Movatterモバイル変換


[0]ホーム

URL:


CN105479490A - Real-time dynamic obstacle avoidance device and obstacle avoidance method of dual robots - Google Patents

Real-time dynamic obstacle avoidance device and obstacle avoidance method of dual robots
Download PDF

Info

Publication number
CN105479490A
CN105479490ACN201510992455.0ACN201510992455ACN105479490ACN 105479490 ACN105479490 ACN 105479490ACN 201510992455 ACN201510992455 ACN 201510992455ACN 105479490 ACN105479490 ACN 105479490A
Authority
CN
China
Prior art keywords
robot
obstacle avoidance
dual
distance
robot body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510992455.0A
Other languages
Chinese (zh)
Inventor
张永红
杨吉祥
苏畅
许剑锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and TechnologyfiledCriticalHuazhong University of Science and Technology
Priority to CN201510992455.0ApriorityCriticalpatent/CN105479490A/en
Publication of CN105479490ApublicationCriticalpatent/CN105479490A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开了一种双机器人实时避障装置及避障方法,避障装置包括避障主控模块,避障主控模块包括依次相连的位置检测模块、碰撞检测模块以及动态避障模块,位置检测模块与双机器人本体的电机通信,实时采集双机器人本体的位置信息,碰撞检测模块接收位置检测模块发送的位置信息,并与双机器人本体发生碰撞的安全距离进行比较,动态避障模块接收碰撞检测模块的比较值进行双机器人本体的避障路径规划并将其发送于双机器人本体的电机驱动器执行新的避障路径。按照本发明实现的双机器人实时避障装置及避障方法,能够减少避障过程中的机器人等待时间,实现实时动态避障,由此提高双机器人的工作效率。

The invention discloses a dual-robot real-time obstacle avoidance device and an obstacle avoidance method. The obstacle avoidance device includes an obstacle avoidance main control module, and the obstacle avoidance main control module includes a position detection module, a collision detection module and a dynamic obstacle avoidance module connected in sequence. The detection module communicates with the motors of the dual robot bodies to collect the position information of the dual robot bodies in real time. The collision detection module receives the position information sent by the position detection module and compares it with the safety distance of the collision between the dual robot bodies. The dynamic obstacle avoidance module receives the collision information. The comparison value of the detection module plans the obstacle avoidance path of the dual robot body and sends it to the motor driver of the dual robot body to execute a new obstacle avoidance path. The dual-robot real-time obstacle avoidance device and obstacle avoidance method realized according to the present invention can reduce the waiting time of the robots in the obstacle avoidance process, realize real-time dynamic obstacle avoidance, thereby improving the working efficiency of the dual robots.

Description

Translated fromChinese
一种双机器人实时动态避障装置及其避障方法A dual-robot real-time dynamic obstacle avoidance device and its obstacle avoidance method

技术领域technical field

本发明属于工业机器人控制领域,更具体地,涉及一种双机器人实时动态避障装置及其避障方法。The invention belongs to the field of industrial robot control, and more specifically relates to a dual-robot real-time dynamic obstacle avoidance device and an obstacle avoidance method.

背景技术Background technique

目前,传统机器人行业使用的都是单臂机器人,也就是工作位置固定,机器人末端安装相应的工具,运动到工作位置来进行相应的搬运、装配、焊接、打磨等工作。而随着对加工效率的提高,一般在加工操作中都需要进行多个机器人的协同操作,而现有的双工业机器人协同工作时,每个机器人都由自己的控制器独立控制。为了防止发生碰撞,当一个单臂机器人要进入某一个共同工作区域时,必须实时发送碰撞信号到另外一台单臂机器人进行确认,并且必须待一个机器人退出该共同工作区域后,另外一台机器人才能进入工作,因此双机器人协作过程中存在等待,导致其工作效率存在很大的瓶颈。At present, the traditional robot industry uses single-arm robots, that is, the working position is fixed, and the corresponding tools are installed at the end of the robot, which moves to the working position for corresponding handling, assembly, welding, grinding and other work. With the improvement of processing efficiency, the cooperative operation of multiple robots is generally required in the processing operation. However, when the existing dual industrial robots work together, each robot is independently controlled by its own controller. In order to prevent collisions, when a single-arm robot enters a certain co-working area, it must send a collision signal to another single-arm robot for confirmation in real time, and after one robot exits the co-working area, another robot must Therefore, there is waiting in the process of dual-robot collaboration, resulting in a large bottleneck in its work efficiency.

基于智能避障系统的双臂机器人,可以实现一个机器人在搬运、装配、焊接或者打磨工件时,另一个机器人可以在同一区域进行加工操作,不存在碰撞等候区,更好地满足了工业生产过程的多机器人机协同工作能力。The dual-arm robot based on the intelligent obstacle avoidance system can realize that when one robot is handling, assembling, welding or grinding workpieces, the other robot can perform processing operations in the same area. There is no collision waiting area, which better meets the industrial production process. Multi-robot machine collaboration ability.

目前现有技术中申请号为201010615758.8,公开号为CN101512453B,名称为“避免工业机器人与物体之间碰撞的方法和设备”的专利文献提供了机器人对碰撞预测的可能性,该技术的局限性体现在于,不能实现动态的避障,当预测到机器人与周围物体发生碰撞时,仅发信号给机器人让其停止运动,无法保证两机器人协同工作的连续性;另外一篇申请号201510079471.0,公开号CN104760043A,名称为“一种基于智能避障系统的双臂机器人控制器”,该技术解决了双臂机器人的无碰撞运动规划,该种避障技术的局限在于机器人必须按照预先离线编程规划好的路径工作,不能在实际工作过程中进行实时碰撞检测及动态避免碰撞。In the current prior art, the application number is 201010615758.8, the publication number is CN101512453B, and the patent document titled "Method and Device for Avoiding Collision between Industrial Robots and Objects" provides the possibility for robots to predict collisions, and the limitations of this technology reflect The reason is that dynamic obstacle avoidance cannot be realized. When a collision between the robot and surrounding objects is predicted, only a signal is sent to the robot to stop the movement, and the continuity of the cooperative work of the two robots cannot be guaranteed; another application number is 201510079471.0, and the publication number is CN104760043A , named "a dual-arm robot controller based on an intelligent obstacle avoidance system", this technology solves the collision-free motion planning of a dual-arm robot, the limitation of this obstacle avoidance technology is that the robot must follow the pre-planned offline programming path Work, real-time collision detection and dynamic collision avoidance cannot be performed in the actual work process.

发明内容Contents of the invention

针对现有技术的以上缺陷或改进需求,本发明提供了一种双机器人实时动态避障装置及其避障方法,其目的在于减少避障过程中的机器人等待时间,实现实时动态避障,由此提高双机器人的工作效率。Aiming at the above defects or improvement needs of the prior art, the present invention provides a dual-robot real-time dynamic obstacle avoidance device and its obstacle avoidance method, the purpose of which is to reduce the robot waiting time in the obstacle avoidance process and realize real-time dynamic obstacle avoidance This improves the work efficiency of the dual robot.

为实现上述目的,按照本发明的一个方面,提供了一种双机器人实时避障装置,其特征在于,所述避障装置包括避障主控模块,实现所述避障主控模块与外部设备及所述机器人本体通信的通讯模块以及输入输出模块,所述避障主控模块包括依次相连的位置检测模块、碰撞检测模块以及动态避障模块,所述位置检测模块与所述双机器人本体的电机通信,实时采集所述双机器人本体的位置信息,所述碰撞检测模块接收所述位置检测模块发送的所述位置信息,并与所述双机器人本体发生碰撞的安全距离进行比较,所述动态避障模块接收所述碰撞检测模块的比较值进行所述双机器人本体的避障路径规划并将其发送于所述双机器人本体(9,11)的电机驱动器执行新的避障路径。In order to achieve the above object, according to one aspect of the present invention, a dual-robot real-time obstacle avoidance device is provided. Communication module and input/output module for communicating with the robot body, the obstacle avoidance main control module includes a position detection module, a collision detection module and a dynamic obstacle avoidance module connected in sequence, the position detection module and the dual robot body Motor communication, real-time acquisition of the position information of the dual robot body, the collision detection module receives the position information sent by the position detection module, and compares it with the safety distance of the collision of the dual robot body, the dynamic The obstacle avoidance module receives the comparison value of the collision detection module to plan the obstacle avoidance path of the dual robot body and sends it to the motor drivers of the dual robot body (9, 11) to execute a new obstacle avoidance path.

