference based on the detection of the preliminary time reference and the general reference signal;
-确定在基于同步信号的时间偏差与基于通用参考信号的时间偏差之间的差;- determining the difference between the time offset based on the synchronization signal and the time offset based on the common reference signal;
-如果该差的绝对值小于差阈值,则基于基于同步信号的时间偏差以及基于通用参考信号的时间偏差中的至少一个来调整辅小区的时间参考,并且将信道质量指示符的值设置为基于基于初步时间参考的信道状态测量的值;以及- if the absolute value of the difference is less than the difference threshold, adjust the time reference of the secondary cell based on at least one of a synchronization signal based time offset and a common reference signal based time offset, and set the value of the channel quality indicator to be based on The value of the channel state measurement based on the preliminary time reference; and
-如果该差的绝对值大于差阈值,则将信道质量指示符值设置为标称值。- If the absolute value of the difference is greater than the difference threshold, set the channel quality indicator value to the nominal value.
根据一些实施例,执行辅小区的时间参考的基于同步信号的检测可以包括基于两个或者多个同步信号的正交频分复用-OFDM-符号创建功率延迟分布。According to some embodiments, performing synchronization signal-based detection of the time reference of the secondary cell may include creating a power delay profile based on orthogonal frequency division multiplexing-OFDM-symbols of two or more synchronization signals.
主和辅小区相应的载波频率可能例如是不连续并且位于相同频带(即带内载波聚合),或者位于不同的频带(即带间载波聚合)。当主和辅小区的相应载波频率是连续的并且位于相同的频带(即带内载波聚合)时,一些实施例的方法也可以被使用。在后一种情况下,其通常假设无线通信装置已知第二个小区的时间参考。The corresponding carrier frequencies of the primary and secondary cells may, for example, be discontinuous and located in the same frequency band (ie, intra-band carrier aggregation), or located in different frequency bands (ie, inter-band carrier aggregation). The methods of some embodiments may also be used when the respective carrier frequencies of the primary and secondary cells are contiguous and located in the same frequency band (ie, in-band carrier aggregation). In the latter case, it is generally assumed that the time reference of the second cell is known to the wireless communication device.
根据一些实施例,无线通信装置和蜂窝通信网络可以服从于通用移动电信标准,长期演进-UMTS-LTE。在此类实施例中,一个或者多个同步信号可以例如是主同步信号(P-SSIG)和/或辅同步信号(S-SSIG)。参考信号可以例如包括参考符号,例如通用参考符号。According to some embodiments, the wireless communication device and the cellular communication network may be compliant with the Universal Mobile Telecommunications Standard, Long Term Evolution-UMTS-LTE. In such embodiments, the one or more synchronization signals may be, for example, a primary synchronization signal (P-SSIG) and/or a secondary synchronization signal (S-SSIG). The reference signal may, for example, comprise reference symbols, such as generic reference symbols.
在一些实施例中,基于初步时间参考和在辅小区中传输的一个或者多个同步信号执行辅小区的时间参考基于同步信号的检测可以包括:In some embodiments, performing the time reference synchronization signal based detection of the secondary cell based on the preliminary time reference and one or more synchronization signals transmitted in the secondary cell may include:
-基于初步时间参考对在辅小区中传输的一个或者多个同步信号执行快速傅里叶变换从而产生变换信号;- performing a fast Fourier transform on one or more synchronization signals transmitted in the secondary cell based on the preliminary time reference to generate a transformed signal;
-提取变换的信号的相关部分;- extracting the relevant part of the transformed signal;
-给提取的部分附加零值信号元素从而产生补零变换信号部分;- appending zero-valued signal elements to the extracted part to produce a zero-padded transformed signal part;
-对补零变换信号部分执行快速傅里叶逆变换从而产生重建的信号;- performing an inverse fast Fourier transform on the zero-padded transformed signal portion to produce a reconstructed signal;
-基于一个或者多个相应备选的时间参考对重建的信号执行一个或者多个快速傅里叶变换从而产生相应的一个或者多个变换的信号备选;- performing one or more fast Fourier transforms on the reconstructed signal based on the one or more corresponding candidate time references to generate the corresponding one or more transformed signal candidates;
-基于重建的信号和一个或者多个变换的信号备选来创建功率延时分布;以及- creating a power delay profile based on the reconstructed signal and one or more transformed signal candidates; and
-基于创建的功率延时分布检测辅小区的时间参考。- Detecting the time reference of the secondary cell based on the created power delay profile.
第二方面是包括计算机可读媒体的计算机程序产品,所述计算机可读媒体其上具有包括计算机程序指令的计算机程序,该计算机程序被装载在数据处理单元中并且当由数据处理单元运行该计算机程序时,适合于使得数据处理单元执行根据第一方面的方法步骤。A second aspect is a computer program product comprising a computer readable medium having thereon a computer program comprising computer program instructions, the computer program being loaded in a data processing unit and when the computer is run by the data processing unit When programmed, the data processing unit is adapted to perform the method steps according to the first aspect.
第三方面是对于在蜂窝通信网络中使用的无线通信装置的布置,其适合于获得与载波聚合应用中的辅小区的时间同步。该布置包括传输器、接收器和信号处理器电路。A third aspect is an arrangement for a wireless communication device used in a cellular communication network suitable for obtaining time synchronization with secondary cells in carrier aggregation applications. The arrangement includes a transmitter, a receiver and a signal processor circuit.
接收器适合于接收在辅小区中传输的一个或者多个同步信号以及在辅小区中传输的一个或者多个参考信号。The receiver is adapted to receive one or more synchronization signals transmitted in the secondary cell and one or more reference signals transmitted in the secondary cell.
该信号处理器电路适合于,如果辅小区的时间参考对于无线通信装置是未知的,则:The signal processor circuit is adapted, if the time reference of the secondary cell is unknown to the wireless communication device, to:
-将辅小区的初步时间参考设置为等于载波聚合应用的主小区的时间参考;- setting the preliminary time reference of the secondary cell equal to the time reference of the primary cell of the carrier aggregation application;
-基于初步时间参考和在辅小区中传输的一个或者多个同步信号来执行辅小区的时间参考的基于同步信号的检测;- performing synchronization signal based detection of the time reference of the secondary cell based on the preliminary time reference and one or more synchronization signals transmitted in the secondary cell;
-基于初步时间参考和在辅小区中传输的一个或者多个参考信号来执行辅小区的基于初步时间参考的信道状态测量;- performing preliminary time reference based channel state measurements of the secondary cell based on the preliminary time reference and one or more reference signals transmitted in the secondary cell;
-基于基于同步信号的检测,设置信道质量指示符的值为标称值或者基于基于初步时间参考的信道状态测量的值。- Based on the detection based on the synchronization signal, the value of the channel quality indicator is set to a nominal value or to a value based on a channel state measurement based on a preliminary time reference.
传输器适合于将包括信道质量指示符的信道状态信息报告传输给蜂窝通信网络。The transmitter is adapted to transmit the channel state information report including the channel quality indicator to the cellular communication network.
第四方面是包括第三面的布置的调制解调器。第五方面是包括第三方面的布置或者第四方面的调制解调器的无线通信装置。该第五方面的无线通信装置和/或第四方面的调制解调器可以服从通用移动电信标准,长期演进-UMTS-LTE。A fourth aspect is a modem comprising the arrangement of the third aspect. A fifth aspect is a wireless communication device comprising the arrangement of the third aspect or the modem of the fourth aspect. The wireless communication apparatus of the fifth aspect and/or the modem of the fourth aspect may be compliant with the Universal Mobile Telecommunications Standard, Long Term Evolution-UMTS-LTE.
在一些实施例中,第三、第四和第五方面可以额外具有等同于或者对应于如对于第一方面以上描述的任何各种特征的特征。例如,第三方面的信号处理器电路还可以适合于执行第一方面的一个或者多个方法步骤。In some embodiments, the third, fourth and fifth aspects may additionally have features identical to or corresponding to any of the various features as described above for the first aspect. For example, the signal processor circuit of the third aspect may also be adapted to perform one or more method steps of the first aspect.
应当注意到相应于当度量大于或者小于阈值时,以上公开了要执行的两个动作,此时,当度量等于阈值时的情况则可以被包括在两个情况中的任何一个,如在即将到来的情形中可适用的。It should be noted that the two actions to be performed are disclosed above corresponding to when the metric is greater than or less than the threshold, in which case the case when the metric is equal to the threshold may then be included in either of the two cases, as in the forthcoming applicable in the circumstances.
此外,还应该注意到,当动作、确定,或者类似的已经在上面公开为基于信号、度量、参数,或者类似的时,这就意味着包括任何已知或者将来的实现(例如,本文给出的示例)。例如,基于确定的时间偏差调整时间参考可能包括-根据确定的时间偏差的正负号-给/或从时间参考中增加或者减去确定的时间偏差的绝对值。Additionally, it should be noted that when an action, determination, or the like has been disclosed above as being based on a signal, metric, parameter, or the like, this is meant to include any known or future implementation (eg, given herein example). For example, adjusting the time reference based on the determined time offset may include - according to the sign of the determined time offset - adding or subtracting the absolute value of the determined time offset from the time reference.
该动作被并行地执行意味着包括当动作被同时执行时的情况(或者至少同时开始)。The actions being performed in parallel are meant to include the case when the actions are performed concurrently (or at least started at the same time).
一些实施例的一个优点是一些示出的方法允许SCell通常被较早激活,相比如果使用了常见的小区搜索。这是由于,UE一与SCell同步,其就已经准备好了CSI报告(基于PCell定时)并且准备开始接收。在现有技术的系统中,只有在UE已经与SCell同步后,UE应该必须测量以及准备CSI报告(基于PCell定时),这增加给SCell激活的等待时间。An advantage of some embodiments is that some of the illustrated methods allow SCells to be activated generally earlier than if a common cell search were used. This is because, as soon as the UE is synchronized with the SCell, it has already prepared the CSI report (based on PCell timing) and is ready to start receiving. In prior art systems, the UE should have to measure and prepare CSI reports (based on PCell timing) only after the UE has synchronized with the SCell, which adds latency to SCell activation.