进一步地,所述安全距离的定义如下:对所述双机器人本体的大臂、小臂以及手腕进行包络体表达,所述包络体中间由圆柱体组成,所述包络体的两端由球体组成,所述安全距离由所述包络体的尺寸距离表达。Further, the definition of the safety distance is as follows: express the envelope body of the big arm, forearm and wrist of the dual robot body, the middle of the envelope body is composed of a cylinder, and the two ends of the envelope body Composed of spheres, the safety distance is expressed by the dimension distance of the envelope.

进一步地,所述避障路径规划的执行可由其中之一的所述机器人本体完成或者由两者共同完成。Further, the execution of the obstacle avoidance path planning can be completed by one of the robot bodies or jointly by both.

进一步地,所述位置信息包括角度信息和角速度信息。Further, the position information includes angle information and angular velocity information.

本发明还公开了一种双机器人的实时动态避障方法,其特征在于,该方法包括如下步骤:The present invention also discloses a real-time dynamic obstacle avoidance method for dual robots, which is characterized in that the method comprises the following steps:

(1)获取所述双机器人本体的位置信息;(1) obtaining the position information of the dual robot bodies;

(2)根据所述步骤(1)中获取的位置信息来进行是否需要避障的判断;(2) Carry out the judgment of whether obstacle avoidance is needed according to the position information obtained in the step (1);

(3)如果经过所述步骤(2)的判断之后需要避障,则实时进行新的路径规划,并发送所述路径规划于所述机器人本体执行。(3) If obstacle avoidance is required after the judgment in step (2), perform new path planning in real time, and send the path planning to the robot body for execution.

进一步地,所述步骤(2)中的避障判断的步骤如下:Further, the steps of the obstacle avoidance judgment in the step (2) are as follows:

获取2个机器人各自的6个关节角度值。这些关节角度值,确定了每个机器人大臂13、小臂14和手腕15在空间中的位置。根据2个机器人的大臂13、小臂14和手腕15在空间中的位置,我们计算机器人1的大臂13与机器人2的大臂13的距离D1、机器人1的大臂13与机器人2的小臂14的距离D2,机器人1的大臂13与机器人2的手腕15的距离D3,机器人1的小臂14与机器人2的大臂13的距离D4,机器人1的小臂14与机器人2的小臂14的距离D5,机器人1的小臂14与机器人2的手腕15的距离D6,机器人1的手腕15与机器人2的大臂13的距离D7,机器人1的手腕15与机器人2的小臂14的距离D8,机器人1的手腕15与机器人2的手腕15的距离D9,同时计算机器人1的大臂13与机器人2的大臂13的安全距离Dsafe1,机器人1的大臂13与机器人2的小臂14的安全距离Dsafe2,机器人1的大臂13与机器人2的手腕15的安全距离Dsafe3,机器人1的小臂14与机器人2的大臂13的安全距离Dsafe4,机器人1的小臂14与机器人2的小臂14的安全距离Dsafe5,机器人1的小臂14与机器人2的手腕15的安全距离Dsafe6,机器人1的手腕15与机器人2的大臂13的安全距离Dsafe7,机器人1的手腕15与机器人2的小臂14的安全距离Dsafe8,机器人1的手腕15与机器人2的手腕15的安全距离Dsafe9。安全距离等于对应的2个包络体的半径之和。根据D1和Dsafe1、D2和Dsafe2、D3和Dsafe3、D4和Dsafe4、D5和Dsafe5、D6和Dsafe6、D7和Dsafe7、D8和Dsafe8、D9和Dsafe9的大小判断是否即将碰撞,再执行相应的步骤:若D1>Dsafe1、D2>Dsafe2、D3>Dsafe3、D4>Dsafe4、D5>Dsafe5、D6>Dsafe6、D7>Dsafe7、D8>Dsafe8、D9>Dsafe9,则2个机器人之间不会发生碰撞,2个机器人仍按照原来的轨迹运行;反之,2个机器人之间即将发生碰撞,例如D9<=Dsafe9,即机器人1的手腕15与机器人2的手腕15即将发生碰撞,采取动态避障策略。Get the 6 joint angle values of each of the 2 robots. These joint angle values determine the position in space of each robotic arm 13 , arm 14 and wrist 15 . According to the positions of the big arm 13, the small arm 14 and the wrist 15 of the two robots in space, we calculate the distance D 1 between the big arm 13 of the robot 1 and the big arm 13 of the robot 2, and the distance D1 between the big arm 13 of the robot 1 and the robot 2 The distance D2 of the arm 14 of the robot 1, the distance D3 between the arm 13 of the robot 1 and the wrist 15 of the robot 2, the distance D4 of the arm 14 of the robot 1 and the arm 13 of the robot 2, the arm 14 of the robot 1 The distance D5 to the forearm 14 of robot 2, the distance D6 between the forearm 14 of robot 1 and the wrist 15 of robot 2, the distance D7 between the wrist 15 of robot 1 and the big arm 13 of robot 2, the wrist of robot 1 15 and the arm 14 of the robot 2 D8 , the distance D9 between the wrist 15 of the robot 1 and the wrist 15 of the robot 2, and simultaneously calculate the safe distance Dsafe1 between the arm 13 of the robot 1 and the arm 13 of the robot 2, The safe distance D safe2 between the arm 13 of robot 1 and the forearm 14 of robot 2, the safe distance Dsafe3between the forearm 13 of robot 1 and the wrist 15 of robot 2, the forearm 14 of robot 1 and the forearm 13 of robot 2 safe distance Dsafe4 , safe distance D safe5 between arm 14 of robot 1 and forearm 14 of robot 2 , safe distance Dsafe6between forearm 14 of robot 1 and wrist 15 of robot 2 , wrist 15 of robot 1 and robot 2 The safe distance D safe7 of the big arm 13 of the robot 2, the safe distance Dsafe8 of the wrist 15 of the robot 1 and the forearm 14 of the robot 2, and the safe distance Dsafe9 of the wrist 15 of the robot 1 and the wrist 15 of the robot2 . The safety distance is equal to the sum of the radii of the corresponding two envelopes. According to D1 and Dsafe1 , D2 and Dsafe2 , D3 and Dsafe3 , D4 and Dsafe4 , D5 and Dsafe5 , D6 and Dsafe6 , D7 and Dsafe7 , D8 and Dsafe8 , D9 and Dsafe9 judge whether it is about to collide, and then execute the corresponding steps: if D1 >Dsafe1 , D2 >Dsafe2 , D3 >Dsafe3 , D4 >Dsafe4 , D5 >Dsafe5 , D6 >Dsafe6 , D7 >Dsafe7 , D8 >Dsafe8 , D9 >Dsafe9 , then there will be no collision between the two robots, and the two robots will still run according to the original trajectory; A collision is about to occur, for example, D9 <= Dsafe9 , that is, the wrist 15 of robot 1 and the wrist 15 of robot 2 are about to collide, and a dynamic obstacle avoidance strategy is adopted.

总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:Generally speaking, compared with the prior art, the above technical solutions conceived by the present invention can achieve the following beneficial effects:

本发明提供一种具有动态避障功能的双臂机器人控制装置及其避障方法,能够在2个机器人即将发生碰撞时及时规划出新的无碰撞路径,避免碰撞,而不是停止机器人,最大化提高了双机器人的高效性、安全性;此装置的优势在于具有前瞻性,可以提前检测到碰撞的风险,增强了检测到即将碰撞的机会。另外一个优势在于能够实现动态避障;利用具有动态避障功能的该控制装置直接控制两台具备6自由度的机器人,实现对机器人的实时动态避障;并且该避障装置的模块化使得其可以应用于各类安装在同一基座下的机器人,可以涉及的加工操作过程包括打磨、装配、喷涂、焊接等,具有非常广泛的应用范围。The present invention provides a dual-arm robot control device with a dynamic obstacle avoidance function and an obstacle avoidance method thereof, which can plan a new collision-free path in time when two robots are about to collide, and avoid collisions instead of stopping the robots, maximizing The efficiency and safety of the dual robots are improved; the advantage of this device is that it is forward-looking, can detect the risk of collision in advance, and enhances the chance of detecting an imminent collision. Another advantage is that it can realize dynamic obstacle avoidance; using the control device with dynamic obstacle avoidance function to directly control two robots with 6 degrees of freedom can realize real-time dynamic obstacle avoidance of the robot; and the modularization of the obstacle avoidance device makes its It can be applied to all kinds of robots installed under the same base, and the processing operations involved include grinding, assembly, spraying, welding, etc., and has a very wide range of applications.

附图说明Description of drawings

图1是按照本发明实现的动态避障装置与双机器人的配合安装示意图;Fig. 1 is a schematic diagram of the cooperative installation of a dynamic obstacle avoidance device and a double robot according to the present invention;

图2是按照本发明实现的对机器人进行外形包络体生成的示意图;Fig. 2 is a schematic diagram of generating a shape envelope for a robot according to the present invention;

图3是按照本发明实现的两个机器人进行外形简化的示意图;Fig. 3 is a schematic diagram of simplified shapes of two robots realized according to the present invention;

图4是按照本发明实现的实时动态避障装置的整体模块结构示意图;Fig. 4 is a schematic diagram of the overall module structure of the real-time dynamic obstacle avoidance device realized according to the present invention;

图5是按照本发明实现的具有智能避障功能的机器人的控制方法流程示意图。Fig. 5 is a schematic flowchart of a control method of a robot with intelligent obstacle avoidance function realized according to the present invention.

在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:Throughout the drawings, the same reference numerals are used to designate the same elements or structures, wherein:

1-位置检测模块2-碰撞检测模块3-动态避障模块4-动态避障主控模块5-通讯模块6-输入输出模块7-电机驱动器8-电机9-第一机器人本体10-电源模块11-第二机器人本体12-1,12-2-底座13-1,13-2-机器人大臂14-1,14-2-机器人小臂15-1,15-2-机器人手腕1-position detection module 2-collision detection module 3-dynamic obstacle avoidance module 4-dynamic obstacle avoidance main control module 5-communication module 6-input and output module 7-motor driver 8-motor 9-first robot body 10-power supply module 11-Second robot body 12-1,12-2-base 13-1,13-2-robot arm 14-1,14-2-robot arm 15-1,15-2-robot wrist

具体实施方式detailed description

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.

如图1所示,首先对该避障装置如何与双机器人实现控制连接的进行说明,其中机器人9和机器人11是按照机器人的运动关节构成对双机器人进行了简化,如图3所示,输入输出模块6和通讯模块5,并且与输入输出模块6和通讯模块5相连的动态避障主控模块4,其中该避障装置通过输入输出模块6分别与两个机器人9和机器人11进行通信输出控制,并且还能通过通讯模块5以及输入输出模块6与外接的设备进行通信。As shown in Figure 1, firstly, how the obstacle avoidance device realizes the control connection with the dual robots is described, in which the robot 9 and the robot 11 simplify the dual robots according to the kinematic joint composition of the robots, as shown in Figure 3, the input Output module 6 and communication module 5, and the dynamic obstacle avoidance main control module 4 that is connected with input output module 6 and communication module 5, wherein this obstacle avoidance device carries out communication output with two robots 9 and robot 11 respectively through input output module 6 control, and can also communicate with external devices through the communication module 5 and the input and output module 6.

如图2所示,是按照现有技术中的机器人的运动关节来进行机器人的简化示意图,所述机器人包括两台机器人机械本体9和11、电机驱动器7,电机8,所述两台机器人机械本体分别具备6个自由度,所述机器人本体由两台安装在一个基座上的具备6个自由度的机器人组成,其中自由度包括底座12,大臂13,小臂14,手腕15旋转,手腕15摆动,手腕15回传,电机驱动模块7接收控制器的命令,驱动电机8转动,电机通8过机械传动驱动机器人机械本体9和11的轴转动,6自由度工业机器人按照结构分,可以分成底座12、大臂13、小臂14、手腕15共4个主要的部分,在这种情况下,对机器人大臂13、小臂14和手腕15都具有一定的几何形状和尺寸,根据这些参数,机器人的大臂13、小臂14和手腕15各自用一个封闭的包络体来表示,该包络体两端由球体组成,中间由圆柱体组成,圆柱体和球体的半径根据机器人的几何形状来确定,圆柱体可以用其中心线表示,球体用其球心表示,因此每个防护区就可以用一条线段来表示,机器人简化成一些列的线段,线段相连的地方为机器人的关节,如图3所示。As shown in Figure 2, it is a simplified schematic diagram of performing the robot according to the kinematic joints of the robot in the prior art. The robot includes two robot mechanical bodies 9 and 11, a motor driver 7, and a motor 8. The main body has 6 degrees of freedom respectively, and the robot body is composed of two robots with 6 degrees of freedom installed on a base, wherein the degrees of freedom include base 12, big arm 13, small arm 14, wrist 15 rotation, The wrist 15 swings, the wrist 15 returns, the motor drive module 7 receives the command from the controller, drives the motor 8 to rotate, and the motor drives the shafts of the mechanical body 9 and 11 of the robot through 8 mechanical transmissions. The 6-degree-of-freedom industrial robot is divided according to the structure. Can be divided into base 12, big arm 13, small arm 14, wrist 15 totally 4 main parts, in this case, have certain geometry and size to robot big arm 13, small arm 14 and wrist 15, according to For these parameters, the big arm 13, the small arm 14 and the wrist 15 of the robot are represented by a closed envelope respectively. The two ends of the envelope are composed of spheres, and the middle is composed of a cylinder. The radius of the cylinder and the sphere is according to the robot. The geometry of the cylinder can be determined by its center line, and the sphere can be represented by its center, so each protection zone can be represented by a line segment, and the robot is simplified into a series of line segments. joints, as shown in Figure 3.

在运动过程中,底座12的位置是固定的,机器人发生碰撞取决于大臂13、小臂14、手腕15在空间中的相对位置,因此,机器人大臂13、小臂14和手腕15需要判断是否将发生碰撞。大臂13在空间中的位置与机器人前2个关节的角度A1和A2有关系,小臂14在空间中的位置与机器人的前3个关节的角度A1、A2、A3有关系,手腕15在空间中的位置与机器人6个关节的角度A1、A2、A3、A4、A5、A6均有关系,机器人大臂13、小臂14和手腕15都具有一定的几何形状和尺寸,根据这些参数以及上述的机器人包络体的抽象来进行实时避障的规划。During the movement, the position of the base 12 is fixed, and the collision of the robot depends on the relative positions of the big arm 13, small arm 14, and wrist 15 in space. Therefore, the robot big arm 13, small arm 14, and wrist 15 need to judge Whether a collision will occur. The position of the big arm 13 in space is related to the angles A1 and A2 of the first two joints of the robot, the position of the forearm 14 in space is related to the angles A1, A2 and A3 of the first three joints of the robot, and the wrist 15 is in The position in space is related to the angles A1, A2, A3, A4, A5, and A6 of the six joints of the robot. The robot arm 13, forearm 14, and wrist 15 all have certain geometric shapes and dimensions. According to these parameters and The abstraction of the above-mentioned robot enveloping body is used for real-time obstacle avoidance planning.