因此,对于满足在载波聚合情形中的SCell激活(尤其是对于盲激活)期间的CSI报告的等待时间要求,提供了增加的可能性。根据一些实施例的方法允许在第三代合作伙伴项目(3GPP)标准规范中的当前要求被满足(例如测试情况冷启动1,启动其中现有参数知识可以是有限的,在信道模式ETU-70(有最大多普勒偏移70Hz的扩展典型城市)以及EPA-5(有最大多普勒偏移5Hz的扩展行人A))中。即使标准要求将被放松,操作者(以及用户)仍然将会从快速激活中受益。Thus, an increased possibility is provided for meeting the latency requirement for CSI reporting during SCell activation in carrier aggregation situations (especially for blind activation). The method according to some embodiments allows current requirements in the 3rd Generation Partnership Project (3GPP) standard specification to be satisfied (eg test case cold start 1, start where existing parameter knowledge may be limited, in channel mode ETU-70 (Extended typical city with a maximum Doppler shift of 70 Hz) and EPA-5 (Extended pedestrian A with a maximum Doppler shift of 5 Hz)). Even if the standard requirements will be relaxed, operators (and users) will still benefit from quick activation.
一些实施例的另一个优点是相同或者类似的方法能够被用于所有种类的SCell激活,因此无需在不同情况间区别(例如带间、带内连续和带内不连续情形)和/或根据应用情形涉及不同过程。这简化了实现和维护。Another advantage of some embodiments is that the same or similar method can be used for all kinds of SCell activation, so there is no need to distinguish between different cases (eg inter-band, intra-band continuous and intra-band discontinuous cases) and/or depending on the application The situations involve different processes. This simplifies implementation and maintenance.
一些实施例的仍有的另一个优点是涉及OFDM符号的“内插”的示例(示例SS-PDP生成,见例如附图9和10)使得实现能够无需额外要求,例如更快的FFT硬件加速器。Yet another advantage of some embodiments is that the example involving "interpolation" of OFDM symbols (example SS-PDP generation, see eg Figures 9 and 10) enables implementation without additional requirements such as faster FFT hardware accelerators .
附图说明Description of drawings
通过参考附图,从以下实施例的详细描述,进一步的目的、特征和优点将显而易见,其中:Further objects, features and advantages will be apparent from the detailed description of the following embodiments by referring to the accompanying drawings, wherein:
图1是示出了示例载波聚合部署情形的示意图;1 is a schematic diagram illustrating an example carrier aggregation deployment scenario;
图2是示出了LTE FDD无线帧的示例时间-频率规划的示意图;2 is a schematic diagram illustrating an example time-frequency plan for an LTE FDD radio frame;
图3是示出了在LTE FDD小区中传输的示例同步信号和参考符号的示意图;3 is a schematic diagram illustrating example synchronization signals and reference symbols transmitted in an LTE FDD cell;
图4是示出了在LTE TDD小区中传输的示例同步信号和参考符号的示意图;4 is a schematic diagram illustrating example synchronization signals and reference symbols transmitted in an LTE TDD cell;
图5是示出了根据一些实施例的SCell激活的示例方法的流程图;5 is a flowchart illustrating an example method of SCell activation in accordance with some embodiments;
图6是示出了在FDD中盲激活的示例最差情况情形的示意图;6 is a schematic diagram illustrating an example worst-case scenario of blind activation in FDD;
图7是示出了在TDD中盲激活的示例最差情况情形的示意图;7 is a schematic diagram illustrating an example worst-case scenario of blind activation in TDD;
图8是示出了仅仅根据一些实施例的使用基于SS-PDP的示例定时调整的SCell激活的示例方法的流程图;8 is a flowchart illustrating an example method of SCell activation using example timing adjustment based on SS-PDP, in accordance with some embodiments only;
图9是示出了根据一些实施例的示例LTE FDD信号布置的示意图;9 is a schematic diagram illustrating an example LTE FDD signal arrangement in accordance with some embodiments;
图10是示出了根据一些实施例的用于基于FDD符号位置实现SS PDP的示例方法的流程图;10 is a flowchart illustrating an example method for implementing SS PDP based on FDD symbol locations in accordance with some embodiments;
图11根据一些示例的示例接收器(仅仅示出了一个Rx分支)的框图;11 is a block diagram of an example receiver (only one Rx branch is shown) according to some examples;
图12是示出根据一些实施例的示例方法步骤的流程图;12 is a flowchart illustrating example method steps in accordance with some embodiments;
图13是根据一些实施例的计算机可读媒体的示意图;以及Figure 13 is a schematic diagram of a computer-readable medium in accordance with some embodiments; and
图14是示出根据一些实施例的布置示例的框图。Figure 14 is a block diagram illustrating an example arrangement according to some embodiments.
具体实施方式Detailed ways
下面将描述一些实施例。这些实施例仅仅意图是说明性的示例而决不是限制性的。Some embodiments will be described below. These embodiments are intended to be illustrative examples only and not restrictive in any way.
如下面将要解释的(例如,结合附图12),一些实施例涉及用于载波聚合情形的方法,其中目的是实现用户装备(UE)与未知SCell的快速同步,并且在要求的激活时间内发送出CSI报告。根据这些的实施例中的一些,可以同时调度多个激活(例如,两个或者多个同步至小区、信道估计、以及对于CSI报告的测量)。从而,一实现充分的同步,有效的CSI报告(基于同时执行的测量)就被直接从UE发送到网络中,由此UE能够快速在SCell上被调度。As will be explained below (eg, in conjunction with FIG. 12 ), some embodiments relate to methods for carrier aggregation scenarios, where the aim is to achieve fast synchronization of user equipment (UE) with an unknown SCell and transmit within the required activation time CSI report. According to some of these embodiments, multiple activations (eg, two or more synchronizations to cells, channel estimation, and measurements for CSI reporting) may be scheduled simultaneously. Thus, as soon as sufficient synchronization is achieved, valid CSI reports (based on concurrently performed measurements) are sent directly from the UE into the network, whereby the UE can be quickly scheduled on the SCell.
根据一些实施例,与未知SCell同步可以基于用PCell定时替代SCell定时,并且随后使用估算器检测残留定时(如上面讨论的±31.3μs),在UE中实现,其具有±1/2个OFDM符号(±33.3μs)的捕获范围。由估算器产生的品质因数可以指示是否已经实现同步。According to some embodiments, synchronization to an unknown SCell may be based on substituting PCell timing for SCell timing, and then using an estimator to detect residual timing (±31.3 μs as discussed above), implemented in the UE with ±1/2 OFDM symbols (±33.3 μs) capture range. The figure of merit produced by the estimator can indicate whether synchronization has been achieved.
除了上述的估算器之外,还可以使用另一个估算器。这可以提供更高精确度的估算而同时具有更小的捕获范围(例如±5.5μs)。其它的估算器的精确度随着带宽增加而改善。类似于上述估算器,其它估算器产生的品质因数可以指示是否已经实现同步。In addition to the estimator described above, another estimator can be used. This can provide higher accuracy estimates while having a smaller capture range (eg ±5.5 μs). The accuracy of other estimators improves with increasing bandwidth. Similar to the estimators described above, other estimators produce figures of merit that can indicate whether synchronization has been achieved.
一些实施例基于估算器的结果来采用UE的操作的以下原理:Some embodiments employ the following principles of operation of the UE based on the results of the estimator:
-如果已经实现同步并且监测的残留定时小(例如低于阈值),包括有效CQI值的CSI报告能够被立即发布。- If synchronization has been achieved and the monitored residual timing is small (eg below a threshold), a CSI report including a valid CQI value can be issued immediately.
-如果已经实现同步并且检测的残留定时大(例如,大于阈值,其可以或者可以不与上述阈值重合),在有效CQI被计算(通常基于新的测量)和发布之前调整定时。与此同时CQI=0(范围之外)被报告给网络。- If synchronization has been achieved and the detected residual timing is large (eg greater than a threshold, which may or may not coincide with the aforementioned threshold), adjust the timing before the effective CQI is calculated (usually based on new measurements) and issued. At the same time CQI=0 (out of range) is reported to the network.
-如果没有完成同步,在下一个合适的子帧中进行新的尝试。- If synchronization is not done, make a new attempt in the next suitable subframe.
此外,一些实施例包括关于通过在OFDM符号之间插入同步信号信息而如何能够改善估算器的性能而不增加FFT硬件加速器工作的速率的特定细节。Furthermore, some embodiments include specific details on how the performance of the estimator can be improved by inserting synchronization signal information between OFDM symbols without increasing the rate at which the FFT hardware accelerator operates.
对于与SCell同步,可以通常使用两个或者多个以下组件和/或动作:For synchronization with the SCell, two or more of the following components and/or actions can generally be used:
-增益搜索- Gain search
-基于同步信号(SS)的残留时间检测器,例如上述粗略估算器- Residual time detector based on synchronization signal (SS), such as the above rough estimator
-基于通用参考信号(CRS)的残留时间检测器,例如上述精细估算器- a common reference signal (CRS) based residual time detector, such as the fine estimator described above
-CSI测量-CSI measurement
下面描述它们的每一个的实现示例。An implementation example of each of them is described below.
增益搜索Gain search
增益搜索被通常用于寻找用于自动增益控制(AGC)的初始增益等级,使得在以有限比特宽度表示样本时,接收的IQ样本能够被正确缩放从而阻止信息丢失。增益搜索可以占据几乎全部子帧。通常,其必须在单播子帧或者它们的部分中执行从而为目标小区提供相关信息。特别地,其通常不应当在MBSFN子帧的多播部分期间或者在LTE TDD上行链路子帧期间而被执行。本文提到增益搜索以用于完整性。Gain search is commonly used to find the initial gain level for automatic gain control (AGC) so that the received IQ samples can be properly scaled to prevent loss of information when the samples are represented with a finite bit width. The gain search can occupy almost all subframes. Usually, it has to be performed in unicast subframes or parts thereof to provide relevant information to the target cell. In particular, it should generally not be performed during the multicast part of the MBSFN subframe or during the LTE TDD uplink subframe. This article refers to gain search for completeness.
同步信号功率延时分布(SS-PDP)Synchronization Signal Power Delay Profile (SS-PDP)
以下略述基于同步信号的残留时间估算器操作的示例并且所述示例可以例如被用作上述粗略估算器。基于同步信号的残留时间估算器可以被配置为:An example of the operation of the synchronization signal-based residual time estimator is outlined below and can be used, for example, as the above-mentioned coarse estimator. The residual time estimator based on the synchronization signal can be configured as:
1、将时域OFDM符号变换为频域。1. Transform the time domain OFDM symbols into the frequency domain.
2、从自辅小区接收的信号中提取资源单元以用于主或者辅同步信号(P-SSIG或者S-SSIG)。2. Extract resource elements from signals received from the secondary cell for primary or secondary synchronization signals (P-SSIG or S-SSIG).
3、通过将提取的资源单元乘以先前已知的P-SSIG或者S-SSIG序列复共轭来得到信道样本。3. Obtain channel samples by multiplying the extracted resource units by the previously known P-SSIG or S-SSIG sequence complex conjugate.