其中如图4所示,是对按照本发明实现的双机器人实时动态避障装置的整体模块结构示意图,首先该实时避障装置包括分别与第一及第二机器人的电机8-1、8-2相连的位置检测模块1,用于对电机的驱动操作下的机器人本体的位置进行实时的检测测量,其中碰撞检测模块2与位置检测模块1相连,对位置检测模块1采集到的位置信息进行是否发生碰撞的评估,其中动态避障运算模块3与碰撞检测模块2相连,用于接收碰撞检测模块2的信息,并且对第一和第二两个机器人的运动路径进行重新的避障规划,其中位置检测模块1、碰撞检测模块2及动态避障运算模块3共同组成避障模块4,而通讯模块5通过避障模块4与第一及第二机器人的电机驱动器7进行信息通信,电机驱动器7-1,7-2驱动电机8-1,8-2对机器人进行避障规划路线之后的运动路线进行动作,由此实现动态实时的避障操作。Wherein as shown in Figure 4, it is a schematic diagram of the whole module structure to the real-time dynamic obstacle avoidance device of dual robots realized according to the present invention, at first this real-time obstacle avoidance device comprises motors 8-1, 8-1 respectively connected with the first and second robots 2 connected position detection module 1, used for real-time detection and measurement of the position of the robot body under the driving operation of the motor, wherein the collision detection module 2 is connected with the position detection module 1, and the position information collected by the position detection module 1 is carried out Evaluation of whether a collision occurs, wherein the dynamic obstacle avoidance calculation module 3 is connected to the collision detection module 2 for receiving the information of the collision detection module 2, and re-planning the obstacle avoidance of the movement paths of the first and second two robots, Wherein the position detection module 1, the collision detection module 2 and the dynamic obstacle avoidance calculation module 3 jointly form the obstacle avoidance module 4, and the communication module 5 carries out information communication with the motor drivers 7 of the first and second robots through the obstacle avoidance module 4, and the motor drivers 7-1, 7-2 drive motors 8-1, 8-2 to act on the movement route of the robot after the obstacle avoidance planning route, thereby realizing dynamic and real-time obstacle avoidance operation.

其中位置检测模块1通过检测机器人当前的位置和角速度,通过碰撞检测模块2判断2个机器人是否发生碰撞,如果将要发生碰撞,则启动避障算法,动态避障模块3规划出新的无碰撞路径,并发送给机器人;输入输出模块6允许接收外部指令和输出状态信息,通讯模块5实现与机器人以及外部网络设备的实时通讯,电源模块则为整个避障工作装置提供工作电源。The position detection module 1 detects the current position and angular velocity of the robot, and judges whether the two robots collide through the collision detection module 2. If there is a collision, the obstacle avoidance algorithm is started, and the dynamic obstacle avoidance module 3 plans a new collision-free path. , and sent to the robot; the input and output module 6 allows receiving external commands and output status information, the communication module 5 realizes real-time communication with the robot and external network equipment, and the power module provides working power for the entire obstacle avoidance working device.

更为具体的实现方式,位置检测模块1包括角度传感器、角速度传感器,用来根据当前机器人的位置信息和速度信息,手段是实时采集各关节的角度和角速度;In a more specific implementation, the position detection module 1 includes an angle sensor and an angular velocity sensor, which are used to collect the angle and angular velocity of each joint in real time according to the position information and velocity information of the current robot;

碰撞检测模块2,根据机器人的几何模型,机器人的位置信息以及机器人即将进行的未规避碰撞的操作路径,判断所述机器人是否存在碰撞;The collision detection module 2 judges whether the robot has a collision according to the geometric model of the robot, the position information of the robot and the upcoming operation path of the robot that does not avoid collision;

动态避障模块3规划计算出无碰撞的路径,并将该路径实时通过通讯模块5传送于电机驱动器7,对两个机器人的路径进行规划,当然,在实际的规划过程中,动态避障模块3计算出的机器人的避障运动量并不仅仅限于两个机器人,可以只控制其中一个机器人的避障动作从而实现避障,这种选择性的控制根据实际的情况来进行控制调整。The dynamic obstacle avoidance module 3 plans and calculates a collision-free path, and transmits the path to the motor driver 7 through the communication module 5 in real time to plan the paths of the two robots. Of course, in the actual planning process, the dynamic obstacle avoidance module 3. The calculated obstacle-avoiding motion of the robot is not limited to two robots, and the obstacle-avoiding action of only one of the robots can be controlled to achieve obstacle-avoiding. This selective control can be controlled and adjusted according to the actual situation.

图式中相同的号码代表相同或相似的组件。另一方面,众所周知的组件与步骤并未描述于实施例中,以避免对本发明造成不必要的限制。Like numbers in the drawings represent the same or similar components. On the other hand, well-known components and steps have not been described in the embodiments in order not to limit the invention unnecessarily.

如图5所示,是按照本发明实现的避障装置进行避障的实现方法,其中位置检测模块1在整个机器人的加工过程中实时地进行信号的采集,所述碰撞检测模块2根据机器人的几何模型和机器人9和11当前的位置信息和角速度信息,判断所述机器人是否存在碰撞;所述动态避障模块3规划无碰撞的路径,并实时发送给驱动器7,通过驱动模块7驱动机器人本体9和11运动;同时输入输出模块6允许接受一些外部指令和输出一些状态信息,通讯模块5则负责与机器人和外部网络设备进行通讯。As shown in FIG. 5 , it is an implementation method of obstacle avoidance implemented by the obstacle avoidance device according to the present invention, wherein the position detection module 1 collects signals in real time during the entire robot processing process, and the collision detection module 2 according to the robot's The geometric model and the current position information and angular velocity information of the robots 9 and 11 determine whether there is a collision in the robot; the dynamic obstacle avoidance module 3 plans a path without collision, and sends it to the driver 7 in real time, and drives the robot body through the driver module 7 9 and 11 movement; at the same time, the input and output module 6 allows to accept some external commands and output some status information, and the communication module 5 is responsible for communicating with the robot and external network devices.

按照本发明实现的实时动态避障装置的工作过程及计算原理如下:The working process and calculation principle of the real-time dynamic obstacle avoidance device realized according to the present invention are as follows:

在运动过程中,底座12的位置是固定的,机器人发生碰撞取决于大臂13、小臂14、手腕15在空间中的相对位置,因此,机器人大臂13、小臂14和手腕15需要判断是否将发生碰撞。大臂13在空间中的位置与机器人前2个关节的角度A1和A2有关系,小臂14在空间中的位置与机器人的前3个关节的角度A1、A2、A3有关系,手腕15在空间中的位置与机器人6个关节的角度A1、A2、A3、A4、A5、A6均有关系。。During the movement, the position of the base 12 is fixed, and the collision of the robot depends on the relative positions of the big arm 13, small arm 14, and wrist 15 in space. Therefore, the robot big arm 13, small arm 14, and wrist 15 need to judge Whether a collision will occur. The position of the big arm 13 in space is related to the angles A1 and A2 of the first two joints of the robot, the position of the forearm 14 in space is related to the angles A1, A2 and A3 of the first three joints of the robot, and the wrist 15 is in The position in space is related to the angles A1, A2, A3, A4, A5, and A6 of the six joints of the robot. .

当双机器人在同一工作空间工作时,如果不对机器人进行碰撞检测和采取避碰措施,则容易导致机器人之间发生碰撞,从而对机器人产生难以修复的损坏。因此当2个机器人在同一工作空间协同工作时,需要对2个机器人进行碰撞检测,以及即将发生碰撞时对2个机器人进行动态避碰运动规划。When two robots work in the same workspace, if the robots do not perform collision detection and take collision avoidance measures, it is easy to cause collisions between the robots, resulting in irreparable damage to the robots. Therefore, when two robots work together in the same workspace, it is necessary to perform collision detection for the two robots, and to perform dynamic collision avoidance motion planning for the two robots when a collision is about to occur.