4、(可选的)相干地累积用于P-SSIG或者S-SSIG的信道样本。4. (Optional) Coherently accumulate channel samples for P-SSIG or S-SSIG.
5、通过快速傅里叶逆变换(IFFT)将信道样本变换为时域。5. Transform the channel samples into the time domain by an Inverse Fast Fourier Transform (IFFT).
6、(可选的)在Rx分集分支上非相干地累积功率延时分布(PDP)。6. (Optional) Incoherently accumulate the power delay profile (PDP) on the Rx diversity branch.
7、通过识别峰值幅度的位置来估计从真实OFDM符号位置到假定的OFDM符号位置(其最初是基于主小区的符号位置)的时间偏移。7. Estimate the time offset from the real OFDM symbol position to the assumed OFDM symbol position (which is initially based on the primary cell's symbol position) by identifying the position of the peak magnitude.
8、计算品质因数,例如用于检测的峰值的峰值-平均比(PAR)。8. Calculate a figure of merit, such as the peak-to-average ratio (PAR) for detected peaks.
SS-PDP的捕获范围可以通常是±1/2个OFDM符号(±33.3μs),其满足当前的应用。这是因为同步信号资源单元在频率上是连续的。The acquisition range of the SS-PDP may typically be ±1/2 OFDM symbols (±33.3 μs), which suffices for current applications. This is because the synchronization signal resource elements are contiguous in frequency.
但是,在功率延时分布(极端)的相应的端点,SS-PDP是基于仅仅一半目标OFDM符号以及一半相邻OFDM符号(用于相应的端点的之前一个或者后续一个)。这引起了符号间干扰(ISI),其降低了整体信号干扰和噪声比(SINR),并且导致了时间偏移估算器的降低的性能。However, at the corresponding end points of the power delay profile (extreme), the SS-PDP is based on only half of the target OFDM symbols and half of the adjacent OFDM symbols (for the previous or subsequent one of the corresponding end points). This causes inter-symbol interference (ISI), which reduces the overall signal-to-interference and noise ratio (SINR), and results in degraded performance of the time offset estimator.
此外,对于大于±1/2个OFDM符号的延时,估算器环绕(即,估算器的捕获范围之外的真实延时被错误地认为作为在捕获范围内的延时),其导致指示的时间偏移与真实时间偏移相比较具有相反的标记(以及可能不同大小)。由于估算的符号位置是与真实符号位置严重地没有对齐,环绕还可以导致符号间干扰(ISI)。为了消除时间偏移的标记的歧义,也可以对于先前以及后续的OFDM符号得到SS-PDP。在捕获范围的极端,先前或者后续OFDM符号的SS-PDP可以确认估算的时间偏移的标记。由于估算变得更加有噪声的,环绕的风险随着低SINR而增加。为了改善SINR以及,因此,估算的质量,用于定义相邻(先前的和后续的)OFDM符号的跨度可以在它们部分重叠了目标OFDM符号的跨度的位置处得到。例如,如果定义相邻符号的每一个跨度重叠了50%的目标OFDM符号,对于这三个OFDM符号跨度中的两个的结果SS-PDP将不会受到多于25%的ISI(其以±16.7μs发生)。为了进一步改善在PCell和SCell之间的不同定时偏移的SINR,能够使用关于相邻OFDM符号的跨度的位置的更多假设。从该估算器产生的用于不同假设的品质因数可以被用于确定从哪一个SS-PDP提取时间偏移。此外,品质因数可以被用于确定估算是否可靠。Furthermore, for delays greater than ±1/2 OFDM symbols, the estimator wraps around (ie, true delays outside the estimator's acquisition range are erroneously considered as in-acquisition delays), which results in the indicated The time offset has the opposite sign (and possibly a different magnitude) compared to the real time offset. Wrap-around can also cause inter-symbol interference (ISI) since the estimated symbol positions are severely misaligned with the true symbol positions. In order to disambiguate the time-shifted labels, the SS-PDP can also be obtained for previous and subsequent OFDM symbols. At the extremes of the acquisition range, the SS-PDP of the previous or subsequent OFDM symbol can confirm the estimated time offset signature. The risk of wrap-around increases with low SINR as the estimates become more noisy. To improve the SINR and, therefore, the quality of the estimate, the spans used to define adjacent (previous and subsequent) OFDM symbols can be obtained where they partially overlap the span of the target OFDM symbol. For example, if each span defining adjacent symbols overlaps 50% of the target OFDM symbol, the resulting SS-PDP will not suffer more than 25% ISI (which is measured in ± 16.7μs occurs). To further improve the SINR for different timing offsets between PCell and SCell, more assumptions about the location of the span of adjacent OFDM symbols can be used. The figure of merit for the different hypotheses generated from this estimator can be used to determine which SS-PDP to extract the time offset from. Furthermore, the figure of merit can be used to determine whether the estimates are reliable.
SS-PDP的分辨率依赖于IFFT的大小而质量依赖于SINR。The resolution of the SS-PDP depends on the size of the IFFT and the quality depends on the SINR.
上述SS-PDP对应于在获得的时域OFDM符号(基于选择的跨度)和同步信号序列之间的循环卷积。备选地,可以经由时域中的线性相关来获得功率延时分布。时域中的线性相关不受ISI的影响,但是与本文描述的SS-PDP相比它具有更高的复杂度。The above SS-PDP corresponds to a cyclic convolution between the obtained time-domain OFDM symbols (based on the selected span) and the synchronization signal sequence. Alternatively, the power delay profile can be obtained via a linear correlation in the time domain. Linear correlation in the time domain is not affected by ISI, but it has a higher complexity than the SS-PDP described in this paper.
在备选的估算器中,线性相位组件被直接估算而不是搜索PDP中的峰值,例如,通过计算相位斜率,例如通过平均在相邻资源单元之间的相位差。In an alternative estimator, the linear phase component is estimated directly rather than searching for peaks in the PDP, eg by calculating the phase slope, eg by averaging the phase differences between adjacent resource elements.
在此外的备选估算器中,在包括多于一个PDP值的窗口中的功率被计算而不是着眼于在PDP中的单独峰值,其通常更好地获得多径传播。In a further alternative estimator, the power in a window comprising more than one PDP value is calculated rather than looking at individual peaks in the PDP, which generally better obtains multipath propagation.
在仍有的另一个备选的估算器中,多种检测方法可以被组合(或者多个检测方法可以相互竞争),从而获得一个更为稳健的独立于传播条件的估算。In yet another alternative estimator, multiple detection methods can be combined (or multiple detection methods can compete with each other) to obtain a more robust estimate independent of propagation conditions.
通用参考信号功率延时分布(CRS-PDP)Common Reference Signal Power Delay Profile (CRS-PDP)
下面将略述基于通用参考信号的残留时间估算器操作的示例并且所述示例可以例如被用作上述精细估算器。基于通用参考信号的残留时间估算器可以被配置为:An example of the operation of a residual time estimator based on a generic reference signal will be outlined below and may be used, for example, as the fine estimator described above. The residual time estimator based on the common reference signal can be configured as:
1、将时域OFDM符号转换为频域。1. Convert the time domain OFDM symbols to the frequency domain.
2、从自辅小区接收的信号中提取资源单元以用于参考信号(RSIG)(例如从DL Tx端口0,以及如果存在,DL Tx端口1)。2. Extract resource elements from the signal received from the secondary cell for reference signal (RSIG) (eg from DL Tx port 0, and if present, DL Tx port 1).
3、通过将提取的资源单元乘以先前已知的RSIG序列的复共轭来获得信道样本。3. Obtain channel samples by multiplying the extracted resource elements by the complex conjugate of the previously known RSIG sequence.
4、(可选的)对于相邻OFDM符号相干地累积信道样本。4. (Optional) Coherently accumulate channel samples for adjacent OFDM symbols.
5、使用IFFT将信道样本转换为时域。5. Convert the channel samples to the time domain using IFFT.
6、(可选的)对于相邻OFDM符号非相干地累积PDP。6. (Optional) Accumulate PDPs incoherently for adjacent OFDM symbols.
7、(可选的)在Rx分集分支上非相干地累积PDP。7. (Optional) Incoherently accumulate PDPs on the Rx diversity branch.
8、通过使用IFFT变换信道样本以及识别峰值幅度的位置来估算从真实OFDM符号位置到假设的OFDM符号位置(其最初是基于主小区的符号位置)的时间偏移。8. Estimate the time offset from the real OFDM symbol position to the hypothetical OFDM symbol position (which is initially based on the symbol position of the primary cell) by transforming the channel samples using IFFT and identifying the position of the peak magnitude.
9、计算品质因数,例如用于检测的峰值的峰值-平均比(PAR)。9. Calculate a figure of merit, such as the peak-to-average ratio (PAR) for detected peaks.
CRS-PDP的捕获范围是±1/12个OFDM符号(±5.56μs),由于RSIG被在有关的OFDM符号中的每一个第六个副载波上传输。任何在此捕获范围之外的路径(对应于定时偏移)将会导致估算器的环绕。因此,仅当假设的OFDM符号的定时足够精确使得该偏差在捕获范围内时,能够使用CRS-PDP。因此,其可以通常在上述基于SS-PDP的估算器已经被采用之后被使用。The acquisition range of the CRS-PDP is ±1/12 OFDM symbols (±5.56 μs), since the RSIG is transmitted on every sixth subcarrier in the relevant OFDM symbol. Any path outside this capture range (corresponding to a timing offset) will cause the estimator to wrap around. Therefore, CRS-PDP can be used only when the timing of the assumed OFDM symbols is accurate enough that the deviation is within the acquisition range. Therefore, it can generally be used after the above-mentioned SS-PDP based estimator has been employed.
益处在于,可能地,具有数量众多的RSIG来使用。例如,对于20MHz的带宽(BW)和2DL Tx端口,每一个单播子帧有1600个RSIG(与每5个子帧62个S-SSIG和62个P-SSIG比较)如由基于SS-PDP的估算器被使用。更大数量的参考(RSIG)允许,相比从基于SS-PDP估算器所可能的,更为精确的估算。但是,此益处高度依赖于带宽。对于具有1.4MHz带宽和2DL Tx端口的SCell,每一个单播子帧仅具有96个RSIG。The benefit is that it is possible to have a large number of RSIGs to use. For example, for a bandwidth (BW) of 20MHz and a 2DL Tx port, there are 1600 RSIGs per unicast subframe (compared to 62 S-SSIGs and 62 P-SSIGs per 5 subframes) as determined by the SS-PDP based Estimators are used. A larger number of references (RSIGs) allows for a more accurate estimation than is possible from SS-PDP based estimators. However, this benefit is highly bandwidth-dependent. For an SCell with 1.4MHz bandwidth and 2DL Tx ports, there are only 96 RSIGs per unicast subframe.
在备选的估算器中,可以通过基于阈值(例如在PDP中应该超过的功率值,对于那个PDP值而被认为是信号路径)搜索第一路径(例如具有最小偏移值的信号路径),或者通过计算平均延时而不是搜索峰值来估计定时偏移。In an alternative estimator, by searching for the first path (eg the signal path with the smallest offset value) based on a threshold (eg the power value that should be exceeded in the PDP, for that PDP value to be considered a signal path), Or estimate the timing offset by calculating the average delay instead of searching for peaks.
在此外的备选的估算器操作中,线性相位组件/值可以被直接估计而不是在PDP中搜索峰值。In a further alternative estimator operation, the linear phase components/values can be estimated directly rather than searching for peaks in the PDP.
CSI测量CSI measurement
CSI报告在3GPP技术规范(TS)36.213修订版10.9.0,子目录7.2中描述。信道状态信息包括信道质量指示符(CQI)、预编码矩阵索引(PMI)、秩指示(RI)以及预编码类型指示符(PTI),所有这些都是从参考信号(通用参考信号或者专用CSI参考信号)中获得的。本文提到CSI测量以用于完整性。CSI reports are described in 3GPP Technical Specification (TS) 36.213 Rev. 10.9.0, sub-category 7.2. Channel state information includes Channel Quality Indicator (CQI), Precoding Matrix Index (PMI), Rank Indicator (RI), and Precoding Type Indicator (PTI), all of which are derived from reference signals (Common Reference Signal or Dedicated CSI Reference) signal) obtained. This document refers to CSI measurements for integrity.
附图5示出了根据一些实施例的用于SCell激活的由UE执行的示例方法。Figure 5 illustrates an example method performed by a UE for SCell activation in accordance with some embodiments.
该方法在步骤200开始,其中从网络节点接收SCell激活请求。当在步骤200中,UE接收激活请求时(给已知或者未知的SCell),首先在步骤205检测UE是否具有任何合理的新鲜的(最近的)关于全频带的增益状态的信息(被最近产生的全频带SCC增益状态,例如在特定时间周期内)。该增益状态可以,例如从先前的测量场合中(其中在接收期间使用了全频带),或者从在有关的SCC上的最近SCell激活而知道。The method starts at step 200, where an SCell activation request is received from a network node. When, in step 200, the UE receives an activation request (for a known or unknown SCell), it first checks in step 205 whether the UE has any reasonably fresh (recent) information about the gain status of the full band (generated recently). full-band SCC gain state, e.g. within a specific time period). This gain state may be known, for example, from previous measurement occasions (where the full frequency band was used during reception), or from the most recent SCell activation on the relevant SCC.
如果增益状态是未知的(出自步骤的205否-路径),在下一个合适的子帧中的增益搜索被计划,如由步骤210所示的。如果增益状态是已知的(出自步骤205的是-路径),步骤210被跳过并且该方法直接进行到步骤215。If the gain status is unknown (NO-path from step 205 ), a gain search in the next suitable subframe is planned, as shown by step 210 . If the gain state is known (yes-path from step 205 ), step 210 is skipped and the method proceeds directly to step 215 .
在步骤215,检测SCell的定时是否是已知的(例如通过是否UE最近已经测量和报告彼小区来定义)。At step 215, it is checked whether the timing of the SCell is known (eg, as defined by whether the UE has recently measured and reported that cell).
如果定时是未知的(出自步骤215的否-路径),UE根据步骤250而最初假设与PCell的相同的定时,并且根据步骤255,在包括同步信号的第一个可用子帧中(例如在FFD的情况下子帧0或者5,对于TDD S-SSIG子帧0和5以及对于TDD P-SSIG子帧1和6)调度基于同步信号的时间偏差(例如SS-PDP)的确定、基于通用参考信号的时间偏差(CRS-PDP)的确定以及CSI测量,并且在步骤260检测是否基于SS-PDP的同步已经实现。If the timing is unknown (NO-path from step 215), the UE initially assumes the same timing as that of the PCell according to step 250, and according to step 255, in the first available subframe including the synchronization signal (eg in the FFD In case of subframe 0 or 5, for TDD S-SSIG subframes 0 and 5 and for TDD P-SSIG subframes 1 and 6) scheduling is based on the determination of the time offset of the synchronization signal (eg SS-PDP), based on the common reference signal The determination of the time offset (CRS-PDP) and the CSI measurement, and it is checked in step 260 whether synchronization based on the SS-PDP has been achieved.
如果(出自步骤260的否-路径)得到的SS-PDP指示同步还没有实现(例如如果PAR、SINR或者一些其它的品质因数低于阈值),在步骤259中将CSI=0发送到网络并且重复先前的步骤(步骤255)。If the resulting SS-PDP (NO-path from step 260) indicates that synchronization has not been achieved (eg if PAR, SINR or some other figure of merit is below a threshold), in step 259 send CSI=0 to the network and repeat previous step (step 255).
如果(出自步骤260的是-路径)得到的SS-PDP指示同步已经实现(例如如果PAR、SINR或者一些其它的品质因数高于阈值),方法前进到步骤261。If the resulting SS-PDP (yes-path from step 260 ) indicates that synchronization has been achieved (eg if PAR, SINR or some other figure of merit is above a threshold), the method proceeds to step 261 .
在步骤261,检测是否基于同步信号的时间偏差(例如基于SS-PDP提取的时间残留)足够小(例如,如果基于同步信号的时间偏差的绝对值大于基于同步信号的时间偏差阈值,因此,提取的时间残留下降到低于阈值)而使得在关于CQI性能(对于大的定时误差,已经产生的CQI估计可未足够精确地反映真实信道质量并且应当通常不被使用)的可接受范围内。At step 261, it is detected whether the synchronization signal-based time offset (eg, the time residual based on the SS-PDP extraction) is sufficiently small (eg, if the absolute value of the synchronization signal-based time offset is greater than the synchronization signal-based time offset threshold, therefore, extracting falls below the threshold) to be within an acceptable range with respect to CQI performance (for large timing errors, the CQI estimates that have been generated may not reflect the true channel quality accurately enough and should generally not be used).
如果时间残留不足够小(出自步骤261的否-路径),在步骤262中,基于SS-PDP结果调整SCell的定时估算,在步骤270中,将指示默认(或者标称)CSI值的CSI报告(例如CSI=0)发送到网络中,并且如由步骤225示出,在第一个可用子帧中调度CRS-PDP和CSI测量。If the time residual is not small enough (NO-path from step 261), in step 262 the timing estimate of the SCell is adjusted based on the SS-PDP results, in step 270 the CSI report indicating the default (or nominal) CSI value will be (eg CSI=0) is sent into the network, and as shown by step 225, the CRS-PDP and CSI measurements are scheduled in the first available subframe.
如果时间残留足够小(出自步骤261的是-路径),该方法前进到步骤230,其中再次检测是否基于通用参考信号的时间偏差(例如基于CRS-PDP提取的时间残留)足够小(例如,如果基于通用参考信号的时间偏差的绝对值大于基于通用参考信号的时间偏差阈值,因此,提取的时间残留下降到低于阈值)而使得已经产生的CQI估计被报告。通常,CRS-PDP估计可以比SS-PDP估计更为精确。If the time residual is sufficiently small (yes-path from step 261), the method proceeds to step 230, where it is again checked whether the time offset based on the common reference signal (eg, based on the CRS-PDP extraction time residual) is sufficiently small (eg, if The absolute value of the universal reference signal based time offset is greater than the universal reference signal based time offset threshold, so the extracted time residue falls below the threshold) so that the CQI estimate that has been generated is reported. In general, CRS-PDP estimates can be more accurate than SS-PDP estimates.
根据在步骤230中的检测,如果时间残留不足够小(出自步骤230的否-路径),基于在步骤265中的CRS-PDP结果来调整SCell的定时估计,在步骤270中,将CSI=0发送到网络,并且在第一个可用子帧中调度CRS-PDP和CSI测量,如由步骤225所示。Based on the detection in step 230, if the time residual is not small enough (NO-path from step 230), adjust the timing estimate of the SCell based on the CRS-PDP result in step 265, in step 270, set CSI=0 is sent to the network, and CRS-PDP and CSI measurements are scheduled in the first available subframe, as shown by step 225 .
根据在步骤230中的检测,如果时间残留足够小(出自步骤230的是-路径),基于在步骤235中的CRS-PDP结果而调整SCell的定时估计,并且已经产生的CQI估计能够被立即报告,如由步骤240所示。Based on the detection in step 230, if the time residual is small enough (yes-path from step 230), the timing estimate of the SCell is adjusted based on the CRS-PDP result in step 235, and the CQI estimate that has been generated can be reported immediately , as shown by step 240 .
在一些实施例中,从SS-PDP已经能够推断(在步骤261中)是否CQI能够被报告。在此类情况中,步骤230可以被跳过并且出自步骤261的是-路径直接去到步骤235。这对于从步骤261到步骤230的分支可以是备选的,或者可以具有三个出自步骤261的分支(到步骤235如果定时偏移小于第一阈值(例如基于同步信号的时间偏差接受阈值)、到步骤262如果定时偏移大于第二阈值(例如基于同步信号的时间偏差阈值)以及到步骤230如果定时偏移在第一和第二阈值之间)。In some embodiments, it can already be deduced (in step 261) from the SS-PDP whether the CQI can be reported. In such a case, step 230 may be skipped and the yes-path from step 261 goes directly to step 235. This may be alternative to the branch from step 261 to step 230, or there may be three branches from step 261 (to step 235 if the timing offset is Go to step 262 if the timing offset is greater than a second threshold (eg, a time offset threshold based on the synchronization signal) and to step 230 if the timing offset is between the first and second thresholds).
如果在步骤215中检测的SCell定时是先前已知的(出自步骤215的是-路径),此已知的定时参考被初始使用如由步骤220所示。在这些情况中,任何时间残留都被通常期望良好地在CRS-PDP的捕获范围内,并且UE在第一个可使用(单播)子帧中调度CRS-PDP和CSI测量,如由步骤225所示。If the SCell timing detected in step 215 is previously known (yes-path out of step 215 ), this known timing reference is initially used as shown by step 220 . In these cases, any time residue is generally expected to be well within the acquisition range of the CRS-PDP, and the UE schedules the CRS-PDP and CSI measurements in the first available (unicast) subframe, as by step 225 shown.
当步骤225已经被执行时,该方法前进至步骤230,并且继续如上所述。When step 225 has been performed, the method proceeds to step 230 and continues as described above.