在机器人的一个执行周期内,获取2个机器人各自的6个关节角度值。这些关节角度值,确定了每个机器人大臂13、小臂14和手腕15在空间中的位置。根据2个机器人的大臂13、小臂14和手腕15在空间中的位置,我们计算机器人1的大臂13与机器人2的大臂13的距离D1、机器人1的大臂13与机器人2的小臂14的距离D2,机器人1的大臂13与机器人2的手腕15的距离D3,机器人1的小臂14与机器人2的大臂13的距离D4,机器人1的小臂14与机器人2的小臂14的距离D5,机器人1的小臂14与机器人2的手腕15的距离D6,机器人1的手腕15与机器人2的大臂13的距离D7,机器人1的手腕15与机器人2的小臂14的距离D8,机器人1的手腕15与机器人2的手腕15的距离D9,同时计算机器人1的大臂13与机器人2的大臂13的安全距离Dsafe1,机器人1的大臂13与机器人2的小臂14的安全距离Dsafe2,机器人1的大臂13与机器人2的手腕15的安全距离Dsafe3,机器人1的小臂14与机器人2的大臂13的安全距离Dsafe4,机器人1的小臂14与机器人2的小臂14的安全距离Dsafe5,机器人1的小臂14与机器人2的手腕15的安全距离Dsafe6,机器人1的手腕15与机器人2的大臂13的安全距离Dsafe7,机器人1的手腕15与机器人2的小臂14的安全距离Dsafe8,机器人1的手腕15与机器人2的手腕15的安全距离Dsafe9。安全距离等于对应的2个包络体的半径之和。根据D1和Dsafe1、D2和Dsafe2、D3和Dsafe3、D4和Dsafe4、D5和Dsafe5、D6和Dsafe6、D7和Dsafe7、D8和Dsafe8、D9和Dsafe9的大小判断是否即将碰撞,再执行相应的步骤:若D1>Dsafe1、D2>Dsafe2、D3>Dsafe3、D4>Dsafe4、D5>Dsafe5、D6>Dsafe6、D7>Dsafe7、D8>Dsafe8、D9>Dsafe9,则2个机器人之间不会发生碰撞,2个机器人仍按照原来的轨迹运行;反之,2个机器人之间即将发生碰撞,例如D9<=Dsafe9,即机器人1的手腕15与机器人2的手腕15即将发生碰撞,采取动态避障策略。In one execution cycle of the robot, obtain the 6 joint angle values of the two robots. These joint angle values determine the position in space of each robotic arm 13 , arm 14 and wrist 15 . According to the positions of the big arm 13, the small arm 14 and the wrist 15 of the two robots in space, we calculate the distance D 1 between the big arm 13 of the robot 1 and the big arm 13 of the robot 2, and the distance D1 between the big arm 13 of the robot 1 and the robot 2 The distance D2 of the arm 14 of the robot 1, the distance D3 between the arm 13 of the robot 1 and the wrist 15 of the robot 2, the distance D4 of the arm 14 of the robot 1 and the arm 13 of the robot 2, the arm 14 of the robot 1 The distance D5 to the forearm 14 of robot 2, the distance D6 between the forearm 14 of robot 1 and the wrist 15 of robot 2, the distance D7 between the wrist 15 of robot 1 and the big arm 13 of robot 2, the wrist of robot 1 15 and the arm 14 of the robot 2 D8 , the distance D9 between the wrist 15 of the robot 1 and the wrist 15 of the robot 2, and simultaneously calculate the safe distance Dsafe1 between the arm 13 of the robot 1 and the arm 13 of the robot 2, The safe distance D safe2 between the arm 13 of robot 1 and the forearm 14 of robot 2, the safe distance Dsafe3between the forearm 13 of robot 1 and the wrist 15 of robot 2, the forearm 14 of robot 1 and the forearm 13 of robot 2 safe distance Dsafe4 , safe distance D safe5 between arm 14 of robot 1 and forearm 14 of robot 2 , safe distance Dsafe6between forearm 14 of robot 1 and wrist 15 of robot 2 , wrist 15 of robot 1 and robot 2 The safe distance D safe7 of the big arm 13 of the robot 2, the safe distance Dsafe8 of the wrist 15 of the robot 1 and the forearm 14 of the robot 2, and the safe distance Dsafe9 of the wrist 15 of the robot 1 and the wrist 15 of the robot2 . The safety distance is equal to the sum of the radii of the corresponding two envelopes. According to D1 and Dsafe1 , D2 and Dsafe2 , D3 and Dsafe3 , D4 and Dsafe4 , D5 and Dsafe5 , D6 and Dsafe6 , D7 and Dsafe7 , D8 and Dsafe8 , D9 and Dsafe9 judge whether it is about to collide, and then execute the corresponding steps: if D1 >Dsafe1 , D2 >Dsafe2 , D3 >Dsafe3 , D4 >Dsafe4 , D5 >Dsafe5 , D6 >Dsafe6 , D7 >Dsafe7 , D8 >Dsafe8 , D9 >Dsafe9 , then there will be no collision between the two robots, and the two robots will still run according to the original trajectory; A collision is about to occur, for example, D9 <= Dsafe9 , that is, the wrist 15 of robot 1 and the wrist 15 of robot 2 are about to collide, and a dynamic obstacle avoidance strategy is adopted.

在机器人执行路径规划的过程中,可以采取下列三种不同的方案来实现:In the process of robot path planning, the following three different solutions can be adopted:

(1)2个机器人同时进行路径规划(1) Two robots perform path planning at the same time

对机器人1进行路径规划时,将机器人2视作障碍物。根据机器人2在空间中的位置,结合机器人1的目标位置,规划出下一个执行周期机器人1的6个关节的角度值;同理对机器人2进行路径规划时,将机器人1视作障碍物。根据机器人1在空间中的位置,结合机器人2的目标位置,规划出下一个执行周期机器人2的6个关节的角度值。将前面生成的机器人1的关节角度值发送给机器人1,机器人2的关节角度值发送给机器人2。在下一个执行周期内,机器人1和机器人2按照给定的运动命令执行。同时控制器检测根据2个机器人当前的关节角度值和角速度,判断是否将发生碰撞,如果没有则继续执行原来的路径;如果有发生碰撞的可能,则再次执行上述方法,规划下一个执行周期内机器人的路径。When planning the path of robot 1, robot 2 is regarded as an obstacle. According to the position of robot 2 in space, combined with the target position of robot 1, the angle values of the six joints of robot 1 in the next execution cycle are planned; similarly, when planning the path of robot 2, robot 1 is regarded as an obstacle. According to the position of robot 1 in space, combined with the target position of robot 2, the angle values of the six joints of robot 2 in the next execution cycle are planned. Send the previously generated joint angle values of robot 1 to robot 1, and send the joint angle values of robot 2 to robot 2. In the next execution cycle, robot 1 and robot 2 execute according to the given motion command. At the same time, the controller detects whether there will be a collision based on the current joint angle values and angular velocities of the two robots. If not, continue to execute the original path; if there is a possibility of collision, execute the above method again to plan the next execution cycle. path of the robot.

(2)2个机器人中的其中一个机器人进行路径规划(2) One of the two robots performs path planning

对机器人1进行路径规划时,将机器人2视作障碍物。根据机器人2在空间中的位置,结合机器人1的目标位置,规划出下一个执行周期机器人1的6个关节的角度值;同理对机器人2进行路径规划时,将机器人1视作障碍物。或者根据机器人1在空间中的位置,结合机器人2的目标位置,规划出下一个执行周期机器人2的6个关节的角度值。将前面生成的机器人1的关节角度值发送给机器人1,或者是机器人2的关节角度值发送给机器人2。在下一个执行周期内,机器人1或机器人2按照给定的运动命令执行,同时实时监测各个关节角度值和角速度,判断是否将发生碰撞,如果没有则继续执行原来的路径;如果有发生碰撞的可能,则再次执行上述方法,规划下一个执行周期内机器人的路径。When planning the path of robot 1, robot 2 is regarded as an obstacle. According to the position of robot 2 in space, combined with the target position of robot 1, the angle values of the six joints of robot 1 in the next execution cycle are planned; similarly, when planning the path of robot 2, robot 1 is regarded as an obstacle. Or according to the position of the robot 1 in space, combined with the target position of the robot 2, the angle values of the six joints of the robot 2 in the next execution cycle are planned. Send the previously generated joint angle value of robot 1 to robot 1, or send the joint angle value of robot 2 to robot 2. In the next execution cycle, robot 1 or robot 2 executes according to the given motion command, and at the same time monitors the angle value and angular velocity of each joint in real time to judge whether there will be a collision, if not, continue to execute the original path; if there is a possibility of collision , execute the above method again to plan the path of the robot in the next execution cycle.