在有效CSI报告,即具有CQI值而不是默认值(例如0),已经发送给网络后,如由步骤240所示的,UE通常立即开始监视SCell上的PDCCH,并且还对于SCell(在经由PCell交叉载波调度的情况下)。此外,通常开始探测参考信号的传输(3GPP TS 36.321修订版10.8.0子目录5.13),并且可以实现SCell的激活,如由步骤245所示。After a valid CSI report, ie, with a CQI value other than the default value (eg, 0), has been sent to the network, as shown by step 240, the UE typically starts monitoring the PDCCH on the SCell, and also for the SCell (on the PCell via PCell). in the case of cross-carrier scheduling). Furthermore, the transmission of sounding reference signals (3GPP TS 36.321 Rev. 10.8.0 sub-category 5.13) is normally started, and activation of the SCell can be effected, as shown by step 245 .
注意到由于在接收器中的等待时间,通常不可能在子帧n中估计时间残留并且已经将其采用于下一个子帧n+1中。在能够采用估计之前的子帧的数量是实现特定的。在对于FDD的附图6和对于TDD的附图7中示出了一些示例。Note that due to latency in the receiver, it is generally not possible to estimate the temporal residue in subframe n and have taken it into the next subframe n+1. The number of subframes before an estimate can be employed is implementation specific. Some examples are shown in Figure 6 for FDD and Figure 7 for TDD.
附图6是示出了对于FDD中盲激活的示例最差情况情形的示意图。Figure 6 is a schematic diagram showing an example worst case scenario for blind activation in FDD.
PCell子帧在在子帧n开始的181示出,其中SCell激活请求被接收,如由182示出(与附图5的步骤200比较)。虚线箭头183示出了应该被发送到网络的在子帧n+8开始的跟在SCell激活请求182之后的CQI报告。A PCell subframe is shown at 181 starting at subframe n, where an SCell activation request is received, as shown by 182 (compare to step 200 of Figure 5). The dashed arrow 183 shows the CQI report following the SCell activation request 182 starting at subframe n+8 that should be sent to the network.
SCell子帧在180处示出,其中编号为0、4、5和9的子帧是单播子帧而其它子帧用于其它目的(例如MBSFN)。用于增益搜索(与附图5的步骤210比较)的第一个可使用子帧由184指示,并且对于SS-PDP、CRS-PDP以及CSI测量的可使用的第一个子帧(与附图5的步骤255比较)由185指示(基于它们中的哪一个是在时间上最逼近的,测量可以在子帧5或者0被执行)。The SCell subframes are shown at 180, where subframes numbered 0, 4, 5, and 9 are unicast subframes and the other subframes are used for other purposes (eg, MBSFN). The first usable subframe for gain search (compare with step 210 of FIG. 5) is indicated by 184, and the usable first subframe for SS-PDP, CRS-PDP and CSI measurement (compared with the appendix). Step 255 comparison of Figure 5) is indicated by 185 (measurement may be performed at subframe 5 or 0, depending on which of them is the closest in time).
因此,在此情形中,有效的CQI报告(与附图5的步骤240比较)可以被在由在最早的189:1指示的时间发送(与如果在附图5中的步骤260、261和230的检测都沿着它们相应的是-路径相比),并且较早的CQI报告包括CSI=0。在有效CQI报告能够被发送之前,如果需要新一轮的CRS-PDP和CSI测量(与例如附图5的步骤225比较),CQI报告继续包括CSI=0(与附图5的步骤270比较),并且新一轮的CRS-PDP和CSI测量可以在相应由186、187或者188指示的子帧中调度。随后,有效CQI报告(与附图5的步骤240比较)可以在相应由189:2、198:3或者189:4指示的时间被发送。Therefore, in this case, a valid CQI report (compare with step 240 of Fig. 5) can be sent at the time indicated by 189:1 at the earliest (compared to steps 260, 261 and 230 in Fig. 5) The detections are all along their corresponding Y-paths), and earlier CQI reports include CSI=0. Before a valid CQI report can be sent, if a new round of CRS-PDP and CSI measurements is required (compare with eg step 225 of Figure 5), the CQI report continues to include CSI=0 (compare with step 270 of Figure 5) , and a new round of CRS-PDP and CSI measurements can be scheduled in the subframes indicated by 186, 187 or 188 respectively. Subsequently, a valid CQI report (compare to step 240 of Figure 5) may be sent at the time indicated by 189:2, 198:3 or 189:4, respectively.
因此,对于FDD,具有有效CSI的第一报告能够在189:1、189:2、189:3或者189:4被发送,依赖于其进行了多少次与小区同步的尝试(1或者2),以及检测到的残留时间多大(直接报告或者首先校正定时,重复CQI估计,以及随后报告)。Therefore, for FDD, the first report with valid CSI can be sent at 189:1, 189:2, 189:3 or 189:4, depending on how many attempts it has made to synchronize with the cell (1 or 2), and how much residual time is detected (either direct reporting or correct timing first, repeat CQI estimation, and report later).
附图7是示出了对于在TDD中的盲激活的示例最差情况情形的示意图。Figure 7 is a schematic diagram showing an example worst case scenario for blind activation in TDD.
PCell子帧在在子帧n开始的191处示出,其中SCell激活请求被接收,如由192示出(与附图5的步骤200比较)。虚线箭头193示出了应该被发送到网络的在子帧n+8开始的跟在SCell激活请求192之后的CQI报告。A PCell subframe is shown at 191 starting at subframe n, where an SCell activation request is received, as shown by 192 (compare to step 200 of Figure 5). The dashed arrow 193 shows the CQI report following the SCell activation request 192 starting at subframe n+8 that should be sent to the network.
SCell子帧在190处示出,其中具有编号0和5的子帧是单播子帧而其它子帧用于其它目的(例如子帧1和6是特别子帧而其它子帧可以被用于UL的MBSFN)。用于增益搜索的第一个可使用子帧(与附图5的步骤210比较)由194指示(以及可能的SS-PDP测量),并且对于SS-PDP、CRS-PDP以及CSI测量可使用的第一个子帧(与附图5的步骤255比较)由195指示。SCell subframes are shown at 190, where subframes with numbers 0 and 5 are unicast subframes and other subframes are used for other purposes (eg, subframes 1 and 6 are special subframes and other subframes may be used for UL's MBSFN). The first available subframe for gain search (compare to step 210 of Figure 5) is indicated by 194 (and possibly SS-PDP measurements), and for SS-PDP, CRS-PDP and CSI measurements available The first subframe (compare to step 255 of FIG. 5 ) is indicated by 195 .
因此,在这此情形中,有效的CQI报告(与附图5的步骤240比较)可以被在由在最早的199:1指示的时间发送(与如果在附图5中的步骤260、261和230的检测都沿着它们相应的是-路径相比),并且较早的CQI报告包括CSI=0。在有效CQI报告能够被发送之前,如果需要新一轮的CRS-PDP和CSI测量(与附图5的步骤225比较),CQI报告继续包括CSI=0(与附图5的步骤270比较),并且新一轮的CRS-PDP和CSI测量可以在由197、198等指示的子帧中调度。随后,有效CQI报告(与附图5的步骤240比较)可以在相应由199:2或者198:3指示的时间被发送。Therefore, in this case, a valid CQI report (compare with step 240 of Figure 5) can be sent at the time indicated by 199:1 at the earliest (compared to steps 260, 261 and 261 in Figure 5) 230's detections are all along their corresponding yes-paths), and earlier CQI reports included CSI=0. Before a valid CQI report can be sent, if a new round of CRS-PDP and CSI measurements is required (compare to step 225 of Figure 5), the CQI report continues to include CSI=0 (compare to step 270 of Figure 5), And a new round of CRS-PDP and CSI measurement can be scheduled in subframes indicated by 197, 198, etc. Subsequently, a valid CQI report (compare to step 240 of Figure 5) may be sent at the time indicated by 199:2 or 198:3, respectively.
对于TDD,在此示例中已经假设计划用于增益搜索的子帧的最后的部分能够被使用,并且因此位于有关的子帧的尾端的S-SSIG能够被提取。如果情况不是这样,SS-PDP将必须5ms以后调度。具有有效CSI的第一个报告能够在199:1、199:2、199:3被发送,依赖于它进行了多少次与小区同步的尝试(1或者2),以及检测到的残留时间多大(直接报告或者首先校正定时,重复CQI估计,以及随后报告)。For TDD, it has been assumed in this example that the last part of the subframe planned for gain search can be used, and thus the S-SSIG located at the end of the subframe concerned can be extracted. If this is not the case, the SS-PDP will have to schedule 5ms later. The first report with valid CSI can be sent at 199:1, 199:2, 199:3, depending on how many attempts it made to synchronize with the cell (1 or 2), and how much residual time was detected ( Report directly or correct timing first, repeat CQI estimation, and report later).
在一些情形中,评价是否使用基于通用参考信号的时间偏差估计是有益的(例如CRS-PDP)。附图8示出了根据一些实施例的用于SCell激活的另一个方法示例。此实施例类似于结合附图5描述的那个,但是仅仅依赖于基于同步信号的时间参考估计(例如SS-PDP)。其对于小带宽(例如6RB)可以特别适合,由于在此类情况中可具有过少的CRS而不能获得基于CRS-PDP的估计的良好的质量。In some cases it is beneficial to evaluate whether to use a common reference signal based time offset estimation (eg CRS-PDP). Figure 8 shows another example of a method for SCell activation in accordance with some embodiments. This embodiment is similar to the one described in connection with Figure 5, but relies only on synchronization signal based time reference estimation (eg SS-PDP). It may be particularly suitable for small bandwidths (eg 6RB), as there may be too few CRSs in such cases to obtain good quality of CRS-PDP based estimates.
该方法在步骤300开始,其中SCell激活请求被接收。当在步骤300中UE接收激活请求时,首先在步骤305检测UE是否具有任合合理的关于全频带的增益状态的新鲜信息。The method begins at step 300, where an SCell activation request is received. When the UE receives the activation request in step 300, it is first checked in step 305 whether the UE has any reasonable fresh information about the gain status of the full frequency band.
如果增益状态是未知的(出自步骤305的否-路径),在下一个合适的子帧中的增益搜索被计划,如由步骤310所示的。如果增益状态是已知的(出自步骤305的是-路径),步骤310被跳过并且该方法直接进行到步骤315。If the gain status is unknown (NO-path from step 305 ), a gain search in the next suitable subframe is planned, as shown by step 310 . If the gain state is known (yes-path from step 305 ), step 310 is skipped and the method proceeds directly to step 315 .