当然,在上述路径规划的过程中,为了在避障过程中,对机器人的加工操作不停止,需要对上述的安全距离预留出动态避障装置反应的时间内,两个机器人相对运动产生的距离,因此,为更好地实现避障,最好是在安全距离的基础之上再进行一个避障模块反应时间的运动距离的安全距离的保留,由此可以实现更加稳定可靠的实时动态的避障。Of course, in the above-mentioned path planning process, in order not to stop the processing operation of the robot during the obstacle avoidance process, it is necessary to reserve the reaction time of the dynamic obstacle avoidance device for the above-mentioned safety distance. Therefore, in order to better achieve obstacle avoidance, it is best to reserve a safety distance of the movement distance of the reaction time of the obstacle avoidance module on the basis of the safety distance, thereby achieving a more stable and reliable real-time dynamic Avoidance.

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.

Claims (8)

Translated fromChinese
1.一种双机器人实时避障装置,其特征在于,所述避障装置包括避障主控模块(4),实现所述避障主控模块(4)与外部设备及所述机器人本体(9,11)通信的通讯模块(5)以及输入输出模块(6),所述避障主控模块(4)包括依次相连的位置检测模块(1)、碰撞检测模块(2)以及动态避障模块(3),所述位置检测模块(1)与所述双机器人本体(9,11)的电机(8)通信,实时采集所述双机器人本体(9,11)的位置信息,所述碰撞检测模块(2)接收所述位置检测模块(1)发送的所述位置信息,并与所述双机器人本体(9,11)发生碰撞的安全距离进行比较,所述动态避障模块(3)接收所述碰撞检测模块(2)的结果进行所述双机器人本体(9,11)的避障路径规划,并将所述避障路径规划发送于所述双机器人本体(9,11)的电机驱动器(7),驱动所述双机器人本体(9,11)执行所述避障路径。1. a double robot real-time obstacle avoidance device, is characterized in that, described obstacle avoidance device comprises obstacle avoidance main control module (4), realizes described obstacle avoidance main control module (4) and external equipment and described robot body ( 9,11) a communication module (5) and an input/output module (6) for communication, and the obstacle avoidance main control module (4) includes a position detection module (1), a collision detection module (2) and a dynamic obstacle avoidance module (3), the position detection module (1) communicates with the motors (8) of the dual robot bodies (9, 11), collects the position information of the dual robot bodies (9, 11) in real time, and the collision The detection module (2) receives the position information sent by the position detection module (1), and compares it with the safety distance of collision between the dual robot bodies (9, 11), and the dynamic obstacle avoidance module (3) receiving the result of the collision detection module (2) to plan the obstacle avoidance path of the dual robot bodies (9, 11), and sending the obstacle avoidance path planning to the motors of the dual robot bodies (9, 11) A driver (7) drives the dual robot bodies (9, 11) to execute the obstacle avoidance path.2.如权利要求1所述的双机器人实时避障装置,其特征在于,所述安全距离的定义如下:对所述双机器人本体(9,11)的大臂(13)、小臂(14)以及手腕(15)进行包络体表达,所述包络体中间由圆柱体组成,所述包络体的两端由球体组成,所述安全距离由所述包络体的尺寸距离表达。2. The double robot real-time obstacle avoidance device as claimed in claim 1, is characterized in that, the definition of described safe distance is as follows: to the boom (13), forearm (14) of described double robot body (9,11) ) and the wrist (15) to express the envelope body, the middle of the envelope body is composed of cylinders, the two ends of the envelope body are composed of spheres, and the safety distance is expressed by the size distance of the envelope body.3.如权利要求1或2所述的双机器人实时避障装置,其特征在于,所述安全距离为任何一所述所述双机器人本体(9,11)的所述包络体不发生碰撞叠加。3. The dual-robot real-time obstacle avoidance device according to claim 1 or 2, wherein the safety distance is that the envelopes of any one of the dual-robot bodies (9, 11) do not collide overlay.4.如权利要求3所述的双机器人实时避障装置,其特征在于,所述避障路径规划的执行可由其中之一的所述机器人本体完成或者由两者共同完成。4. The dual-robot real-time obstacle avoidance device according to claim 3, wherein the execution of the obstacle avoidance path planning can be completed by one of the robot bodies or by both.5.如权利要求4所述的双机器人实时避障装置,其特征在于,所述位置信息包括角度信息和角速度信息。5. The dual-robot real-time obstacle avoidance device according to claim 4, wherein the position information includes angle information and angular velocity information.6.一种双机器人的实时动态避障方法,其特征在于,该方法包括如下步骤:6. a real-time dynamic obstacle avoidance method of two robots, is characterized in that, the method comprises the steps:(1)获取所述双机器人本体(9,11)的位置信息;(1) obtaining the position information of the dual robot body (9,11);(2)根据所述步骤(1)中获取的位置信息来进行是否需要避障的判断;(2) Carry out the judgment of whether obstacle avoidance is needed according to the position information obtained in the step (1);(3)如果经过所述步骤(2)的判断之后需要避障,则实时进行新的路径规划,并发送所述路径规划于所述机器人本体(9,11)执行。(3) If it is necessary to avoid obstacles after the judgment in the step (2), perform new path planning in real time, and send the path planning to the robot body (9, 11) for execution.7.如权利要求6所述的双机器人的实时动态避障方法,其特征在于,所述步骤(2)中的避障判断的执行过程如下:对所述双机器人本体(9,11)的大臂(13)、小臂(14)以及手腕(15)进行包络体表达,所述包络体中间由圆柱体组成,所述包络体的两端由球体组成,所述安全距离为任何一所述所述双机器人本体(9,11)的所述包络体不发生碰撞叠加,以所述安全距离来进行避障判断。7. the real-time dynamic obstacle avoidance method of double robot as claimed in claim 6 is characterized in that, the execution process of the obstacle avoidance judgment in described step (2) is as follows: to described double robot body (9,11) The upper arm (13), the forearm (14) and the wrist (15) perform envelope expression. The middle of the envelope is composed of a cylinder, and the two ends of the envelope are composed of spheres. The safety distance is The envelope bodies of any one of the dual robot bodies (9, 11) do not collide and overlap, and the safety distance is used for obstacle avoidance judgment.8.如权利要求7所述的双机器人的实时动态避障方法,其特征在于,所述步骤(2)中的避障判断的具体如下:8. the real-time dynamic obstacle avoidance method of double robot as claimed in claim 7, is characterized in that, the obstacle avoidance judgment in the described step (2) is specifically as follows:获取所述双机器人本体(9,11)各自的6个关节角度值,确定每个机器人的大臂(13)、小臂(14)和手腕(15)在空间中的位置,计算第一机器人本体(9)的所述大臂(13-1)与第二机器人本体(11)的所述大臂(13-2)的距离D1及安全距离Dsafe1、所述第一机器人本体(9)的所述大臂(13-1)与所述第二机器人本体(11)的所述小臂(14-2)的距离D2及安全距离Dsafe2,所述第一机器人本体(9)的所述大臂(13-1)与所述第二机器人本体(11)的所述手腕(15-2)的距离D3及安全距离Dsafe3,所述第一机器人本体(9)的所述小臂(14-1)与所述第二机器人本体(11)的所述大臂(13-2)的距离D4及安全距离Dsafe4,所述第一机器人本体(9)的所述小臂(14-1)与所述第二机器人本体(11)的所述小臂(14-2)的距离D5及安全距离Dsafe5,所述第一机器人本体(9)的所述小臂(14-1)与所述第二机器人本体(11)的所述手腕(15-2)的距离D6及安全距离Dsafe6,所述第一机器人本体(9)的所述手腕(15-1)与所述第二机器人本体(11)的所述大臂(13-2)的距离D7及安全距离Dsafe7,所述第一机器人本体(9)的所述手腕(15-1)与所述第二机器人本体(11)的所述小臂(14-2)的距离D8及安全距离Dsafe8,所述第一机器人本体(9)的所述手腕(15-1)与所述第二机器人本体(11)的所述手腕(15-2)的距离D9及安全距离Dsafe9,所述安全距离等于相应的2个包络体的半径之和,根据所述D1和Dsafe1、D2和Dsafe2、D3和Dsafe3、D4和Dsafe4、D5和Dsafe5、D6和Dsafe6、D7和Dsafe7、D8和Dsafe8、D9和Dsafe9的大小判断是否即将碰撞:若D1>Dsafe1、D2>Dsafe2、D3>Dsafe3、D4>Dsafe4、D5>Dsafe5、D6>Dsafe6、D7>Dsafe7、D8>Dsafe8、D9>Dsafe9,则不会发生碰撞,仍按照原来的轨迹运行;反之,则即将发生碰撞,则执行所述步骤(3)。Obtain the respective 6 joint angle values of the dual robot bodies (9, 11), determine the positions in space of the big arm (13), small arm (14) and wrist (15) of each robot, and calculate the position of the first robot The distance D1 between the boom (13-1) of the main body (9) and the boom (13-2) of the second robot body (11) and the safety distance Dsafe1 , the first robot body (9 The distance D2 and the safety distance Dsafe2 between the big arm (13-1) of the second robot body (11) and the small arm (14-2) of the second robot body (11), the first robot body (9) The distance D3 and the safety distance D safe3 between the arm (13-1) of the second robot body (11) and the wrist (15-2) of the second robot body (11), and the distance Dsafe3 of the first robot body (9) The distance D4 between the small arm (14-1) and the big arm (13-2) of the second robot body (11) and the safety distance Dsafe4 , the distance D safe4 of the first robot body (9) The distance D5 between the forearm (14-1) and the forearm (14-2) of the second robot body (11) and the safety distance Dsafe5 , the small arm (14-2) of the first robot body (9) The distance D6 between the arm (14-1) and the wrist (15-2) of the second robot body (11) and the safety distance Dsafe6 , the wrist (15-2) of the first robot body (9) -1) The distance D7 and the safety distance Dsafe7 from the arm (13-2) of the second robot body (11), the wrist (15-1) of the first robot body (9) ) and the forearm (14-2) of the second robot body (11) and the distance D8 and the safety distance Dsafe8 , the wrist (15-1) of the first robot body (9) and The distance D9 and the safety distance Dsafe9 of the wrist (15-2) of the second robot body (11), the safety distance is equal to the sum of the radii of the corresponding two envelopes, according to the D1 and Dsafe1 , D2 and Dsafe2 , D3 and Dsafe3 , D4 and Dsafe4 , D5 and Dsafe5 , D6 and Dsafe6 , D7 and Dsafe7 , D8 and Dsafe8 , D9 and D The size ofsafe9 judges whether it is about to collide: if D1 >Dsafe1 , D2 >Dsafe2 , D3 >Dsafe3 , D4 >Dsafe4 , D5 >Dsafe5 , D6 >Dsafe6 , D7 >Dsafe7 , D8 >Dsafe8 , D9 >Dsafe9 , then no collision will occur, and the original trajectory will still run; otherwise, a collision will occur, and the step (3) will be performed.
CN201510992455.0A2015-12-242015-12-24Real-time dynamic obstacle avoidance device and obstacle avoidance method of dual robotsPendingCN105479490A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201510992455.0ACN105479490A (en)2015-12-242015-12-24Real-time dynamic obstacle avoidance device and obstacle avoidance method of dual robots