在步骤315,检测SCell的定时是否是已知的。At step 315, it is checked whether the timing of the SCell is known.
如果该定时是未知的(出自步骤315的否-路径),UE根据步骤350而最初假设与PCell的相同的定时并且根据步骤355在第一个合适子帧中调度SS-PDP以及CSI测量,并且在步骤360检测是否基于SS-PDP的同步已经实现。If the timing is unknown (NO-path from step 315), the UE initially assumes the same timing as the PCell according to step 350 and schedules SS-PDP and CSI measurements in the first suitable subframe according to step 355, and It is checked at step 360 whether SS-PDP based synchronization has been achieved.
如果(出自步骤360的否-路径)得到的SS-PDP指示同步还没有实现,在步骤359中将CSI=0发送到网络并且重复先前的步骤(步骤355)。If the resulting SS-PDP (NO-path from step 360) indicates that synchronization has not been achieved, in step 359 CSI=0 is sent to the network and the previous steps are repeated (step 355).
如果(出自步骤360的是-路径)得到的SS-PDP指示同步已经实现,方法前进到步骤361,其中SCell的定时估计基于SS-PDP结果被调整。If the resulting SS-PDP (yes-path from step 360) indicates that synchronization has been achieved, the method proceeds to step 361 where the timing estimate of the SCell is adjusted based on the SS-PDP results.
在步骤365,检测是否基于SS-PDP提取的时间残留足够小(例如,提取的时间残留下降到低于阈值)以便于在关于CQI性能的可接受范围内。如果时间残留足够小(出自步骤365的是-路径),该方法前进到步骤340,其中已经产生的CQI估计能够被立即报告。如果时间残留不足够小(出自步骤365的否-路径),在步骤370中CSI=0被发送到网络,在第一个可使用子帧中调度CSI测量,如由步骤325示出的,并且只有在此之后有效CQI报告能够被发送到网络,如由步骤340所示的。At step 365, it is checked whether the SS-PDP-based extracted temporal residual is sufficiently small (eg, the extracted temporal residual falls below a threshold) to be within an acceptable range for CQI performance. If the time residual is sufficiently small (yes-path from step 365), the method proceeds to step 340, where the CQI estimate that has been generated can be reported immediately. If the time residual is not small enough (NO-path from step 365), CSI=0 is sent to the network in step 370, CSI measurements are scheduled in the first available subframe, as shown by step 325, and Only after this a valid CQI report can be sent to the network, as shown by step 340 .
如果在步骤315中检测的SCell定时是先前已知的(出自步骤315的是-路径),此已知的定时参考被初始使用如由步骤320所示,并且在步骤321中确定是否定时足够精确(与步骤365相比)。如果定时参考足够精确(出自步骤321的是-路径),在第一个可使用子帧中调度CSI测量,如由步骤325所示并且在此之后方法如上所述继续。如果定时参考不足够精确(出自步骤321的否-路径),根据步骤326而SS-PDP以及在第一个合适的子帧中调度CSI测量(与步骤355比较)并且随后方法前进到步骤361并且如上所述继续。If the detected SCell timing in step 315 is previously known (yes-path out of step 315), this known timing reference is initially used as shown by step 320, and in step 321 it is determined whether the timing is accurate enough (compare to step 365). If the timing reference is accurate enough (yes-path from step 321), CSI measurements are scheduled in the first available subframe, as shown by step 325 and after that the method continues as described above. If the timing reference is not accurate enough (NO-path from step 321), SS-PDP according to step 326 and schedule CSI measurements in the first suitable subframe (compare to step 355) and then the method proceeds to step 361 and Continue as above.
在有效CSI报告(即具有不是0的CQI)已经被发送到网络(如由步骤340所示)之后,SCell激活可以实现,如由步骤345所示。After a valid CSI report (ie with a CQI other than 0) has been sent to the network (as shown by step 340 ), SCell activation may be effected, as shown by step 345 .
下面,将给出如何可以生成SS-PDP(与例如附图5的步骤255和/或附图8的步骤355和326相比)的示例。如之前所提及的,降低ISI能够改善SS-PDP并且因此导致时间偏移的更精确的估计。为了降低ISI,三个或者更多部分重叠的OFDM符号跨度(例如在PCell定时周围的±1/2个OFDM符号(±33.3μs))可以被使用。Below, an example will be given of how the SS-PDP can be generated (compare eg step 255 of Fig. 5 and/or steps 355 and 326 of Fig. 8). As mentioned before, reducing the ISI can improve the SS-PDP and thus lead to a more accurate estimation of the time offset. To reduce ISI, three or more partially overlapping OFDM symbol spans (eg ±1/2 OFDM symbols (±33.3 μs) around PCell timing) can be used.
由于部分重叠的符号通常仅仅用于SS-PDP,并且同步信号仅仅占用多达1200RE的中间的72个,对于以较低软件消耗的实现而切实可行的备选的方法能够被用于获得重叠符号的近似。此方法在附图10中结合附图9进行了解释,其中图10是示出了用于实现基于FDD符号位置的SS PDP的方法示例的流程图以及附图9是示出了LTE FDD信号布置示例的示意图。Since partially overlapping symbols are typically only used for SS-PDP, and the sync signal only occupies up to the middle 72 of the 1200RE, an alternative method that is practical for implementation with lower software consumption can be used to obtain overlapping symbols approximation. This method is explained in conjunction with FIG. 9 in FIG. 10 , which is a flowchart showing an example of a method for implementing FDD symbol location based SS PDP and FIG. 9 showing an LTE FDD signal arrangement Schematic of the example.
在附图9中,在910(对应于CP 911、913、915以及917的OFDM符号912、914、916和918,其中914包括S-SSIG而916包括P-SSIG)示出了PCell定时并且在920处(指示为922、924、926和928的OFDM符号跨度S0、S1、S2和S3)示出了假设的SCell定时(即,其中SCell FFT硬件可以被操作)。以+/-半个符号(还被称为内插符号,例如以1.92MHz)重叠了假设的SCell定时的OFDM符号跨度被示出用于S1(S1-931和S1+932)和S2(S2-933和S2+934),并且由930示出了SCell中对于SSIG的可能的位置。如下参考附图10可以描述示例方法:In Figure 9, PCell timing is shown at 910 (OFDM symbols 912, 914, 916 and 918 corresponding to CPs 911, 913, 915 and 917, where 914 includes S-SSIG and 916 includes P-SSIG) and at Hypothetical SCell timing (ie, where the SCell FFT hardware can be operated) is shown at 920 (OFDM symbol spans SO, Sl, S2, and S3 indicated as 922, 924, 926, and 928). OFDM symbol spans that overlap the assumed SCell timing by +/- half a symbol (also called interpolated symbols, eg, at 1.92 MHz) are shown for S1 (S1-931 and S1+932) and S2 (S2) -933 and S2+934), and the possible locations for the SSIG in the SCell are shown by 930. An example method can be described with reference to FIG. 10 as follows:
1、步骤400:基于用于PCell的信号定时,使用FFT(例如在HW中实现的)来将用于S-SSIG的3个OFDM符号S0、S1、S2(922、924、926)以及用于P-SSIG的S1、S2、S3(924、926、928)转换为频域。1. Step 400: Based on the signal timing for PCell, use FFT (eg implemented in HW) to divide the 3 OFDM symbols S0, S1, S2 (922, 924, 926) for S-SSIG and S1, S2, S3 (924, 926, 928) of P-SSIG are converted to frequency domain.
2、步骤410:对于每一个符号,提取72个中央RE,即其中同步信号可以被发现的带宽。补零从而获得长度128。应当注意到其它长度也可以视情况而定而被使用,例如关于FFT实现的大小。使用较大的长度通常改善了分辨率但是增加了复杂度。在此示例中,本文描述的实施例64的长度能够被考虑,由于彼长度将能够覆盖中央62个RE。此类选择可能通常导致较差分辨率和更多的干扰。2. Step 410: For each symbol, extract 72 central REs, ie the bandwidth in which the synchronization signal can be found. Zero-padded to get length 128. It should be noted that other lengths may also be used depending on the situation, eg with respect to the size of the FFT implementation. Using larger lengths generally improves resolution but increases complexity. In this example, the length of the embodiment 64 described herein can be considered since that length would be able to cover the central 62 REs. Such choices may generally result in poorer resolution and more interference.
3、步骤420:计算逆FFT从而获得在例如1.4MHz上看到的时域信号的近似(通常依赖于FFT实现)。采样率将例如对于1.4MHz小区带宽而对应于1.92M样本/秒。3. Step 420: Compute the inverse FFT to obtain an approximation of the time domain signal seen eg at 1.4 MHz (usually FFT implementation dependent). The sampling rate would eg correspond to 1.92M samples/sec for a 1.4MHz cell bandwidth.
4、步骤430:将时域OFDM符号布置在向量中,具有以零替代的循环前缀(CP)。4. Step 430: Arrange the time-domain OFDM symbols in a vector with a cyclic prefix (CP) substituted with zeros.
5、步骤440:提取“内插的”OFDM符号S1-、S1+、S2-和S2+,(931、932、933、934)。5. Step 440: Extract "interpolated" OFDM symbols S1-, S1+, S2- and S2+, (931, 932, 933, 934).
6、步骤450:将提取的“内插的”符号提供给128点FFT。6. Step 450: Provide the extracted "interpolated" symbols to a 128 point FFT.
7、步骤460:基于对于S-SSIG的S1-、S1和S1+,以及对于P-SSIG的S2-、S2和S2+计算SS-PDP。7. Step 460: Calculate SS-PDP based on S1-, S1 and S1+ for S-SSIG and S2-, S2 and S2+ for P-SSIG.
产生SS-PDP可以用来包括变换至时域。信号组合从而产生SS-PDP可以在频域执行(相干地,在变换到时域之前)或者在时域中(非相干地,在变换为时域之后)。变换到频域和从频域变换能够实现携带同步信号的资源单元的去旋转。对于一些细合,可以需要相位差的调整(例如S1和S+,由于它们关于PGell OFDM符号参考的偏移是不同的)而对于其它组合可以是不需要的(例如S1和S2)。Generating the SS-PDP can be used to include transforming to the time domain. Signal combining to produce the SS-PDP can be performed in the frequency domain (coherently, before transforming to the time domain) or in the time domain (non-coherently, after transforming to the time domain). Transforming to and from the frequency domain enables de-rotation of resource elements carrying synchronization signals. For some refinements, adjustment of the phase difference may be required (eg, S1 and S+, since their offsets with respect to the PGell OFDM symbol reference are different) and may not be needed for other combinations (eg, S1 and S2).