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201510992455.0ACN105479490A (en)2015-12-242015-12-24Real-time dynamic obstacle avoidance device and obstacle avoidance method of dual robots

Publications (1)

Publication NumberPublication Date
CN105479490Atrue CN105479490A (en)2016-04-13

Family

ID=55666939

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201510992455.0APendingCN105479490A (en)2015-12-242015-12-24Real-time dynamic obstacle avoidance device and obstacle avoidance method of dual robots

Country Status (1)

CountryLink
CN (1)CN105479490A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN106483889A (en)*2016-12-072017-03-08浙江立镖机器人有限公司sorting platform cleaning method and device
CN106503373A (en)*2016-11-042017-03-15湘潭大学The method for planning track that a kind of Dual-robot coordination based on B-spline curves is assembled
CN106956267A (en)*2017-05-272017-07-18上海木爷机器人技术有限公司Robot arm barrier-avoiding method and system
CN107030700A (en)*2017-05-222017-08-11广西科技大学A kind of six axle welding industry robot anticollision control systems
CN108058175A (en)*2016-11-072018-05-22林肯环球股份有限公司For the system and method and its control method of manufacture
CN108801255A (en)*2017-05-042018-11-13罗伯特·博世有限公司Methods, devices and systems for avoiding robot from colliding
CN108803592A (en)*2017-05-042018-11-13罗伯特·博世有限公司Methods, devices and systems for avoiding robot from colliding
WO2018205488A1 (en)*2017-05-122018-11-15广州视源电子科技股份有限公司Limiting protection method and device for mechanical arm, and robot
CN109960261A (en)*2019-03-222019-07-02北京理工大学 A dynamic obstacle avoidance method based on collision detection
CN110320920A (en)*2019-08-062019-10-11北京中海远景科技有限公司A kind of double-movement robot maze paths planning method based on reduction algorithm
CN110485947A (en)*2019-08-292019-11-22三一集团有限公司湖南分公司Drilling tool mobile controller, drilling equipment and drilling tool control method for movement
CN111474947A (en)*2020-05-072020-07-31北京云迹科技有限公司Robot obstacle avoidance method, device and system
CN111716352A (en)*2020-05-132020-09-29中国电力科学研究院有限公司 A method and system for navigation and obstacle avoidance of a manipulator for live work in a distribution network
CN112264989A (en)*2020-06-172021-01-26华中科技大学Two-mechanical-arm cooperative obstacle avoidance method based on neighborhood traversal
CN112773506A (en)*2021-01-272021-05-11哈尔滨思哲睿智能医疗设备有限公司Collision detection method and device for laparoscopic minimally invasive surgery robot
CN113226665A (en)*2018-12-212021-08-06富兰卡爱米卡股份有限公司Motion monitoring of robotic manipulators
CN113580146A (en)*2021-08-292021-11-02浙江工业大学Mechanical arm real-time obstacle avoidance method integrating dynamic system and model predictive control
CN113985807A (en)*2021-09-062022-01-28武汉科技大学 A laser cladding cladding head anti-collision and obstacle avoidance control system and method
CN114528737A (en)*2022-02-212022-05-24哈尔滨思哲睿智能医疗设备有限公司Configuration evaluation method and device for endoscopic surgery robot
CN114851207A (en)*2022-06-092022-08-05珠海格力电器股份有限公司Anti-collision control method and system for double robots and multi-robot system
US11628568B2 (en)2020-12-282023-04-18Industrial Technology Research InstituteCooperative robotic arm system and homing method thereof
CN116638515A (en)*2023-05-312023-08-25重庆日联科技有限公司 An anti-collision protection method for robot X-ray detection system in lead room