附图11是示例接收器的框图。该接收器示例可能适合于执行本文描述的任何方法,例如,附图5、8、10和12的任何方法。Figure 11 is a block diagram of an example receiver. This receiver example may be suitable for performing any of the methods described herein, eg, any of the methods of FIGS. 5 , 8 , 10 and 12 .
附图11的接收器示例包括接收器前端(FE RX)1100、带宽BW0的数字滤波器(DF)1110、快速傅里叶变换单元(FFT)1120、信道估计器(Ch Est)1130、解码器1140、信号功率估计器(Sign Pwr Est)1150、小区追踪器1180、小区扫描器1170、带宽BW1的数字滤波器(DF)1160以及控制单元(CU)1190。控制单元1190可以,例如适合于导致其它组件来以结合任何附图5、8、10和12而描述的顺序来执行的步骤的执行。The receiver example of FIG. 11 includes a receiver front end (FE RX) 1100, a digital filter (DF) 1110 of bandwidth BW0 , a fast Fourier transform unit (FFT) 1120, a channel estimator (Ch Est) 1130, a decoding 1140 , a signal power estimator (Sign Pwr Est) 1150 , a cell tracker 1180 , a cell scanner 1170 , a digital filter (DF) 1160 of bandwidth BW1 , and a control unit (CU) 1190 . The control unit 1190 may, for example, be adapted to cause other components to perform the steps performed in the order described in connection with any of FIGS. 5 , 8 , 10 and 12 .
根据一些实施例,当同时调度SS-PDP、CRS-PDP和CSI测量时,附图11的接收器可以在全部下行链路系统带宽(BW0)开放。使用FFT硬件加速器(1120)将接收的符号变换为频域,通常导致每一个OFDM符号N RB次12个资源单元(RE)(因为在频域中每一个资源块具有12个资源单元,参见例如3GPP技术规范(TS)36.211),其中N_RB明确地是下行链路系统(小区)带宽BW0或者资源块(例如带宽等于6、15、25、50、75或者100个资源块,参见例如3GPP技术规范(TS)36.101)。该FFT硬件加速器1120可以例如定尺寸为每一个OFDM符号时间处理一个OFDM符号。如果支持处理如结合附图9描述的部分重叠的OFDM符号是期望的,将会通常要求在FFT中的更快速的处理。这将对FFT硬件加速器的复杂度和/或要求的存储器的数量具有负面影响(即增加的复杂度和/或要求更多的存储器空间)。因此,附图10的基于软件的方法是有益的并且可以避免关于FFT复杂度和存储器要求的缺点。According to some embodiments, the receiver of FIG. 11 may be open at the full downlink system bandwidth (BW0 ) when SS-PDP, CRS-PDP, and CSI measurements are scheduled simultaneously. Transforming the received symbols into the frequency domain using an FFT hardware accelerator (1120) typically results in N RB times 12 resource elements (REs) per OFDM symbol (since each resource block has 12 resource elements in the frequency domain, see e.g. 3GPP Technical Specification (TS) 36.211), where N_RB is explicitly the downlink system (cell) bandwidth BW0 or resource blocks (eg bandwidth equal to 6, 15, 25, 50, 75 or 100 resource blocks, see eg 3GPP technology Specification (TS) 36.101). The FFT hardware accelerator 1120 may, for example, be sized to process one OFDM symbol for each OFDM symbol time. If it is desired to support processing partially overlapping OFDM symbols as described in connection with Figure 9, faster processing in the FFT will generally be required. This will have a negative impact on the complexity of the FFT hardware accelerator and/or the amount of memory required (ie, increased complexity and/or requires more memory space). Therefore, the software-based approach of FIG. 10 is beneficial and can avoid disadvantages with respect to FFT complexity and memory requirements.
附图12示出了根据实现在蜂窝通信网络中可使用的无线通信装置与辅小区时间同步的实施例的示例载波聚合应用方法。当已经接收到辅小区激活请求时(1201,与附图5的步骤200和附图8的步骤300比较),确定是否辅小区的时间参考对于无线通信装置是已知的(1202,与附图5的步骤215和附图8的步骤315比较)。Figure 12 illustrates an example carrier aggregation application method according to an embodiment implementing time synchronization of a wireless communication device usable in a cellular communication network with a secondary cell. When a secondary cell activation request has been received (1201, compared with step 200 of FIG. 5 and step 300 of FIG. 8), it is determined whether the time reference of the secondary cell is known to the wireless communication device (1202, compared with FIG. 8). Step 215 of FIG. 5 and step 315 of FIG. 8 are compared).
如果(1202)辅小区的时间参考对于无线通信装置是未知的(出自步骤1202否-路径),主小区的时间参考被用作辅小区的初步时间参考(1203,与附图5的步骤250和附图8的步骤350比较),即,辅小区的初步时间参考被设置为等于载波聚合应用的主小区的时间参考。If (1202) the time reference of the secondary cell is not known to the wireless communication device (NO-path from step 1202), the time reference of the primary cell is used as the preliminary time reference of the secondary cell (1203, in conjunction with steps 250 and 250 of FIG. 5 ). Step 350 of FIG. 8 compares), that is, the preliminary time reference of the secondary cell is set equal to the time reference of the primary cell to which the carrier aggregation is applied.
随后,基于初步时间参考和在辅小区中传输的一个或者多个同步信号来执行(1204)基于同步信号的时间参考检测(基于同步信号的时间偏差确定),和基于初步时间参考和在辅小区中传输的一个或者多个参考信号来执行(1205)辅小区的基于初步时间参考的信道状态测量。例如,步骤1204和1205可以并行执行。任选地,(并且可能与步骤1204和/或1205并行的)还可以执行(1206)基于通用参考信号的时间参考检测(基于通用参考信号的时间偏差确定),与附图5的步骤255和附图8的步骤355比较。在步骤1207中(与附图5的步骤259、240、270和附图8的步骤359、340、370比较)基于步骤1204和1205(并且任选地1206)的结果来设置信道质量指示符(CQI值)的值,并且在1211中,将包括信道质量指示符(CQI)的信道状态信息(CSI)报告传输到蜂窝通信网络中。例如,信道质量指示符的值可以被基于基于同步信号的检测设置为标称值或者基于基于初步时间参考的信道状态测量的值。Then, a synchronization signal-based time reference detection (synchronization signal-based time offset determination) is performed (1204) based on the preliminary time reference and one or more synchronization signals transmitted in the secondary cell, and based on the preliminary time reference and the synchronization signal(s) in the secondary cell to perform (1205) preliminary time reference-based channel state measurements of the secondary cell. For example, steps 1204 and 1205 may be performed in parallel. Optionally, (and possibly in parallel with steps 1204 and/or 1205) a common reference signal-based time reference detection (determined based on the time offset of the common reference signal) may also be performed (1206), in accordance with steps 255 and 255 of FIG. 5 . Step 355 of FIG. 8 compares. In step 1207 (compare with steps 259, 240, 270 of Figure 5 and 359, 340, 370 of Figure 8) a channel quality indicator ( CQI value) and, in 1211, a channel state information (CSI) report including a channel quality indicator (CQI) is transmitted into the cellular communication network. For example, the value of the channel quality indicator may be set to a nominal value based on synchronization signal based detection or a value based on a preliminary time reference based channel state measurement.
如果(1202)辅小区的时间参考对于无线通信装置(出自步骤1202的是-路径)是已知的,使用彼时间参考(与附图5的步骤220和附图8的步骤320比较)。基于已知的时间参考的信道状态测量(1208)被并行于基于通用参考信号的时间参考检测(1209)而执行(与附图5的步骤225和附图8的步骤326比较)。基于通用参考信号的时间参考检测可以被采用,如果需要已知时间参考的精细调谐。在步骤1210中基于步骤1208(以及可选地1209)的结果来设置CQI值(与附图5的步骤240、270和附图8的步骤340、370比较),并且包括CQI的CSI报告在1211中传输。If (1202) the time reference of the secondary cell is known to the wireless communication device (yes-path from step 1202), that time reference is used (compare step 220 of Figure 5 and step 320 of Figure 8). The channel state measurement (1208) based on the known time reference is performed in parallel with the common reference signal based time reference detection (1209) (compare step 225 of Fig. 5 and step 326 of Fig. 8). Time reference detection based on a common reference signal can be employed if fine tuning of a known time reference is required. The CQI value is set in step 1210 based on the results of step 1208 (and optionally 1209 ) (compare to steps 240, 270 of FIG. 5 and steps 340, 370 of FIG. 8), and the CSI report including the CQI is reported at 1211 transmission in.
附图14示出了示意性的无线通信装置(例如调制解调器或者UE)(1400),其包括接收器RX(1401)、传输器TX(1402)和信号处理器电路SIGN PROC(1403)。示例信号处理器电路包括同步信号时间参考检测器SS DET(1405)(其又可以包括一个或者多个快速傅里叶变换单元或者可以是另外与一个或者多个快速傅里叶变换单元相关的,该一个或者多个快速傅里叶变换单元在硬件和/或软件中被实现)、通用参考信号时间参考检测器CRS DET(1407)(其又可以包括信道估计器或者可以是另外与信道估计器相关的)、信道状态信息测量单元CS I MEAS(1409)以及处理单元(1404)。该无线通信装置1400可以服从通用移动电信标准,长期演进-UMTS-LTE。Figure 14 shows an exemplary wireless communication device (eg modem or UE) (1400) comprising a receiver RX (1401), a transmitter TX (1402) and a signal processor circuit SIGN PROC (1403). The example signal processor circuit includes a synchronization signal time reference detector SS DET (1405) (which in turn may include one or more fast Fourier transform units or may be otherwise associated with one or more fast Fourier transform units, The one or more fast Fourier transform units are implemented in hardware and/or software), a common reference signal time reference detector CRS DET (1407) (which in turn may include a channel estimator or may be otherwise associated with a channel estimator associated), a channel state information measurement unit CS I MEAS (1409) and a processing unit (1404). The wireless communication apparatus 1400 may be compliant with the Universal Mobile Telecommunications Standard, Long Term Evolution-UMTS-LTE.
附图11和14的示例调制解调器或者UE或者无线装置可以包括适合于执行与附图5、8、9、10和12相关的上述处理的布置。The example modem or UE or wireless device of FIGS. 11 and 14 may include arrangements suitable for performing the processes described above in relation to FIGS. 5 , 8 , 9 , 10 and 12 .