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6004016A (en)*1996-08-061999-12-21Trw Inc.Motion planning and control for systems with multiple mobile objects
CN1461693A (en)*2002-05-302003-12-17库卡-罗伯特有限公司Method for preventing and device for controlling colliding between cooperated manipulators
CN1623741A (en)*2004-05-242005-06-08熊勇刚Method for testing collision between joint of robot with multiple mechanical arm
CN102523737A (en)*2009-09-152012-06-27哈里公司Robotic apparatus implementing collision avoidance scheme and associated methods
CN102773853A (en)*2012-07-102012-11-14北京航空航天大学Accessory position manipulating and automatic collision prevention monitoring method orientating to dual-arm engineering machinery
CN102902269A (en)*2012-09-212013-01-30北京邮电大学Redundant robot dynamic obstacle avoidance method using pre-selected minimum distance index

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6004016A (en)*1996-08-061999-12-21Trw Inc.Motion planning and control for systems with multiple mobile objects
CN1461693A (en)*2002-05-302003-12-17库卡-罗伯特有限公司Method for preventing and device for controlling colliding between cooperated manipulators
CN1623741A (en)*2004-05-242005-06-08熊勇刚Method for testing collision between joint of robot with multiple mechanical arm
CN102523737A (en)*2009-09-152012-06-27哈里公司Robotic apparatus implementing collision avoidance scheme and associated methods
CN102773853A (en)*2012-07-102012-11-14北京航空航天大学Accessory position manipulating and automatic collision prevention monitoring method orientating to dual-arm engineering machinery
CN102902269A (en)*2012-09-212013-01-30北京邮电大学Redundant robot dynamic obstacle avoidance method using pre-selected minimum distance index

Cited By (30)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN106503373B (en)*2016-11-042020-07-28湘潭大学 A B-spline-curve-based trajectory planning method for two-robot coordinated assembly
CN106503373A (en)*2016-11-042017-03-15湘潭大学The method for planning track that a kind of Dual-robot coordination based on B-spline curves is assembled
CN108058175A (en)*2016-11-072018-05-22林肯环球股份有限公司For the system and method and its control method of manufacture
CN106483889B (en)*2016-12-072019-05-10浙江立镖机器人有限公司Sort platform cleaning method and device
CN106483889A (en)*2016-12-072017-03-08浙江立镖机器人有限公司sorting platform cleaning method and device
CN108801255B (en)*2017-05-042023-10-27罗伯特·博世有限公司Method, device and system for avoiding robot collision
CN108801255A (en)*2017-05-042018-11-13罗伯特·博世有限公司Methods, devices and systems for avoiding robot from colliding
CN108803592A (en)*2017-05-042018-11-13罗伯特·博世有限公司Methods, devices and systems for avoiding robot from colliding
CN108803592B (en)*2017-05-042024-02-09罗伯特·博世有限公司Method, device and system for avoiding robot collision
WO2018205488A1 (en)*2017-05-122018-11-15广州视源电子科技股份有限公司Limiting protection method and device for mechanical arm, and robot
CN107030700A (en)*2017-05-222017-08-11广西科技大学A kind of six axle welding industry robot anticollision control systems
CN106956267A (en)*2017-05-272017-07-18上海木爷机器人技术有限公司Robot arm barrier-avoiding method and system
CN113226665A (en)*2018-12-212021-08-06富兰卡爱米卡股份有限公司Motion monitoring of robotic manipulators
CN109960261A (en)*2019-03-222019-07-02北京理工大学 A dynamic obstacle avoidance method based on collision detection
CN110320920A (en)*2019-08-062019-10-11北京中海远景科技有限公司A kind of double-movement robot maze paths planning method based on reduction algorithm
CN110485947A (en)*2019-08-292019-11-22三一集团有限公司湖南分公司Drilling tool mobile controller, drilling equipment and drilling tool control method for movement
CN111474947A (en)*2020-05-072020-07-31北京云迹科技有限公司Robot obstacle avoidance method, device and system
CN111716352A (en)*2020-05-132020-09-29中国电力科学研究院有限公司 A method and system for navigation and obstacle avoidance of a manipulator for live work in a distribution network
CN112264989A (en)*2020-06-172021-01-26华中科技大学Two-mechanical-arm cooperative obstacle avoidance method based on neighborhood traversal
US11628568B2 (en)2020-12-282023-04-18Industrial Technology Research InstituteCooperative robotic arm system and homing method thereof
WO2022160509A1 (en)*2021-01-272022-08-04哈尔滨思哲睿智能医疗设备有限公司Collision detection method and apparatus for laparoscopic minimally invasive surgical robot
CN112773506A (en)*2021-01-272021-05-11哈尔滨思哲睿智能医疗设备有限公司Collision detection method and device for laparoscopic minimally invasive surgery robot
CN113580146A (en)*2021-08-292021-11-02浙江工业大学Mechanical arm real-time obstacle avoidance method integrating dynamic system and model predictive control
CN113580146B (en)*2021-08-292022-08-05浙江工业大学 A Real-time Obstacle Avoidance Method for Manipulator Arms Integrating Dynamic System and Model Predictive Control
CN113985807A (en)*2021-09-062022-01-28武汉科技大学 A laser cladding cladding head anti-collision and obstacle avoidance control system and method
CN113985807B (en)*2021-09-062023-12-26武汉科技大学Cladding head anti-collision obstacle avoidance control system and method for laser cladding
CN114528737A (en)*2022-02-212022-05-24哈尔滨思哲睿智能医疗设备有限公司Configuration evaluation method and device for endoscopic surgery robot
CN114851207A (en)*2022-06-092022-08-05珠海格力电器股份有限公司Anti-collision control method and system for double robots and multi-robot system
CN114851207B (en)*2022-06-092023-08-25珠海格力电器股份有限公司Anti-collision control method and system for double robots and multi-robot system
CN116638515A (en)*2023-05-312023-08-25重庆日联科技有限公司 An anti-collision protection method for robot X-ray detection system in lead room

Similar Documents

PublicationPublication DateTitle
CN105479490A (en)Real-time dynamic obstacle avoidance device and obstacle avoidance method of dual robots
CN104476550B (en) Action method of fully hydraulic autonomous mobile robot arm
CN108519814B (en)Man-machine interaction operating system
JP4544145B2 (en) Robot interference avoidance method and robot
EP1901151B1 (en)A method and a device for avoiding collisions between an industrial robot and an object
US9701023B2 (en)Teleoperation of machines having at least one actuated mechanism and one machine controller comprising a program code including instructions for transferring control of the machine from said controller to a remote control station
CN101352854B (en) Intelligent unit, system and method for autonomous obstacle avoidance of teleoperated planar redundant manipulator
CN104808668B (en)Multiple mobile robot&#39;s cooperation transporting flat plate shape object method based on force information
CN101817182A (en)Intelligent moving mechanical arm control system
KR20170100028A (en)Manipulator system for the coordinated control of at least two manipulators
CN205325689U (en)Two real time kinematic of robot keep away barrier device
CN110039511B (en) An 8-axis linkage robot and its control system and control method
CN107908191A (en)The kinetic control system and method for a kind of series-parallel robot
CN106873604A (en)Intelligent multi-robot control system based on wireless telecommunications
CN116394239A (en)Mobile mechanical arm teleoperation method based on self-adaptive switching
CN114851207A (en)Anti-collision control method and system for double robots and multi-robot system
CN106541391A (en)All-around mobile parallel robot and cooperating method
CN111260772A (en)Equipment anti-collision protection method, system and manufacturing system
CN111791234A (en)Anti-collision control algorithm for working positions of multiple robots in narrow space
Yang et al.Collision avoidance trajectory planning for a dual-robot system: Using a modified APF method
Shen et al.Review on the research of deep learning in mechanical equipment fault prognostics and health management
Reddy et al.A Review of Safety Methods for Human-robot Collaboration and a Proposed Novel Approach.
CN112638600B (en) Robot control device
CN108772839A (en)Master-slave operation and human-machine system
JP5904445B2 (en) Robot controller

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
WD01Invention patent application deemed withdrawn after publication

Application publication date:20160413

WD01Invention patent application deemed withdrawn after publication

[8]ページ先頭

©2009-2025 Movatter.jp