例如,附图14的接收器1401可以适合于依照附图12的步骤1201接收辅小区请求,并且处理单元404可以适合于执行步骤1202、1203、1207和1210。处理单元1404可以还适合于导致同步信号时间参考检测器1405执行步骤1204、导致通用参考信号时间参考检测器1407执行步骤1206和1209、以及导致信道状态信息测量单元1409执行步骤1205和1208。传输器1402可以适合于依照步骤1211传输信道状态信息。For example, the receiver 1401 of FIG. 14 may be adapted to receive a secondary cell request in accordance with step 1201 of FIG. 12 , and the processing unit 404 may be adapted to perform steps 1202 , 1203 , 1207 and 1210 . The processing unit 1404 may be further adapted to cause the synchronization signal time reference detector 1405 to perform step 1204, the common reference signal time reference detector 1407 to perform steps 1206 and 1209, and the channel state information measurement unit 1409 to perform steps 1205 and 1208. The transmitter 1402 may be adapted to transmit channel state information in accordance with step 1211.
描述的实施例及它们的等同物可以在软件或者硬件或者它们的组合中实现。它们可以由与通信装置相关或者集成到通信装置的通用目的电路来执行,例如数字信号处理器(DSP)、中央处理单元(CPU)、协作处理器单元、现场可编程门阵列(FPGA)或者其它可编程硬件,或者由专用电路例如专用集成电路(ASIC)执行。所有此类形式都被考虑为在本公开的范围内。The described embodiments and their equivalents may be implemented in software or hardware or a combination thereof. They may be performed by general purpose circuits associated with or integrated into the communication device, such as a digital signal processor (DSP), central processing unit (CPU), co-processor unit, field programmable gate array (FPGA) or other Programmable hardware, or implemented by special purpose circuits such as application specific integrated circuits (ASICs). All such forms are considered to be within the scope of this disclosure.
实施例可以出现电子设备中(例如无线通信装置),其包括电路/逻辑或者根据任何实施例执行方法。电子设备可以例如是UE、便携或者手持移动无线电通信设备、移动无线电终端、移动电话、通信器、电子组织器、智能电话、计算机、笔记本计算机、USB-棒、插入卡、嵌入的驱动器或者移动游戏装置。Embodiments may be embodied in an electronic device (eg, a wireless communication device) that includes circuitry/logic or performs a method in accordance with any embodiment. The electronic device may be, for example, a UE, a portable or hand-held mobile radio communication device, a mobile radio terminal, a mobile phone, a communicator, an electronic organizer, a smartphone, a computer, a notebook computer, a USB-stick, an add-in card, an embedded drive or a mobile game device.
根据一些实施例,计算机程序产品包括计算机可读媒体,诸如,例如在附图13中所示的磁盘或者CD-ROM(1300)。该计算机可读媒体可以在其上存储了包括程序指令的计算机程序。该计算机程序可以是可加载到数据处理单元(1330)中的,其可以例如被包括在移动终端(1310)中。当加载到数据处理单元中时,计算机程序被存储在与数据处理单元相关或者集成到数据处理单元的存储器(1320)中。根据一些实施例,计算机程序可以,当加载到数据处理单元并且由其运行时,导致数据处理单元执行根据例如在任意附图5、8、10和/或12中示出的方法的方法步骤。According to some embodiments, the computer program product comprises a computer-readable medium, such as, for example, a disk or CD-ROM (1300) as shown in FIG. 13 . The computer-readable medium may have stored thereon a computer program including program instructions. The computer program may be loadable into the data processing unit (1330), which may eg be included in the mobile terminal (1310). When loaded into the data processing unit, the computer program is stored in a memory (1320) associated with or integrated into the data processing unit. According to some embodiments, a computer program may, when loaded into and executed by a data processing unit, cause the data processing unit to perform method steps according to methods such as shown in any of Figures 5, 8, 10 and/or 12.
本文已参考各种实施例。但是,本领域技术人员可以意识到将仍然落入到权利要求的范围内的描述的实施例的多个变化。例如,本文描述的方法实施例通过以一定顺序被执行的方法步骤来描述了示例方法。但是,认识到事件的这些顺序可以以其它顺序发生,而没有超出权利要求的范围。此外,一些方法步骤可以并行地执行,尽管它们已经被描述为被顺序执行。Reference has been made herein to various embodiments. However, those skilled in the art will appreciate numerous variations of the described embodiments that would still fall within the scope of the claims. For example, the method embodiments described herein describe example methods in terms of method steps being performed in a certain order. However, it is recognized that these orders of events may occur in other orders without departing from the scope of the claims. Furthermore, some method steps may be performed in parallel although they have been described as being performed sequentially.
以同样的方式,应该注意到在实施例的描述中,将功能块分割为具体的单元决不是限制性的。相反的,这些分割仅仅是示例。本文描述的功能块作为一个单元可以被分离为两个或者更多单元。以相同的方式,本文描述的作为两个或者更多单元而被实现的功能块可以被实现为一个单元而没有超出权利要求的范围。In the same way, it should be noted that in the description of the embodiments, the division of functional blocks into specific units is by no means limiting. Rather, these segmentations are just examples. The functional blocks described herein as one unit may be separated into two or more units. In the same manner, functional blocks described herein that are implemented as two or more units may be implemented as one unit without exceeding the scope of the claims.
因此,应该理解描述的实施例的细节仅仅是用于示例性的目的而决不是限制性的。而是,落入在权利要求范围内的所有变化都意在被包括于其中。Therefore, it is to be understood that the details of the described embodiments are for purposes of illustration only and are in no way limiting. Rather, all changes that come within the scope of the claims are intended to be embraced therein.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201380075641.7ACN105532051B (en) | 2013-04-15 | 2013-09-25 | Secondary cell synchronization for carrier aggregation |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2013074187 | 2013-04-15 | ||
| CNPCT/CN2013/074187 | 2013-04-15 | ||
| CN201380075641.7ACN105532051B (en) | 2013-04-15 | 2013-09-25 | Secondary cell synchronization for carrier aggregation |
| PCT/CN2013/084150WO2014169576A1 (en) | 2013-04-15 | 2013-09-25 | Secondary cell synchronization for carrier aggregation |
| Publication Number | Publication Date |
|---|---|
| CN105532051A CN105532051A (en) | 2016-04-27 |
| CN105532051Btrue CN105532051B (en) | 2019-11-05 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201380075641.7AActiveCN105532051B (en) | 2013-04-15 | 2013-09-25 | Secondary cell synchronization for carrier aggregation |
| Country | Link |
|---|---|
| CN (1) | CN105532051B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107548146B (en)* | 2016-06-23 | 2022-01-28 | 中兴通讯股份有限公司 | Synchronization signal transmission method, synchronization signal reception method, transmission device, and reception device |
| CN106900054B (en)* | 2017-04-01 | 2020-08-14 | 宇龙计算机通信科技(深圳)有限公司 | A multi-carrier transmission method, user equipment and base station |
| CN110035491B (en)* | 2018-01-11 | 2020-06-19 | 维沃移动通信有限公司 | A synchronization instruction method and device |
| US11160050B2 (en) | 2018-03-28 | 2021-10-26 | Samsung Electronics Co., Ltd. | Method and apparatus for supporting large subcarrier spacing for SS/PBCH block |
| CN113595696B (en)* | 2020-04-30 | 2022-12-27 | 华为技术有限公司 | Communication method, device and system |
| CN114786251B (en)* | 2022-06-01 | 2024-06-28 | 山东闻远通信技术有限公司 | 5G cell synchronization method and device, electronic equipment and storage medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010050761A (en)* | 2008-08-22 | 2010-03-04 | Meidensha Corp | Time synchronization mode and time synchronization method of radio communication system |
| WO2011085200A1 (en)* | 2010-01-08 | 2011-07-14 | Interdigital Patent Holdings, Inc. | Maintaining time alignment with multiple uplink carriers |
| CN102932880A (en)* | 2011-08-08 | 2013-02-13 | 中兴通讯股份有限公司 | Method and device for selecting cells in multi-carrier communication system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010050761A (en)* | 2008-08-22 | 2010-03-04 | Meidensha Corp | Time synchronization mode and time synchronization method of radio communication system |
| WO2011085200A1 (en)* | 2010-01-08 | 2011-07-14 | Interdigital Patent Holdings, Inc. | Maintaining time alignment with multiple uplink carriers |
| CN102932880A (en)* | 2011-08-08 | 2013-02-13 | 中兴通讯股份有限公司 | Method and device for selecting cells in multi-carrier communication system |
| Publication number | Publication date |
|---|---|
| CN105532051A (en) | 2016-04-27 |
| Publication | Publication Date | Title |
|---|---|---|
| EP2987370B1 (en) | Secondary cell synchronization for carrier aggregation | |
| JP5663028B2 (en) | Method and apparatus for frequency and time synchronization | |
| US20190239249A1 (en) | Processing of random access preamble sequences | |
| KR101505091B1 (en) | Apparatus and method for initial synchronization wireless communication system based on ofdm | |
| US9479218B2 (en) | Methods for LTE cell search with large frequency offset | |
| CN105532051B (en) | Secondary cell synchronization for carrier aggregation | |
| CN103782632B (en) | Small region search method in wireless communication system | |
| US9398617B2 (en) | Methods and apparatus for random access in a communication system | |
| HK1199681A1 (en) | Synchronization time difference measurements in ofdm systems | |
| WO2015139590A1 (en) | Frequency offset estimation and compensation method and device | |
| CN102130883A (en) | A method for time-frequency synchronization in TD-LTE system | |
| JP2009065673A (en) | Method and apparatus for CFO synchronization of OFDM receiver | |
| US9961655B1 (en) | Method and apparatus for low complexity frequency synchronization in LTE wireless communication systems | |
| JP2012531848A (en) | Time offset estimation apparatus and method for orthogonal frequency division multiplexing system | |
| AU2017219686B2 (en) | NB-loT receiver operating at minimum sampling rate | |
| US20100046359A1 (en) | Wireless Terminal, Base Station and Channel Characteristic Estimating Method | |
| US9674808B1 (en) | Method and apparatus for early frequency synchronization in LTE wireless communication systems | |
| US10212679B1 (en) | Method and apparatus for delay spread estimation | |
| CN101741800B (en) | Synchronous searching method | |
| CN105007095A (en) | Method and apparatus for estimating integral frequency offset in cell initial search process | |
| US9866368B1 (en) | Method and apparatus for time tracking in OFDM wireless communication systems | |
| CN109561042B (en) | A Timing Frequency Synchronization Method of OFDM System Receiver | |
| CN101674280B (en) | When detecting OFDM symbol partially and the method for frequency deviation | |
| KR101421305B1 (en) | ractional frequency offset estimation method and receiver using the same | |
| KR20110009552A (en) | Robust Frame Synchronization Acquisition Method for Multi-Cell Interference and Cell Search Method Using the Same |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |